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Distributed Economic Dispatch Control via Saddle

Point Dynamics and Consensus Algorithms
Lu Bai, Maojiao Ye, Chao Sun, and Guoqiang Hu

Abstract—In this paper, a distributed control algorithm is
proposed to solve the economic dispatch problem. Without a
central control unit, the generators work collaboratively to
minimize the generation cost while balancing the supply and
demand. The proposed method is based on consensus protocols
and the saddle point dynamics. The consensus protocols are
employed to estimate the global information in a distributed
fashion, and the saddle point dynamics are leveraged to search
for the optimal solution of the economic dispatch problem. By
utilizing Lyapunov stability analysis, exponential stability of the
optimal solution is derived if the capacity limits of the generators
are not considered; with the capacity limits, practical stability of
the optimal solution is obtained. No global information is needed
in the proposed method and the requirement on initial conditions
of the state variables is mild. Several case studies on the IEEE
9-bus and IEEE 118-bus systems are presented to demonstrate
the effectiveness of the proposed algorithms.

Index Terms—Distributed control, economic dispatch, saddle
point dynamics, consensus algorithms.

I. INTRODUCTION

With the development of smart grids, the control and opti-

mization problems (e.g., micro grid operation [1], demand re-

sponse [2], [3], economic dispatch [4]) have received renewed

attention in recent years. In a smart grid, integrated distributed

energy resources work collaboratively to serve loads over a

common distribution network [5]. Based on the load demand,

economic dispatch produces generation references for the

distributed energy resources such that the total generation

cost is minimized. The basic economic dispatch problem

studies how to economically manage the thermal distributed

generators such that the total generation cost is minimized

under the balance and capacity constraints. It emerges to be

an optimization problem of both theoretical significance and

practical relevance [5].

Centralized algorithms have been proposed to solve the

economic dispatch problem traditionally. The existing methods

include analytical algorithms (e.g., Lagrangian relaxation [6],

λ-iteration [7]) and heuristic algorithms (e.g., genetic algo-

rithm [8], particle swarm algorithm [9]), etc. However, the

centralized approaches are usually expensive to implement in

large scale systems, the existence of the central control unit

will result in system fragility with respect to central node

failure, and a centralized architecture is usually unscalable. To

overcome the drawbacks of centralized approaches and meet
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the requirements of smart grid, distributed algorithms have

been proposed to solve the economic dispatch problem.

In the distributed methods, a lot of works utilize consensus

algorithms on the incremental cost to solve the economic dis-

patch problem in a distributed manner. In [10], the incremental

costs are synchronized in a distributed manner to solve the

economic dispatch problem under different communication

topologies. In [11], based on the consensus over the incre-

mental costs, an innovation term with a vanishing learning

gain is designed to accommodate the balance constraint. In [4],

the generators collectively learn the power mismatch for the

computation of the incremental costs. An average consensus

based bisection approach is proposed in [12], where a bisection

algorithm, based on the average value of the load, is used to

calculate the incremental costs. Communication information

losses are investigated for the economic dispatch problem in

[13], in which a robust distributed system incremental cost

estimation algorithm is introduced. In [14], the θ-logarithmic

barrier method and a consensus approach are utilized to

develop a distributed event-triggered scheme. A projected

gradient and finite-time average consensus based strategy is

proposed for the economic dispatch problem in [15], where

both thermal generators and wind turbines are considered. By

incorporating the box constraints into the objective function

using non-smooth penalties, an initialization-free distributed

coordination algorithm for economic dispatch is proposed in

[16]. In this method, a dynamic average consensus algorithm

is utilized to estimate the mismatch between the generation

and the load in a distributed manner, and based on these esti-

mates, a distributed Laplacian-nonsmooth-gradient algorithm

is designed to dynamically allocate the unit generation levels.

In [17], a category of proportional-integral type consensus

and projection based continuous time algorithm is proposed to

solve the distributed optimization problem in an initialization-

free manner.

Nevertheless, in the majority of the existing distributed

methods, the initial values of the consensus variables need to

meet stringent requirements to achieve the balance between

supply and load, or global information, such as the entire

communication network topology and the total number of

the generators, is needed or calculated. These requirements

impose an initialization procedure in these algorithms, which

is restrictive since it involves global coordination and has to

be repeatedly performed if the network configuration changes,

load changes, or any distributed generator plugs in or leaves

off [18]. Moreover, an error in the initial values will result in

power mismatch between the total generation and total load.

In this paper, distributed initialization-free algorithms based
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on saddle point dynamics and consensus algorithms are pro-

posed to solve the economic dispatch problem. The consensus

algorithms are employed to estimate the global information

in a distributed fashion. With the estimated information, the

saddle point dynamics are adapted to search for the optimal

solution of the economic dispatch problem. The stability of the

closed loop system is proved through Lyapunov stability anal-

ysis and the singular perturbation theory, which is often used

to analyze the stability of a singular perturbed system with two

time scales, such as the stability of algorithms which utilize

consensus protocols [19]–[22]. The methods proposed in this

paper are distributed as only local information is required for

each node to implement the proposed method. Furthermore, no

initialization procedure is required to implement the algorithm

since no global information, such as the entire communication

network topology and the total number of the buses, is needed

and the requirement on the initial values of the state variables

is mild. Specifically, the initial values of the variables in

the algorithm can be arbitrarily set except that the Lagrange

multipliers corresponding to the capacity constraints need to

be positive initially.

The rest of this paper is organized as follows. In Section II,

some preliminaries are provided. The problem is formulated

in Section III. Section IV presents the main results, where the

algorithms are presented and the stability and optimality of the

solutions are proved through singular perturbation theory and

Lyapunov stability analysis. Case studies based on the IEEE 9-

bus and IEEE 118-bus systems are given in Section V. Finally,

conclusion is drawn in Section VI.

II. PRELIMINARIES

Throughout this paper, 1n and 0n denote n dimensional col-

umn vectors composed of 1 and 0, respectively, 0n×n denotes

an n× n dimensional matrix composed of 0, and In denotes

an n× n dimensional unit matrix. Furthermore, diag{xi} for

i ∈ {1, 2, ..., n} represents an n × n dimensional diagonal

matrix with ith diagonal element equals xi, and [xi]vec for

i ∈ {1, 2, ..., n} is defined as [xi]vec = [x1, x2, ..., xn]
T .

A graph is defined as G , (V, E), where V , {1, 2, ..., n}
is a set of vertices and E ⊆ V × V is a set of edges. It is

undirected if for every (i, j) ∈ E , (j, i) ∈ E . An undirected

graph is connected if there exists a path between any two

distinct vertices. Denote the set of neighbors of vertex i by

Ni(E) , {j ∈ V|(i, j) ∈ E}.

The adjacency matrix A of a graph represents the connectivity

of a graph. For an undirected graph, the elements aij in A is

defined as aii = 0, aij = aji > 0 if node j is connected

with node i, and aij = 0 otherwise. The degree matrix D

of a graph is a diagonal matrix with the ith diagonal element

being
∑

j∈Ni
aij . The Laplacian matrix L of a graph is defined

as L , D − A. For an undirected and connected graph,

the eigenvalues of L are all positive except for one zero

eigenvalue.

Lemma 1. [23] Let G be an undirected and connected graph,

L be the Laplacian matrix of G. Then, for any constant input

u ∈ R
n and any initial states x(0), λ(0) ∈ R

n, the trajectories

of the system
[

ẋ

λ̇

]

=

[

−I − L −L
L 0n×n

] [

x

λ

]

+

[

u

0n

]

represented by x(t) and λ(t) converge to constant vectors, and

more specifically, x(t) → 1
n
1n1

T
nu exponentially as t→ ∞.

Lemma 2. [24] Let G be an undirected and connected graph.

Then, xi → r0 as t → ∞ if at least one ai0 > 0 for i ∈
{1, ..., n} under the following algorithm,

ẋi = −
n
∑

j=1

aij(xi − xj)− ai0(xi − r0),

where r0 is a time-invariant signal, ai0 > 0 if node i can get

the information of r0 and ai0 = 0, otherwise.

Lemma 3. [25] Let A ∈ R
n×n and B ∈ R

n×m. If A is Hur-

witz and rank(B) = m, then the matrix

[

A B
−BT

0m×m

]

is

Hurwitz.

III. PROBLEM FORMULATION

Consider a power grid with distributed thermal generators

and distributed loads. Suppose there are n buses, without loss

of generality, assume that each bus contains one generator (G)

and one local load (L). Each bus is equipped with a local agent

(A), which can communicate with its neighboring agents and

is used to produce the optimal generation reference for the

generator. The control architecture is illustrated in Fig. 1.

Fig. 1. Illustration of the distributed control architecture.

Let PGi denote the active power generated by the generator

in bus i and PDi denote the active power needed by the load

in bus i. The basic economic dispatch problem is formulated

as

minimize f(PG) =

n
∑

i=1

fi(PGi),

subject to

n
∑

i=1

PGi =

n
∑

i=1

PDi,

Pmin
Gi ≤ PGi ≤ Pmax

Gi , i = 1, 2, ..., n, (1)

where PG = [PGi]vec, fi(PGi) is the cost function of the

generator in bus i, which is modeled as a quadratic function

given by [5]

fi(PGi) = aiP
2
Gi + biPGi + ci,

where ai > 0, bi ≥ 0 and ci ≥ 0 are the cost parameters. In

(1), Pmin
Gi and Pmax

Gi are the lower and upper bounds of PGi

with Pmin
Gi < Pmax

Gi .



3

Remark 1. If in bus i, there is no load, then PDi = 0; if there

are more than one load, they can be aggregated into one single

load. If there is no generator in bus i, then PGi(t) = 0, ∀t;
if there are more than one generator in one bus, they can be

modeled as several buses with one generator located in each

bus.

The rest of the paper is based on the following assumptions.

Assumption 1. The communication graph among the agents

is undirected and connected.

Assumption 2. The economic dispatch problem in (1) is

feasible, i.e.,

n
∑

i=1

Pmin
Gi ≤

n
∑

i=1

PDi ≤
n
∑

i=1

Pmax
Gi .

IV. MAIN RESULTS

In this section, a distributed method is proposed to solve

the problem in (1). In Section IV.A, the inequality constraints

are ignored, while in Section IV.B, the inequality constraints

are considered. In Section IV.C, the line flow constraints are

taken into consideration on the basis of the problem in (III).

A. Algorithm Design without Inequality Constraints

1) Centralized Approach Based on the Saddle Point Dy-

namics: Without the inequality constraints, the Lagrangian

function of the problem in (1) is

L1(PG, λ0) = f(PG) + λ0

(

n
∑

i=1

PDi −
n
∑

i=1

PGi

)

,

where λ0 ∈ R is the Lagrange multiplier corresponding to the

equality constraint. Denote the optimal solution of the problem

in (1) (without capacity limits) as P ∗
G. Since the problem in (1)

is convex, there is a λ∗0 such that (P ∗
G, λ

∗
0) is the saddle point

of L1(PG, λ0) [26]. Inspired by the saddle point dynamics

[27], the following equations

ṖGi = − ∂L1

∂PGi

= −
(

dfi(PGi)

dPGi

− λ0

)

, i ∈ {1, ..., n}, (2a)

λ̇0 =
∂L1

∂λ0
=

n
∑

i=1

PDi −
n
∑

i=1

PGi, (2b)

can be utilized to search for the saddle point (P ∗
G, λ

∗
0).

However, λ0 in (2a), the values of
∑n

i=1 PDi and
∑n

i=1 PGi

in (2b) are global information. Hence, a central unit is needed

to implement the algorithm in (2). In the following, a dis-

tributed method is developed.

2) Distributed Approach: The distributed updating laws for

PGi and λ0 are designed as

ṖGi =− k̄i

(

dfi(PGi)

dPGi

− λi

)

, i = {1, ..., n}, (3a)

λ̇0 =m̄0zq, (3b)

where k̄i = δki, m̄0 = δm0, δ is a small positive parameter

to be determined, ki and m0 are fixed positive parameters, λi
is agent i’s estimation of λ0, and zq is agent q’s estimation of

1
n

∑n

i=1(PDi−PGi). Any zq , q ∈ {1, ..., n} can be selected to

calculate λ0. The estimation algorithms are designed based on

the dynamic average consensus algorithm in Lemma 1 and the

leader-following consensus algorithm in Lemma 2 as follows:

żi = −zi −
n
∑

j=1

aij(zi − zj)−
n
∑

j=1

aij(θi − θj) + PDi − PGi,

(4a)

θ̇i =

n
∑

j=1

aij(zi − zj), (4b)

λ̇i = −
n
∑

j=1

aij(λi − λj)− ai0(λi − λ0), (4c)

where θi for i ∈ {1, ..., n} are intermediate variables.

In algorithms (3) and (4), each agent runs (3a) and (4),

and one agent q, which can be arbitrarily selected, runs (3b).

Specifically, each agent runs the dynamic average consensus

algorithm (4a) and (4b) to collaboratively find the average

value of the mismatch between total load and total generation

and propagate this information among the network. Then,

one agent q calculates λ0 by (3b) using zq , and each agent

calculates λi by (4c) using λ0. Finally, each agent updates

PGi by (3a) using λi and other local information.

Theorem 1. Suppose that the total load
∑n

i=1 PDi is finite

and Assumption 1 hold. Then, there exists a positive constant

δ∗ such that for every 0 < δ < δ∗, PG converges to P ∗
G

exponentially under algorithms (3) and (4).

Proof. See Appendix A for the proof.

Remark 2. In this algorithm, agent q serves as a leader which

generates the signal λ0. The algorithm is distributed since

only a subset of the agents need to be connected with agent

q. Furthermore, failure of agent q can be easily recovered by

appointing any other agent, e.g., agent r, to calculate λ0 using

its own zr. However, in centralized approaches, the failure of

the central node is disastrous.

B. Algorithm Design with Inequality Constraints

Assumption 3. There is at least one generator whose optimal

generation is not equal to its upper or lower bound. That is,

∃ i, such that Pmin
Gi < P ∗

Gi < Pmax
Gi .

With the inequality constraints considered, the Lagrangian

function of the problem in (1) is

L2(PG, γ) = f(PG) + λ0

(

n
∑

i=1

PDi −
n
∑

i=1

PGi

)

+

n
∑

i=1

αi(PGi − Pmax
Gi ) +

n
∑

i=1

βi(P
min
Gi − PGi),

where γ = [λ0, α1, β1, ..., αn, βn]
T , αi and βi, i ∈ {1, ..., n}

are the Lagrange multipliers corresponding to the inequality

constraints. Since the problem in (1) is convex and the Slater’s

condition is satisfied indicated by Assumption 3, there exists

γ∗ = [λ∗0, α
∗
1, β

∗
1 , ..., α

∗
n, β

∗
n]

T , such that (P ∗
G, γ

∗) is the saddle
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point of L2(PG, γ) with P ∗
G being the optimal solution of

the problem in (1), and (P ∗
G, γ

∗) being the solution of the

following Karush-Kuhn-Tucker (KKT) conditions,

dfi

dPGi

(P ∗
Gi)− λ∗0 + α∗

i − β∗
i = 0,

n
∑

i=1

PDi −
n
∑

i=1

P ∗
Gi = 0,

P ∗
Gi − Pmax

Gi ≤ 0, Pmin
Gi − P ∗

Gi ≤ 0, α∗
i (P

∗
Gi − Pmax

Gi ) = 0,

β∗
i (P

min
Gi − P ∗

Gi) = 0, α∗
i ≥ 0, β∗

i ≥ 0. (5)

Motivated by [25], the distributed updating law for agent i

is designed as

ṖGi = −k̄i
(

dfi(PGi)

dPGi

− λi + αi − βi

)

, (6a)

α̇i = m̄i1αi(PGi − Pmax
Gi ), β̇i = m̄i2βi(P

min
Gi − PGi), (6b)

where m̄ij = δmij , mij for i ∈ {1, ..., n}, j ∈ {1, 2} are

fixed positive parameters, and αi(0) > 0, βi(0) > 0 for i ∈
{1, ..., n}. For one agent q ∈ {1, ..., n}, except (6), it needs to

calculate λ0 the same as that in Section IV.A as

λ̇0 = m̄0zq. (7)

The estimation algorithms are the same as (4).

Define o = [PT
G αT βT λ0 λT zT θT1

1]T and o∗ =
[P ∗T

G α∗T β∗T λ∗0 λ
∗
01

T
n

1
n
1
T
n (P

∗
G−PD)1T

n θeT1 (P ∗
G)

1]T with

PD = [PDi]vec. Then, the following result can be derived.

Theorem 2. Suppose that Assumptions 1-3 hold. Then, for

each pair of positive numbers (∆, ζ), there exists a positive

constant δ∗(∆, ζ), such that for every 0 < δ < δ∗, under

algorithms (4), (6), and (7) with α(0) > 0, β(0) > 0, there

exists a T > 0 such that ‖o− o∗‖ ≤ ζ, ∀t > T , for ‖o(0)−
o∗‖ ≤ ∆.

Proof. See Appendix B for the proof.

Remark 3. The method can be directly extended to solve a

more general problem as follows:

minimize F (PG) =

n
∑

i=1

Fi(PGi),

subject to

n
∑

i=1

PGi =
n
∑

i=1

PDi,

gij(PGi) ≤ 0, i ∈ {1, 2, ..., n}, j ∈ {1, ...,mi}, (8)

where PGi ∈ R
m, Fi(PGi) is twice continuously differentiable

and strictly convex, gij(PGi) is twice continuously differen-

tiable and convex, and mi is the number of local inequality

constraints for PGi. With slight revision, the control algorithm

(6) becomes

ṖGi =− k̄i





dFi(PGi)

dPGi

− λi +

mi
∑

j=1

αij

dgij(PGi)

dPGi



 , (9a)

α̇ij =m̄ijαijgij(PGi). (9b)

Under the following assumptions: 1. The solution of (8) exists

and is finite; 2. The slater’s condition is satisfied; 3. ∀i, there

1θ1 is a function of θ. θeT
1

(P ∗

G
) is a function of P ∗

G
. The details can be

found in the proof of Theorem 1 in Appendix A.

exists at most one j ∈ {1, ...,mi} such that gij(P
∗
Gi) = 0;

4. ∃ i, such that gij(P
∗
Gi) < 0, j ∈ {1, ...,mi}. Then, under

algorithms (4), (7), and (9), the result in Theorem 2 holds.

Remark 4. In this algorithm, (6b) are utilized to make α

and β satisfy the KKT conditions, such that PG satisfies the

inequality constraints. To handle the inequality constraints,

[16] uses non-smooth penalty functions to incorporate the

box constraints into the objective function, and [17] uses

projection method on the basis that the local feasible sets

can be explicitly obtained. Different from these intialization-

free methods, our work utilizes the function of the inequality

constraints as shown in Remark 3.

C. Economic Dispatch with Line Flow Constraints

In this section, the line flow constraints are considered upon

the basic economic dispatch problem. Suppose the transmis-

sion network is represented by graph Gt = (N , Et) with

Et = {1, ...,m} being the transmission lines set. (i, j) ∈ Et
means bus i and bus j are connected by a transmission line

l ∈ Et. Arbitrarily assign direction to each line l as the

reference power flow direction, define the incidence matrix

B ∈ R
n×m with Bil = 1 if line l origins from bus i, Bil = −1

if line l goes to bus i, and Bil = 0, otherwise. The problem

is formulated as [17]

minimize f(PG) =
n
∑

i=1

fi(PGi)

subject to PGi −
m
∑

l=1

BilPLl − PDi = 0, i = 1, ..., n,

Pmin
Gi ≤ PGi ≤ Pmax

Gi , i = 1, ..., n,

|PLl| ≤ Pmax
Ll , l = 1, ...,m, (10)

where PLl is the power flow on transmission line l, Pmax
Ll > 0

is the line flow limit of transmission line l. The solution of the

problem in (10) is denoted by (P ∗
G, P

∗
L) with P ∗

L = [P ∗
Ll]vec.

Note that P ∗
G is unique.

The augmented Lagrangian function of the problem in (10)

is

L3 =
n
∑

i=1

(fi(PGi) + λi(PDi +
m
∑

l=1

BilPLl − PGi)

+ αi(PGi − Pmax
Gi ) + βi(P

min
Gi − PGi))

+
m
∑

l=1

(ul(PLl − Pmax
Ll ) + vl(−PLl − Pmax

Ll ))

+
1

2

n
∑

i=1

(PDi +

m
∑

l=1

BilPLl − PGi)
2,

where λi, αi, βi, ul, vl ∈ R are the Lagrange multipliers. By

setting the communication graph G the same as the transmis-

sion graph Gt, the distributed algorithm is designed as follows:

ṖGi = −κGi(
dfi(PGi)

dPGi

− λi + αi − βi

− (PDi +
m
∑

l=1

BilPLl − PGi)), i = 1, ..., n, (11a)
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ṖLl = −κLl(

n
∑

i=1

Bliλi + ul − vl

+

n
∑

i=1

Bli(PDi +

m
∑

l=1

BilPLl − PGi)), l = 1, ...,m,

(11b)

λ̇i = κλi(PDi +

m
∑

l=1

BilPLl − PGi), i = 1, ..., n, (11c)

α̇i = καiαi(PGi − Pmax
Gi ), i = 1, ..., n, (11d)

β̇i = κβiβi(P
min
Gi − PGi), i = 1, ..., n, (11e)

u̇l = κulul(PLl − Pmax
Ll ), l = 1, ...,m, (11f)

v̇l = κvlvl(−PLl − Pmax
Ll ), l = 1, ...,m, (11g)

where κGi, κLl, κλi, καi, κβi, κul, κvl are positive constants,

αi(0) > 0, βi(0) > 0, ul(0) > 0, and vl(0) > 0.

Assuming that the problem in (10) is feasible, under algo-

rithm (11), PG converges to P ∗
G asymptotically.

The conclusion can be obtained by following the proof

of the stability of the auxiliary system in Theorem 2

noticing that (x∗, y∗), where x∗ = (P ∗
G, P

∗
L) and y∗ =

(λ∗, α∗, β∗, [u∗l ]vec, [v
∗
l ]vec) being the optimal values of the

Lagrange multipliers, is a saddle point of L3, and L3(x, y
∗) =

L3(x
∗, y∗) implies (x, y∗) is a saddle point of L3 [27].

V. CASE STUDIES

A. Simulation Setup

First, simulation is conducted on the IEEE 9-bus system.

Then, the algorithm is tested on the larger scale IEEE 118-

bus system.

In the IEEE 9-bus system shown in Fig. 2 (a), there

are 9 buses, 3 generators (located in bus 1, 2, 3) and 3

loads (located in bus 5, 6, 8). The parameters of the cost

(a) Simplified illustration (b) Communication topology

Fig. 2. Simplified illustration and the communication topology of the IEEE
9-bus system.

functions are given in Table I [13]. The power demand of

TABLE I
GENERATOR PARAMETERS

PG ai bi ci Pmin

Gi
(MW) Pmax

Gi
(MW)

PG1 0.001562 7.92 561 150 600
PG2 0.00194 7.85 310 100 400
PG3 0.00482 7.97 78 50 200

loads located in bus 5, 6, and 8 are 200 MW, 550 MW,

and 100 MW, respectively. By direct calculation, the optimal

generations are P ∗
G1 = 393.1698 MW, P ∗

G2 = 334.6038 MW,

P ∗
G3 = 122.2264 MW, and λ∗0 = 9.1483. The communication

topology is set the same as the physical connection of the

buses shown in Fig. 2 (b). The squares represent buses with

generators in them and the triangles represent buses with loads

in them. Node 4 is selected to calculate λ0. The initial values

of the variables are randomly selected except that α(0) > 0n

and β(0) > 0n.

B. Simulation Results

1) Without Capacity Limits: In this simulation, the capacity

limits are not considered. The parameters are set as k̄ = 1000×
19 and m̄0 = 0.003. The simulation results produced by (3)

and (4) are shown in Fig. 3. From the simulation results, it can
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Fig. 3. Power generations of the generators and estimated incremental costs
produced by (3) and (4) when capacity limits are not considered. The dashed
lines denote the optimal values.

be seen that PG converges to the optimal generation, the total

generation converges to the total load, and all λis converge to

λ∗0.

2) With Capacity Limits: In this simulation and thereafter,

the generator capacity limits are considered. The updating

laws used are (4), (6), and (7). The parameters are set as

k̄ = 1000 × 19, m̄0 = 0.003, and m̄1 = m̄2 = 19. To

check the effectiveness of the proposed algorithm, the upper

capacity limit of generator 3 is revised to 80 MW, which is

lower than P ∗
G3 = 122.2264 MW. In this situation, the new op-

timal solutions are P ∗
G1=416.5620 MW, P ∗

G2=353.4380 MW,

P ∗
G3=80.0000 MW, and λ∗0 = 9.2213 by direct calculation.

The simulation results are shown in Fig. 4. It can be seen that

generator 3’s final generation decreases and equals 80 MW,

which is its upper bound. The new incremental cost increases

due to lower power generation of generator in bus 3.

3) With line flow constraints: In this section, the line flow

constraints are imposed on the IEEE 9-bus system. From

Section V.A, the optimal generations of the three generators

located in buses 1, 2, and 3 are P ∗
G1 = 393.1698 MW,

P ∗
G2 = 334.6038 MW, and P ∗

G3 = 122.2264 MW, respec-

tively. To see the influence of the line flow constraints, we

impose a line flow limit of 250 MW (smaller than P ∗
G2) on

the transmission line which connects bus 2 and bus 7, and

500 MW on other transmission lines. By direct calculation,
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Fig. 4. Power generations and estimated incremental costs produced by (4),
(6), and (7), and when capacity limits are contradicted. The dashed lines
denote the new optimal generations.
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Fig. 5. Power generations and power flows produced by (11) with line flow
constraints.

the optimal generations of the three generators with line flow

constraints are P ∗
G1 = 457.0673 MW, P ∗

G2 = 250.0 MW, and

P ∗
G3 = 142.9327 MW, respectively. By using algorithm (11)

and setting the control gains as κGi = κLi = 1000, κλi = 1,

and καi = κβi = κul = κvl = 0.02 for i = 1, ..., n and

l = 1, ...,m, we get the simulation results shown in Fig. 5. It

can be seen that the generations converge to the new optimal

generations and the power flow on all transmission lines are

within their line flow limits.

4) Implementation on IEEE 118-bus System: In this sec-

tion, simulation on the IEEE 118-bus system is conducted to

test the performance of the proposed algorithm. There are 118

buses and 54 generators. The data used is adopted from [28]

and the communication graph is set the same as the physical

connection of the buses. Agent 49 is selected to calculate λ0.

In the simulation, the parameters are set as k̄ = 2300× 1118,

and m̄0 = m̄1 = m̄2 = 0.15 × 1118. The simulation results

are shown in Fig. 6. It can be seen that the algorithm is still

valid for this large scale power system, and the convergence

time is comparable with the case for the IEEE 9-bus system.
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Fig. 6. Power generations and estimated incremental costs produced by (4),
(6), and (7) tested on the IEEE 118-bus system.

VI. CONCLUSION

In this paper, distributed algorithms based on dynamic

average consensus, leader-following consensus and the saddle

point dynamics are proposed to solve the economic dispatch

problem. The proposed algorithm does not require any initial-

ization procedure to design the initial values of the variables

and find the global information such as the total load and the

entire communication topology. Global exponential stability of

the optimal solution is derived if the capacity limits are not

considered, and practical stability of the optimal solution is

proved when the capacity limits are considered. Several case

studies are conducted to show the effectiveness of the proposed

algorithms.

APPENDIX A

PROOF OF THEOREM 1

Proof. Let U = [U1 U2] ∈ R
n×n with U1 ∈ R

n×(n−1) and

U2 ∈ R
n be an orthogonal matrix such that UT

2 L = 0. Define

[θT1 θ2]
T , UT θ where θ1 ∈ R

n−1 and θ2 ∈ R. From (4a)

and (4b), it can be derived that
[

ż

θ̇1

]

=

[

−(I + L) −LU1

UT
1 L 0(n−1)×(n−1)

] [

z

θ1

]

+

[

PD − PG

0n−1

]

, (12a)

θ̇2 =0. (12b)

Hence, θ2(t) = θ2(0), which is a stable state. Let τ = δt.

Equations (3), (4c) and (12a) in the τ -time scale can be written

as

dPG

dτ
=−K

(

∂f(PG)

∂PG

− λ

)

, (13a)

dλ0

dτ
=m0zq, (13b)

δ
dλ

dτ
=− (L+A0)λ+A01nλ0, (13c)

[

δ dz
dτ

δ dθ1
dτ

]

=

[

−(I + L) −LU1

UT
1 L 0(n−1)×(n−1)

] [

z

θ1

]
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+

[

PD − PG

0n−1

]

, (13d)

where K = diag{ki}. The system given by (13) attains a

singular perturbed form [29].

Let λe, ze and θe1 be the solutions of the following equa-

tions,

− (L+A0)λ
e +A01nλ0 = 0n,

[

−(I + L) −LU1

UT
1 L 0(n−1)×(n−1)

] [

ze

θe1

]

+

[

PD − PG

0n−1

]

= 02n−1.

Since L + A0 is positive definite, λe = 1nλ0. By Lemma 1

and Lemma 2.1 in [30], ze = 1
n
1n1

T
n (PD − PG), and θe1 is a

linear function of PG.

The reduced system of (13) is
[

dPG

dτ
dλ0

dτ

]

= H2

[

PG

λ0

]

+ b1,

where

H2 =

[

−diag{2kiai} [ki]vec

−m0

n
1
T
n 0

]

, b1 =

[

−[kibi]vec
m0

n
1nPD

]

.

Define

P ,

[

diag{
√
ki} 0n

0
T
n

√

m0

n

]

.

It can be derived that

P−1H2P =

[

−diag{2kiai}
√

m0

n
[
√
ki]vec

−
√

m0

n
[
√
ki]

T
vec 0

]

.

P−1H2P is Hurwitz by Lemma 3. As a result, H2 is Hurwitz

due to similarity transformation. Define φ̃ ,

[

PG − P ∗
G

λ0 − λ∗0

]

,

by noticing that

[

P ∗
G

λ∗0

]

= −H−1
2 b1, it can be derived that

dφ̃

dτ
= H2φ̃. (15)

Thus, the reduced system is exponentially stable.

Define ψ , [λT , zT , θT1 ]
T , ψe , [λeT , zeT , θeT1 ]T and

ψ̃ , ψ − ψe. Then we have the boundary layer model

δ
dψ̃

dτ
= H1ψ̃, (16)

where

H1 =





−(L+A0) 0n×n 0n×(n−1)

0n×n −(I + L) −LU1

0(n−1)×n UT
1 L 0(n−1)×(n−1)



 .

Since

[

−(I + L) −LU1

UT
1 L 0(n−1)×(n−1)

]

is Hurwitz due to

Lemma 3 and −(L + A0) is Hurwitz, H1 is Hurwitz. Thus,

the boundary-layer system is exponentially stable.

Therefore, from Theorem 11.4 in [29] and noticing that the

closed loop system is linear, it can be concluded that there

exists a positive constant δ∗ such that for every 0 < δ < δ∗,

PG converges to P ∗
G exponentially.

APPENDIX B

PROOF OF THEOREM 2

Proof. First, we check the stability of the following auxiliary

system,

˙PGi =− ki

(

dfi(PGi)

dPGi

− λ0 + αi − βi

)

, (17a)

α̇i =mi1αi(PGi − Pmax
Gi ), (17b)

β̇i =mi2βi(P
min
Gi − PGi), (17c)

λ̇0 =
m0

n
(

n
∑

i=1

PDi −
n
∑

i=1

PGi). (17d)

Consider the Lyapunov function candidate inspired by [31],

Vr =

n
∑

i=1

1

2ki
(PGi − P ∗

Gi)
2 +

n

2m0
(λ0 − λ∗0)

2

+

n
∑

i=1

(

1

mi1
(αi − α∗

i − α∗
i log(αi) + α∗

i log(α
∗
i ))

+
1

mi2
(βi − β∗

i − β∗
i log(βi) + β∗

i log(β
∗
i ))

)

,

where (P ∗
G, γ

∗) is a saddle point of L2(PG, γ). Denoting the

derivative of Vr along (17) as V̇rr. Then we have

V̇rr ≤ L2(P
∗
G, γ)− L2(PG, γ

∗) ≤ 0.

Because (P ∗
G, γ

∗) is the saddle point of L2(PG, γ), V̇rr = 0
if and only if L2(P

∗
G, γ)−L2(P

∗
G, γ

∗) = 0 and L2(P
∗
G, γ

∗)−
L2(PG, γ

∗) = 0 . Since L2(PG, γ) is strictly convex in PG,

L2(P
∗
G, γ

∗)−L2(PG, γ
∗) = 0 if and only if PG = P ∗

G. When

PG = P ∗
G, P ∗

Gi−Pmax
Gi ≤ 0, Pmin

Gi −P ∗
Gi ≤ 0 and

∑n

i=1 PDi−
∑n

i=1 P
∗
Gi = 0. L2(P

∗
G, γ)− L2(P

∗
G, γ

∗) = 0 implies

n
∑

i=1

αi(P
∗
Gi − Pmax

Gi ) +
n
∑

i=1

βi(P
min
Gi − P ∗

Gi)

=

n
∑

i=1

α∗
i (P

∗
Gi − Pmax

Gi ) +
n
∑

i=1

β∗
i (P

min
Gi − P ∗

Gi) = 0.

Since P ∗
Gi −Pmax

Gi ≤ 0, Pmin
Gi −P ∗

Gi ≤ 0 and αi ≥ 0, βi ≥ 0,

it can be derived that

αi(P
∗
Gi − Pmax

Gi ) = 0, βi(P
min
Gi − P ∗

Gi) = 0. (18)

When PG = P ∗
G,

˙PGi = −ki (2aiP ∗
Gi + bi − λ0 + αi − βi) = 0. (19)

Above all, γ satisfies the KKT conditions (5). As a result,

V̇rr = 0 only when PG = P ∗
G and (P ∗

G, γ) is a saddle point

of L2(PG, γ).
When Pmin

Gi < P ∗
Gi < Pmax

Gi , αi = βi = 0 at V̇rr = 0
from (18). For i ∈ {1, ..., n}, define Nin = {i|Pmin

Gi <

P ∗
Gi < Pmax

Gi }, Nmax = {i|P ∗
Gi − Pmax

Gi = 0} and Nmin =
{i|Pmin

Gi −P ∗
Gi = 0}. Since any two of Pmin

Gi < P ∗
Gi < Pmax

Gi ,

P ∗
Gi − Pmax

Gi = 0 and Pmin
Gi − P ∗

Gi = 0 cannot be satisfied

simultaneously, Nin

⋂

Nmax = ∅, Nin

⋂

Nmin = ∅ and

Nmax

⋂

Nmin = ∅. Let ei ∈ R
n denote an n dimensional

column vector whose ith element is equal to 1 and other
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elements are equal to zero. Define a matrix Af ∈ R
n×n whose

ith column is

col[Af ]i =







−ei, i ∈ Nmax

ei, i ∈ Nmin

0n, i ∈ Nin

.

Remove the zero columns of Af and define the remaining

matrix as Aa ∈ R
n×(n−|Nin|), where |Nin| is the number of

elements of Nin. For γ, if i ∈ Nin, remove αi and βi; if

i ∈ Nmax, remove βi; if i ∈ Nmin, remove αi. Define the

remaining vector of γ as γa. From (19) it can be derived that

[1n Aa]γa = diag {2ai}P ∗
G + [bi]vec.

Since [1n Aa] has full column rank by Assumption 3, γa is

unique. As a result, γ∗ is unique. Define φ̄ = [(PG−P ∗
G)

T (γ−
γ∗)T ]T . Thus, V̇rr < 0 for all φ̄ 6= 0. From Lemma 4.3 in [29],

there exists a K function W (‖φ̄‖) such that V̇rr ≤ −W (‖φ̄‖).
Following the variable transformation in Theorem 1, the

consensus algorithm (4) can be expressed as

˙̃
ψ =H1ψ̃ − ψ̇e. (20)

Since H1 is Hurwitz, there exists symmetric positive definite

matrix P1 such that H1P1 + P1H
T
1 = −Q1 for any given

symmetric positive definite matrix Q1.

Let V = ψ̃TP1ψ̃ + Vr. For every (PG, λ0) that belongs to

a compact set, calculating the derivative of V along (6), (7)

and (20) gives

V̇ =− ψ̃TQ1ψ̃ − 2ψ̃TP1ψ̇e + δV̇rr + δ(PG − P ∗
G)

T λ̃

+ δn(λ0 − λ∗)z̃q

≤− λmin(Q1)‖ψ̃‖2 + δd1‖ψ̃‖2 + δd2‖ψ̃‖‖φ̃‖ − δW (‖φ̄‖)

≤−(λmin(Q1)−δd1−δd2ǫ1)‖ψ̃‖2−δW (‖φ̄‖)+ δd2

4ǫ1
‖φ̃‖2,

where d1, d2 are some positive constants, and ǫ1 is a positive

constant that can be arbitrarily chosen. For a positive constant

ǫ2, by selecting δ <
λmin(Q1)

d1+d2ǫ1+ǫ2
, δ∗, then

V̇ ≤ −δǫ2‖ψ̃‖2 − δW (‖φ̄‖) + δd2

4ǫ1
‖φ̃‖2

≤ −δW ′(‖(ψ̃, φ̄)‖) + o(δǫ−1
1 )

≤ −δ
2
W ′(‖(ψ̃, φ̄)‖), ∀‖(ψ̃, φ̄)‖ > W

′−1(2o(ǫ−1
1 )),

where W ′(‖(ψ̃, φ̄)‖) = ǫ2‖ψ̃‖2 +W (‖φ̄‖). Thus, from Theo-

rem 4.18 in [29], the conclusion is obtained.

REFERENCES

[1] A. Parisio, E. Rikos, and L. Glielmo, “A model predictive control
approach to microgrid operation optimization,” IEEE Transactions on

Control Systems Technology, vol. 22, no. 5, pp. 1813–1827, Jan. 2014.
[2] K. Ma, G. Hu, and C. J. Spanos, “Distributed energy consumption

control via real-time pricing feedback in smart grid,” IEEE Transactions

on Control Systems Technology, vol. 22, no. 5, pp. 1907–1914, Feb.
2014.

[3] M. Ye and G. Hu, “Game design and analysis for price-based demand
response: An aggregate game approach,” IEEE transactions on cyber-

netics, vol. 47, no. 3, pp. 720–730, Mar. 2017.
[4] S. Yang, S. Tan, and J. X. Xu, “Consensus based approach for economic

dispatch problem in a smart grid,” IEEE Transactions on Power Systems,
vol. 28, no. 4, pp. 4416–4426, Nov. 2013.

[5] A. J. Wood and B. F. Wollenberg, Power generation, operation, and

control. John Wiley & Sons, 2012.

[6] T. Guo, M. Henwood, M. Van Ooijen et al., “An algorithm for combined
heat and power economic dispatch,” IEEE Transactions on Power

Systems, vol. 11, no. 4, pp. 1778–1784, Nov. 1996.

[7] C. E. Lin, S. T. Chen, and C. L. Huang, “A direct newton-raphson
economic dispatch,” IEEE Transactions on Power Systems, vol. 7, no. 3,
pp. 1149–1154, Aug. 1992.

[8] D. C. Walters and G. B. Sheble, “Genetic algorithm solution of economic
dispatch with valve point loading,” IEEE transactions on Power Systems,
vol. 8, no. 3, pp. 1325–1332, Aug. 1993.

[9] Z.-L. Gaing, “Particle swarm optimization to solving the economic
dispatch considering the generator constraints,” IEEE transactions on

power systems, vol. 18, no. 3, pp. 1187–1195, Aug. 2003.

[10] Z. Zhang and M. Y. Chow, “Convergence analysis of the incremental cost
consensus algorithm under different communication network topologies
in a smart grid,” IEEE Transactions on Power Systems, vol. 27, no. 4,
pp. 1761–1768, Nov. 2012.

[11] S. Kar and G. Hug, “Distributed robust economic dispatch in power
systems: A consensus+ innovations approach,” in IEEE Power and

Energy Society General Meeting. San Diego, CA, USA: IEEE, Jul.
2012, pp. 1–8.

[12] H. Xing, Y. Mou, M. Fu, and Z. Lin, “Distributed bisection method for
economic power dispatch in smart grid,” IEEE Transactions on Power

Systems, vol. 30, no. 6, pp. 3024–3035, Nov. 2015.

[13] Y. Zhang, N. Rahbari Asr, and M. Y. Chow, “A robust distributed
system incremental cost estimation algorithm for smart grid economic
dispatch with communications information losses,” Journal of Network

and Computer Applications, vol. 59, pp. 315–324, Jan. 2016.

[14] C. Li, X. Yu, W. Yu, T. Huang, and Z. Liu, “Distributed event-triggered
scheme for economic dispatch in smart grids,” IEEE Transactions on

Industrial Informatics, no. 99, pp. 1–11, Oct. 2015.

[15] F. Guo, C. Wen, J. Mao, and Y.-D. Song, “Distributed economic dispatch
for smart grids with random wind power,” IEEE Transactions on Smart

Grid, vol. 7, no. 3, pp. 1572–1583, May 2016.

[16] A. Cherukuri and J. Cortes, “Initialization-free distributed coordination
for economic dispatch under varying loads and generator commitment,”
Automatica, vol. 74, pp. 183–193, Dec. 2016.

[17] P. Yi, Y. Hong, and F. Liu, “Initialization-free distributed algorithms for
optimal resource allocation with feasibility constraints and application to
economic dispatch of power systems,” Automatica, vol. 74, pp. 259–269,
Dec. 2016.

[18] A. Cherukuri and J. Cortés, “Distributed generator coordination for
initialization and anytime optimization in economic dispatch,” IEEE

Transactions on Control of Network Systems, vol. 2, no. 3, pp. 226–
237, Sep. 2015.

[19] S. S. Kia, J. Cortes, and S. Martinez, “Singularly perturbed algorithms
for dynamic average consensus,” in European Control Conference,
Zurich, Switzerland, Jul. 2013, pp. 1758–1763.

[20] S. Baros, “Predictable wind power via distributed control of wind
generators with integrated storage,” in American Control Conference,
Boston, MA, USA, Jul. 2016, pp. 5873–5878.

[21] J. George, R. A. Freeman, and K. M. Lynch, “Robust dynamic average
consensus algorithm for signals with bounded derivatives,” in American

Control Conference. Seattle, WA, USA: IEEE, May 2017, pp. 352–357.

[22] M. Ye and G. Hu, “Distributed nash equilibrium seeking by a consensus
based approach,” IEEE Transactions on Automatic Control, vol. 62,
no. 9, pp. 4811–4818, Sep. 2017.

[23] R. A. Freeman, P. Yang, and K. M. Lynch, “Stability and convergence
properties of dynamic average consensus estimators,” in IEEE Confer-

ence on Decision and Control, San Diego, CA, USA, Dec. 2006, pp.
338–343.

[24] W. Ren and R. W. Beard, Distributed consensus in multi-vehicle coop-

erative control. Springer, London, 2008.

[25] H. B. Durr, E. Saka, and C. Ebenbauer, “A smooth vector field for
quadratic programming,” in IEEE Conference on Decision and Control,
Maui, HI, USA, Dec. 2012, pp. 2515–2510.

[26] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[27] A. Cherukuri, B. Gharesifard, and J. Cortes, “Saddle-point dynamics:
conditions for asymptotic stability of saddle points,” SIAM Journal on

Control and Optimization, vol. 55, no. 1, pp. 486–511, Feb. 2017.

[28] “Power system test case archive [online],” Available:

http://www.ee.washington.edu/research/pstca/.

[29] H. Khalil, Nonlinear Systems. Prentice Hall, 3rd edition, 2002.



9

[30] A. Menon and J. S. Baras, “Collaborative extremum seeking for wel-
fare optimization,” in IEEE Conference on Decision and Control, Los
Angeles, CA, USA, Dec. 2014, pp. 346–351.

[31] M. Ye and G. Hu, “Distributed extremum seeking for constrained net-
worked optimization and its application to energy consumption control in
smart grid,” IEEE Transactions on Control Systems Technology, vol. 24,
no. 6, pp. 2048–2058, Nov. 2016.


