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This paper assumes a set of identical wireless hosts, each one aware of its location. The network is
described by a unit distance graph whose vertices are points on the plane two of which are con-
nected if their distance is at most one. The goal of this paper isto design loca distributed solutions
that require a constant number of communication rounds, independently of the network size or
diameter. Thisis achieved through a combination of distributed computing and computational com-
plexity tools. Sarting with a unit distance graph, the paper shows: 1. How to extract a triangulated
planar spanner; 2. Several algorithms are proposed to construct spanning trees of the triangulation.
Also, it is described how to construct three spanning trees of the Delaunay triangulation having
pairwise empty intersection, with high probability. These algorithms are interesting in their own
right, since trees are a popular structure used by many network algorithms; 3. A load balanced dis-
tributed storage strategy on top of the trees is presented, that spreads replicas of data stored in the
hosts in a way that the difference between the number of replicas stored by any two hosts is small.
Each of the algorithms presented is local, and hence so is the final distributed storage solution,
obtained by composing all of them. This implies that the solution adapts very quickly, in constant
time, to network topology changes. We present a thorough experimental evaluation of each of the
algorithms supporting our claims.
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1. Introduction

The problem of storing multiple copies of filesin different parts of a network has been widely
studied since the early 70s, see [7] for a thorough survey. It provides a classic solution to
reduce response time for data, increase availability, and improve general fault-tolerance. The
remarkable growth of reliable and efficient networking over the past few decades has fostered
the development of distributed storage systems. A recent issue of |EEE Internet Computing
[25] devoted to this area describes various approaches taken by distributed storage systems,
including storage virtualization, peer-to-peer, and server-to-server.

A. Data Storage in Wireless Networks

This paper devel ops distributed storage solutions for mobile wireless networks. It assumes
aset of nidentical wireless hosts in the plane, each one aware of itslocation, either from a
GPS system or through other means, such as inertial sensors and acoustic range-finding
devices. Two hosts can communicate if they are within afixed distance, say one unit. Thus
in our paper, awireless network can be described as a geometric graph whose vertices are
points on the plane (our wireless hosts) two of which are connected if their distance is at
most one, i.e. it isa unit distance graph.

Since the topology of wireless networks is constantly changing, and the nodes have
location awareness, protocols for wireless networks differ significantly from standard
solutions used in wired networks. In addition, wireless devices have much lower band-
width and limited power supplies. Therefore, protocols for wireless networks should use
as little communication as possible and should run as fast as possible; even traditional
solutions that have only alinear cost in the diameter of the network may not be acceptable.
The goal of this paper isto design local distributed solutions that require a constant num-
ber of communication rounds, independently of the network size or diameter.

The absence of a centrd infrastructure, together with the highly dynamic nature of wire-
less networks, imply that such networks do not have an associated fixed topology. An impor-
tant task is to determine an appropriate topology over which high-level protocols are
implemented; see[22] for asurvey of varioustopology control methods. Algorithmsthat allow
to establish and maintain an energy efficient connected constant degree overlay network have
been described in eg. [9], [13], [14], [24]. Starting with a unit distance graph, this paper
extracts a triangulated planar spanner through the local algorithm of [14], and then proposes
several agorithms ingpired by the method of [2] to construct a spanning tree of the triangula-
tion. Both algorithms are local and hence adapt in constant time to network topology changes.

B. Related Results and Applications of Data Storage

An interesting application of the storage protocols described in this paper is the problem
of reliably storing global snapshots of the state of a distributed system (e.g. [6], [8]). Snap-
shots of a distributed system can be used, for example, for system recovery after a prob-
lem (e.g. deadlock) is detected. A strategy for reliably storing data such as snapshots can
consider spatial redundancy, temporal redundancy, or a combination of both. In spatial
redundancy each snapshot is replicated and spread among a number of processors, in a
way that if at most t processors fail, the snapshot can be recovered; e.g. storing severa
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copies in different processors, or spreading each copy into several pieces using coding
based strategies, see[10], [21] and references herein. In temporal redundancy afew, say k,
of the latest snapshots, are stored in different processors; for recovery the latest available
snapshot is used. Either way, since snapshots may be rather large (each one contains the
local state of every processor in the system), it is convenient to design balanced strategies
that distribute the load evenly among the processors. This work improves upon the solu-
tions to the snapshot storage problem of [16], where static strategies are computed off-line
using combinatorial design theory.

Papers such as[10], [11] have proposed coloring based solutions for maobile networks
for a different storage problem, that requires that every node has replicas nearby; these
solutions are not local.

C. Outline and Results of the Paper

The goal of this paper isto design local distributed storage solutions that require a small num-
ber of communication rounds, independently of the network size or diameter. Thisis achieved
through a combination of distributed computing and computational complexity tools, that
make heavy use of the fact that nodes know their locations, and the geometry of the plane. The
solutions proposed here are built up from two layers: a spanning tree maintenance protocol,
and a load-balanced storage backup protocol. Various spanning tree protocols are proposed,
which are interesting in their own right: trees are a popular form of network structure that are
used by many network algorithms. The backup protocols allow each node to replicate data to
neighboring nodes for fault-tolerance, such that the difference in the number of copies each
node stores is small. A thorough experimental study is presented, that analyzes the properties
of the trees, and of the performance of the backup protocols on top of the trees.

The protocols described in this paper also show how to construct locally three span-
ning trees whose union is the Delaunay triangulation of the given pointset, with high prob-
ability. A virtual ring can be maintained by traversing the tree in DFS order. This ring
easily adapts to network changes, deletions and additions of processors can be handled
locally and on the average in constant time.

The backup protocol that stores data in consecutive nodes on the virtual ring, accord-
ing to various policies, is presented. Notice that once the tree is obtained, leader election
can be performed using only alinear number of messages.! Thisis the first algorithm that
matches the Q(n log n) lower bound of [23] for leader election in a geometric ring of sizen.

Finally, we have simulated all our algorithms and in Section 4 we provide detailed
results of our simulations for a wireless network produced from 200 nodes generated at
random. Our simulations indicate the effectiveness and adaptability of the algorithms pro-
posed in this paper.

2. Algorithm for Distributed Dynamic Storage

Assume a set of n wireless hosts in the plane, each of which is aware of its location. The
main feature of our algorithm is that dynamic storage is attained and subsequently main-
tained by cooperating nodes that use only “local” knowledge, i.e., information about them-
selves and their distance one neighborhood nodes. In outline, our proposed distributed
dynamic storage agorithm itself isin two phases. In the first phase the input unit disc graph
is processed in order to produce first a triangulated planar spanner (using a Localized

1The algorithm works also in a planar graph that is not a triangulation, with complexity O(f log
f) inthe sizef of the largest face of the network.
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Delaunay Triangulation algorithm [14]) and from there a tree spanner is obtained using the
Entry-Edge Elimination criteria introduced in [2]. In the second phase a cycle is embedded
into the tree spanner and subsequently our dynamic storage procedure is applied.

A. Preprocessing Procedures

In this section we review the techniques necessary to preprocess the wireless network. We
need two key components. The first one, atechnique to extract a spanning tree of a planar
geometric graph, and a method to extract from a unit distance graph, the local Delaunay
subgraph, which under the right conditions is the same as the Delaunay triangulation of
the points of a unit distance graph.

1) Delaunay and Localized Delaunay Triangulation. Let the hosts have identical radius
r, and let G(P, r,) denote the unit disc graph on a set P of n nodes. The parameters we

chose are guided by the main result of Penrose [17], [18] which guarantees k-connectivity.
Inn+c

nr
work G(P, r,,) is connected is at leat > g€, as n — 0. If we substitute €° = s and recall

The result implies that for any real number cif r, > then the probability the net-

that e ~1-¢° thenwe seethat

Pr[Network G(P, r,,) is connected] > 1—%, €8]

Inn+Ins
for r, > ,/— .
174

The Delaunay triangulation cannot be computed “locally”. In the sequel, we will
require that our construction is based only on local operations by the hosts. It has been
proved by Bern et al. [3] (seedso Li et al. [15]) that if the reachability radius of the hosts
is chosen so as to satisfy Inequality 1 then with high probability the Delaunay triangula
tion is the same as the localized Delaunay triangulation. We review their argument in the
sequel. The probability that a region R of area |R| has exactly | nodes from the random
poinset obeys the Poisson ditribution and is equal to

(NIRD" iy
I

Let d, be the random variable that denotes the length of the longest edge of the Delaunay
triangulation of the random pointset. If d, > d then thereisatriangle in the triangul ation at
least one of whose edgesis> d and whose circumcircle contains no other points of the ran-
dom poinset: note that the area of this circumcircle is at least 70%/4. Since the Delaunay
triangulation of a set of n points has a most 3n triangles we conclude that
Pr[d, > d] < 3ne ™9 /4. If we put 1/t = 3ne""9°/4, solve for d and substitute in the last
inequality then we see that

Prldm\/4(|nn+|nt+|n3)]21_1_ @
Nz t
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If we now put s = n® in Inequality 1, and t = n in Inequality 2 then we see that
9lnn
nmr

Prid, <r,]>1- 1 ,forr, > , I.e,, the longest edge of the Delaunay triangulation
n

is smaller than r,, with probability a least 1-+ .

The Unit Delaunay triangulation (denoteg by UD€l(P, r,)) is the graph obtained by
removing all edges of the Delaunay triangulation which are longer than r,. Note that using
only their local information nodes of a given triangle alone can decide together whether or
not they form atriangle. A triangleisk-localized if al its edges have alength at most of 1
and aso the interior of its circumcircle contains no point of P that is a k-neighbor of its
vertices. The k-localized Delaunay graph (denoted by LDel® (P, r,)) consists of exactly
the Gabriel edges and edges of the k-localized Delaunay triangles [15]. It has been shown
[14] that LDe® (P, r.) is planar for k > 2, while LDel®™ (P, r,.) may not be planar. How-
ever, there is an algorithm that can remove intersections from LDel® (P, r,) in order to
produce the planarized Delaunay Triangulation (denoted by PLDel(P, r,)). The planariza-
tion of LDel® (P, r,) essentially involves the following operations.

1. Each node u gathers the location information of its distance one neighborhood
(including u itself) and computes its Delaunay Triangulation.

2. Thenode u computesdl triangleswith al edges at most one unit and broadcastsames-
sage to form a Delaunay triangle if the angle of thetriangle formed at u is at least #/3.

3. Node u accepts a proposd if the triangle proposed isin its Delaunay triangulation
and has been proposed by both neighbors of the proposed triangle. For more
details see Alzoubi et a. [1]. In view of our previous discussion we have the fol-
lowing result.

Proposiion 2.1 If | > /9”1” then the planarized Delaunay triangulation with
nzr

radiusr, is the same as the Delaunay triangulation of P with probability at least 1_E .
n

2) Treeextraction in planar subdivisions. Let P be a simple polygon embedded on the
plane, and let | be the vertical line tangent to P such that P lies to the left of |. Then the
entry edge of P isthe lowest edge of P that touches|. See Fig. 1.

Let G be a plane geometric graph, that is a planar graph embedded on the plane such
that its edges are represented by line segments joining pairs of points representing the ver-
tices of G. G partitions the plane into a set of faces one of which is unbounded. Each face

entry edge of P I

FIGURE 1 Anexampleillustrating the definition of the entry edge of a polygon.
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f of G, but the external one defines a polygon. The entry edge of f is the entry edge of its
corresponding polygon. Let T be the graph obtained from G by removing the entry edge
of all itsfaces, abeit the external one. The following result is proved in [2].

Proposition 2.2. T isaplane spanning tree of G.

This extraction technique is useful for general planar subdivisions. In the sequel we
will develop new and more efficient “localized” algorithms for extracting trees.

3) Tree extraction in convex subdivisions. Graphs all of whose faces, but the outer one
are convex, are called convex subdivisions. If in addition all the faces of G with the excep-
tion of the outer one are triangles, G is called atriangulation. The following observationis
straightforward: If G is a convex subdivision then T can be obtained as follows: For
every vertex v of G consider the set of edges to the left of v whose rightmost vertex is v.
Remove from G all of them, but the topmost. We can refer to this as the leftmost-topmost
elimination rule. Similarly, a topmost-rightmost elimination rule can be obtained follows:
for every vertex v of G consider the set of edges whose bottom vertex isv. Remove from G
al of them, but the rightmost. In a similar way we can define a rightmost-bottommost and
bottommost-leftmost elimination rules, each of which defines a sparning tree of G.

Our previous observation allows us to carry out the extraction of a spanning treein a
planar subdivision in afully distributed way, in fact if visavertex of aconvex subdivision
al it hasto do isto eliminate all the edges incident to it, except the top edgeto its left. Let
G be atriangulation whose vertex set isa point set P with n elements. Assume that P has k
of its elements on its convex hull. Let Tg and T'¢ be the spanning trees obtained by
applying the leftmost-topmost and the topmost-rightmost elimination rules respectively to
G. Thefollowing result is easy to prove.

Proposition 2.3. Tg and T'¢, haveat most i+ M=K edgesin common.

Asadirect consequence we also have. 2

Proposition 2.4. Let G be awireless network (modeled as a unit distance graph). Then
using local operations at each node of G, we can maintain a plane spanning tree of G.

Proof. Using the algorithms presented in Alzoubi et al. [1] we first calculate the
localized Delaunay triangulation of G. Then using the leftmost-topmost elimination rule
obtain a plane spanning tree T of G. Since both steps can be achieved using only local
operations at each node of G, the extraction of T can be donein alocal way.

Since for points placed on the plane at random with the uniform distribution the
expected number of points on the convex hull of P is[20]:

1. ©(Inn) for points chosen in a convex polygon, and
2. ©(n*3) for points chosen in a convex region with doubly differentiable boundary,

we can conclude that in general T; and T ¢ will have, in the worst case, aproximately

n .
> edges in common.

Distance-based tree extraction. As we will see, it turns out that distance based tree
extraction is more efficient. Motivated from our experimental analyisin Section 4 we will
explore the following new rules for tree extraction whereby all nodes (except the righmost
one) are connected to a neighbor to their right. In the sequel consider the convex subdivi-
sion formed by the Delaunay triangualtion. In the Max distance left to right (MaxDLTR)
tree each node is connected to a max distance neighbor to itsright; in the Min distance left
to right (MinDLTR) tree each node is connected to a min distance neighbor to its right;
findly, in the Mid distance left to right (MidDLTR) tree each node is connected to a
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neighbor other than a Max or Min neighbor to its right (if it has one) else to the Max. It
turns out that with high probability these three trees contain all the edges of the Delaunay
triangulation with high probability, asymptotically in n. To be more precise we can prove
the following result.

Proposition 2.5. Assume r, = 9lnn

nr

and MidDLTR. Then the probability that any pair anong these trees has an edge in com-
mon isat most 1/n, asymptotically in n.

Proof. Asin Proposition 2.1 the probability that a region R of area |R| has exactly |
nodes from the random poinset obeys the Poisson ditribution and is equal to

|

(n|IFI<|) .
MaxDLTR and MinDLTR. It follows that node u, say, has only one neighbor to its
right, namely v. Since the reachability radius of the nodes is r,, it follows from
the definition of the tree MaxDLTR that v is the max distance neighbor of u and
therefore the region determined by the semicircle centered at u and radius r,, (call
thisregion S) contains exactly one point from the given pointset P. Hence,

and consider the treesMinDLTR, MaxDLTR,

nRI. Consider a given edge e, say e : = {u, v} that is common to both trees

2
n 2 .
N gneiiz o VT T Gnce the Delaunay
n9/2 n7/2

triangulation has at most 3n edgesit follows that the probability the two trees have an edge
in common is at most 1/n?, asymptotically in n.

A similar proof will work for any other pair of trees. For example, for the trees
MaxDLTR and MidDLTR if agiven edgee: = {u, v} iscommon to both then the semicir-
cle centered at u and radius r,, will have at most two points from the pointset. Threfore an
upper bound on the probability that an edge is common can be obtained easily as in the
previous analysis using the Poisson distribution. We leave the details to the reader. This
completes the proof of Proposition 2.5.

We note two useful consequences of Proposition 2.5 for the three trees MaxDL TR,

Pr[e occursin both trees] = n | S|e ™S =

9lnn
nr
of the treesisthe Delaunay triangulation of the pointset P with probability at least 1 — 1/n,
asymptotically in n. Second, for any two among these trees, the expected number of com-
mon edges is constant. This follows easily from the well-known identity

E[X] = z «PrIX > K], where X is the random variable that counts the number of edges
common to the two trees. We also note that as a consequence of aresult by Bose et a. [4],

the diameter of a Delaunay triangulation on arandom set of n pointsis Q(/n)-

Other rulesfor tree extraction. In distance-based tree extraction a node must search all
its neighbors and select the one that is furthest, nearest, etc. A simpler tree extraction algo-
rithm isto have each node select aneighbor to itsright (respectively, left) at random, if it has
one. Another one is to have each node select its neighbor forming a slope that is minimal
with the horizontal. This gives rise to the trees RLTR, RRTL, and HorDLTR, respectively,
that have also been considered in our experimental results described in Section 4.

MaxDLTR, and MidDLTR and under the assumption that r, > . First, the union

B. Distributed Dynamic Storage Algorithm

We proceed now to show how to solve the dynamic storage problem for wireless net-
works. We remark again that our algorithms are local, in the sense that any node in the
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network only knows that it is a member of a unit distance wireless network, and at any
time it communicates only with its neighbors.

We observe first that the dynamic storage problem has an easy solution if G is an ori-
ented cycle, that isif the vertices of G arelabeled {v,, . . ., V,,1} such that v; is adjacent to
V.,q, 1 =0,...,m-1 (here addition is modm). Since our goal is to store a predetermined
number k of copies of adataset § stored at v, this can be accomplished by sending S to a
predetermined set of vertices Vi, j1,--Viyj, . However, extracting a hamiltonean cycleina
wireless network in a fully distributed way, i.e. in such away that a vertex can only com-
municate with its neighbors seems to be an impossible task. We use instead the following
method: Let T be a geometric plane tree. If we walk around T as we would in a preorder
traversal of T, we definein a natural way a cycle with m = 2n — 1 vertices in which every
edge of T appears twice (thus traversing an Eulerian tour), and each vertex appears as
many times asitsdegreein T.

1) Sorage backup protocols. Now we can give two storage backup protocols. In the
sequel T denotes any of the trees constructed in Section 2-A. We choose an integer
parameter k representing the number of copies to be stored in various nodes of the net-
work. The size of k can vary but also depends on the desired fault tolerance for data recov-
ery required. Let F (u) be the set of nodes to which node u forwardsiits datafor storage. In
general, the set F(u) is generated locally by node u and the generation procedure is part of
the forwarding algorithm that is common to all participating nodes. The forwarding set is
of sizek.

Sorage Backup Protocol (SBP(K))

1. Embed aring topology into T by performing a “geometric” DFS-based preorder
traversal that uses the geometric identities of the nodes.
2. Each node u forwards its data to the nodes of the set F,(u).

Observe that this embedding can be executed “locally” and the forwarding strategy does
not prevent non-leaf nodes from receiving multiple copies of a data file originating from
the same node.

Itiseasy to adapt the forwarding procedure so asto avoid repetitions by decrementing
a counter every time a copy is received by a “new” node. For example, we can consider
the following algorithm.

Non-Repetitive Sorage Backup Protocol (NRSBP(K))

1. Embed aring topology into T by performing a“geometric’ DFS-based preorder
traversal that uses the geometric identities of the nodes.

2. Each node u forwards its data to the nodes of the set F,(u). A given node accepts
the data forwarded to it only if it has not yet received other data from the same
node. Elseit forwardsits datato its forward node in the ring.

There are two ways to affect the desired reliability of recovery. One is the size of
the parameter k: the more copies are stored to other nodes the higher the reliability.
Second is the choice of nodes to which node u forwards its data: this is determined
by the set F,(u) and makes |oad balancing possible. For example, one can choose to
store the data to k consecutive forward positions either “close” to u or “further
away” from u or move them to k forward random positions in order to achieve
higher load balance.
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In the sequel we consider three possibilities for the forwarding set Fy(u) at u: each
node u selects the set F\(u) of k nodes according to one of the following rules (note that all
nodes select the same rule).

Forwarding Rules

1. Consecutive Forwar ding (CF) Rule:

F.(u)={u+1modn, u+2modn,..,u+k modn} , i.e, node u forwards its data to
itsk “successive’ neighbours in the oriented cycle.
2. Distant Consecutive Forwar ding (DCF) Rule:

F.(uy={u+d+1modn, u+d+2modn,..u+d+k modn}, i.e, for some fixed
value d (signifying distance d away from u) node u forwardsits data to k “ successive”
nodes at distance d away fromitself in the oriented cycle.

3. Random Forwarding (RF) Rule:

F.(u) ={u+t; modn, u+t, modn,...,u+t, modn}, where t;,t,,....t,are random
values in the range 1..m generated by node u, i.e., node u forwards its data to k ran-
dom locationsin the oriented cycle, where the integer mis chosen so that k? = o(m).

3. Propertiesof the Storage Backup Protocol

In this section we discuss properties satisfied by our protocol, namely load balancing and
failure recovery.

A. Load Balance

The load balancing attained by the algorithm depends not only on the forwarding algo-
rithm but also on the topology of the wireless network.

In general, experimental results indicate (see Table 1) that the spanning tree T obtained
from G has small degree. Therefore on the average case the preorder traversa on T will gen-
erate aring topology such that each node of the network is repeated asmall number of times.

Let us analyze the performance of the forwarding protocols. First consider the non-
repetitive storage backup protocol. If ¢ isthe max degree of the spanning tree every node
of the resulting ring will store at most kc copies of other nodes' data. In particular we have
the following result.

TABLE 1 Average Frequency of Degrees of Nodes and Diameter of Graphsin 20
Experiments with 200 Nodes Each for the Delaunay, and the MinDLTR, MaxDLTR,
RLTR, RRTL Trees, Respectively

Degr DT Min Max RLTR RRTL

1 .000 .286 432 341 .336
2 .000 .500 .309 406 411
3 .018 173 .150 .189 192
4 134 .026 .069 .053 .050
5 275 .008 .027 .008 .008
6 278 .004 .007 .002 .002
7 .189 .002 .002 .001 .002
8 077 .000 .002 .000 .001
9 .006 .000 .000 .000 .000
Diam 5.83 57.85 35.10 41.85 41.50
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Proposition 3.1. For each node u let Su) be the number of data stored at u. The non-
repetitive Storage backup protocol achieves load balancing in the sense that for all nodes
u, v, |Su)— (V) £ ck.

A similar result also holds for repetitive loads. A trivial upper bound for the maxi-
mum absolute difference between loads can be obtained by overestimating the load.
Assume anode v with degree c. We can compute load(v) by adding the storage-requests of
c different directions. Notice that only k nodes for each direction can request from node v
to store one unit of data. On the other hand, the nodes of only one direction can upload to
node v up to c units of data each, the nodes of only one direction can upload uptoc — 1
units of data each, etc. By adding the uploads and since the minimum load of a node might
be zero, we have the following simple proposition.

Proposition 3.2. For each node u let S(u) be the number of data stored at u. The repetitive
Storage backup protocol guaranties that for al nodes u, v,

EOREUISS

B. Repetitive Versus Non-Repetitive Loads

One may think that non-repetitive Storage backup protocols should guarantee lower maxi-
mum difference between loads, but thisis not always true. To see why, consider the family
of trees on n + 6 nodes depicted in Figure 2, and assume k = 2. The eulerian tour arising is

ViV,..V, 12343256521Vv,.W,V

The minimum load over the nodes obtained by both protocols is zero. The repetitive
Storage backup protocol loads node 2 with 4 units of data, while the non-repetitive backup
protocol 10ads the same node with 6 units of data. Finally it is easy to see that these loads
are the maximum that are obtained by each protocol.

However, in most cases, non-repetitive Storage backup protocols outperform repetitive
storage backup protocols. Thisisaso confirmed by our experimental analysisin Section 4.

C. Recovery from Failure

The resulting network failure recovery depends on the backup protocol used. In the sequel
we look at properties of NRSBP(K).

4

FIGURE 2 A family of trees on n + 6 nodes, wheren > 1.
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1) Sngle node failure. For every node of the network there is a backup of its data in at
least k other nodes of the network. Therefore our protocol isk — 1 fault tolerant. In partic-
ular we have the following lemma.

Proposition 3.3. The Non-repetitive storage backup protocol NRSBP(K) isk — 1 fault
tolerant, i.e., if at most k — 1 nodes fail then the data of every other node of the network is
stored in at least one non-failed node.

2) Random failures. The protocol is robust under random failures. Assume that all the
nodes of arandom set Sof sizem (where m= k) fail. A given node stores copies of its data
into k other nodes of the network. The probability that at least one of these nodesis not in
Sis 1 minus the probability that they are all in S. The probability that a given nodeisin S
ism/n, and the probability that all k nodes arein Sis (m/n)*. In particular, we have the fol-
lowing result.

Proposition 3.4. Assume that all the nodes of a random set S of m (where m > k)
nodes fail. The probability that all the data of a given node are stored at some non-failed

K
node of the network isat least 1— m_k .
n

3) Failures of geographical regions. Our protocol can easily be adapted so that it is
robust to geographic failures, that is failures created by events such as power failures that
may affect the set of nodes bel onging to a connected region of the plane. Consider the case
of a“civilized” unit disc graph, i.e., any pair of nodesis at a distance at least A from each
other, where A > 0 is independent of n, the size of the network. Assume that all the nodes
in ageographic region R of area A fail. Sincethe unit disc graph is civilized, the region can
have at most A/A nodes. Therefore if k > A/A then every node u within the region R has a
backup of its datain at least one node outside the region R. In particular we have the fol-
lowing result.

Proposition 3.5. Assume that the unit disc graph is civilized with parameter A. If all
the nodes of a geographic region of area at most ki fail then the data of each node within
the region have been stored in at least one node outside the region.

4. Simulations and Experiments

In this section we provide simulations of the algorithms proposed in the previous sections
and confirm experimentally the efficiency of our proposed techniques for alocation aware
wireless network.

A. Random Setting

First we discuss our choice of parameters in the experimental results.

1) Connectivity, Delaunay and planarized triangulations. Let the hosts have identical
radius r, and let G(P, r,,) denote the unit disc graph on a set P of n nodes. Starting from a

random set P of n points, we compute their Delaunay Triangulation. As indicated in Sub-

section 11-A.1if we select r,> 9INN then the longest edge of the Delaunay triangulation
nzr
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FIGURE 3 Delaunay triangulation and trees resulting from arandom set of 200 points.

is smaller than r, with probability at least 1—l , 1.e., with high probability the planarized
n

Delaunay and Delaunay triangulations are the same (see Proposition 2.1).

2) Spanning trees and forwarding rules. From the Delaunay triangulation we compute
spanning trees using the edge extraction algorithms in Subsection 2-A.3. We then imple-
ment the storage backup protocol with three different forwarding rules as in Subsection
2-B. In the random forwarding rule the nodes will forward their data to k other processors.
If k values are chosen randomly and independently with the uniform distribution in the
range 1.m then it is well-known from the “birthday paradox” that the probability that no

collision will occur is at least 1—@. Note that the size n of the network isin genera
m

not known to the individual nodes. Given k, the value m must be chosen so that there is

low probability of collision among the k random numbers t;, t,,...,t, : to achieve thisit is
enough to guarantee that k? = o(m).

B. Results of the Simulations

Figure 3 depicts output of our experiments. From top-to-bottom and left-to-right, the first
row depicts a set of 200 points chosen at random and the next picture their Delaunay. The
trees depicted are formed from the Delaunay triangulation using the edge elimination rules
described in Subsection 2-A.3.
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The statistics reported in Table 1 give the average frequency of degrees of nodes and
diameter of graphs in 20 experiments with 200 nodes chosen at random each for the
Delaunay and the MinDLTR, MaxDLTR, RLTR, RRTL trees, respectively.

Table 2 and Table 3 illustrate the load averages for the three storage backup algo-
rithms proposed for both the storage backup protocol SBP(K) and the non-repetitive stor-
age backup protocol NRSBP(K). Table 2 gives the average maximum absolute difference
between loads and Table 3 the average difference between loads over all pairs of nodes.
These tables depict the consecutive (CF: k = 4), distant-consecutive (DCF: k = 4, d = n/2),
and random distant (RDF: k = 4) forwarding rules for cycles generated from the MinD-
LTR, MaxDLTR, RLTR, RRTL trees, respectively, in 20 experiments with 200 nodes
each. Note that the CF forwarding rule outperforms DCF and RDF, however it forwards
data“near” the node initiating the forwarding. The tables also indicate that the MinDLTR
tree has best performance (the second best performing tree was HorDL TR but we do not
exhibit these results here).

Figure 4 depicts a histogram of the average performance of the SBP and NRSBP
algorithms performed 20 times each in graphs of 100 to 200 random points in increments
of 50, respectively. The top picture shows the average difference among pairs of nodes
while the bottom picture the max absolute difference among pairs of nodes. Each pair of
columns indicates the performance of SBP (light-gray column) and NRSBP (heavy-gray
column) for the CF, DCF, and RCF forwarding rules, respectively: note that in RCF we
implemented only SBP. Observe that the max absolute difference increases a little while
the average absol ute difference among pairs of nodes remains almost unchanged.

TABLE 2 Average Maximum Absolute Differ-
ence Between Loads. Top Subrow isfor SBP(K)
and Bottom Subrow for NRSBP(k) for 20 Ran-
dom Graphs with 200 Nodes Each

Min Max RLTR RRTL

CF: SBP 108 136 120 115
CF: NRSBP 099 128 106 114
DCF: SBP 128 173 147 138
DCF:NRSBR 130 156 136 135
RDF: SBP 136 168 1438 14.2

TABLE 3 Average Difference Between Loads
over al Pairs of Nodes. Top Subrow isfor SBP(k)
and Bottom Subrow for NRSBP(k) for 20 Random
Graphs with 200 Nodes Each

Min Max RLTR RRTL

CF: SBP 243 292 267 2.62
CF:. NRSBP 215 252 230 231
DCF: SBP 315 314 305 2.97
DCF.NRSBP 308 292 291 2.84
RDF: SBP 302 331 3.09 3.01




368 Georgiou et al.

4

25

15

i

05
100 i50 200

| II II II
100 oo 20

FIGURE 4 Performance of SBP (light-gray column) and NRSBP (heavy-gray column)
for the CF, DCF and RCF forwarding rules.

rd

]

L I ]

5. Conclusion

In this paper we proposed efficient solutions to the distributed storage problem in wireless
networks and designed local distributed storage solutions that require a constant number
of communication rounds, independently of the network size or diameter. Thisis achieved
through a combination of distributed computing and computational complexity tools, that
make use of location awareness, i.e., that nodes know their locations, and the geometry of
the plane.
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