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Abstract— Efficient routing among mobile hosts is an impor-
tant function in ad hoc networks. Routing based on a connected
dominating set is a promising approach, where the search space
for a route is reduced to the hosts in the set. A set is dominating if
all the hosts are either in the set or neighbors of hosts in the set.
The efficiency of dominating-set-based routing mainly depends
on the overhead introduced in the formation of the dominating
set and the size of the dominating set. In this paper, we first
review a distributed formation of a connected dominating set
called marking process and dominating-set-based routing. Then
we propose a dominant pruning rule to reduce the size of the
dominating set. This dominant pruning rule (called Rule k) is
a generalization of two existing rules (called Rules 1 and 2).
We prove that the vertex set derived by applying Rule k is
still a connected dominating set. When implemented with local
neighborhood information, Rule k is more effective in reducing
the dominating set derived from the marking process than the
combination of Rules 1 and 2, and has the same communication
complexity and less computation complexity. Simulation results
confirm that Rule k outperforms Rules 1 and 2, especially in
relatively dense networks with unidirectional links.

I. I NTRODUCTION

An ad hoc network can be represented by aunit disk graph
[1], where every vertex (host) is associated with a disk centered
at this vertex with the same radius (transmitter range). Two
vertices are neighbors if and only if they are covered by each
other’s disk. For example, both verticesv andw in Figure 1 (a)
are neighbors of vertexu because they are covered by disku;
while verticesv andx in Figure 1 (b) are not neighbors. In an
ad hoc network, some links (edges) may be unidirectional due
to either the disparity of energy levels of hosts or the hidden
terminal problem [2]. Therefore, a general ad hoc network can
be considered as a directed graph with a high percentage of
bidirectional links.

Routing in ad hoc networks is harder than that in wired
networks, due to the limited resource, network mobility and
lack of a physical infrastructure. Virtual infrastructures, such
as aconnected dominating set (CDS), were proposed to reduce
the routing overhead and enhance scalability. A dominating set
satisfies that every vertex in the graph is either in the set or
adjacent to a vertex in the set. Vertices in a dominating set are
also calledgateways while vertices that are outside a dominat-
ing set are callednon-gateways. Among CDS-based routing
protocols, only gateways need to keep routing information in
a proactive approach and the search space is reduced to the
dominating set in areactive approach. Clearly, the efficiency
of this approach depends largely on the process of finding
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Fig. 1. Examples of ad hoc networks.

and maintaining a CDS and the size of the corresponding
subnetwork.

Unfortunately, finding a minimum connected dominating set
is NP-complete for most graphs. Wu and Li proposed a simple
and efficient approach calledmarking process which can
quickly determine a CDS. This approach was first proposed for
undirected graphs using the notion of dominating set only [3]
and was later extended to cover directed graphs by introducing
another notion calledabsorbent set [4]. Specifically, each host
is marked (i.e., becomes a gateway) if it has two unconnected
neighbors. It is shown that collectively these hosts achieve
a desired global objective – a set of marked hosts forms a
small CDS. Based on the marking process, verticesu andw
in Figure 1 (b) are marked and they form a dominating set
in their network. The CDS derived from the marking process
is further reduced by applying twodominant pruning rules.
According to dominant pruning Rule 1, a marked host can
unmark itself if its neighbor set is covered by another marked
host; that is, if all its neighbors are connected with each other
via another gateway, it can relinquish its responsibility as a
gateway. In Figure 1 (b), eitheru or w can be unmarked (but
not both). According to Rule 2, a marked host can unmark
itself if its neighborhood is covered by two other directly
connected marked hosts. The marking process and Rules 1
and 2 are purely localized algorithms where the marker of a
host depends on topology of a small vicinity only.

We propose a generic dominant pruning rule called Rulek,
which can unmark gateways covered byk other gateways,
where k can be any number. Rulek is more efficient in
reducing the number of gateways than the combination of
Rules 1 and 2. For example, if hosts in Figure 1 are evenly
distributed and dense enough, it is almost impossible to find
two hosts v and w to cover the neighborhood of hostu
(see the shadowed area in Figure 1 (a)). However, it is
much easier to find three or more hosts to cover the same
neighborhood (see Figure 1 (b)). An efficient algorithm is



developed that implements a restricted version of Rulek with
less computation complexity than that of the combination of
Rules 1 and 2. Simulation results of this paper show that this
restricted version of Rulek outperforms the combination of the
restricted Rules 1 and 2 in reducing the number of gateways.

II. RELATED WORK

Das et al. [5] proposed an algorithm to identify a subnet-
work that forms aminimum CDS (MCDS). This algorithm
finds a CDS by growing a treeT starting from a vertex with
the maximum vertex degree, and adding new vertices toT
according to its effective degree (number of neighbors that
are not neighbors ofT ). The main drawback of this algorithm
is its centralized style: Vertices in the MCDS are selected
sequentially, and expensive coordination is needed for each
selection unless global information is provided.

Several algorithms were proposed based on clusters. A
cluster usually contains ahead and severalmembers that
are neighbors of the head. Lin and Gerla [6] gave two
simple clustering algorithms based on host id and degree,
respectively. The clustering approaches are very effective in
reducing the size of the dominating set in very dense networks.
However, the head election process may have to be serialized
in some cases, such as in a linear network with monotonically
increasing or decreasing id distribution along the network.

Heads of clusters form a dominating set, but they are not
necessarily connected. Someborder members (i.e., members
with neighbors in other clusters) are designated as gateways,
which form virtual links between cluster heads and connect
all clusters. In themaximum connectivity scheme, most border
members are designated as gateways. The objective here is to
maximize the throughput and reliability, rather than to reduce
the size of a connected dominating set. Themesh scheme
[7] designates a subset of border members as gateways so
that there is exactly one virtual link between two neighboring
clusters. Thetree scheme [8] minimizes the number of virtual
links by growing a breadth-first search tree via flooding.
However, this approach demands a root election, which is quite
expensive, and the flooding needsO��� rounds to complete,
where� is the diameter of the network.

Wu and Li’s marking process uses a constant number of
rounds to determine a CDS. This approach can be applied to
ad hoc networks with bidirectional links only [3] and with
both bidirectional and unidirectional links [4]. Stojmenovic
et al. [9] further reduced the communication overhead of the
localized dominating set algorithm using location information.

III. PRELIMINARIES

An ad hoc network with unidirectional links can be rep-
resented by a simple directed graphG � �V�E�, whereV
is a set of vertices (hosts) andE is a set of directed edges
(unidirectional links). A directed edge fromu to v is denoted
by an ordered pair�u� v�. A directed graphG is strongly
connected if for any two verticesu andv, a (u� v)-path (i.e.,
a path connectingu to v) exists. If �u� v� is an edge inG,
we say thatu dominatesv, andv is an absorbent ofu. The
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Fig. 2. Three examples of dominating set reduction.

dominating neighbor set Nd�u� of vertexu is defined asfw �
�w� u� � Eg. The absorbent neighbor set Na�u� of vertex
u is defined asfv � �u� v� � Eg. N�u� � Nd�u� � Na�u�
represents the neighbor set of vertexu.

A set V
�

� V is a dominating set of G if every vertex
v � V � V

�

is dominated by at least one vertexu � V
�

.
Also, a setV

�

� V is called anabsorbent set if for every
vertex u � V � V

�

, there exists a vertexv � V
�

which
is an absorbent ofu. For example, vertex setfu� vg in
Figures 2 (a) and (b) andfu� v� wg in Figure 2 (c) are both
dominating and absorbent sets of the corresponding directed
graphs. The absorbent subset may overlap with the dominating
subset. We use the term “(connected) dominating set” to
represent “(strongly connected) dominating and absorbent set”.
The following marking process can quickly find a strongly
connected dominating and absorbent set in a given directed
graph. All nodes are initially markedF (unmarked).

Algorithm 1 Marking process [4]
1: Eachu periodically exchanges its neighbor setNd�u� andNa�u�

with all its neighbors.
2: u sets its marker toT (marked) if there exist two neighborsv

andw of u such that�w� u� � E, �u� v� � E and �w� v� �� E.

Suppose the marking process is applied to the network
represented by Figure 2 (a). Hostu will be marked because
�x� u� � E and �u� y� � E, but �x� y� �� E; host v will also
be marked. All other hosts will remain unmarked because no
such pair of neighbor hosts can be found. Results in [4] show
that marked vertices form a strongly connected dominating and
absorbent set, and furthermore, can connect any two vertices
with minimum hops.

Two dominant pruning rules are proposed in [3] and then
extended in [4] to reduce the size of the CDS derived from the
marking process. We say a vertex iscovered if its neighbors
can reach each other via other connected marked vertices. If
a vertex is covered by no more than two connected vertices,
removing this vertex fromV � will not compromise its func-
tionality as a CDS. To avoid simultaneous removal of two
vertices covering each other, each vertexv � V is assigned a
distinct id,id�v�. A vertex is removed only when it is covered
by vertices with higher id’s.

Rule 1: Consider two vertices u and v in G
�

(induced
subgraph of V

�

). If Nd�u��fvg � Nd�v� and Na�u��fvg �
Na�v� in G and id�u� � id�v�, change the marker of u to F .

Rule 2: Assume that v and w are bidirectionally connected in
G

�

. If Nd�u��fv� wg � Nd�v��Nd�w� and Na�u��fv� wg �
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Fig. 3. Limitation of Rules 1 and 2.

Na�v� �Na�w� in G and id�u� � minfid�u�� id�v�� id�w�g,
then change the marker of u to F .

In Figure 2 (a), sinceNd�u��fvg � Nd�v�, Na�u��fvg �
Na�v� and id�u� � id�v�, vertex u is removed fromV

�

.
In Figure 2 (b),u and v cover each other, but onlyu is
removed fromV

�

becauseid�u� � id�v�. In Figure 2 (c),
sinceNd�u�� fv� wg � Nd�v� �Nd�w�, Na�u� � fv� wg �
Na�v��Na�w�, andid�u� � minfid�u�� id�v�� id�w�g, vertex
u can be removed fromV

�

based on Rule 2. It is proved in [4]
that the reduced setV

�

�
� V

�

generated from applying Rule 1
and/or Rule 2 toV

�

is still a strongly connected dominating
and absorbent set ofG. The combination of the marking
process and Rules 1 and 2 is a purely localized algorithms.

IV. PRUNING THROUGHk-NEIGHBOR COVERAGE

A. Generic pruning rule

Let G
�

� �V
�

� E
�

� be the induced subgraph ofG by V
�

,
V

�

k
� fv�, v�, ..., vkg is the vertex set of a strongly connected

subgraph inG�, Nd�V
�

k
� �

S
vi�V

�

k

Nd�vi�, andNa�V
�

k
� �

S
vi�V

�

k

Na�vi�.

Rule k: If Nd�u��V
�

k
� Nd�V

�

k
� and Na�u��V

�

k
� Na�V

�

k
� in

G and id�u� � minfid�u�� id�v��� id�v��� � � � � id�vk�g, then
change the marker of u to F .

Rules 1 and 2 are the special cases of Rulek, wherejV
�

k
j is

restricted to 1 and 2, respectively. However, a vertex removed
by Rulek is not necessarily removable by Rule 1 or Rule 2.
For example, in Figure 3 (a), both verticesu and v can be
removed by Rulek (for k � �) because they are covered
by verticesw, x, y, and z; in Figure 3 (b), vertexu can
be removed because it is covered by verticesw, x, and y.
Note that althoughx andy are not bidirectionally connected
directly, they can reach each other via vertexw. However,
none of these vertices can be removed by Rule 1 or Rule 2,
because they cannot be covered by one or two bidirectionally
directly connected vertices.

Theorem 1: If V
�

is a strongly connected dominating and
absorbent set ofG, andV

�

R
is the set of vertices removable

under Rulek, thenV
�

�
� V

�

� V
�

R
is a strongly connected

dominating and absorbent set ofG.
Proof: : First we prove thatV

�

�
is a dominating set of

G. This claim holds whenjV
�

j � �, becauseV
�

�
� V

�

. If
jV

�

j � �, for every vertexu in G, it is either inV
�

or not
in V

�

. If u �� V
�

, it is dominated by at least one vertex in
V

�

, becauseV
�

is a dominating set ofG. If u � V
�

, it is also
dominated by a vertex inV

�

, becauseV
�

is strongly connected.
In addition, there always exists a vertexv � V

�

satisfying
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Fig. 4. An impossible network partition.

id�v� � maxfid�w� � w � Nd�u�g, which cannot be removed
by applying Rulek. Therefore,u is dominated by at least
one vertexv � V

�

�
. By analogy we can prove thatV

�

�
is aa

absorbent set ofG.
Next we prove thatG�V

�

�
� is strongly connected. Suppose

that G�V
�

�
� is not strongly connected. If we put back the

removed vertices one by one in the descending order of vertex
id’s, we shall find the first vertexu that “re-connects”V

�

�
;

that is, after the removal ofu, at least one pair of vertices
(x� y) in G�V

�

� loses its last connecting path. However, this
is impossible: Ifu is removed fromV

�

by applying Rulek,
its dominating and absorbent neighbor sets are covered by a
strongly connected set of vertices with higher id’s thanid�u�.
As we can see in Figure 4, for any (x� y)-path throughu,
there always exists another�x� y�-path with the following three
segments: (1) from sourcex to vertexw� beforeu, (2) fromw�

to the vertex afteru, w�, throughv�� v�� � � � � vl coveringu, and
(3) fromw� to destination, which is not throughu. Therefore,
removal of u cannot eliminate all (x� y)-paths, which is a
contradiction.

B. An efficient pruning algorithm

There are two ways to implement a dominant pruning rule:
restricted or non-restricted. In the restricted implementation,
a host unmarks itself only when it is covered by a group
of self-connected marked neighbors. In the non-restricted
implementation, a host can be covered by a group of hosts 1
or 2 hops away, self-connected or connected by other marked
hosts. For example, hostsu and v in Figure 3 (a) andu
in Figure 3 (b) can be unmarked by the non-restricted Rule
k, but only hostu in Figure 3 (b) can be unmarked by the
restricted Rulek. Hostsu andv in Figure 3 (a) cannot unmark
themselves because one of the covering hosts,w, is not a
neighbor of them. Simulation results show that in average ad
hoc networks, the number of hosts unmarked by restricted and
non-restricted rules are very close. From the practicality of
implementation, the restricted implementation is much better
because it only needs 2-hop neighborhood information.

In the restrictedk-dominant pruning algorithm, each host
decomposes the induced graph of its marked neighbor set with
higher id’s V

�

� into severalstrong components. The strong
components [10] of a directed graph are the equivalence
classes of vertices under the “mutually reachable” relation.
Two vertices ofV

�

� belong to the same strong component
if and only if they are strongly connected inG�V

�

��. For



Algorithm 2 Restrictedk-dominant pruning (at eachu � V �)
1: Send a notification packet to each neighborv satisfyingid�v� �
id�u�.

2: Receive all notification packets and build a subgraphG�V
�

��,
where V

�

� � fwjw � �V
�

� N�u�� � �id�u� � id�w��g is
u’s marked neighbor set with higher id’s.

3: Compute the set of strongly connected components
fV

�

c�
� V

�

c�
� � � � � V

�

cl
g of G�V

�

��.
4: Change its markerm�u� to F if there existsV

�

ci
� � � i � l, such

thatNd�u�� V
�

ci
� Nd�V

�

ci
� andNa�u�� V

�

ci
� Na�V

�

ci
�.
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Fig. 5. Decomposition of strong components.

example, the directed graph in Figure 5 has three strong
components:ft� v� xg, fwg, and fy� zg. A directed graph is
strongly connected if it has only one strong component. Note
that although we always assume thatG� is a strongly connected
graph,G�V

�

�� is not necessarily strongly connected. For any
marked hostu, if it can be unmarked by applying the restricted
Rulek, it must be covered by a subset of a strong component,
V

�

ci
�� 	 i 	 l�, which also coversu. If u is not covered by

anyV
�

ci
, it cannot be covered by any other strongly connected

vertex set. Therefore, it is not necessary to test the coverage
of every combination ofu’s marked neighbors:Testing every
strongly connected component shall be sufficient.

Several linear-time algorithms have been developed to de-
compose a directed graphG � �V�E� into strong components
[10], [11]. They are all based on thedepth-first search (DFS)
algorithm and have a complexity ofO�jEj 	 jV j�. Details of
adopting these algorithms in the restrictedk-dominant pruning
can be found in [12].

C. Complexity analysis

The following theorems show that the restricted Rulek
has the same communication complexity as restricted Rules
1 and 2, the same computation complexity as restricted Rule
1, and less computation complexity than restricted Rule 2.
Their proofs can be found in [12].

Theorem 2: The marking process and the restricted versions
of Rules 1, 2 andk have the same communication complexity
O�
�, where
 is the maximum vertex degree in the network.

Theorem 3: The marking process and the restricted versions
of Rule 1 and Rulek have the same computation complexity
O�
��. The computation complexity of the restricted Rule 2
is O�
��.
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Fig. 6. Rulek vs. cluster-based schemes and MCDS.

V. SIMULATION

The simulation is conducted by our dominating set algo-
rithm testbedds, which simulates several connected dominat-
ing set algorithms, including the marking process and several
dominant pruning rules (Rules 1, 2, andk), MCDS, and
three cluster-based schemes (maximum connectivity, mesh,
and tree). To generate a random ad hoc network,n hosts are
randomly placed in a restricted���
��� area. The transmitter
ranger is adjusted according to the average vertex degreed
to produce exactlynd

�
links in the corresponding unit disk

graph. Most of these links are treated as bidirectional, but
a small portion (p�) of them are randomly selected to be
unidirectional links. Networks that cannot form a strongly
connected graph are discarded. For each combination of pa-
rameters (n, d, and p), the simulation is repeated 500-2000
times until the confidence interval is sufficiently small (���,
for the confidence level of 90%).

Figure 6 compares the performance of Rulek, in terms
of the sizes of resultant dominating sets, with MCDS and
three cluster-based schemes on two types of undirected graphs:
relatively sparse ones (the left graph,d � 
) and relatively
dense ones (the right graph,d � ��). Among these algorithms,
MCDS is the best (i.e., produces the smallest CDS) and the
maximum connectivity scheme is the worst. The performance
of Rule k and the other two clustering schemes (tree and
mesh) lies between them. The performance from the worst
to the best is: the mesh scheme, the restricted Rulek, the
non-restricted Rulek, and the tree scheme. The difference
between the mesh scheme, Rulek, and the tree scheme is
relatively small and depends on the average degree. In sparse
graphs, the performance of both implementations of Rulek is
very close to that of the tree scheme.

Figure 7 compares the performance of the restricted Rule 1,
the combination of restricted Rules 1 and 2, and four different
implementations of Rulek (restricted, non-restricted, based
on 2-hop information, and based on 3-hop information). Both
undirected graphs (the upper row) and directed graphs with
��� unidirectional links are simulated. Rulek performs
better than the restricted Rule 1 and the combination of
restricted Rules 1 and 2. Among the different implementations
of Rule k, the non-restricted implementation performs better
than the implementation based on 3-hop information, which
in turn, performs better than the implementation based on
2-hop information and the restricted implementation. The
difference between different implementations of Rulek is
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Fig. 7. Different dominant pruning rules.
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Fig. 8. Average end-to-end distance increment.

relatively small. Therefore, the restricted implementation or
the implementation based on 2-hop information is preferable
due to lower communication cost. In sparse and undirected
graphs, the performance of Rulek is close to that of the
combination of restricted Rules 1 and 2 (yet still much better
than that of Rule 1 only). In relatively dense and directed
graphs, the restricted Rulek performs much better than the
combination of restricted Rules 1 and 2.

Figure 8 shows the path length increment caused by
dominating-set-based routing. For each randomly generated
graph, we compute the all-pair shortest paths with no con-
straint (Original). Then for each dominating set computed by
the marking process and different dominant pruning rules, we
compute the all-pair shortest paths with the constraint that
intermediate vertices are restricted to gateways. The average
end to end distance is computed as the average number
of hops in these paths. The simulation results show that
forwarding data along gateways will not increase the end to
end distance significantly. When the restricted Rules 1 and 2 or
the restricted Rulek are used to generate the dominating set,
the average distance increment is less than 10%. When other
versions of Rulek are used, the average distance becomes

longer. However, even when the non-restricted Rulek is used,
the average distance increment is still within 20%.

Simulation results can be summarized as follows: (1) The
connected dominating set produced by the marking process
and the restricted Rulek is about the same size as those by
the cluster-based schemes and this is achieved in a localized
way without sequential propagation, (2) Rulek is a more
efficient dominant pruning rule than Rules 1 and 2 and can
be implemented without increasing complexity, (3) Rulek
outperforms Rules 1 and 2 significantly in networks with
relatively high density and/or high percentage of unidirectional
links, and (4) forwarding data along gateways will not increase
the end-to-end distance significantly.

VI. CONCLUSIONS

We have proposed a generic dominant pruning rule called
Rule k to further reduce the size of a connected dominating
set constructed by Wu and Li’s marking process [4]. An
efficient algorithm has been proposed to implement Rulek in
a “restricted” manner, which is almost as efficient in reducing
the dominating set as the “full” version. The restricted Rule
k algorithm has less overhead than the combination of two
former dominant pruning rules called Rules 1 and 2. Sim-
ulation results show that the restricted Rulek outperforms
the combination of restricted Rules 1 and 2 in reducing the
dominating set. Both marking process and Rulek support
unidirectional links. In networks without unidirectional links,
the marking process with the restricted Rulek is as efficient
as several cluster-based schemes. Furthermore, the restricted
Rule k is applied in a pure localized manner with constant
rounds of information exchanges. Our future research includes
applying the dominant pruning rules to thek-hop dominating
set to make dominating-set-based routing more scalable.
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