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Abstract

In this paper, a distributed stochastic approximation algorithm is proposed to track the dynamic root of a sum of
time-varying regression functions over a network. Each agent updates its estimate by using the local observation, the
dynamic information of the global root, and information received from its neighbors. Compared with similar works in
optimization area, we allow the observation to be noise-corrupted, and the noise condition is much weaker.
Furthermore, instead of the upper bound of the estimate error, we present the asymptotic convergence result of the
algorithm. The consensus and convergence of the estimates are established. Finally, the algorithm is applied to a
distributed target tracking problem and the numerical example is presented to demonstrate the performance of the
algorithm.
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1 Introduction
In recent years, there is a huge increase in the scale of
data in many real-life application problems. The tradi-
tional centralized computing method faces many chal-
lenges and sometimes is entirely infeasible for large-
scale problems. As a result, distributed algorithms over
multi-agent systems have received much attention from
researchers of diverse areas, including consensus problem
[1–4], resource allocation (RA) [5, 6], multi-unmanned
aerial vehicle (MUAV) control [7], and distributed target
tracking [8] etc. Distributed algorithms are usually associ-
ated with a network of agents where each agent has lim-
ited computation and communication ability. The agents
are required to cooperatively achieve a global objective
by using their local observations and information trans-
mitted from their neighbors. Compared with centralized
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approaches, distributed algorithms have the advantage of
robustness on network link failure, privacy protection,
and reduction on communication and computation cost.
One of the important branches of distributed algorithms

is the distributed optimization problem. It seeks the min-
imizer of the global function which is written as a sum
of the local functions of the agents. In particular, the dis-
tributed optimization for time-invariant cost function has
become a mature discipline with many results, see [9–11]
and references within. On the other hand, optimization
problems with time-varying cost function have attracted
much attention due to its appearance in various appli-
cations, for example, signal processing [12] and online
optimization [13, 14]. The main challenge of time-varying
optimization lies in the fact that the minimizer of the
time-varying cost function is changing with time. Since
the traditional optimization algorithms can only move
the estimates towards the minimizer of the cost function
of the current time, they cannot track the movement of
the minimizer in the dynamic environment. To cope with
this issue, two different strategies have been developed.
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The first one is running method [15, 16], where the algo-
rithms sample the time-varying cost function at a fixed
frequency, and perform the traditional optimization algo-
rithms on the sampled function in between the sample
time. The second one is prediction-correction method
[17, 18], where the algorithms only optimize the cost func-
tion of the current time at each steps. But an additional
information of the dynamic of the moving minimizer is
required, such as the second derivative of the cost func-
tion [18], or an additional constrain on the dynamic of the
minimizer [14]. While we consider a different problem in
this paper, the method we utilize is much similar to the
second method.
It can be noticed that the optimization problem can

often be transformed into a root-seeking problem, since
the optimization of a differentiable convex function is
equivalent to seeking the root of its gradient, and for
the case where the gradients are unavailable we can
use the finite time difference to estimate the gradient
[19]. So it’s natural to consider the distributed root-
tracking problem. Distributed stochastic approximation
for time-invariant regression functions has been studied
by many researchers as a solution for distributed root-
seeking problem [20–22]. Inspired by the work of dynamic
stochastic approximation [23, 24], in this paper, we pro-
pose a distributed stochastic approximation algorithm
for tracking the changing root of a sum of time-varying
regression functions over a network. Each agent is aimed
at tracking the changing root of the global function, but
it can only access a noise-corrupted local observation and
the information transmitted from its neighbor. In addi-
tion, the noise-corrupted dynamics of the roots of the
global regression function is assumed to be known to all
agents.
In this paper, the distributed root-tracking problem

for time-varying regression function is considered. First,
motivated by the truncation technique given in [22], a dis-
tributed stochastic approximation algorithmwith expand-
ing truncations is introduced. The key difference is that
the observation of the local function in this algorithm
is a noise-corrupted one, while an exact gradient infor-
mation is often required in the optimization algorithms
mentioned above. Second, under the assumption that the
noise-corrupted dynamics of the global roots is known
to all agents, the convergence conditions of the algo-
rithm are introduced. Third, it is proved that the estimates
generated by the distributed algorithm are of both con-
sensus and convergence with probability one. Finally, we
apply this algorithm to a distributed target tracking prob-
lem. The numerical example is given demonstrating the
performance of the algorithm.
The rest of the paper is organized as follows. The prob-

lem formulation and the distributed stochastic approxi-
mation algorithm are given in Section 2. The convergence

conditions and results are presented in Section 3. To
help the proof of the convergence result, two auxiliary
sequences are defined and analysed in Section 4. The
proof of the main result is given in Section 5. In Section 6,
a distributed target tracking problem is solved by the algo-
rithm and the numerical example is demonstrated. Some
concluding remarks are addressed in Section 7.

2 Problem formulation and distributed
root-tracking algorithm

2.1 Problem formulation
Consider a network system consisting of N agents. The
interaction relationship among agents is described by a
time-varying digraph G(k) = {V , E(k)}, where k is the
time index, V = {1, . . . ,N} is the agent set, and E(k) ⊂
V × V is the edge set. By (i, j) ∈ E(k) we mean that agent
j can receive information from agent i at time k. Assume
(i, i) ∈ E(k) for ∀k = 1, 2, . . . Denote the neighbor of
agent i at time k by Ni(k) = {

j ∈ V : (j, i) ∈ E(k)
}
. The

adjacency matrix associated with the graph is denoted by
W (k) = [

wij(k)
]N
i,j=1, where wij(k) > 0 if and only if

(j, i) ∈ E(k), otherwise wij(k) = 0.
A time-independent digraph G = {V , E} is called

strongly connected if for any i, j ∈ V , there exists a
directed path from i to j. A directed path is a sequence
of edges (i, i1) , (i1, i2) , . . . ,

(
ip−1, j

)
in the digraph with

distinct agents ik ∈ V , 0 ≤ k ≤ p − 1, where p is called
the length of this path. A nonnegative matrix A is called
doubly stochastic if A1 = 1 and 1TA = 1T .
The time-varying global regression function is given by

fk(·) = 1
N

N∑

i=1
fi,k(·), (1)

where fi,k(·) : Rl → R
l is the local function associated

with agent i. Denote by θk the root of the sum function
fk(·) at time k, i.e., fk(θk) = 0, k = 1, 2, . . .
Further, assume that the dynamics of the root θk is

governed by

θk+1 = gk(θk)+ξk+1, k ≥ 0, (2)

where the function gk(·) : Rl → R
l is known for all agents,

and {ξk} is the sequence of dynamic noises. As we can see
in Section 6, this assumption is reasonable in some real-
life application problems and have been studied before in
[14, 25, 26].
For each agent i, the distributed root-tracking problem

is to track the dynamic root of the time-varying global
function by using its noise-corrupted observation of local
function fi,k(·), the dynamic information of the root gk(·),
and the information obtained from its adjacent neighbors.
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2.2 Algorithm
Wenow introduce the distributed root-tracking algorithm
as follows:

x′
i,k+1 =

⎧
⎨

⎩

∑

j∈Ni(k)
wij(k)gk

(
xj,k

) + akOi,k+1

⎫
⎬

⎭
I[σi,k=σ̂i,k]

+ hk(x∗)I[σi,k<σ̂i,k], (3)

xi,k+1 = x′
i,k+1I

[
||x′

i,k+1−hk(x∗)||≤Mσ̂i,k

]

+ hk(x∗)I[||x′
i,k+1−hk(x∗)||>Mσ̂i,k

], (4)

σi,k+1 = σ̂i,k + I[||x′
i,k+1−hk(x∗)||>Mσ̂i,k

], (5)

σi,0 = 0, σ̂i,k = max
j∈Ni(k)

σj,k , (6)

Oi,k+1 = fi,k+1(gk
(
xi,k)

) + εi,k+1, (7)

where 1) xi,k ∈ R
l is the estimate of θk given by the agent

i at time k, 2) Oi,k+1 defined by (7) is the local observa-
tion of agent i, 3) {ak}k≥0 is the sequence of the step-sizes
used by all agents, 4) x∗ is a fixed vector in R

l known to
all agents, 5) {Mk}k≥0 is a sequence of positive numbers
increasingly diverging to infinity with M0 ≥ ||x∗||, 6) σi,k
is the truncation number of agent i up-to-time k, and 7)
hk(·) is a function defined as below

h1(x) = g1(x), hk(x) = gk
(
hk−1(x)

)
, for k = 2, 3, . . . .

(8)

Let us explain the algorithm. 1) For agent i, the esti-
mate xi,k is the estimate of θk . Since the dynamics of {θk} is
governed by (2), in order to make sure the estimate track
the dynamic root, the update at time k + 1 utilize gk(xi,k)
instead of xi,k as it was shown in (3). 2) For agent i, the
truncation happens when one of the following cases hold
true: a) σi,k < σ̂i,k , which means that there is at least one
neighbor whose truncation number is larger than that of
agent i. b) ||x′

i,k+1 − hk(x∗)|| > Mσ̂i,k , which means that
the distance between the intermediate value x′

i,k+1 and
hk(x∗) is larger than the truncation bound. When trun-
cation happens, the estimate xi,k is pulled to hk−1(x∗). 3)
It can be seen that the truncation may not happen at the
same time for different agents in the network. So for agent
i, the update (5) makes sure that the truncation number
of i is not smaller than the largest truncation number of
its neighbors, i.e. σ̂i,k . As to be shown in Lemma 4, this
technique guarantees that the difference between trunca-
tion numbers of different agents is bounded, which helps
the algorithm converge. 4) The truncation mechanism
makes sure that the estimates xi,k won’t be too far away
from hk−1(x∗). As to be shown in Lemma 1, we can prove
that the distance between

{
hk−1(x∗)

}
and the dynamic

root {θk} is bounded. So it is reasonable to choose this
truncation condition.

Remark 1 In our previous work [27], we proposed the
distributed root-tracking algorithm without the expand-
ing truncation. To make sure the algorithm converge, we
assumed the dynamic root {θk} and the estimate of all
agents {xi,k} are bounded sequences in [27]. With the
introduction of the expanding truncation mechanism, this
assumption is removed in this paper.

3 Assumptions and convergence result
3.1 Assumptions
Let us list the assumptions to be used in the paper.

A1 ak > 0, ak → 0,
∑∞

k=1 ak = ∞.
A2 There exists a continuously differentiable function

v(·) : Rl → R such that v(x) �= 0 for ∀x �= 0,
v(0) = 0 and for any 0 < r1 < r2 < ∞

sup
k

sup
r1≤||x−θk ||≤r2

f Tk (x)vx(x − θk) < −a,

where a is a positive constant possibly depending on
r1, r2. A constant r > η exists such that

sup
||y||≤η

v(y) < sup
||x||=r

v(x),

where η is an unknown constant specified later in
Lemma 1.

A3 The class of functions
{
fi,k(·)

}
k≥0 is equi-continuous

for i = 1, . . . ,N , i.e., for any fixed i and any ε > 0,
there exists δ > 0 such that

||fi,k(x)−fi,k(y)|| ≤ ε ∀k, whenever ||x−y|| ≤ δ,

where δ only depends on ε. Furthermore, for ∀c > 0,
there exists a constant α(c) such that
||fi,k(θk + ν)|| < α(c) for ∀ν with ||ν|| ≤ c,
∀i ∈ V , k = 1, 2, . . .

A4 a) The adjacent matricesW (k) ∀k ≥ 0 are doubly
stochastic;
b) There exists a constant 0 < κ < 1 such that

wij(k) ≥ κ ∀j ∈ Ni(k) ∀i ∈ V ∀k ≥ 0,

c) The digraph G∞ = {V , E∞} is strongly connected,
where

E∞ = {(j, i) : (j, i) ∈ E(k) for infinitely many indices k},
d) There exists a positive integer B such that

(j, i) ∈ E(k) ∪ E(k + 1) ∪ · · · ∪ E(k + B − 1)

for all (j, i) ∈ E∞ and any k ≥ 0.
A5 For any i ∈ V , the noise sequence

{
εi,k+1

}
k≥0 is such

that

lim
T→0

lim sup
k→∞

1
T

||
m(nk ,tk)∑

m=nk

amεi,m|| = 0, ∀tk ∈[ 0,T]
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wherem(k,T) � max
{
m :

∑m
i=k ai ≤ T

}
and {nk}

denotes the indices of any convergent subsequence{
xi,nk − θnk

}
.

A6 gk(·) : Rl → R
l is equi-continuous with respect to k

and is such that ||dk(x)|| ≤ γk||x − θk||
∀x, k = 1, 2, . . . , where

dk(x) � gk(x) − gk(θk) − (x − θk),

γk = o(ak), and
∑∞

k=1 γk < ∞.
A7 ||ξk|| = o(ak) and

∑∞
k=1 ||ξk|| < ∞.

A1 and A2 are the standard assumptions for stochastic
approximation. A3 implies the local boundedness of the
functions fi,k(·). Notice that the upper bound α(c) in A3
should be uniform with respect to k.
A4 describes the information exchanging among agents.

We refer to [9] for the detailed explanation. Set �(k, k +
1) � IN and

�(k, s) � W (k) · · ·W (s) ∀k ≥ s.

By Proposition 1 in [9] it follows that there exist constants
c > 0 and 0 < ρ < 1 such that

||�(k, s) − 1
N
11T || ≤ cρk−s+1 ∀k ≥ s. (9)

Notice that in A5 b), the noise condition is required
only along the indices of any convergent subsequence{
xi,nk − θnk

}
. As to be seen in the next section, this

makes the convergence analysis much easier compared
with requiring the noise condition to hold along the whole
sequence.
In A6, dk(x) measures the difference between the esti-

mation error xi,k − θk and the prediction error gk(xi,k) −
gk(θk). This assumption implies that the dynamic of the
root , i.e. gk(·), will tend to be a linear function as time
k goes to infinity. For example, if the dynamics of the
changing roots is gk(x) = x + c, then A6 holds with
γk = 0.

3.2 Main result
Set col {x1, . . . , xm} � (

xT1 , . . . , xTm
)T , and define

Xk � col
{
x1,k , . . . , xN ,k

}
,

�k � 1 ⊗ θk ∈ R
Nl,

εk � col
{
ε1,k , . . . , εN ,k

}
,

�k � 1 ⊗ ξk ∈ R
Nl,

Gk(Xk) � col
{
gk

(
x1,k

)
, . . . , gk

(
xN ,k

)}
,

Fk+1(Xk) � col
{
f1,k+1

(
x1,k

)
, . . . , fN ,k+1

(
xN ,k

)}
,

Dk(Xk) � col
{
dk

(
x1,k

)
, . . . , dk

(
xN ,k

)}
.

Further, we denote the disagreement vector of Xk by
X⊥,k � D⊥Xk with D⊥ �

(
IN − 11T

N

)
⊗ Il. Define xk �

1
N

∑N
i=1 xi,k , the average of all agents’ estimates at time k.

Define �i,k � xi,k − θk , �k � Xk − �k , and �k � xk − θk .

Theorem 1 Let {xi,k} be the estimates produced by (3)–
(7) with an arbitrary initial value xi,0. Assume A1-A4 and
A6 hold. If for a fixed sample ω, A5 holds for all agents,
and A7 holds, then for this ω, the following assertion takes
place:
i) There exists a positive integer k0 depending on ω such

that

xi,k+1 =
∑

j∈Ni(k)
wij(k)gj

(
xj,k

) + akOi,k+1. (10)

or in the compact form

Xk+1 = (W (k)⊗Il)Gk(Xk)+ak
(
Fk+1 (G(Xk)) + εk+1

)

(11)

for any k ≥ k0;
ii)

lim
k→∞

X⊥,k = 0, lim
k→∞

�k = 0.

Theorem 1 i) shows that the truncation ceases after
a finite number of steps. This implies that the dif-
ference between the estimate xi,k and hk−1(x∗) is
bounded, which is desirable as to be shown in Lemma
1. Before we move on to the proof of Theorem
1, we first show that the truncation mechanism is
reasonable.

Lemma 1 If A6 and A7 hold, the sequence{
hk(x∗) − θk+1

}
is bounded for any x∗.

Proof By A6 and A7 from (2) it follows that

||hk(x∗) − θk+1|| = ||gk
(
hk−1(x∗)

) − gk(θk) − ξk+1||
= ||dk

(
hk−1(x∗)

) + hk−1(x∗) − θk − ξk+1||
≤ (1 + γk)||hk−1(x∗) − θk|| + ||ξk+1||

≤
k∏

i=1
(1 + γi) ||g1(x∗)−θ1||+

k∑

i=1

k∏

j=i+1

(
1 + γj

) ||ξj+1||

≤
∞∏

i=1
(1 + γi)||g1(x∗) − θ1||+

∞∑

i=1

∞∏

j=i+1

(
1 + γj

) ||ξj+1||

� η,

where
∏∞

i=1(1 + γi) < ∞ is implied by
∑∞

j=1 γj < ∞.

As we mentioned in Section 2, Lemma 1 shows that the
distance between

{
hk−1(x∗)

}
and {θk} is bounded. Since

we hope the estimate
{
xi,k

}
generated by the algorithm

(3)–(7) track the root {θk}, the truncation mechanism
I[||x′

i,k+1−hk(x∗)||≤Mσ̂i,k

] is intuitively reasonable.
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4 Auxiliary sequences
The next two sections of this paper focus on the proof
of Theorem 1. But prior to analyzing

{
xi,k

}
, we need

to introduce two auxiliary sequences
{
x̃i,k

}
and

{
ε̃i,k

}

for each agent i ∈ V . The motivation of constructing
these two sequences comes from the character of dis-
tributed algorithm with expanding truncation. Recall the
convergence analysis of stochastic approximation algo-
rithm with expanding truncation (SAAWET) [28]. The
key step is to show that the truncations cease after a
finite number of steps, therefore, the boundedness of
the estimates is established. If the number of trunca-
tions increases unboundedly, then the estimate is pulled
back to x∗ infinitely many times. This produces a con-
vergent subsequence from the estimate sequence. Then a
contradiction can be shown analysing the property along
this subsequence, which proves the boundedness of the
estimates.
Although the problem in this paper is different from the

one in [28] since the regression function is time-varying in
this paper, we use the same approach to prove the bound-
edness of the estimates. Notice the distributed algorithm
with expanding truncation (3)–(7). When limk→∞ σi,k =
∞ ∀i ∈ V , the estimate xi,k is pulled back to hk−1(x∗)
infinitely times. By lemma 1, we know that ||hk−1(x∗)−θk||
is bounded. So {�i,k} contains a convergent subsequence.
However, {�k}may still not contain any convergent subse-
quences. This is because truncation may occur at different
times for different i ∈ V . Therefore, the analysis approach
used for SAAWET cannot directly be applied to the algo-
rithm (3)–(7).
To overcome this difficulty, we introduce the auxiliary

sequences
{
x̃i,k

}
and

{
ε̃i,k

}
. As to be shown, the auxil-

iary sequences
{
x̃i,k

}
satisfies the recursions (19)–(21), for

which the number of truncation at time k for all agents is
the same and the estimates x̃i,k for all the agents are pulled
back to hk−1(x∗) when σk > σk−1. The auxiliary noise{
ε̃i,k

}
satisfies a condition similar to A5 b). Thesemake the

analysis for (19)–(21) feasible.
It is shown below that the important feature of the

auxiliary sequences consists in that
{
x̃i,k

}
and

{
xi,k

}
coin-

cide in a finite number of steps, which means that the
convergence of these two sequences is equivalent.
Denote by τi,m � inf

{
k : σi,k = m

}
the smallest time

when the truncation number of agent i has reached m,
by τm � mini∈V τi,m the smallest time when at least
one of agents has its truncation number reached m,
and by

σk � max
i∈V σi,k (12)

the largest truncation number among all agents at time k.
Set τ̃i,m � τi,m ∧ τm+1, where a ∧ b = min{a, b}.

For any i ∈ V , define the auxiliary sequences
{
x̃i,k

}
k≥0

and
{
ε̃i,k

}
k≥0 as follows:

x̃i,k � hk−1(x∗), ε̃i,k+1

� −fi,k+1
(
hk(x∗)

)
, ∀k : τm ≤ k < τ̃i,m, (13)

x̃i,k � xi,k , ε̃i,k+1

� εi,k+1, ∀k : τ̃i,m ≤ k < τm+1, (14)

wherem is an integer.
Note that for the considered sample ω there exists a

unique integer m ≥ 0 corresponding to an integer k ≥ 0
such that τm ≤ k < τm+1. By definition τ̃i,m ≤ τm+1 ∀i ∈
V . So,

{
x̃i,k

}
k≥0 and

{
ε̃i,k

}
k≥0 are uniquely determined by

the sequences
{
xi,k

}
k≥0 and

{
εi,k

}
k≥0.

Lemma 2 For k ∈ [τm, τm+1), the following assertions
hold:

i) x̃i,k = hk−1(x∗), ε̃i,k+1

= −fi,k+1
(
hk(x∗)

)
, if σi,k < m; (15)

ii) x̃i,k = xi,k , ε̃i,k+1 = εi,k+1, if σi,k = m; (16)
iii) x̃j,k = hk−1(x∗), if σj,k−1 < m; (17)
iv) x̃j,k+1 = hk(x∗), ∀j ∈ V , if σk+1 = m + 1.

(18)

Proof i) Since σi,k < m, by the definition of τi,m and
the fact that k ∈ [τm, τm+1), we know τi,m > k. Thus,
τ̃i,m = τi,m ∧ τm+1 > k. Hence, we conclude (15)
from (13).
ii) Since σi,k = m, by definition we have τi,m ≤ k.

Hence τ̃i,m = τi,m ∧ τm+1 = τi,m ≤ k. So by (14) we
conclude (16).
iii) By τm ≤ k < τm+1 we know σj,k ≤ m. We con-

sider two cases: σj,k = m, and σj,k < m. 1) For σj,k = m,
since σj,k−1 < m, we know that truncation happens at
time k for agent j. Truncation happens only when one of
the following cases hold true: a) σj,k−1 < σ̂j,k−1. For this
case, by (3) we have x′

j,k = hk−1(x∗), hence by (4) we have
xj,k = hk−1(x∗); b) ‖x′

j,k − hk−1(x∗)‖ > Mσ̂j,k−1 . For this
case, by (4) we have xj,k = hk−1(x∗). In conclusion, when
σj,k = m holds true, we have xj,k = hk−1(x∗). Further-
more, from (16) it follows that x̃j,k = xj,k if σj,k = m. So,
we have x̃j,k = hk−1(x∗). 2) For σj,k < m, from (15) we
have x̃j,k = hk−1(x∗).
iv) From k ∈[ τm, τm+1] we know σk = m. Hence from

σk+1 = m + 1 by definition we have τm+1 = k + 1, and
k+1 ∈[ τm+1, τm+2). By σk = mwe see σj,k < m+1 ∀j ∈ V .
Then we derive (18) by (17).
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Lemma 3 The auxiliary sequences {x̃i,k}, {ε̃i,k} defined
by (13)(14) satisfy the following recursions:

x̂i,k+1 =
∑

j∈Ni(k)
wij(k)gk(x̃j,k)

+ ak
(
fi,k+1

(
gk

(
x̃i,k

)) + ε̃i,k+1
)

(19)
x̃i,k+1 = x̂i,k+1I[||x̂j,k+1−hk(x∗)||≤Mσk ,∀j∈V

]

+ hk(x∗)I[∃j∈V ||x̂j,k+1−hk(x∗)>Mσk ||
] (20)

σk+1 = σk + I[∃j∈V ||x̂j,k+1−hk(x∗)>Mσk ||
], σ0 = 0. (21)

Proof We prove this by induction.
First we prove (19)–(21) for k = 0. Since 0 ∈[ τ0, τ1) and

σ0 = 0 ∀i ∈ V , by (16) we have x̃i,0 = xi,0, ε̃i,1 = εi,1 ∀i ∈
V . Then by σ̂i,0 = σi,0 = 0 ∀i ∈ V , from (3)(19) we see

x̂i,1 = x′
i,1, ∀i ∈ V . (22)

Now we prove that x̃i,1 and σ1 generated by (19)–(21) are
consistent with the definition (12)(13)(14). We consider
two cases:
i) There is no truncation at time k = 1, i.e., σi,1 = 0 ∀i ∈

V . Since σi,0 = 0, by (5) we know that ||x′
i,1 − h0(x∗)|| ≤

M0. Then we have xi,1 = x′
i,1 by (4), and x̃i,1 = x̂i,1, σ1 = 0

by (20)(21). Combining these with (22) it is shown that
x̃i,1 = xi,1 ∀i ∈ V , which is consistent with (14) since τ̃i,0 ≤
1 < τ1. By (12) we see σ1 = maxi∈V σi,1 = 0, which is
consistent with the one derived from (21).
ii) There is a truncation at k = 1 for agent i0, i.e., σi0,1 =

1. Then by (4)(5) we have xi0,1 = h0(x∗), ||x′
i0,1−h0(x∗)|| >

M0. Hence ||x̂i0,1 − h0(x∗)|| > M0 by (22). From (20)(21)
we have x̂i,1 = h0(x∗) ∀i ∈ V and σ1 = 1. By (12)
from σi0,1 = 1 we derive σ1 = 1. Since 0 ∈[ τ0, τ1) and
σ1 = 1, by (18) we have x̃i,1 = h0(x∗) ∀i ∈ V . Thus, x̃i,1
and σ1 defined by (13)(14)(12) are consistent with those
generated by (19)–(21).
In summery, we prove the lemma for k = 0.
By induction, we assume (19)–(21) hold for k =

0, 1, . . . , p. At a fixed sample ω for a given integer p there
exists a unique integer m such that τm ≤ p < τm+1. Now
we aim to show that (19)–(21) hold for k = p + 1. Before
this, we first express x̂i,p+1 ∀i ∈ V produced by (19) for the
following two cases:
Case 1: σi,p < m. Since p ∈ [τm, τm+1), by (15) we see

x̃i,p = hp−1(x∗), ε̃i,p+1 = −fi,p+1
(
hp(x∗)

)
. (23)

From σi,p < m it follows that σj,p−1 < m ∀j ∈ Ni(p) by (5).
Then by (17) we have x̃i,p = hp−1(x∗) ∀j ∈ Ni(p), which
combining with (19)(23) shows

x̂i,p+1 = hp(x∗) ∀i : σi,p < m (24)

Case 2: σi,p = m. By τm ≤ p < τm+1 we have σj,p ≤
m ∀j ∈ V and hence by (6) we derive

σ̂i,p = m, ∀i : σi,p = m (25)

Then by (3)

x′
i,p+1 =

∑

j∈Ni(p)
wij(p)gp(xj,p)

+ ap
(
fi,p+1

(
gp(xi,p)

) + εi,p+1
)
. (26)

From σi,p = m and p ∈[ τm, τm+1), by (16) it can be
shown that

x̃i,p = xi,p, ε̃i,p+1 = εi,p+1. (27)

Substituting (27) into (19), by (26) we know that

x̂i,p+1 = x′
i,p+1 ∀i : σi,p = m. (28)

So we have expressed x̂i,p+1 ∀i ∈ V produced by (19) for
the two cases above.
Since τm ≤ p < τm+1, we have σp < m + 1 and hence

σp+1 ≤ m + 1. From τm ≤ p it follows that σp = m and
σp+1 ≥ m, hencem ≤ σp+1 ≤ m + 1.
Now we show that x̃i,p+1 and σp+1 generated by (19)–

(21) are consistent with their definitions (12)(13)(14). We
prove this for two cases σp+1 = m + 1 and σp+1 = m.
Case 1: σp+1 = m + 1. We first show

σi,p+1 ≤ m, if σi,p < m (29)

for the following two cases: 1) σi,p < m and σj,p < m ∀j ∈
Ni(p). For this case by (6) we have σ̂i,p < m, and hence
σi,p+1 ≤ σ̂i,p + 1 ≤ m by (5). 2) σi,p < m and σj,p =
m for some j ∈ Ni(p). For this case we derive σ̂i,p = m,
x′
i,p+1 = hp(x∗) by (3)(6). So, by (5) we derive σi,p+1 =

σ̂i,p = m. Thus, σi,p+1 ≤ m when σi,p < m. Hence (29)
holds. Furthermore, this means that

σi,p+1 = m + 1 only if σi,p = m. (30)

Since we are considering the case where σp+1 = m + 1,
by definition we know that there exists some agent i0 ∈ V
such that σi0,p+1 = m + 1. Then σi0,p = m by (30), and
hence σ̂i0,p = m from (25). Then from σi0,p+1 = m + 1
by (5) we know that ||x′

i0,p+1 − hp(x∗)|| > Mm. So from
(20)(21) we derive x̃i,p+1 = hp(x∗) ∀i ∈ V and σp+1 =
m + 1, which is consistent with the σp+1 defined by (12).
Since σp+1 = m + 1 and p ∈[ τm, τm+1), by (18) we see
that x̃i,p+1 = hp(x∗) ∀i ∈ V , which is consistent with that
generated by (19)–(21).
Case 2: σp+1 = m. In this case σi,p+1 ≤ m ∀i ∈ V . By

(25), from (4)(5) we see that

||x′
i,p+1 − hp(x∗)|| ≤ Mm, xi,p+1 = x′

i,p+1 ∀ i : σi,p = m.
(31)

So, by (28) we derive

||x̂i,p+1 − hp(x∗)|| ≤ Mm, ∀i : σi,p = m. (32)
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From (24) we have ||x̂i,p+1 − hp(x∗)|| = 0 ≤ Mm ∀i :
σi,p < m, which incorporating with (32) yields ||x̂i,p+1 −
hp(x∗)|| ≤ Mm∀i ∈ V . Then from (20) it follows

x̃i,p+1 = x̂i,p+1 ∀i ∈ V , σp+1 = m. (33)

which means that σp+1 is consistent with that defined by
(12).
It remains to show that x̃i,p+1 generated by (19)–(21)

is consistent with that defined by (13)(14). We consider
two cases: 1) σi,p = m. For this case, by (25)(31)(32) we
see x̃i,p+1 = xi,p+1 ∀i : σi,p = m. By σp+1 = m we see
p ∈[ τm, τm+1), and hence x̃i,p+1 = xi,p+1 by (16). So the
consistency assertion holds for any i with σi,p = m. 2)
σi,p < m. For this case, from σp+1 = m we see p + 1 ∈
[ τm, τm+1), and hence by σi,p < m and (17) we know
x̃i,p+1 defined by (13)(14) is equal to hp(x∗). By (24)(33) we
derive x̃i,p+1 = hp(x∗). So the consistency assertion holds
for i with σi,p < m too.
In summery, x̃i,p+1 and σp+1 generated by (19)–(21)

are consistent with their definitions (12)(13)(14). So the
induction is complete.

Lemma 4 Assume A4 holds. Then
i)

σj,k + Bdi,j ≥ σi,k ∀j ∈ V ∀k > 0, (34)

where di,j is the length of the shortest directed path from i
to j in G∞, and B is the positive integer given in A4 d).
ii)

τ̃j,m ≤ τm + BD ∀j ∈ V for m > 1, (35)

where D � maxi,j∈V di,j.

Proof i) Since G∞ is strongly connected by A4 c), for any
j ∈ V there exists a sequence of nodes i1, i2, . . . , idi,j−1 such
that (i, i1) ∈ E∞, (i1, i2) ∈ E∞, . . . ,

(
idi,j−1,j

)
∈ E∞.

Noticing that (i, i1) ∈ E∞, by A4 d) we have

(i, i1) ∈ E(k) ∪ E(k + 1) ∪ · · · ∪ E(k + B − 1).

Therefore, there exists a positive integer k′ ∈[ k, k+B−1]
such that (i, i1) ∈ E(k′). So, i ∈ Ni1(k′), and hence by (6)
and (5) we have

σi1,k+B ≥ σi1,k′+1 ≥ σ̂i1,k′ ≥ σi,k′ ≥ σi,k .

Repeat this procedure, we can obtain σi2,k+2B ≥ σi1,k+B ≥
σi,k . Finally we can reach (34).
ii) For some m ≥ 1, let τm = k1. Then there exists an i

such that τi,m = k1. By (34) we have σj,k1+Bdi,j ≥ σi,k1 =
m ∀j ∈ V .
For the case where σj,k1+Bdi,j = m ∀j ∈ V , we have τj,m ≤

k1 + Bdi,j ∀j ∈ V . By noticing τm = k1, by the definition of
τ̃j,m we have (35):

τ̃j,m ≤ τj,m ≤ τm + Bdi,j ≤ τm + BD j ∈ V .

For the case where σj,k1+Bdi,j > m for some j ∈ V , we
have τm+1 ≤ k1 + Bdi,j for some j ∈ V , and hence τm+1 ≤
τm + BD. Again, we obtain (35):

τ̃j,m ≤ τm+1 ≤ τm + BD j ∈ V .

Corollary 1 If σk
∞−−−→

k→∞
, then limk→∞ σi,k = ∞ ∀i ∈ V .

This corollary can be easily obtained from (34).

Lemma 5 Assume A5 holds at the sample path ω under
consideration, A1, A3,A6, and A7 hold. Then for this ω

lim
T→∞

lim sup
k→∞

1
T

||
m(nk ,tk)∧(τσnk +1−1)

∑

s=nk

asε̃s+1|| = 0

∀tk ∈[ 0,T] (36)

along indices {nk} whenever
{
�̃nk

}
converges at ω, where

ε̃k � col
{
ε̃1,k , . . . , ε̃N ,k

}
, X̃k � col

{
x̃1,k , . . . , x̃N ,k

}
, and

�̃k � X̃k − �k.

Proof It suffices to show

lim
T→∞

lim sup
k→∞

1
T

||
m(nk ,tk)∧

(
τσnk +1−1

)

∑

s=nk

asε̃i,s+1|| = 0

∀tk ∈[ 0,T] for sufficiently large K > 0 (37)

along indices {nk} whenever
{
x̃i,nk − θnk

}
converges at

sample ω where A5 b) holds for agent i.
We consider two cases:
Case 1: limk→∞ σk = σ < ∞. From definition we can

obtain

τσ+1 = ∞ when lim
k→∞

σk = σ . (38)

By (35) we have τ̃i,σ ≤ τσ + BD, hence by (14)(38)

x̃i,k = xi,k , ε̃i,k+1 = εi,k+1 ∀k ≥ τσ + BD. (39)

So,

||
m(k,t)∧(τσk+1−1)∑

s=k
asε̃i,s+1|| = ||

m(k,t)∑

s=k
asεi,s+1||

for any t > 0 and any sufficiently large k. Then by A5 b)
we prove (37).
Case 2: limk→∞ σk = ∞. In this case we prove (37) for

three separate cases:
i): τ̃i,σnp ≤ np. For this case,

[
np, τσnp+1

)
⊂

[
τi,σnp , τσnp+1

)
. So by (14) we have

x̃i,s = xi,s, ε̃i,s+1 = εi,s+1 ∀np ≤ s ≤ τσnp+1. (40)
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Thus, for any tp ∈[ 0,T]

||
m(np,tp)∧

(
τσnp+1−1

)

∑

s=np
asε̃i,s+1||

= ||
m(np,tp)∧

(
τσnp+1−1

)

∑

s=np
asεi,s+1||. (41)

Notice that by (40), x̃i,np = xi,np , and the indices {np} is
taken when {x̃i,np − θnp} is a convergent subsequence. So
{xi,np − θnp} is a convergent subsequence as well. It can

be seen
∑m(np,tp)∧(τσnp+1−1)

s=np as ≤ ∑m(np,tp)
s=np as ≤ tp ≤ T .

Hence, from (41) and A5 b) we conclude (37).
ii): τ̃i,σnp > np and τ̃i,σnk = τσnk+1 . By definition of τk

and σk we have τσk ≤ k, and hence τσnp ≤ np. Then
[ np, τσnp+1) ⊂[ τσnp , τ̃i,σnp ), and hence by (13) we have

x̃i,s = hs−1(x∗), ε̃i,s+1 = −fi,s+1(hs(x∗))
∀s : np ≤ s < τσnp+1. (42)

From τ̃i,σnp = τσnp+1 by (35) we know that τσnp+1 ≤ τσnp +
BD ≤ np + BD. Then for any tp ∈[ 0,T], utilizing A1, A3
and Lemma 1 we have

||
m(np,tp)∧

(
τσnp+1−1

)

∑

s=np
asε̃i,s+1||

≤
np+BD∑

s=np
as||fi,s+1

(
hs(x∗)

) ||

=
np+BD∑

s=np
as||fi,s+1

(
θs+1 + hs(x∗) − θs+1

) ||

≤
np+BD∑

s=np
asα(η)

≤ BD · anp · α(η) −−−→
p→∞ 0, (43)

and hence (37) holds for this case.
iii): τ̃i,σnp > np and τ̃i,σnp < τσnp+1. For this case from

definition we know that τ̃i,σnp = τi,σnp . So by (35) we have
τi,σnp ≤ τσnp + BD. Noticing τσnp ≤ np, we conclude that

τσnp ≤ np < τ̃i,σnp = τi,σnp ≤ np + BD (44)

So, [ np, τi,σnp ) ⊂[ τσnp , τ̃i,σnp ). From this and τ̃i,σnp = τi,σnp ,
by (13)(14) we derive

x̃i,s = hs−1(x∗), ε̃i,s+1 = −fs+1
(
hs(x∗)

)
, ∀np ≤ s < τi,σnp ,

x̃i,s = xi,s, ε̃i,s = εi,s, ∀τi,σnp ≤ s < τσnp+1 .

Consequently, for any tp ∈[ 0,T]

||
m(np,tp)∧

(
τσnp+1−1

)

∑

s=np
asε̃i,s+1||

≤ ||
m(np,tp)∧

(
τσnp+1−1

)

∑

s=np
asfs+1

(
hs(x∗)

)
I[np≤s<τi,σnp ]||

+ ||
m(np,tp)∧

(
τσnp+1−1

)

∑

s=τi,σnp

asεi,s+1|| (45)

Analyze the first term at the right hand of (45):

||
m(np,tp)∧(τσnp+1−1)

∑

s=np
asfs+1

(
hs(x∗)

)
I[np≤s<τi,σnp ]||

≤
τi,σnp∑

s=np
as||fs+1

(
hs(x∗)

)||

≤
np+BD∑

s=np
asα(η) −−−→

p→∞ 0

From the definition of τi,k , the truncation number of
agent i at time τi,σnp is σnp while it’s smaller than σnp
at time τi,σnp − 1. So by the algorithm (3)-(6) we know
xi,τi,σnp = hτi,σnp −1(x∗). Notice the second term at the right
hand of (45). If we can show {hτi,σnp −1(x∗) − θτi,σnp

} is con-
vergent, combining it with the fact

∑m(np,tp)∧τσnp+1−1
s=τi,σnp

as ≤
∑m(np,tp)

s=np as ≤ tp, from A5 we can conclude that the
second term at the right hand of (45) tends to zero as
p → ∞.
We show that {hk(x∗) − θk+1} is a convergent sequence

by proving that the sequence is a Cauchy sequence. For
two different integer j > i > 0, we see

||hj(x∗) − θj+1 − hi(x∗) + θi+1||
≤ ||hj(x∗) − θj+1 − hj−1(x∗) + θj

+ hj−1(x∗) − θj − hj−2(x∗) + θj−1 + · · · + hi+1(x∗)
− θi+2

− hi(x∗) + θi+1||
= ||gj

(
hj−1(x∗)

)−gj(θj) − hj−1(x∗) + θj − ξj+1 + · · · ||

≤
j∑

l=i+1
||dl(hl−1(x∗))|| +

j+1∑

l=i+2
||ξl||

≤
j∑

l=i+1
γl · η +

j+1∑

i+2
||ξl||,

where the last inequality comes from A6 and Lemma 1. By
A6 and A7 we know that

∑∞
k=1 γk < ∞ and

∑∞
k=1 ξk <
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∞. Thus, for ∀ε > 0, we can find a sufficiently largeN > 0
such that ||hj(x∗)− θj+1 −hi(x∗)+ θi+1|| < ε for ∀i, j > N ,
which means that {hk(x∗) − θk+1} is a Cauchy sequence.
Furthermore, we can prove that (37) holds for case iii).
Since one of case i), ii), iii) must take place for the case

limk→∞ σk = ∞, we can conclude that (37) holds in Case
2.
Combining Case 1 and Case 2, we conclude (36).

Corollary 2 In (38) we show that τσ+1 = ∞ when
limk→∞ σk = σ < ∞. So, if limk→∞ σk = σ < ∞, by (20)
we know that {x̃i,k} and {xi,k}, {ε̃i,k} and {εi,k} coincide in a
finite number of steps.

5 Proof of themain result
Define:

�(k, s) �
[
D⊥(W (k) ⊗ Il)

][
D⊥(W (k − 1) ⊗ Il)

] · · ·
[
D⊥(W (s) ⊗ Il)

] ∀k ≥ s,

and

�(k − 1, k) � INl.

Since W (k) are doubly stochastic, by the property of
Kronecker product (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) we
know that for ∀k ≥ s − 1

�(k, s) = (
�(k, s) − 1

N
11T

) ⊗ Il, (46)

�(k, s)D⊥ = (
�(k, s) − 1

N
11T

) ⊗ Il. (47)

The following lemma characterizes the closeness of the
auxiliary sequence {�̃k}k≥1 along its convergent subse-
quence {�̃nk }.

Lemma 6 Assume A1, A3, A4, and A6 hold. Further,
for a fixed sample ω, assume A5 and A7 hold for all the
agents. Let {�̃nk } be a convergent subsequence of {�̃k} for
ω. �̃nk −−−→

k→∞
�̃. Then for this ω there is a T > 0 such that

for all sufficiently large k and any Tk ∈[ 0,T]
X̃m+1=(W (m)⊗Il)Gm(X̃m)+am

(
Fm+1

(
G(X̃m)

) + ε̃m+1
)

(48)

for any m = nk , . . . ,m(nk ,Tk), and

||�̃m+1 − �̃nk || ≤ c1Tk + M′
0
(49)

||�̃m+1 − �̃nk || ≤ c2Tk , ∀nk ≤ m ≤ m(nk ,Tk),
(50)

where x̃k � 1
N

∑N
k=1 x̃i,k, �̃k � x̃k−θk, and �̃i,k � x̃i,k−θk.

Proof Consider a fixed sample path ω where A5 and A7
hold.

Let C > ||�̃||. There exists an integer kC > 0 such that

||�̃nk || ≤ C, γk < ak ,
||ξk+1|| < ak , ak < 1, ∀k ≥ kC (51)

From Lemma 5 we know that there exist constants T1 > 0
and k0 > kC such that

||
m(nk ,tk)∧(τσnk+1−1)∑

s=nk

asε̃s+1|| ≤ T0 (52)

∀tk ∈[ 0,Tk] , ∀T0 ∈[ 0,T1] , ∀k ≥ k0.

Define

M′
0 � C(cρ + 2) + 1, (53)

c1 �
√
N · c2 + 2 + c(1 + ρ)

1 − ρ
, (54)

c2 � M′
0 + C + 2 + α(2M′

0 + 2C + 3) + 1√
N
, (55)

where c and ρ are given by (9). Select T such that

0 < T ≤ T1, c1T < 1. (56)

For any k ≥ k0 and any Tk ∈[ 0,T] define
sk � sup{s ≥ nk : ||�̃j − �̃nk ||
≤ c1Tk + M′

0 ∀nk ≤ j ≤ s} (57)

So from (51) and (56) it follows that

||�̃j|| ≤ M′
0 + C + 1, ∀nk ≤ j ≤ sk . (58)

We intend to prove sk > m(nk ,Tk). Assume the con-
verse that for sufficiently large k ≥ k0 and any Tk ∈
[ 0,T]

sk ≤ m(nk ,Tk). (59)

We first show that there exists a positive integer k1 > k0
such that for any k ≥ k1

sk < τσnk+1, ∀k ≥ k1, ∀Tk ∈[ 0,T] . (60)

We prove (60) for two cases: limk→∞ σk = ∞ and
limk→∞ σk = σ < ∞.
i) limk→∞ σk = ∞: From (58) we know that ||x̃i,nk −

θnk || ≤ M′
0 + C + 1 ∀i ∈ V . First, we prove that for suffi-

ciently large k, truncation does not happen at time nk + 1.
For any i ∈ V , we consider the following two cases:
a) x̃i,nk and ε̃i,nk+1 take value as (13): From (19) we have

x̂i,nk+1 =
∑

j∈Ni(nk)
wij(nk)gnk (x̃j,nk )

=
∑

j∈Ni(nk)
wij(nk)

(
gnk (x̃j,nk )−gnk (θnk )−(x̃j,nk −θnk )

)

+
∑

j∈Ni(nk)
wij(nk)

(
θnk+1 − ξnk+1 + (x̃j,nk − θnk )

)
.
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Since A4 indicates that W (nk) is doubly stochastic, by
A6, (51) and direct calculation we have the following
inequalities

‖x̂i,nk+1 − θnk+1‖ ≤(γnk + 1)(M′
0 + C + 1) + ‖ξnk+1‖

≤2M′
0 + 2C + 3,

and hence by Lemma 1 we know ||x̂i,nk+1 − hnk (x∗)|| ≤
η + 2M′

0 + 2C + 3.
b) x̃i,nk and ε̃i,nk+1 take value as (14): From (19) we have

x̂i,nk+1=
∑

j∈Ni(nk)
wij(nk)

(
gnk (x̃j,nk )−gnk (θnk )−(x̃j,nk −θnk )

)

+
∑

j∈Ni(nk)
wij(nk)

(
θnk+1 − ξnk+1 + (x̃j,nk − θnk )

)

+ ank fi,nk+1
(
θnk+1 + gnk (x̃i,nk ) − gnk (θnk )

− (x̃i,nk − θnk ) + (x̃i,nk − θnk ) − ξnk+1
)

+ ankεi,nk+1.

By A5 a) we know that ankεi,nk+1 < 1 for sufficiently
large k. Then, by A3, A4, A6 and (51), we have the
following inequalities

‖x̂i,nk+1 − θnk+1‖ ≤2M′
0 + 2C + 3 + ankα(2M′

0 + 2C + 3)
+ ankεi,nk+1

≤2M′
0 + 2C + 4 + α(2M′

0 + 2C + 3)
� M1,

and hence by Lemma 1 we know ||x̂i,nk+1 − hnk (x∗)|| ≤
η + M1.
So we show that when ||�̃nk || ≤ M′

0 + C + 1, we have
||x̂i,nk+1 − hnk (x∗)|| ≤ η + M1. Since {Mk} is a sequence
of positive number increasingly diverging to infinity, there
exits a positive integer k1 > k0 such that Mσnk

> η + M1
for all k ≥ k1. Thus, we prove that truncation does not
happen at time nk + 1.
Notice (58) holds for j : nk ≤ j ≤ sk . So, similar to

the proof above, we can prove that truncation does not
happen for time nk +1, . . . , sk +1. Then we conclude sk <

τσnk+1.
ii) limk→∞ σk = σ < ∞: For this case there exists a

positive integer k1 > k0 such that σnk = σ for all k ≥ k1,
and hence τσnk+1 = ∞ by definition. Then m(nk ,Tk) <

τσnk+1, hence by (59) we know sk < τσnk+1. So (60) is
proven.
By (56) we see Tk ∈[ 0,T]⊂[ 0,T1], then from (52) we

know that for sufficiently large k > k1 and any Tk ∈[ 0,T]

||
m(nk ,tk)∧(τσnk+1−1)∑

s=nk

asε̃s+1|| ≤ Tk ∀tk ∈[ 0,Tk] . (61)

By setting tk = ∑s
m=nk am for some s ∈[ nk , sk], from

(59) we see
∑s

m=nk am ≤ ∑sk
m=nk am ≤ Tk . Noticing

m(nk , tk) = s, from (60) we derive m(nk , tk) ∧ (τσnk+1 −

1) = s. So by (61) we know that

||
s∑

m=nk

amε̃m+1|| ≤ Tk ∀s : nk ≤ s ≤ sk (62)

for sufficiently large k ≥ k1 and any Tk ∈[ 0,T].
Now we consider the following recursive algorithm

starting from nk :

Zm+1 = (W (m) ⊗ Il)Gm(Zm) + am
(
Fm+1

(
Gm(Zm)

) + ε̃m+1
)
,

Znk = X̃nk .

(63)

where Zk � col{zi,k , . . . , zN ,k}. By (60) we know that (48)
holds for m = nk , . . . , sk − 1 for ∀k ≥ k1 ∀Tk ∈[ 0,T].
Then we derive

Zm = X̃m ∀m : nk ≤ m ≤ sk (64)

Set zk = 1T⊗Il
N Zk , �̂i,k � zi,k − θk , �̂k � zk − θk , and

�̂k � Zk − �k . By multiplying both sides of (63) with
1
N (1T ⊗ Il), from 1TW (m) = 1T and (A ⊗ B)(C ⊗ D) =
AB ⊗ CD we derive

zs+1 = 1
N

N∑

i=1
gs(zi,s) + 1T ⊗ Il

N
as

(
Fs+1

(
Gs(Zs)

) + ε̃s+1
)

and hence

zs+1 = 1
N

N∑

i=1
gs(zi,s) − 1

N

N∑

i=1
gs(θs) − ξs+1 + θs+1

+ 1T ⊗ Il
N

asFs+1
(
Gs(Zs) − Gs(�s) − �s+1 + �s+1

)

+ 1T ⊗ Il
N

asε̃s+1

= 1
N

N∑

i=1
ds(zi,s) + �̂s − ξs+1 + θs+1

+ 1T ⊗ Il
N

asFs+1
(
�s+1 + Ds(Zs) + �̂s − �s+1

)

+ 1T ⊗ Il
N

asε̃s+1.
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So

||�̂s+1 − �̂nk || ≤ ||
s∑

j=nk

1
N

N∑

i=1
dj(zi,j)|| + ||

s∑

j=nk

ξj+1||

+ ∣∣∣∣1
T ⊗ Il
N

s∑

j=nk

ajFj+1
(
�j+1 + Dj(Zj) + �̂j − �j+1

)∣∣∣∣

+ ||1
T ⊗ Il
N

s∑

j=nk

ajε̃j+1||

≤ 1
N

s∑

j=nk

N∑

i=1
γj||zi,j − θj|| + ||

s∑

j=nk

ξj+1||

+ 1
N

s∑

j=nk

aj
N∑

i=1

∣∣∣∣fi,j+1
(
θj+1 + dj(zi,j) + �̂i,j − ξj+1

)∣∣∣∣

+ 1√
N

||
s∑

j=nk

ajε̃j+1||

≤
s∑

j=nk

γj · (M′
0 + C + 1) + ||

s∑

j=nk

ξj+1||

+
s∑

j=nk

ajα
(
(1 + γj)(M′

0 + C + 1) + ||ξj+1||
)

+ 1√
N
Tk

≤
(
M′

0 + C + 1 + 1 + α(2M′
0 + 2C + 3) + 1√

N

)
Tk

= c2Tk , ∀s : nk ≤ s ≤ sk , (65)

where the second inequality comes from A6, the third
inequality comes from (58) A3 and A5, the fourth inequal-
ity comes from (51) (59), and the last inequality comes
from (59).
Denote by Z⊥,s = D⊥Zs the disagreement vector of Zs.

By multiplying both sides of (63) with D⊥ we have

Z⊥,m+1 = D⊥(W (m) ⊗ Il)Gm(Zm)+
amD⊥

(
Fm+1

(
Gm(Zm)

) + ε̃m+1
)

Notice that D⊥(W (m) ⊗ Il) = D⊥(W (m) ⊗ Il)D⊥, so we
have

Z⊥,m+1 =D⊥(W (m) ⊗ Il)D⊥Zm

+ D⊥(W (m) ⊗ Il)
(
Gm(Zm) − Zm

)

+ amD⊥
(
Fm+1

(
Gm

(
Zm)

) + ε̃m+1
)

By definition we know that D⊥Gm(�m) = D⊥�m = 0,
hence we have

Z⊥,m+1 = D⊥(W (m) ⊗ Il)Z⊥,m

+ D⊥(W (m) ⊗ Il)
(
Gm(Zm) − Gm(�m) − Zm + �m

)

+ amD⊥
(
Fm+1

(
Gm(Zm)

) + ε̃m+1
)

= D⊥(W (m) ⊗ Il)Z⊥,m + D⊥(W (m) ⊗ Il)Dm(Zm)

+ amD⊥
(
Fm+1

(
Gm(Zm)

) + ε̃m+1
)
.

So inductively

Z⊥,s+1 = �(s, nk)Znk +
s∑

m=nk

�(s, nk)Dm(Zm)

+
s∑

m=nk

�(s,m + 1)D⊥amFm+1
(
Gm(Zm)

)

+
s∑

m=nk

�(s,m + 1)D⊥amε̃m+1,

by (46)(47) we have

Z⊥,s+1 =
[
(�(s, nk) − 1

N
11T ) ⊗ Il

]
(Znk − �nk )

+
s∑

m=nk

[
(�(s,m) − 1

N
11T ) ⊗ Il

]
Dm(Zm)

+
s∑

m=nk

am
[
(�(s,m + 1) − 1

N
11T ) ⊗ Il

]
Fm+1

(
Gm(Zm)

)

+
s∑

m=nk

am
[
(�(s,m + 1) − 1

N
11T ) ⊗ Il

]
ε̃m+1. (66)

From (9), (51), (58), (64), A3, and A6 we can derive

||Z⊥,s+1|| ≤ Ccρs+1−nk +
s∑

m=nk

am||Zm − �m||cρs+1−m

+
s∑

m=nk

amα(2M′
0 + 2C + 3)cρs−m+2

+
∣∣∣
∣∣∣

s∑

m=nk

am
[(

�(s,m + 1) − 1
N
11T

) ⊗ Il
]
ε̃m+1

∣∣∣
∣∣∣.

(67)
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Set �n �
∑n

m=1 amε̃m+1, by (62) we know that ||�s −
�nk−1|| ≤ Tk ∀s : nk ≤ s ≤ sk . Notice

s∑

m=nk

am
(
�(s,m + 1) ⊗ Il

)
ε̃m+1

=
s∑

m=nk

(
�(s,m + 1) ⊗ Il

)
(�m − �m−1)

=
s∑

m=nk

(
�(s,m + 1) ⊗ Il

)
(�m − �nk−1)

+
s∑

m=nk

(
�(s,m + 1) ⊗ Il

)
(�m−1 − �nk−1).

So, summing by parts with (9) we have

||
s∑

m=nk

am(�(s,m + 1) ⊗ Il)ε̃m+1||

≤ ||�s − �nk ||

+
s∑

m=nk

||�(s,m + 1) − �(s,m + 2)|| · ||�m − �nk−1||

≤ Tk +
s∑

m=nk

(cρs−m + cρs−m−1) · Tk

≤ Tk + c(ρ + 1)
1 − ρ

Tk ,

which incorporating with (62) produces
∣∣∣
∣∣∣

s∑

m=nk

am
[(

�(s,m + 1) − 1
N
11T

) ⊗ Il
]
ε̃m+1

∣∣∣
∣∣∣

≤
(
2 + c(ρ + 1)

1 − ρ

)
Tk ∀s : nk ≤ s ≤ sk (68)

for sufficiently large k ≥ k1 and any Tk ∈[ 0,T].
Notice

∑s
m=nk amρs−m ≤ 1

1−ρ
supm≥nk am from

am −−−−→
m→∞ 0. Combine this with (67)(68) we have

||Z⊥,s+1|| ≤ Ccρ + (M′
0 + C + 1)C

1
1 − ρ

sup
m≥nk

am

+ α(2M′
0 + 2C + 3)C

1
1 − ρ

sup
m≥nk

am+
(
2 + c(ρ + 1)

1 − ρ

)
Tk

≤ Ccρ + 1 +
(
2 + c(ρ + 1)

1 − ρ

)
Tk ∀s : nk ≤ s ≤ sk

(69)

for sufficiently large k ≥ k1 and any Tk ∈[ 0,T]. Notice
that �̂s = Z⊥,s + (1 ⊗ Il)�̂s. We derive

||�̂s+1 − �̂nk || = ||(1 ⊗ Il)�̂s+1 + Z⊥,s+1−
Z⊥,nk − (1 ⊗ Il)�̂nk ||
≤ ||Z⊥,s+1|| + ||Z⊥,nk || + √

N ||�̂s+1 − �̂nk ||.

Since ||Z⊥,nk || ≤ 2||�̂nk || ≤ 2C, from (65)(67) it follows
that for sufficiently large k ≥ k1 and any Tk ∈[ 0,T]

||�̂s+1 − �̂nk ||
≤ Ccρ + 1 +

(
2 + c(ρ + 1)

1 − ρ

)
Tk + 2C + √

Nc2Tk

≤ C(cρ + 2) + 1 + (2 + c(ρ + 1)
1 − ρ

+ c2
√
N)Tk

= m′
0 + c1Tk . (70)

Therefore, from (56)(51) we know that for sufficiently
large k ≥ k1 and any Tk ∈[ 0,T]

||�̂sk+1|| ≤ ||�̂nk || + m′
0 + c1Tk ≤ M′

0 + 1 + C. (71)

Now we look back at the recursive algorithm (19). We
rewrite it in the compact form as follows

X̂sk+1 =[W (sk) ⊗ Il]Gsk (X̃sk )

+ ask
(
Fsk+1

(
Gsk (X̃sk )

) + ε̃sk+1
)
,

where X̂k � col{x̂1,k , . . . , x̂N ,k}. Then by (63)(64), X̂sk+1 =
Zsk+1. So by (71) it follows that

||X̂sk+1 − �sk+1|| ≤ M′
0 + 1 + C. (72)

We now show

X̃sk+1 = X̂sk+1, sk + 1 < τσk+1 (73)

for sufficiently large k ≥ k1 and any Tk ∈[ 0,T]. We
consider the following two cases: limk→∞ σk = ∞ and
limk→∞ σk = σ < ∞.
i) limk→∞ σk = ∞: Notice Mσk > η + M′

0 + 1 + C
when k ≥ k1. By (20)(21) we know that X̃sk+1 = X̂sk+1,
σsk+1 = σsk . So sk + 1 < τσnk+1 by (60).
ii) limk→∞ σk = σ < ∞: For this case τσnk+1 = ∞ for all

k ≥ k1. By (60) we see sk +1 < τσnk+1 . Then by σnk = σ we
conclude σsk+1 = σxk = σ , and hence by (20) we derive
X̃sk+1 = X̂sk+1. Thus (73) holds.
From (73) we know that (48) holds for m = sk for suf-

ficiently large k ≥ k1 and any Tk ∈[ 0,T]. From X̂sk+1 =
Zsk+1 by (73) we see X̃sk+1 = Zsk+1. It follows that for
sufficiently large k ≥ k1 and any Tk ∈[ 0,T]

||�̃sk+1 − �̃nk || ≤ M′
0 + c1Tk ,

which contradicts with the definition of sk . Thus (59) does
not hold. So sk > m(nk ,Tk) and hence (49) holds.
Since sk > m(nk ,Tk), we know {�̃s : nk ≤ s ≤

m(nk ,Tk) + 1} is bounded. Similar to proving (60) we
can be shown that m(nk ,Tk) < τσk+1. So (48) holds for
m = nk , . . . ,m(nk ,Tk). Similar to (65) we can prove

||�̃s+1 − �̃nk || ≤ c2T

for sufficiently large k and any Tk ∈[ 0,T]. Hence, (50)
holds.
In conclusion, the proof of Lemma 6 is complete.
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By multiplying both sides of (48) with 1
N (1T ⊗ Il), we

have

x̃m+1 = 1
N

N∑

i=1
gm(x̃i,m) + am

1
N

N∑

i=1
fi,m+1

(
gm(x̃i,m)

)

+ am
1
N

N∑

i=1
ε̃i,m+1

= gm(x̃m) + amfm+1
(
gm(x̃m)

)

+ am
1
N

1
am

N∑

i=1

(
gm(x̃i,m) − gm(x̃m)

)

+ am
1
N

N∑

i=1

(
fi,m+1

(
gm(x̃i,m)

) − fi,m+1
(
gm(x̃m)

))

+ am
1
N

N∑

i=1
ε̃i,m+1. (74)

Setting

ζ
(1)
k+1 = 1

N
1
ak

N∑

i=1

(
gk(x̃i,k) − gk(x̃k)

)
,

ζ
(2)
k+1 = 1

N

N∑

i=1

(
fi,k+1

(
gk(x̃i,k)

) − fi,k+1
(
gk(x̃k)

))
,

ζ
(3)
k+1 = 1

N

N∑

i=1
ε̃i,k+1,

ζk+1 = ζ
(1)
k+1 + ζ

(2)
k+1 + ζ

(3)
k+1

We can rewrite (74) as

x̃m+1 = gm(x̃m) + amfm+1
(
gm(x̃m)

) + amζm+1. (75)

The following lemma gives the noise property of the
sequence {ζk+1}.

Lemma 7 Assume all the conditions in Lemma 6 hold.
{�̃nk } is a convergent subsequence with limit �̃ at the
considered sample ω. Then for this ω

lim
T→0

lim sup
k→∞

1
T

||
m(nk ,Tk)∑

s=nk

asζs+1|| = 0 Tk ∈[ 0,T] .

(76)

Proof In the proof of Lemma 6 it has been
pointed out that there exists a T ∈ (0, 1) such
that m(nk ,T) < τσnk+1 for sufficiently large k. So

|| ∑m(nk ,Tk)∧(τσnk +1−1)
s=nk asε̃s+1|| = || ∑m(nk ,Tk)

s=nk asε̃s+1||.
Thus, by Lemma 5 we can immediately derive that

lim
T→0

lim sup
k→∞

1
T

||
m(nk ,Tk)∑

s=nk

asζ (3)
s+1|| = 0 Tk ∈[ 0,T] .

Now we need to show that ζ
(i)
k+1 also satisfies the prop-

erty above for i = 1, 2. First we consider ζ
(1)
k+1. We see

that

||
m(nk ,Tk)∑

s=nk

asζ (1)
s+1||

= ||
m(nk ,Tk)∑

s=nk

1
N

N∑

i=1

(
gs(x̃i,s) − gs(x̃s)

)||

= || 1
N

m(nk ,Tk)∑

s=nk

N∑

i=1

(
gs(x̃i,s) − gs(θs) − gs(x̃s) + gs(θs)

)||

= 1
N

||
m(nk ,Tk)∑

s=nk

N∑

i=1

(
ds(x̃i,s) + �̃i,s − ds(x̃s) − �̃s

)||

= 1
N

||
m(nk ,Tk)∑

s=nk

N∑

i=1

(
ds(x̃i,s) − ds(x̃s)

)||

≤ 1
N

m(nk ,Tk)∑

s=nk

N∑

i=1
||ds(x̃i,s)|| +

m(nk ,Tk)∑

s=nk

||ds(x̃s)||

≤ 1
N

m(nk ,Tk)∑

s=nk

N∑

i=1
γs||�̃i,s|| +

m(nk ,Tk)∑

s=nk

γs||�̃s||, (77)

where the last inequality comes from A6.
Since limk→∞ �̃nk = �̃, by setting �̃ � 1T⊗Il

N �̃ we see
that limk→∞ �̃nk = �̃. So by (49)(50) we conclude that
{||�̃i,s||, s : nk ≤ s ≤ m(nk ,Tk)} and {||�̃s||, s : nk ≤ s ≤
m(nk ,Tk)} are bounded. Without the loss of generality we
denote the bound of these two sequence by A. Then from
(77) with A6 it follows

||
m(nk ,Tk)∑

s=nk

asζ (1)
s+1|| ≤ 2A

m(nk ,Tk)∑

s=nk

γs −−−→
k→∞

0.

So we conclude

lim
T→0

lim sup
k→∞

1
T

||
m(nk ,Tk)∑

s=nk

asζ (1)
s+1|| = 0 Tk ∈[ 0,T] .

Finally, we consider the case i = 2. Notice

||
m(nk ,Tk)∑

s=nk

asζ (2)
s+1||

=
∣∣∣
∣∣∣
m(nk ,Tk)∑

s=nk

1
N

N∑

i−1
as

(
fi,s+1

(
gs(x̃i,s)

) − fi,s+1
(
gs(x̃s)

))∣∣∣
∣∣∣

Similar to the proof in Lemma 6 we know that there exist
constants c3, c4, c5 > 0 such that for sufficiently large k

||X̃⊥,s+1|| ≤ c3ρs+1−nk + c4 sup
m≥nk

am + c5T (78)
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hold for ∀s : nk ≤ s ≤ m(nk ,T). From A1,A6, and A7 we
can assume that for sufficiently large k

ak < 1, γk ≤ ak , ||ξk+1|| ≤ ak . (79)

Since 0 < ρ < 1, there exists a positive integer m′ such
that ρm′

< T . Then
∑nk+m′

m=nk am −−−→
k→∞

0. Thus, we have

nk +m′ < m(nk ,T) for sufficiently large k. So from (78) it
follows

||X̃⊥,s+1|| ≤ o(1) + (c3 + c5)T
∀s : nk + m′ ≤ s ≤ m(nk ,T). (80)

where o(1) → 0 as k → ∞. Hence for nk +m′ < m(nk ,T)

and sufficiently large k

||x̃i,s − x̃s|| = o(1) + δ(T)

where δ(T) → 0 as T → 0.
So

||
m(nk ,Tk)∑

s=nk

asζ (2)
s+1||

≤
∣∣∣
∣∣∣
nk+m′
∑

s=nk

1
N

N∑

i−1
as

(
fi,s+1

(
gs(x̃i,s)

) − fi,s+1
(
gs(x̃s)

))∣∣∣
∣∣∣

+
∣∣∣
∣∣∣
m(nk ,T)∑

s=nk+m′

1
N

N∑

i−1
as(fi,s+1

(
gs(x̃i,s)

) − fi,s+1
(
gs(x̃s)

)∣∣∣
∣∣∣

≤
nk+m′
∑

s=nk

1
N

N∑

i−1
as

∣∣∣
∣∣∣fi,s+1

(
gs(x̃i,s)

)∣∣∣
∣∣∣ +

∣∣∣
∣∣∣fi,s+1(gs

(
x̃s)

)∣∣∣
∣∣∣

+
m(nk ,T)∑

s=nk+m′
as

(
o(1) + δ(T)

)

≤
nk+m′
∑

s=nk

asα(2A + 1) + T
(
o(1) + δ(T)

)

≤ α(2A + 1) · m′ sup
m≥nk

am + T
(
o(1) + δ(T)

)
.

And hence lim supk→∞ 1
T || ∑m(nk ,Tk)

s=nk asζ (2)
s+1|| = δ(T),

which implies that

lim
T→0

lim sup
k→∞

1
T

||
m(nk ,Tk)∑

s=nk

asζ (2)
s+1|| = 0 Tk ∈[ 0,T] .

So we complete the proof.

Lemma 8 Assume A1-A4, A6 hold, and that A5, A7
hold at the sample path ω under consideration. Then
any nonempty interval [ δ1, δ2] with 0 /∈[ δ1, δ2] can-
not be crossed by {v(�̃mk ), . . . , v(�̃lk )} infinitely many
times with {�̃mk } bounded. By "[ δ1, δ2] being crossed by
{v(�̃mk ), . . . , v(�̃lk )}" it means that v(�̃mk ) ≤ δ1, v(�̃lk ) ≥
δ2 and δ1 < v(�̃s) < δ2 ∀s : mk < s < lk .

Proof Assume the converse: for some interval [ δ1, δ2]
with 0 /∈[ δ1, δ2], there are infinitely many crossing
{v(�̃mk ), . . . , v(�̃lk )} with {�̃mk } bounded.
By the boundedness of {�̃mk } we can extract a con-

vergent subsequence still denoted by {�̃mk } with limit
limk→∞ �̃mk = �̃. So, limk→∞ �̃mk = �̃ with �̃ �
1T⊗Il
N �̃. By (50), lettingT → 0 we have ||�̃mk+1−�̃mk || ≤

c2T → 0. By the definition of crossing, v(�̃mk ) ≤ δ1 <

v(�̃mk+1), we can obtain

v(�̃mk ) −−−−−−−→
k→∞,T→0

δ1 = v(�̃) > 0. (81)

So by the assumption v(x) = 0 ↔ x = 0 we know there
exists a constant β such that ||�̃|| > β . And hence by (50)
we conclude

||�̃j|| >
β

2
, j : mk ≤ j ≤ m(mk ,T) + 1 (82)

for sufficiently small T > 0 and large k.
Setting �̃k to be a vector in-between �̃mk and �̃m(mk ,T).

From (50) it follows that ||�̃k|| ≤ c2T + ||�̃|| + 1 for
sufficiently large k. We consider the following Taylor’s
expansion

v(�̃m(mk ,T)) − v(�̃mk )

= vTx (�̃k)

m(mk ,T)−1∑

j=mk

(
dj(x̃j)−ξj+1+aj

(
fj+1(gj(x̃j))+ζj+1

))

= vTx (�̃k)
{m(mk ,T)−1∑

j=mk

(
dj(x̃j) + ξj+1

) +
m(mk ,T)−1∑

j=mk

ajζj+1
}

+
m(mk ,T)−1∑

j=mk

aj
(
vTx (�̃k) − vTx (gj(x̃j) − θj+1)

)
fj+1

(
gj(x̃j)

)

+
m(mk ,T)−1∑

j=mk

ajvTx (gj(x̃j) − θj+1)fj+1
(
gj(x̃j)

)
(83)

Similar to (51), we take sufficiently large k, then by A3,
A6 and Lemma 7, there exists a constant c′ such that

∣∣∣
∣∣∣aj(fj+1

(
gj(x̃j)) + ζj+1

)∣∣∣
∣∣∣

≤
∣∣∣
∣∣∣ajfj+1

(
θj+1 + dj(x̃j) − ξj+1 + �̃j

)∣∣∣
∣∣∣

+
∣∣∣
∣∣∣

j∑

l=mk

alζl+1 −
j−1∑

l=mk

alζl+1

∣∣∣
∣∣∣

≤ ajα
(
2||�̃|| + 1

)
+ 2c′T <

β

4
(84)
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for sufficiently large k and sufficiently small T , where j :
mk ≤ j ≤ m(mk ,T) − 1. It follows that

||gj(x̃j) − θj+1|| = ||�̃j+1 + gj(x̃j) − x̃j+1||
≥ β

2
− β

4
= β

4
, (85)

||gj(x̃j) − θj+1|| = ||x̃j+1 − θj+1 − aj{fj+1(gj(x̃j)) + ζj+1}||
<

β

4
+ ||�̃j+1|| ≤ β

4
+ c2T + ||�̃|| + 1.

(86)

Identifying r1 and r2 in A2 to β
4 and β

4 + ||�̃j+1|| ≤ β
4 +

c2T + ||�̃||, respectively, we can find a > 0 such that for
∀j : mk ≤ j ≤ m(mk ,T)

vTx (gj(x̃j) − θj+1)fj+1(gj(x̃j)) < −a. (87)

Noticing that for ∀j : mk ≤ j ≤ m(mk ,T), ||dj(x̃j)|| ≤
γj||�̃j|| ≤ γj(c2T + ||�̃|| + 1), by A6 and A7 we have

lim
k→∞

m(mk ,T)−1∑

j=mk

(dj(x̃j) − ξj+1) = 0. (88)

By Lemma 7 it follows

lim sup
k→∞

||
m(mk ,T)−1∑

j=mk

ajζj+1|| = δ(T). (89)

Notice that for ∀j : mk ≤ j ≤ m(mk ,T)

||�̃k − (gj(x̃j) − θj+1)||
≤ ||�̃k − �̃mk || + ||�̃j − �̃mk || + ||gj(x̃j) − θj+1 − �̃j||
≤ 2c1T + ||dj(x̃j) − ξj+1||
≤ 2c1T + γj(c2T + ||�̃|| + 1) + ||ξj+1|| −−−−−−−→

k→∞,T→0
0.

(90)

So by the continuity of v(·) we know
vTx

(
�̃k

)
− vTx

(
gj(x̃j) − θj+1

)
−−−−−−−→
k→∞,T→0

0. (91)

From A3, A6 and (51), we’ve already utilized this
inequality before

∣∣∣
∣∣∣fj+1

(
gj(x̃j)

)∣∣∣
∣∣∣ ≤ α

(
2||�̃|| + 1

)
. (92)

So, from (88)(89)(92) we can conclude that the first and
second term of (83) is o(T) as k → ∞, T → 0. Combin-
ing this with (87) it follows that for sufficiently large k and
sufficiently small T by (83) we have

v(�̃m(mk ,T)) − v(�̃mk ) ≤ −a
2
T . (93)

Let k → ∞ we have

lim sup
k→∞

v(�̃m(mk ,T)) ≤ δ1 − a
2
T . (94)

Notice that by Lemma 6 we have

lim
T→0

max
mk≤m≤m(mk ,T)

∣∣∣
∣∣∣v(�̃m) − v(�̃mk )

∣∣∣
∣∣∣ = 0

which implies that m(mk ,T) < lk for sufficiently small T .
Therefore, v(�̃m(mk ,T)) ∈[ δ1, δ2] which contradicts with
(94). So, the converse assumption is not true. The proof is
completed.

Lemma 9 Assume all the assumptions required by
Lemma 8 hold. Then there exists a positive integer σ such
that

lim
k→∞

σk = σ < ∞. (95)

Proof Assume the converse:

lim
k→∞

σk = ∞. (96)

Then there exists a sequence of integer {nk}k≥0 such that
σnk = k and σnk−1 = k − 1. By the algorithm (3)–(7)
we know that x̃i,nk = hnk−1(x∗) ∀i ∈ V . Therefore, from
Lemma 1 we know that {�̃nk } is a bounded sequence, and
hence, it contains a convergent subsequence. For the sake
of convenience, We denote the convergent subsequence
still by {�̃nk } with limit �̃.
Since {Mk}k≥0 is a sequence of positive numbers

increasingly diverging to infinity, there exists a positive
integer k0 such that

Mk ≥ 2
√
Nr + 2 + M′

1 ∀k ≥ k0 (97)

where r is given in A2 and

M′
1 = 2 + (2

√
Nr + 2)(cρ + 2). (98)

Now we show that under the converse assumption,
{�̃nk } starting from nk will exit the ball r infinitely many
times. Define

mk � inf{s > nk : ‖�̃s‖ ≥ 2
√
Nr + 2 + m′

1}, (99)

lk � sup{s < mk : ‖�̃s‖ ≤ 2
√
Nr + 2}. (100)

Notice that ‖�̃nk‖ = √
Nη by Lemma 1 and r > η

from A2, we derive ‖�̃nk‖ <
√
Nr. Hence from (99)

(100) we have nk < lk < mk . By the definition of lk we
know that {�̃lk } is bounded, then there exists a convergent
subsequence denoted still by {�̃lk }.
By Lemma 6 there exist constants M′

0 > 0 defined by
(53) with C = 2

√
Nr + 2, c1 > 0 defined by (54), c2 > 0

defined by (55), and 0 < T < 1 with c1T < 1 such that

‖�̃m+1 − �̃lk‖ ≤ c1T + M′
0 ∀m : lk ≤ m ≤ m(lk ,T)
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for sufficiently large k ≥ k0. Then for sufficiently large
k ≥ k0 we have

‖�̃m+1‖ ≤‖�̃lk‖ + c1T + M′
0

≤2
√
Nr + 2 + 1 + 1 + (2

√
Nr + 2)(cρ + 2)

=2
√
Nr + 2 + M′

1 ∀m : lk ≤ m ≤ m(lk ,T).
(101)

Then m(lk ,T) < nk+1 for sufficiently large k ≥ k0 by (97)
and the definition of nk .
From (101) by the definition of mk (99), we conclude

m(lk ,T) + 1 < mk for sufficiently large k ≥ k0. Then by
(99) (100) we know that for sufficiently large k ≥ k0

2
√
Nr + 2 < ‖�̃m+1‖ ≤ 2

√
Nr + 2 + M′

1 (102)

holds form : lk ≤ m ≤ m(lk ,T).
Since 0 < ρ < 1, there exists a positive integer m0 such

that 4cρm0 < 1. Then
∑lk+m0

m=lk am −−−→
k→∞

0 by A1, and
hence lk + m0 < m(lk ,T) < nk+1 for sufficiently large
k ≥ k0. So, from (102) it can be seen that for sufficiently
large k ≥ k0 we have

‖�̃lk+m0‖ > 2
√
Nr + 2 (103)

Notice that {�̃m+1 : lk ≤ m ≤ m(lk ,T)} is bounded,
similarly to (67) (69) we know that for sufficiently large
k ≥ k0

‖X̃⊥,m+1‖ ≤ (2
√
Nr + 2)cρm+1−lk

+ (M′
0 + C + 1)C

1
1 − ρ

sup
m≥nk

am

+ α(2M′
0 + 2C + 3)C

1
1 − ρ

sup
m≥nk

am

+
(
2 + c(ρ + 1)

1 − ρ

)
Tk .

Since 4cρm0 < 1, c1T < 1 and ak −−−→
k→∞

0, it follows that

‖X̃⊥,lk+m0‖ ≤ 1
2
(
√
Nr + 1) + 1

2
+ 1 =

√
Nr
2

+ 2
(104)

for sufficiently large k ≥ k0. By noticing (1 ⊗ Il)�̃lk+m0 =
�̃lk+mo − X̃⊥,lk+m0 , from (103) (104) we conclude that

√
N‖�̃lk+m0‖ = ‖�̃lk+mo − X̃⊥,lk+m0‖

≥ ‖�̃lk+mo‖ − ‖X̃⊥,lk+m0‖ >
3
2
√
Nr. (105)

Therefore, ‖�̃lk+m0‖ > r. So we prove that {�̃nk } starting
from nk will exit the ball r infinitely many times.
Since {�̃nk } is convergent, we know that {�̃nk } is con-

vergent and from Lemma 1 it follows that ||�̃nk || ≤ η.
And we know that {�̃nk } starting from nk will exit the ball
r infinitely many times. Therefore, there exists an interval
[ δ1, δ2]∈

(
sup||y||≤η v(y), inf||x||=r v(x)

)
with 0 /∈[ δ1, δ2],

where for any k, there is a sequence �̃sk , . . . , �̃tk such that
nk ≤ sk , v(�̃sk ) ≤ δ1, δ1 < v(�̃j) < δ2 for ∀j : sk <

j < tk and v(�̃tk ) > δ2. In other words, the values of
v(·) at sequence {�̃sk , . . . , �̃tk } cross the interval [ δ1, δ2]
infinitely many times with ‖�̃mk‖ < r. This contradicts
with Lemma 8. So the proof is done. limk→∞ σk < ∞ is
indeed true.

Lemma 10 Assume all the assumptions required by
Lemma 9 hold. Then

lim
k→∞

σi,k = σ < ∞ ∀i ∈ V . (106)

Proof From Lemma 9 it follows that

σi,k ≤ σ ∀i ∈ V .

By Lemma 4 we know τ̃i,σ = τi,σ ≤ BD + τσ . So, by
definition we know that σi,k ≥ σ ∀k ≥ BD + τσ .
In conclusion, we have σi,k = σ ∀k ≥ BD + τσ ∀i ∈

V . The proof is completed.

By the definition of the auxiliary sequence {x̃i,k}, we can
see that Lemma 10 indicates the fact that {x̃i,k} and {xi,k}
coincide in a finite number of steps.
Proof of Theorem 1: By (95) and (106), there exists a

positive integer σ depending on ω such that

σ̂i,k = σi,k = σ ∀k ≥ k0 � BD + τσ ∀i ∈ V , (107)

and hence by (3)

x′
i,k+1=

∑

j∈Ni(k)
wij(k)gj(xj,k) + akOi,k+1 ∀k ≥ k0 ∀i ∈ V ,

(108)

by (5) ||x′
i,k+1 − hk(x∗)|| ≤ Mσ and by (4) xi,k+1 = x′

i,k+1
for any k ≥ k0 and any i ∈ V . So, we have proved the
assertion i).
Multiply (11) by D⊥ from left, we derive

X⊥,k+1 = D⊥(W (k) ⊗ Il)Gk(Xk)

+ akD⊥
(
Fk+1

(
Gk(Xk)

) + εk+1
)

= D⊥(W (k) ⊗ Il)D⊥Xk

+ D⊥
(
W (k) ⊗ Il

)(
Gk(Xk) − Xk

)

+ akD⊥
(
Fk+1

(
Gk(Xk)

) + εk+1
)

= D⊥(W (k) ⊗ Il)X⊥,k

+ D⊥
(
W (k) ⊗ Il

)(
Gk(Xk) − Gk(�k) − Xk+�k

)

+ akD⊥
(
Fk+1(Gk(Xk)) + εk+1

)

= D⊥(W (k) ⊗ Il)X⊥,k

+ D⊥(W (k) ⊗ Il)Dk(Xk)

+ akD⊥
(
Fk+1(Gk(Xk)) + εk+1

)
,
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where the third equality comes from the fact that (W (k)⊗
Il)Gk(Xk) = (W (k) ⊗ Il)D⊥ and D⊥Gk(Xk) = D⊥Xk = 0.
So, for any k ≥ k0 by induction we have

X⊥,k+1 = �(k, k0)(Xk0 − �k0) +
k∑

m=k0

�(k,m)Dm(Xm)

+
k∑

m=k0

am�(k,m+1)D⊥
(
Fm+1(Gm(Xm))+εm+1

)
.

From Lemma 10 we know the number of truncations is
finite. So, {xi,k − hk−1(x∗)}k≥1 is bounded. Furthermore,
Lemma 1 shows that {hk−1(x∗)−θk}k≥1 is bounded as well.
Therefore, {xi,k−θk}k≥1 is bounded. By assumption A6, A7
we can take sufficiently large k1 > k0 such that ||ξk|| ≤ 1,
γk ≤ 1 ∀k ≥ k1. So, for sufficiently large k, there exists
constants c6, c7, c8, c′8, c9 > 0 such that

||X⊥,k+1|| ≤ c6ρk+1−k0 + c7
k∑

m=k0

γmρk+1−m

+ c8
k∑

m=k0

α(2||�m|| + 1)amρk−m+2

+ c9
k∑

m=k0

amρk−m+2||εm+1||

≤ c6ρk+1−k0 + c7
k∑

m=k0

γmρk+1−m

+ c′8
k∑

m=k0

amρk−m+2 (109)

+ c9
k∑

m=k0

amρk−m+2||εm+1||.

Notice that for any ε > 0, there exists integer k2 > k1
such that γk < ε. We can derive

k∑

m=0
γmρk−m+1 =

k2∑

m=0
γmρk−m+1 +

k∑

m=k2+1
γmρk−m+1

≤ ρk−k2+1
k2∑

m=0
γm+ε

1
1 − ρ

−−−−−−→
k→∞,ε→0

0.

Therefore, the second and third term at the right-hand
side of (109) tends to zero as k → ∞. Similarly, the last
term of (109) also tends to zero since limk→∞ akεk+1 = 0.
The first term of (109) tends to zero as k → ∞ as well
since 0 < ρ < 1. So, we conclude that

X⊥,k −−−→
k→∞

0.

We now show the convergence of {v(�̃k)}. Since

v1 � lim inf
k→∞

v(�̃k) ≤ lim sup
k→∞

v(�̃k) � v2,

we aim to prove v1 = v2. Assume the converse: v1 <

v2. Then there exists an interval [ δ1, δ2]∈ (v1, v2) such
that 0 /∈[ δ1, δ2]. v(�̃k) crosses the interval [ δ1, δ2] infinite
many times. By Lemma 9 and (13)–(14) we know �̃k is
bounded, so, �̃k is bounded as well. This contradicts with
Lemma 8. Therefore, {v(�̃k)} is convergent.
Finally, we show �̃k −−−→

k→∞
0. Assume the converse.

Then there exists a convergent subsequence {�̃nk } with
limit �̃ �= 0. Take β > 0 such that ||�̃|| > β . From Lemma
6 we know for sufficiently large k and sufficiently small T
we have

||�̃j|| >
β

2
, nk ≤ j ≤ m(nk ,T).

Similar to the proof of Lemma 8, by Taylor’s expansion
there exists a > 0 such that

v(�̃m(nk ,T)) − v(�̃nk ) < −a
2
T . (110)

Since {v(�̃k)} is convergent and by definition
m(nk ,T) −−−→

k→∞
∞, Let k → ∞ for both sides of (110),

we derive 0 < − a
2T which is impossible. So �̃k −−−→

k→∞
0.

By Lemma 10 we know that after a finite number of
steps we have �̃k = �k , and hence, �k −−−→

k→∞
0. Com-

bining �k −−−→
k→∞

0 with X⊥,k −−−→
k→∞

0, we can conclude
�k −−−→

k→∞
0.

6 Numerical simulation
In this section, we apply the distributed algorithm to a
distributed tracking problem and demonstrate the perfor-
mance of the algorithm. Consider a maneuvering target in
the 2-D plane. The state of the target θk at each time con-
sists of four components θk =[ θ1k , θ

2
k , θ

3
k , θ

4
k ]

T . They are
horizontal position, horizontal velocity, vertical position,
and vertical velocity, respectively. The dynamic model
of the target is chosen to be a nearly constant velocity
model [29], which means that the dynamic of the target is
governed by:

θk+1 = Aθk + ξk+1, (111)

where ξk+1 ∈ R
4 is noise, and A is defined as

A = I2 ⊗
(
1 T
0 1

)
(112)

with T being the sampling interval. It can be seen that
when ξk+1 = 0 the target follows a constant velocity
movement. The goal of the network is to track this target
by estimating the state θk .
Consider a sensor network G = (V , E) with V =

{1, · · · ,N}, N = 20, and E = G(N , pN ) being the Poisson
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Fig. 1 Average estimation sequences of θ jk , j = 1, · · · , l

random graph1 with designing parameter 0 ≤ pN ≤ 1.
We choose pN = 0.25. Denote by Ni the neighbor set
of agent i and by ni the cardinality of Ni. Set W (k) =
[wij]Ni,j=1 ∀k ≥ 1 with wij = 1

ni if agent j is in the set
Ni. All agents aim to track the target state θk coopera-
tively. We assume for each agent, only one component of
the target state can be observed with noise. To explain it
in a mathematical model, the local function for agent i is
defined as:

fi,k(x) � ekiθk − ekix, (113)

where ek is a 4-dimensional square diagonal matrix with
only the kth diagonal element being 1 and every other
elements being 0, i.e.,

e1 � diag(1, 0, 0, 0)
e2 � diag(0, 1, 0, 0)
e3 � diag(0, 0, 1, 0)
e4 � diag(0, 0, 0, 1).

The selection of ki will be explained later. Since the state θk
is unknown to the agents, each agent can only get a noise-
corrupted observation of this local function instead of the
exact value. The global function can be written as:

fk(x) �
1
N

N∑

i=1
ekiθk − ekix. (114)

It can be seen that while each agent can only estimate
one component of θk with its own local function, θk is the
unique root of the global function fk(x).
For our experiment, we take ξk � 1

k2 vk , where {vk} is a
sequence of i.i.d. random variables uniformly distributed
over [−1, 1], and the step-sizes ak � 20

k . We let the
sampling interval be T � 0.1 s, the truncation bound

1For the details of Poisson random graph, we refer to [30].

Mk � k + 80, and x∗ �[ 1, 1, 1, 1]T . The initial value
xi,0 for all agents is chosen from the uniform distribution
over [−2, 2]. Let the observation noise εi,k be the white
Gaussian noise. As for the selection of ki, for agent i, if i
mod 4 �= 0, then ki � i mod l, if i mod 4 = 0, then
ki � 4.
Denote by {xi,k}k≥1, i ∈ V the estimates given by (3)–(7)

and by xk = 1
N

∑N
i=1 xi,k the average of xi,k , i ∈ V . In Fig. 1,

the dashed lines denote the state of the moving target and
the solid lines the average estimates for entries {θ jk , j =
1, · · · , 4}k≥1 of {θk}k≥1. From the figure we can see that
the estimate can track the moving target successfully.

7 Conclusion
The distributed root-tracking problem for a sum of time-
varying regression functions over a network is considered
in this paper. It is assumed that a noise-corrupted dynamic
information of the roots is known to all agents in the
network. Each agent updates its estimate by using the
local observation, the dynamic information of the global
root, and information received from its neighbors. A dis-
tributed stochastic approximation algorithm is proposed
and the consensus and convergence of the estimates are
established.
For future research, it is of interest to relax the condi-

tions on the dynamic information of the global roots, and
to consider the convergence results of the algorithm over
an unbalanced network.

8 Notations

||v||, ||A|| L2 norm of vector v, matrix A

Im m × m identity matrix
1 Vector or matrix with all entries equal to 1
0 Vector or matrix with all entries equal to 0
XT Transpose of matrix X
col{x1, . . . , xm} col {x1, . . . , xm} �

{
xT1 , . . . , xTm

}T , stacks
of vectors or matrices {x1, . . . , xm}

IA(x) Indicator function, IA(x) = 1 if x ∈ A,
IA(x) = 0 otherwise

⊗ Kronecker product
D⊥ D⊥ �

(
IN − 11T

N

)
⊗ Il with N the num-

ber of agents in the network and l the
dimension of coefficient vector

m(k,T) m(k,T) � max{m :
∑m

i=k ai ≤ T}
σi,k Truncation number of agent i at time k
τi,m Smallest time when truncation number of

agent i reaching m, i.e., τi,m � inf{k :
σi,k = m}

τm Smallest time when at least one of agents
having its truncation number reached m,
i.e., τm � mini∈V τi,m

τ̃i,m τ̃i,m � min{τi,m, τm+1}
σ̂i,k σ̂i,k � maxj∈Ni(k) σj,k , where Ni(k) is the

set of neighbors of agent i at time k
σk Largest truncation number of all agents

at time k, i.e., σk = maxi∈V σi,k =
maxi∈V σ̂i,k
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