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Abstract—The Content Delivery Networks (CDN) paradigm
is based on the idea to transparently move third-party content
closer to the users. More specifically, content is replicated on
CDN servers which are located close to the final users, and user
requests are redirected to the “best” replica (e.g., the closest) in
a transparent way, so that users perceive a better content access
service.

In this paper we address user requests redirection and replica
placement in CDNs. Differently from previous solutions our
scheme considers the two problems jointly and relies on dis-
tributed and localized schemes that can be implemented with
little complexity and overhead, thus providing a new overall
solution that effectively trades-off among the number of replicas,
their utilization (i.e., how many users requests they serve), the
distance from the best replica and the number of replica adds
and removals.

An OPNET based thorough performance evaluation has al-
lowed us to assess the effectiveness of the proposed solution. By
properly tuning the distributed heuristics parameters the CDN
provider can have a strict control on the CDN network operations
so that the desired trade-off between all the relevant performance
metrics is achieved.

I. INTRODUCTION

Content Delivery Networks (CDNs) are one of the answers

to the challenges posed by the remarkable commercial success

of the Internet. Replicating third-party content on servers

closer to the final users, and redirecting transparently the users’

requests to the “best replica” (e.g., the closest replica in terms

of distance, latency, etc.) CDN providers are able to offer

improved content access service.

Solutions for CDN thus require to address a number of tech-

nical problems, which include: deciding the kind of content

that should be hosted (if any) at a given CDN server (replica

placement), selecting the best replica for a given user, and

redirecting the users requests to the replica.

Building on previous work on dynamic replica place-

ment [1], in this paper we present simple, distributed, scal-

able algorithms for dynamic replica placement and requests

redirection. Our solutions are dynamic in the sense that: 1)

replicas are added and removed from CDN servers according

to the dynamically changing user request traffic; and 2)

requests redirection is adjusted as to achieve load balancing

among the different replicas. Our contribution here improves

over previous results in that it considers the two problems

jointly and relies on distributed and localized schemes that

can be implemented with little complexity and overhead, thus

providing a new overall solution that effectively trades-off

among the number of replicas, their utilization (i.e., how many

users requests they serve), the distance from the best replica

and the number of replica adds and removals.

The replica placement problem has been widely investigated

in the literature. For the static case, simple efficient greedy

solutions have been proposed in [2] and [3]. In particular in [2]

Qiu et al. have formulated the static replica placement problem

as a minimumK median problem. A simple greedy heuristic is

shown to have performance within 50% of the optimal strategy.

In [3] and [4] Jamin et al. and Radoslavov et al. propose

fan-out based heuristics in which replicas are placed at the

nodes with the highest fan-out irrespective of the actual cost

function. A major limit of all the previously proposed static

solutions is that they neglect to consider the natural dynamics

in the user requests traffic. In the performance evaluation

section we will show that adopting static solutions in a realistic

setting where users traffic changes over time either results in

poor performance or into high maintenance costs. The former

occurs in case replica placement is computed only once (or

seldomly recomputed) and the same replica configuration is

used for long times independently of current user requests. The

latter reflects the case in which static algorithms are executed

frequently to try to follow users dynamics, demanding for

frequent replicas add/removals. Frequent re-execution of the

static replica placement algorithms such as [2], [3], [4] also

results into high overhead to periodically gather the informa-

tion needed to make centralized decisions on the new replica

placement.

A few recent works have started addressing the dynamic

case [5], [6], [1], [7], proposing solutions which explicitly

consider the current replica placement and the reconfiguration

costs when deciding which replicas to add or remove to reflect

the current and expected future users needs.

The solution for dynamic replica placement proposed in [6]

is tightly coupled with the Tapestry architecture it has been

designed for. Also, the proposed solution does not explicitly

account for neither the costs of reconfiguration nor for possible

servers storage limits. In RaDar [5] a threshold based heuristic

is proposed to replicate, migrate and delete replicas in response

to system dynamics, and such heuristic is combined with a

scheme for user requests redirection. However, the proposed
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scheme does not account for limits on the servers storage and

for users QoS constraints (e.g., maximum latency, distance

from the serving replica). In [1] we have overcome these

limits by introducing a general problem formulation which

accounts both for limits on servers storage and load, and for

users QoS constraints. The paper introduces both a centralized

and a threshold-based distributed heuristic for dynamic replica

placement, presenting a preliminary performance evaluation of

the proposed solutions. Recently, a similar approach has been

applied to dynamically placing, removing and migrating copies

of a given content in a hierarchical proxy-caches network (see

[8]). The idea is to attract (push back) copies of a content from

(to) a given zone in the network depending on the number

of requests for that content originated in the zone, overall

dynamically optimizing the contents stored in the caches. The

optimization aims at minimizing the total distance between

the content replicas and the locations where requests for the

content are originated.

The solution presented in this paper improves over what has

been previously proposed as it jointly addresses user requests

redirection and replica placement and it introduces a way to

enforce a strict control on the replicas level of utilization.

Not only we minimize the costs for replicas placement and

maintenance, not only we try to keep as low as possible the

number of replicas adds and removals while satisfying all user

requests but we do it distributely, load balancing the traffic

among replicas and cloning (removing) replicas whenever

their level of utilization is above (below) a desirable level of

utilization. This provides a powerful tool to the CDN provider:

setting the bounds of the replicas’ utilization interval as well as

the other parameters of our heuristics the CDN provider can

have a strict control on how the CDN network will operate

and can achieve different trade-offs between all the relevant

performance metrics.

The paper is organized as follows. In section II we formulate

the problem and introduce the notation we use throughout

the paper. Sections III and IV detail the operations of the

distributed heuristics we use for sake of replica placement

and user requests redirection, respectively. Section V presents

the outcomes of a thorough performance evaluation aimed at

assessing the performance of the proposed solutions in realistic

settings, under varying network topologies, traffic loads and

parameter settings. Finally, section VI concludes the paper.

II. PROBLEM FORMULATION

We consider a CDN network hosting a set C of contents.

Users access the CDN network through a set VA of access

nodes. The number of users accesses is expressed in units

of aggregate requests from that access site, for each type of

content. Replicas of the C contents can be stored in one

or more sites among a set VR of CDN servers sites. Each

site j ∈ VR can host up to V R
max replicas (storage limit),

each satisfactorly serving requests as long as the replica load

is below a threshold Umax (load threshold). A weight is

associated to the route from a user (access node) i to a replica
j. The weight d(i, j) indicates the user perceived quality of

accessing that replica. A user is said to be satisfied when

the weight of the route to the best replica is below a given

threshold dmax. Each access node i has therefore associated a
set ρ(i) which include all the server sites able to satisfy users
requests generated at i.
We denote by xi,c the volume of user requests originated at

node i ∈ VA for content c ∈ C and by αij,c,
∑

j∈ρ(i) αij,c =
1, the fraction of requests for content c, originated at node
i, which are redirected to node j. We denote by rj,c the
amount of replicas (resources) allocated to content c at node
j ∈ VR. The replica placement and requests redirection goal
is to identify a strategy which dynamically allocates and

deallocates replicas and redirect requests in response to users

demand variations so that the overall cost (overall number of

replicas) is minimized while satisfying the users requests and

meeting the constraints on the replica service capacity and site

resources.

III. DISTRIBUTED HEURISTIC

In this section we describe a distributed scheme to allocate

and deallocate replicas, so that the user requests are satisfied

while minimizing the CDN costs in a dynamic scenario. This

scheme always accounts for the current replica placement,

adding replicas or changing replica location only when needed.

Each site j ∈ VR autonomously decides on whether some of

the replicas it stores should be cloned or removed.

This decision is based on local information: the number and

content of the replicas stored at j, the load of such replicas and
the user requests they are currently serving. We also assume

that each site j stores information about the number and the

content of the replicas hosted in its local neighborhood. More

specifically, site j knows the set α(j) ⊆ VA of the access

nodes which are distant at most dmax from it, and the set

ρ(j) ⊆ VR of the server sites in VR that are distant at most

dmax from any of the nodes in α(j). The first set includes
all those access sites which can generate requests that j can
satisfy. The set ρ(j) is the set of server sites that can cover
for j.
Based on this information, site j is able to decide whether

to clone or delete a replica, and in case of cloning, where the

clone should be hosted. The way cloning and replica removal

work is the following. Replicas are classified as overloaded,
severely underloaded and under the target utilization level de-
pending on the current load. They belong to the first category

whenever their load exceeds a threshold Umax. User requests

served by overloaded replicas might suffer severe performance

degradation. To avoid persistent replica overloading each site

will clone replicas which are above Umax. On the other hand,

if the replica load is below a threshold Ulow (i.e., the replica

is underloaded), the provider pays for a replica which offers

little contribution to the system operations. The distributed

algorithm we propose tries to delete underloaded replicas. The

underloaded replica first tries to direct away all requests it is

currently serving, by providing the access nodes with a false

feedback making them believe their requests could be better

served by a different replica. If all the currently served user
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requests can be redirected to other replicas (the replica has no

requests to serve) then the replica is safely deleted.

A less critical (but common) situation is that in which the

replica serves an adequate number of user requests (> Ulow)

even if its current load is below what desirable to justify

the costs for replica maintenance (i.e. it is below a threshold

Umid). This is the case of a replica under the target utilization

level. To cope with this case we designed a distributed proba-

bilistic mechanism which tries to redirect the user requests and

delete replicas over time so that the load of current replicas is

kept in the range (Umid < l < Umax). This mechanism is the

core of our solution since it allows us to specify the desirable

utilization range for the replicas. Replicas will be dynamically

allocated and deallocated in order to satisfy all user requests

but also in order to ensure that each replica the CDN provider

pays for is properly utilized.

In the following we detail the distributed algorithms for

cloning (algorithm 1) and removing replicas, and the Umid

based distributed probabilistic mechanism.

A. Cloning of a replica

The function to clone a replica of content c ∈ C (algorithm

1 below) is called by a server site j whenever the load of one

of its replicas of content c exceeds Umax. The function outputs

the server sites(s) bestvr where the cloned replica(s) should
be added. The detailed operations of the function add_replica
are reported below.

Algorithm 1 Function add_replica(j, c)
Require: j ∈ VR
1: lj,c =

∑
i∈VA

αij,c · xi,c
2: while lj,c

rj,c
− Umax > 0 do

3: best_served = 0
4: best_distance = ∞
5: best_vr = undefined
6: for all j′ ∈ ρ(j) s.t. rj,c < V max

R do
7: l′j′,c =

∑
i∈α(j′) αij,c · xi,c

8: total_distance =
∑

i∈α(j′)) αij,c · xi,c · di,j′
9: if (l′j′,c < best_served) ∨
10: (l′j′,c = best_served∧
11: total_distance < best_distance) then
12: best_distance = total_distance
13: best_served = l′j′,c
14: best_vr = j′

15: end if
16: end for
17: if best_vr = undefined then
18: exit

19: end if
20: ask best_vr to add a replica

21: compute l′′bestvr,c
= min(

∑
i∈α(bestvr)

αij,c · xi,c, 1)
22: lj,c = lj,c − l′′bestvr,c

23: remove from the set of requests those that can be

offloaded

24: end while

When the function is invoked node j first computes the
number lj,c of requests for content c it currently serves (line
1). If the average load of the replicas for content c hosted
at node j is above the threshold Umax (line 2) then a new

replica of content c will be added to the network with the aim
to offload overloaded replicas (lines 3–16). The new replica

location bestvr = j′ is chosen based on l′j′,c, which is defined
as the number of user requests currently served by a replica

hosted at node j which could be offloaded to a new replica

added at j′. The higher the value of l′j′,c the more suited
j′ is to host the new replica. Ties are broken by selecting,

among those sites maximizing l′j′,c and having space for an
additional replica, the site which maximizes the satisfaction of

the offloaded users requests i.e., the site which minimizes the

total distance
∑

i∈α(j′) αij,c · xi,c · di,j′ (lines 8–14).
If a suitable site bestvr for hosting the clone is found node

j sends a message to it asking to add a replica of content
c (line 20). Node j also computes the maximum amount

l′′bestvr,c
= min(

∑
i∈α(bestvr)

αij,c · xi,c, 1) of requests it is
currently serving that can be offloaded to bestvr without

overloading the new replica (lines 20–23). It then checks

whether the requests j is serving and that cannot be offloaded
to bestvr are still too many, i.e., if they still overload node j
replicas (line 23). If this is the case an additional replica is

added to the network and the procedure is re-executed on the

requests that cannot be offloaded.

It might happen that the whole system (or a portion of it)

is overloaded so that no site at which a replica can be added

is identified (lines 17–18). In this case the algorithm has no

way to improve the situation and the procedure is exited.

B. Replica removal

A replica can be removed if (and only if) it serves no

requests. In order to favor replica removal minimizing the

number of replicas, every server site j assumes that its first
rj,c−1 replicas serve Umax requests, while only lj,c−((rj,c−
1) ∗ Umax) requests are served by the last replica. The last
replica can be removed if the other replicas hosted at the site

can cover for it.

To gain a finer control over the mechanism and avoid

situations in which a temporary traffic decrease triggers the

removal of a replica which will soon be needed again, we

base replica removal on the exponential average of the replica

past and current load. A replica is removed only when it has

not been serving requests for a time long enough to bring the

exponential average down to zero.

C. Handling replicas under the target utilization level

When replicas are below the target utilization level, but still

over Ulow, a distributed probabilistic mechanism is employed

in order to redistribute the load. To make an example of why

replicas can fall below the target utilization level, consider the

case in which a high volume of user traffic requests forces

the CDN provider to place many replicas to be able to satisfy

all user requests. If the user requests volume decreases and

user requests are load balanced among the existing replicas
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(via the scheme shown in the next section) then the utilization

of the different existing replicas will uniformly decrease.

Until the traffic decrease is so significant that replicas starts

falling below the Ulow threshold, no replica removal would

be performed according to the replica removal algorithm.

However, in such a situation it might be possible to remove

a significant number of replicas while still being able to

satisfy all user requests. To achieve this goal in our scheme

a replica whose load is below the target utilization Umid will

try to direct requests away (without affecting underloaded and

overloaded replicas). Let j be a site at which a replica below
the target utilization level is hosted. When providing feedbacks

to the access sites i on how effectively requests generated at

i can be served by the replica hosted at j, node j will first
toss a coin and with a probability plj,c

will decide to ‘cheat’

advertising a bad service (still better than what is advertised

by underloaded or overloaded replicas). The higher the load of

a replica the lower the probability it will cheat. The cheating

replicas will then be partially offloaded provided that there are

other replicas that can cover for them whose load is between

Ulow and Umax. As their load is decreased they will have

even higher probabilities of directing further requests away.

Eventually such replicas will redirect away all the requests

they’re serving and will be removed (if possible).

D. The bootstrap case

The last case to be considered is the following. It might

happen that a user requests access to a content c from an

access site i which does not have any replica of content c
within distance dmax (this is often the case when the replica

allocation process starts). In this case the request is directed to

the origin server, that clones a copy of its content to a replica

site j that is distant at most dmax from i. Among the possible
sites, the origin server selects the site j that can satisfy the
requests originated by the largest number of sites of VA. The
selected site is clearly highly likely to be able to satisfy the

largest number of requests in the near future. Ties are broken

by selecting a node that minimizes the overall average distance

from the requests.

IV. REDIRECTION ALGORITHM

We assumed that the system is capable of redirecting the

requests obtaining a best effort load balancing of the load

among replicas. (A perfect load balancing may be impossible

due to the distance constraint.)

The redirection system exploits and accounts for feedback

it receives from the replicas on the current replicas loads (and

associated expected latencies to access the content). Based on

this feedback users requests are directed away from a replica in

response to threshold events (if the replica load exceeds Umax

or falls below Ulow). As an example, an underloaded replica

informs the redirection system which then tries to offload

requests to some other replicas (if possible).

Redirection. User requests are redirected to available repli-
cas. For a site j ∈ VR, let lj,c denote the aggregate demand
of content c served by j. The users requests re-directed to j

can be fully served if lj,c ≤ rj,c, i.e., if the aggregate load for
that content does not exceed 100%; otherwise, users requests

for content c that were redirected to server site j would suffer
some level of service degradation.

Load Balancing The baseline approach consists in achieving
load balancing among replicas serving the same content c ∈
C. Given access nodes request pattern xi,c and the replicas
configuration rj,c, we formulate the redirection problem as

the LB optimization problem below

LB : min Fc(α) =
∑
j∈VR

l2j,c/rj,c (1)

lj,c =
∑

i∈α(j)

αij,cxi,c, j ∈ VR (2)

∑
j∈ρ(i)

αij,c = 1, αij,c ≥ 0, i ∈ VA (3)

This is a simple convex problem with linear constraints

which can be solved via standard techniques. Here we consider

the well-known gradient projection method. Given an initial

feasible solution αij,c(0), the gradient projection method

solves the problem iteratively by computing a sequence

αij,c(k) as follows:

αij,c(k + 1) =

[
αij,c(k) − δ

(
lj,c
rj,c

− Ui,c

)
xi,c

]+

(4)

where [.]+ denote projection on the non-negative orthant and

Ui,c = 1/|ρ(i)|∑j∈ρ(i) lj,c/rj,c is the average utilization of
content c (among the replicas which can serve the requests of
access node i) and δ ≥ 0 is a suitable small number. In (4)
lj,c

rj,c
is the gradient of the objective function Fc(α) wrt αij,c

and
lj,c

rj,c
−Ui,c is the “projection” of the gradient as to satisfy

the active constraints
∑

j∈ρ(i) αij,c = 1.
Equations (4) have a simple interpretation. Observe that

αij,c increases when lj,c/rj,c−Uj,c is negative and decreases

otherwise. Hence, for a given content c, the access node
redirects more traffic to those replicas which are less utilized

than the average replicas serving node i requests, while at the
same time it diverts traffic away from the replicas which are

utilized more than the average.

Since LB is a convex problem, the αij,c converge to a

minimizer of (which is not necessarily unique) of Fc(α). At
equilibrium,

lj,c

rj ,c
= Ui,c for all j ∈ ρ(i) and c ∈ C. In other

words, for each access node i ∈ VA and a given content

c ∈ C the rediction vector reaches an equilibrium when all

the utilization lj,c/rj,c of the replicas serving node i requests
are equal.

The key observation is that the solution of this optimization

problem, can be carried out in a distributed way. More

precisely, each access node i ∈ VA computes iteratively

its redirection vector αi,c = (αij,c)j∈ρ(i) via (4) using the
sole load information lj,c from the replicas to which it is

redirecting traffic (which we assume is periodically sent,

369

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on February 25,2010 at 02:45:22 EST from IEEE Xplore.  Restrictions apply. 



e.g., by piggybacking the load information in the messages

answering the user requests).
Refined Approach The redirection scheme just presented

ensures load balancing among the different servers. As previ-

ously noted, this does not necessarily imply efficient resource

utilization since many servers may operate at low utilization

levels. Clearly, in such a scenario, it is preferrable to remove

replicas without affecting the level of users satisfaction.
To this end, we introduce a tuning parameter Umid which

represents a lower bound on the replica target utilization.

Whenever the load falls below Umid replicas take actions

to direct requests away. In a distributed way this can be

accomplished by modifying the LB problem as follows

LB′ : min F ′
c(α) =

∑
j∈VR

l′2j,c/rj,c (5)

l′j,c =
∑

i∈α(j)

αij,cxi,c + bj,c, j ∈ VR (6)

∑
j∈ρ(i)

αij,c = 1, αij,c ≥ 0, i ∈ VA (7)

where bj,c ≥ 0. The idea is to consider a different optimiza-
tion problem where the actual load of lj,c (of underutilized
replicas) are inflated by adding a suitable value bj,c. The bias
bj,c depends on the actual load lj,c as follows:

bj,c =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 w.p. 1
Umid < lj,c/rj,c ≤ Umax

rj,c(1 − Ulow) w.p.
rj,cUmid−lj,c

rj,c(Umid−Ulow)

Ulow < lj,c/rj,c ≤ Umid

rj,c(2 − Ulow) w.p. 1
lj,c/rj,c ≤ Ulow

rj,c(2 − Ulow) w.p. 1
Umax < lj,c/rj,c.

(8)

bj,c = 0 when lj,c > Umid and different from zero

otherwise. In order to randomize the behavior of the different

replicas in the range Ulow < lj,c ≤ Umid we let the replicas

add the bias with a given probability which depends on the

actual load. This allows to remove synchronization effects

among different replicas with the same load.
The redirection scheme for LB′ is still computed in a dis-

tributed way by the access nodes using the gradient projection

algorithm (4), the only difference being that the actual load

lj,c is replaced by l′j,c. This is simply achieved in practice by
having the replicas advertise the biased load l′j,c rather the
actual load lj,c.
As a result, replicas whose load are below Umid tend

to be more and more underutilized: Since the redirection

strategy tends to balance the load, replicas which advertise

larger loads are less and less utilized. These replicas will

end up receiving no more requests, and therefore they will

be eventually removed.

V. SIMULATION RESULTS

In this section we report the results of a simulation-based

performance evaluation aimed at assessing the effectiveness of

the distributed heuristics we have proposed for replica place-

ment and user requests redirection. Both the two heuristics

have been implemented in the OPNET simulator.

Our performance evaluation has proceeded in two steps.

First, we have performed experiments to quantify the advan-

tages of the proposed dynamic replica placement heuristic with

respect to the static schemes which have been proposed in the

literature. We have then proceeded by thoroughly investigating

the performance of our algorithms in realistic large scale

networks. In particular, the experiments reported in this paper

have validated the ability of the proposed scheme to exploit

a proper tuning of the target utilization parameter Umid to

provide a fine grained control of the trade-off between number

of allocated replicas, degree of utilization of the allocated

replicas, distance of the users from the replica and frequency of

replicas adds and removals. They have also aimed at checking

the effectiveness of the redirection algorithm in performing

load balancing, keeping the replicas at the desired level of

utilization.

A. Comparison with static replica placement

Among the schemes introduced for the static scenarios, we

have selected the greedy heuristic introduced by Qiu and al. in

[2] for sake of benchmarking, as it combines very simple rules

with excellent performance and has been used as a reference

by many authors ([9]).

The greedy procedure takes as input a snapshot of the user

requests, the set of possible replica sites VR, the maximum
number of replicas per site V max

R . The output produced by

the procedure is the number of replicas to be allocated, their

location, and the content of each replica. The original scheme

greedily adds replicas one by one, trying to maximize the user

perceived quality (i.e., to minimize the sum of the distances

between the users and their serving replicas). In particular, the

first added replica is the one that minimizes the sum of the

distances between the users access site and the replica site.

The i − th replica is added at a site vi so that the set of the
allocated replicas v1, v2, ..., vi minimizes the distance between
user requests and replicas serving them. The procedure stops

after having added k replicas.

To be able to compare the static greedy scheme performance

to our heuristics, we had to slightly modify the greedy scheme

to reflect our problem formulation. As in L. Qiu’s proposal, the

greedy approach adopted for sake of benchmarking introduces

replicas one by one in the network. However, at each iteration

it selects as site for the new replica the one that can most

significantly increase the number of satisfied users requests.

No limit is enforced on the number of replicas: new replicas

are added till all users requests are satisfied (or no additional

replica can be added without exceeding the number of replicas

per site). Details can be found in [1]. We have considered two

implementations of such greedy approach which differ in the

events triggering a new computation of the replica placement.
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The first greedy scheme (“instantaneous greedy” solution, or

Greedy_inst below) re-executes the replica allocation when-

ever a change in the users requests occurs. The second runs

periodically, every T seconds. In this case, if replicas are

allocated according to user requests at the time when the

algorithm is run, with no clue on future traffic demands, some

users requests may not be able to be satisfied. In order to limit

the occurrence of this problem, we have estimated the user

requests dynamics for the upcoming time interval (of length

T ) by using RLS (Recursive Least Square) prediction. This
allows us to estimate, based on current and past traffic, the

future user requests traffic process from site i to content c.
We run the experiments using the topology in figure 2,

with 24 access nodes (the white ones) and 7 service nodes

(the grey ones). The thin lines represent slower links (weight

2), the thick ones faster links (weight 1). The aggregate

requests are modeled as the superposition of long-tail Pareto

on-off sources. To focus on the relative algorithm behavior we

considered just one content, with dmax = 6, V R
max = 10. For

the distributed algorithm we set Ulow = 10%, Umax = 90%
and two different values of Umid, Umid = 10% and Umid =
90%. These two values of Umid represent the two possible

extremes: in the first case, the algorithm behaves as a pure

load balancing scheme; the second case is the other extreme

with the target utilization almost as high as Umax. All other

possible behaviors lie in between.

To compare the different algorithms we measured the user

perceived quality (defined as the average distance between the

node issuing a request and the replica serving it), and the CDN

costs (average number of replicas and number of replica adds

and removals).

Results for the different metrics are illustrated in Figure 1,

along with the 99% confidence intervals. Replicas adds and

removals are normalized to a time interval of lenght equal to

100000 time units. As expected, the static greedy algorithms

generally result in a slightly lower number of replicas and user-

replica distances than the dynamic algorithms. The difference

in terms of average number of replicas (user-replica distance)

with respect to the proposed dynamic replica placement is

however quite limited, never topping 9% (5%). As expected,
both greedy algorithms have instead very high reconfiguration

costs as their decisions are oblivious of prior states. The more

often replicas are re-allocated, the better the placement, the

higher the reconfiguration costs.

The distributed heuristic perform comparably to the greedy

ones in terms of number of replicas, distance to the best

replica, but is able to reduce of up to three order of magnitudes

the number of replicas adds and removals! The comparison of

different settings of the Umid threshold provides interesting re-

sults. The higher the Umid, the lower both the average number

of replicas AND the user-replica distance. This behavior can

be explained by looking at the distributed algorithm behavior.

The pure load balancing scheme (Umid = 10%) is character-
ized by a very small number of replicas adds and removals.

This yields stable, slow-varying replica configurations, which

however may result into a number of replicas higher than the
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Figure 2. NETWORK TOPOLOGY USED IN THE EXAMPLE

minimum required. By contrast, with Umid = 90% all the

used replicas tend to be fully utilized and their number closely

follows the minimum required by current requests (replicas are

added and removed closely following the traffic dynamics).

As a consequence, the algorithm now tends to remove and

add replica more frequently, and by so doing, it is more

likely to place the replicas close to the users according to

the instantaneous traffic pattern. This in turn reduces the user-

replica average distance. The toll to pay is in terms of a higher

number of replicas added/removed. This number is however

order of magnitudes lower than in the greedy static scenarios.

B. Distributed Heuristics Evaluation

We now turn our attention to the dynamic behavior of the

proposed distributed algorithms. In this set of simulations we

considered a more realistic scenario based on the topology

of the AT&T backbone (see Figure 3 and reference [10])

which comprises 184 access nodes and 115 service nodes.

The requests have been modeled as the superposition of

indipendent on-off Pareto processes.

In tables I - II, we summarized the relevant metrics along

with the 99% confidence intervals for different value of Umid

and dmax. Values for the number of replicas adds and removals

are again normalized to an interval of 1000 time units.

The behavior for the different values of Umid confirm our

previous observations: lower values of Umid yield more stable

replica configurations which in turn result into a larger number

of replicas and higher user-replicas distances.

Comparing the two tables, we observe that, with smaller

dmax, the average number of used replicas increases while

the average distance decreases. This reflects the need to place

more replicas to meet the stricter constraint on the maximum

user-replice distance. Such replicas are necessary placed closer

to the users, resulting in lower user-request distances.

Figure 4 illustrates a typical sample path behavior. Given

one content, the figure compares the aggregated user requests

over time (the lower curve), i.e.,
∑

i∈VA
xi,c with the maxi-

mum amount of requests which can be satisfactorly served by

the allocated replicas, i.e.,
∑

j∈VR
rj,c for different value of

Umid. If the two curves are closer it means that the heuristic
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Figure 1. SIMULATION RESULTS one content and dmax = 6

closely follows the traffic dynamics only allocating the min-

imum quantity of replicas needed to satisfy the users needs.

This is exactly what happens as Umid increases: the replica

placement algorithm and the redirection schemes follow more

closely the user demand, resulting in curves which almost

overlap with the users requests. At the same time, the number

of replica cloning and removal, and hence the corresponding

cost, is kept reasonably low.

Finally, in Figure 5 we show the replicas load distibution

observed over a simulation run executed on the topology

shown in Fig. 2. Traffic is Poisson-distributed. We plot vertical

lines corresponding to the values of Ulow = 8%, Umid = 75%
and Umax = 92%. The figure shows how well our redirection
algorithm allows (in a completely distributed and localized

way) to achieve the desired target utilization behavior for a

replica (in this case 75% ≤ lj,c ≤ 92%). As soon as traffic
dynamics bring the replicas’ load outside the desired range

immediate action is taken: either by adding new replicas, or

by first offloading and then removing some of the existing

replicas.

Figure 3. AT&T NETWORK TOPOLOGY (from paper [11])

Umid 46% 60% 90%

avg. distance 13.01± 0.163 12.98± 0.187 12.78± 0.093
replica add 0.19± 0.224 0.54± 0.234 3.87± 0.915
replica del 0.15± 0.162 0.48± 0.334 3.86± 0.956
replicas 54.25± 8.882 49.10± 2.349 45.84± 1.592

Table I
AT&T, dmax = 15
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Umid 46% 60% 90%

avg. distance 14.19± 0.353 14.18± 0.370 13.26± 0.150
replica add 0.09± 0.138 0.09± 0.138 3.31± 0.353
replica del 0.00± 0.000 0.00± 0.000 3.31± 0.496
replicas 47.79± 2.005 47.79± 2.005 45.22± 1.647

Table II
AT&T, dmax = 200
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Figure 4. Simulation traces

VI. CONCLUSIONS

In this paper we have jointly addressed dynamic replica

placement and user requests redirection in Content Delivery

Networks. The solutions we have proposed are fully distributed

and localized and allow to minimize the costs for replica

placement, maintenance, replicas adds/removals while being

able to satisfy all users requests and to keep allocated replicas

above a target level of utilization.

Extensive OPNET simulations have allowed us to prove

the effectiveness of our distributed heuristics. In particular

simulations we have performed have shown that:

• The proposed solution improves over static replica place-

ment. To achieve comparable performance in terms of

number of allocated replicas, distance between the user

and the serving replicas, static schemes have to be re-

executed frequently, resulting in a number of replica adds

and removals that can be three orders of magnitude higher

than in our scheme.

• The heuristics perform well in terms of number of

replicas, replicas utilization, distance between the access

site and the serving replica, frequency of configuration

changes, when varying the traffic load, the network topol-

ogy, the type of traffic (Poisson, long tail). In particular,

the redirection scheme is very effective in performing

load balancing, keeping replicas within the specified

interval of utilization. By setting different targets levels

Umid of utilization of the replicas we can strictly con-

trol the CDN network operations and trade-off between

number of replicas, replicas utilization and frequency of

changes in the replica placement.

Overall, the proposed schemes have proven to be a promis-
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Figure 5. Behaviour of the distributed load balancing

ing low complexity, low overhead tool to control the CDN

operations.
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