
Distributed Edge Caching via Reinforcement

Learning in Fog Radio Access Networks

Liuyang Lu1,2,3, Yanxiang Jiang1,2,3,∗, Mehdi Bennis4, Zhiguo Ding5, Fu-Chun Zheng1,6, and Xiaohu You1

1National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
2State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710071, China

3Key Laboratory of Wireless Sensor Network & Communication, Shanghai Institute of Microsystem and

Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China
4Centre for Wireless Communications, University of Oulu, Oulu 90014, Finland

5School of Electrical and Electronic Engineering, University of Manchester, Manchester, UK
6School of Electronic and Information Engineering, Harbin Institute of Technology, Shenzhen 518055, China

∗E-mail: yxjiang@seu.edu.cn

Abstract—In this paper, the distributed edge caching problem
in fog radio access networks (F-RANs) is investigated. By con-
sidering the unknown spatio-temporal content popularity and
user preference, a user request model based on hidden Markov
process is proposed to characterize the fluctuant spatio-temporal
traffic demands in F-RANs. Then, the Q-learning method based
on the reinforcement learning (RL) framework is put forth
to seek the optimal caching policy in a distributed manner,
which enables fog access points (F-APs) to learn and track the
potential dynamic process without extra communications cost.
Furthermore, we propose a more efficient Q-learning method
with value function approximation (Q-VFA-learning) to reduce
complexity and accelerate convergence. Simulation results show
that the performance of our proposed method is superior to those
of the traditional methods.

Index Terms—Fog radio access networks, distributed edge
caching, Q-learning, content popularity, user preference.

I. INTRODUCTION

The rapid development of smart devices and mobile ap-

plications brings an unprecedented traffic pressure to the

wireless networks [1]. To cope with this challenge and meet

the stringent quality of service (QoS) standards, significant

changes to the cellular infrastructure are required [2]. One

promising such change is through the dense deployment of

caching resources at network edges [3]. At this point, fog radio

access network (F-RAN) [4] has been proposed as an evolution

form of heterogeneous cloud radio access networks. By taking

full advantage of computing and storage capabilities in edge

devices, F-RANs can effectively reduce the backhaul load by

prefetching and caching the most popular contents. In F-RAN,

edge devices with limited resources are fog access points (F-

APs). Due to the resource constraints, distributed caching has

been considered as a practical mechanism in F-RANs, which

does not require information exchange between neighboring

F-APs, thus can reduce the network overhead effectively. To

strategically prefetch contents in a distributed manner, each

F-AP must learn how, what and when to cache, while taking

into account storage limitations, cache refreshing costs and

fluctuant spatio-temporal traffic demands.

There are many traditional distributed caching methods

including belief propagation-based algorithm [5], alternation

direction method of multipliers algorithm [6], and game theory

based algorithm [7]. However, those existing works [5], [6],

[8] presume that the popularity profile is known in advance and

keeps stationary over long time span, which is not practical.

Hence, an increasing number of works in distributed caching

have focused on entailing the edge ability of learning content

popularity. In [9], a perturbed version of content popularity

was learned in an online fashion to simplify the decentralized

cache problem to a multi-armed bandit problem. The cache

content placement problem in single base station was cast

into a reinforcement learning (RL) framework and an online

method to learn the spatial and temporal content popularity

profile was presented in [10]. This method considers the influ-

ence of the global popularity towards the requests of a local

region, which inevitablely introduces additional information

exchanging cost. To reduce this kind of network overhead,

a distributed caching policy based on a game of independent

learning automata was proposed in [11] to minimize the down-

loading latency by observing the instantaneous exchanged

information between learners and environment. This policy can

achieve a fully distributed caching procedure which ignores

the priori knowledge of regional content popularity, whereas

it leads to a slow learning speed. However, the content popu-

larity considered in [9]–[11] is not prudent enough to reflect

the demand statistic of users at a certain time and region.

Specifically, when there are few users with high mobility

in the region, the probability of a particular content being

requested is much more likely to depend on the long-term

user characteristics [12], [13], while content popularity is more

inclined to capture regional features.

Motivated by the aforementioned discussions and consid-

erations, a distributed edge caching method is proposed in

this paper to optimize the edge caching policy in F-RANs.

First, we propose a user request model to describe the fluctuant

spatio-temporal traffic demands in F-RANs by considering the

joint influence of content popularity and user preference. Then,

we cast the edge caching problem of each F-AP into the RL

framework by defining a learning environment and designing a

Fig. 1. Illustration of the edge caching scenario in the F-

RAN.

suitable reward function. Furthermore, the Q-learning method

is put forth to seek the optimal edge caching policy in

a distributed manner, where each F-AP acts independently

without extra information exchange. Finally, we propose a

more efficient Q-learning method with value function approxi-

mation (Q-VFA-learning) to reduce complexity and accelerate

convergence.

The rest of this paper is organized as follows. In Section II,

the system model is elaborately described. The problem for-

mulation and the proposed RL-based distributed edge caching

method are presented in Section III. Simulation results are

provided in Section IV, and the main conclusions are drawn

in Section V.

II. SYSTEM MODEL

A. Network Model

The considered F-RAN is illustrated in Fig. 1, where a large

amount of F-APs are deployed. At the network edge, the F-

APs with limited resources are connected to the cloud content

center via the backhaul link. Let F = {1, 2, . . . , f, . . . , F}
denote the content library, which is located in the cloud content

center. For simplicity, it is assumed that all contents have the

exactly same size and each F-AP can store up to B (B ≤ F)

contents. Meanwhile, a time-slotted system is considered. Let

gt denote the user group that consists of the users served by

the F-AP during time slot t. Assume that there are N users

in the user group gt and let N = {1, 2, . . . , n, . . . , N} denote

the set of the N users.

B. User Request Model

The probability that a certain user requests some certain

content is determined by the spatio-temporal content popular-

ity as well as the user preference. The content popularity and

the user preference are modeled by using two independent

and identically distributed Markov chains as shown in Fig.

2, where the corresponding information is collected at the

beginning of each time slot. This kind of setting characterizes

an environment with fluctuant spatio-temporal traffic demands.

In the setting, the user group gt consists of the dynamically

arriving and leaving users, while a certain user’s prefer-

ence is fixed. Meanwhile, the content popularity is variant

over time and space. Let P =
{

P1,P2, . . . ,P|P|
}

and Q
=

{

Q1,Q2, . . . ,Q|Q|
}

denote the implied state sets of the

content popularity and the user preference. Specifically, the

dimensions of the implied states in the Markov chains are

assumed known in advance, while the underlying transition

probabilities are considered unknown.

1) Content popularity: Let df (t) denote the amount of the

instantaneous user requests towards the f th content during

time slot t. Correspondingly, Let pf (t) denote the regional

content popularity of the f th content, which can be expressed

as follows,

pf (t) =
df (t)

∑

f∈F df (t)
. (1)

2) User preference: During time slot t, let xn(t) ∈ R
M

denote the user characteristic vector [14] with dimension M

describing the preferences of the nth user. Meanwhile, let

yf (t) ∈ R
M denote the content feature vector [15] with

dimension M describing the features of the f th content. Take

video as an example: the user characteristics and content

features can be described in the aspects such as time validity,

video type, video resolution. Without loss of generality, we

normalize the various dimensions of xn(t) ∈ [0, 1]M and

yf (t) ∈ [0, 1]M . Then, we introduce a parameter α to the

kernel function in [16] to dynamically reflect the correlation

between the nth user and the f th content. Let g[xn(t),yf (t)]
denote the kernel function. Then it can be expressed as follows,

g[xn(t),yf (t)] = (1− < xn(t),yf (t) >)
log(1−α)

, (2)

where <,> denotes the inner product operator. Note that 0 ≤
α < 1. When α→ 1−, we have,

g[xn(t),yf (t)]→

{

0, xn(t) ̸= yf (t)
1, xn(t) = yf (t),

(3)

which indicates that no user has the same preference. When

α = 0, we have g[xn(t),yf (t)] = 1 for any n and f , which

indicates that the user preferences are the same for every

content. According to (2), we can deduce that g[xn(t),yf (t)]
takes values in [0, 1], and a lower value indicates a higher

probability of the corresponding request. Let qf (t) denote the

user preference of the user group gt during time slot t for the

f th content, which can be expressed as follows,

qf (t) =
1

N

∑

n∈N
g[xn(t),yf (t)]. (4)

C. Edge Caching Model

The considered time-slotted system is depicted in Fig. 2

where a batch of requests arrives at the beginning of each

time slot t = 1, 2, . . . , T , where T is considered to be a finite

time horizon. Let af (t) denote the cache indicator for the

considered F-AP during time slot t. Specifically, af (t) = 1
indicates that the f th content is cached during time slot t and

af (t) = 0 otherwise. Correspondingly, caching decisions are

made in the control unit of the considered F-AP. At the end of

Fig. 2. The schematic depicting the user request model and

the edge caching model.

each time slot t, the control unit changes the current caching

indicator af (t) to the upcoming af (t+ 1).

III. THE RL-BASED DISTRIBUTED EDGE CACHING

METHOD

In this section, we first formulate the distributed edge

caching optimization problem in F-RANs by casting the

problem into the RL framework. Then, the Q-VFA-learning

method is proposed to seek the optimal edge caching policy.

A. Problem Formulation in the RL Framework

Distributed edge caching effectively reduces the commu-

nication overhead since F-APs are supposed to act inde-

pendently without extra information exchange. In the RL

framework, the RL agent only uses the evaluative feedback

from the environment as a performance measure. Hence RL

is a proper tool to realize the sequential decision problem

of the distributed edge caching. During time slot t, the RL

agent receives a state s(t) in the state space S and selects

an action a(t) from the action space A with probability

P (s′|s,a) = P[s(t + 1) = s′|s(t) = s,a(t) = a], where
∑

s
′∈S P (s′|s,a) = 1. The agent’s behavior here is a policy

π(a|s), which is also considered as a mapping from state s

to action a. The instantaneous reward of taking action a(t) in

state s(t) is r(t). The object of the agent is to find a policy,

that minimizes the long-term reward value from each state

[17].

To eventually formulate the problem in the RL framework,

the four fundamental elements in the caching optimization

problem are to be introduced. Specifically, the F-AP is the

learning agent in this problem.

State Space: ∀f ∈ F , let the user preference qf (t), content

popularity pf (t) and the last cached decision af (t− 1) form

the state space of the agent F-AP during time slot t. For

simplification, let p = [p1(t), . . . , pf (t), . . . , pF (t)]
T and

q = [q1(t), . . . , qf , . . . , qF (t)]
T denote the current content

popularity vector and the current user preference vector. Let

S =
{

s1, s2, . . . , s|S|
}

denote the state space, where |S|
represents the dimension of the state space.

Action Space: In order to meet the storage constraint of the

F-AP, every possible action in the action set A should satisfy

the following condition,
∑

f∈F
af (t) = B, af (t) ∈ {0, 1}. (5)

Note that the dimension of the action set A is |A|. Let

a(t) = [a1(t), . . . , af (t), . . . , aF (t)]
T denote the current ac-

tion, likewise the upcoming action a(t+ 1).
Reward: Cache hit rate is a common measure of the caching

performance, hence it is adopted as the reward function in the

RL framework for this optimization problem. Let θ(t) denote

the cache hit rate during time slot t, which can be expressed

as follows,

θ(t) =

∑

f∈F df (t)af (t)
∑

f∈F df (t)
. (6)

Let r(t) denote the instantaneous reward during time slot t,

which can be expressed as follows,

r(t) = 1− θ(t). (7)

The agent can achieve a good performance of the long-term

cache hit rate when the average reward is minimized.

Action Value Function: Let Qπ(s,a) denote the value

function following the policy π. Then, it can be expressed

as follows,

Qπ(s,a) = E [
∑∞

τ=t
γτ−tr(s(τ),a(τ))]

s(τ)=s,a(τ)=a
,

where γ ∈ (0,1] denotes the discount factor. The discount

factor γ reflects to what degree the future reward is affected

by the past actions. Action value function is a prediction of

the expected accumulative reward over infinite time horizon,

which measures the optimality of each state-action pair. In

other words, action value function helps to determine which

and when the content should be cached. Due to the Markov

property, i.e., the state at the subsequent time slot is only

determined by the current state and irrelevant to the for-

mer states, the action value function can be decomposed

into the Bellman equation Qπ(s,a) =
∑

s
′ p(s′|s,a)[r +

γ
∑

a
′ π(a′|s′)Qπ(s

′,a′)]. The optimal action value function

Q∗(s,a) = minπ Qπ(s,a) can be decomposed into the

Bellman optimality equation Q∗(s,a) =
∑

s
′ p(s′|s,a)[r +

γmina′ Q∗(s′,a′)]. Exploiting the Bellman equation and the

Bellman optimality equation, we can use RL to solve the

dynamic programming problem [17]. First, the agent evaluates

Qπ(s,a) for the current policy π. Then, the policy is updated

as follows,

π′ = argmin
a

Qπ(s,a).

The objective of this paper is to determine the optimal

policy π∗ such that the average reward of any state s can

be minimized. More specifically, the RL-based optimization

problem is formulated as follows,

min
π∗

E [Qπ∗(s,a)], ∀s ∈ S. (8)

B. Optimal Edge Caching via Q-learning Method and Q-VFA-

learning Method

1) Q-learning Method: Q-learning is an off-policy control

method and an online algorithm in the RL framework, which

is one of the most widely-used strategies to determine the

best policy π∗. By considering the unknown information of

P (s′|s,a), ∀s,a, the Q-learning method is a typical adaptive

dynamic programming method [18] that learns and tracks the

potential dynamic environment, without the need to estimate

P (s′|s,a), ∀s,a. The update rule can be expressed as follows,

Q(s,a)← Q(s,a) + δt[r + γmin
a

′

Q(s′,a′)−Q(s,a)], (9)

where δt is the learning rate. When the agent observes the

environment during the initial iterations, δt should be set

relatively large for the agility of the learning process. While

enough observations have been accumulated, δt should be

set to a small value to maintain the precision and reliability

of the learning process. Hence, we set the learning rate

δt =
1√
t+2

as a function of time. Meanwhile, a probabilistic

exploration-exploitation approach is utilized to determine the

future actions, which guarantees the convergence of the Q-

learning method.

2) Q-VFA-learning Method: The original Q-learning

method saves the action value function Qπ(s,a) in tabular

form. Despite the simple and comprehensive features, the

applicability of Q-learning in tabular form faces practical

challenges in real networks, since the actual state or action

space is large or continuous. Value function approximation

[17] can cope with the case that the state space is unsuited for

explicit representation. With a proper function approximation

model, the agent can estimate the state value in the partitioned

space that has been visited, induce the value in cross-region

[17], and then directly estimate the value in the corresponding

space without requiring every continuous state. Linear value

function approximation [19] is a way to generalize the Q-

learning method in real setting, which is named as Q-VFA-

learning method in the following.

We propose a value function approximation model, which

considers the induced backhaul load, the mismatch cost be-

tween the caching decision and the content popularity as well

as the consideration of satisfying the user preference.

Let z1(s,a) denote the induced backhaul load when the

agent refreshes the former caching decision to a new one.

Then, it can be formulated as follows,

z1(s,a) = aT (1− ā), (10)

where ā is the original caching state during the current time

slot. The corresponding content in this case is cached during

the previous time slot while replaced by a new content.

According to the network model, the new content is sent to

the F-AP over the backhaul link from the cloud content center.

Therefore, this type of cost represents the induced backhaul

load.

Let z2(s,a) denote the mismatch cost between the caching

decision and the local content popularity during time slot t.

Then, it can be formulated as follows,

z2(s,a) = (1− a) ◦ p, (11)

where ◦ denotes the Hadamard product. This cost is incurred

when the content with high popularity is uncached, which

should be avoided. Actually, it is reasonable to consider that

the local content popularity indicates the future requests in

the region. The external factors, such as the type of the device

and the location of F-APs, would have an impact on users’

demands, which are captured as the local content popularity.

For instance, in subway or commercial district, users prefer

to requesting short-form videos for entertainment due to the

traffic and battery limits. While in living quarters, they have

more kinds of alternative choices.

Let z3(s,a) denote the degree of satisfying user preference

during time slot t, which can be formulated as follows,

z3(s,a) = (1− a) ◦ q. (12)

The corresponding content in this case is not cached but

the user preference collected at the moment is relatively

higher than those cached. Minimizing this cost is beneficial to

improve the prudence of the caching strategy by considering

user preference. Specifically, when there are few users with

high mobility in the region, the probability of a particular

content being requested is much more likely to depend on

the long-term user characteristic, while the content popularity

is more inclined to capture regional features.

Given the three costs discussed above, the cost vector with

dimension (2F +1) can be denoted as z(s,a), which can be

expressed as follows,

z(s,a) = [z1(s,a), z2(s,a)
T , z3(s,a)

T]T . (13)

The cost vector considers the joint influence of the backhaul

resource, the content popularity and the user preference.

Instead of simple superposition of the different induced costs

described in [10], here we consider more specific influence

of every content. We propose to train the weight vector w

to reflect the relative importance of every content by defining

the approximate value function Q̂(s,a;w). Then, it can be

expressed as follows,

Q̂(s,a;w) = z(s,a)Tw. (14)

According to the approximate value function Q̂(s,a;w), we

can determine the next action which can minimize the costs.

In order to guarantee convergence, a probabilistic exploration-

exploitation approach is utilized to determine the future ac-

tions.

Given the approximate value function Q̂(s,a;w) intro-

duced above, here we present how to update the weight vector

w. First, let ε̂(s,a) denote the instantaneous error during the

time slot t, which can be expressed as follows,

ε̂(s,a) = [r(s,a) + γmin
a

′

Q(s′,a′;w)−Q(s,a;w)]
2
. (15)

Then, the weight vector w can be updated by using stochastic

Algorithm 1 The Q-VFA-learning based edge caching method

1: Initialize s(0) and a(0) randomly, set w(0) to 0;

2: for t = 1, 2, . . .,T do

3: Record the previous action a(t− 1);
4: Take the action a(t) chosen probabilistically by:

5:

a(t) =

{

argmin
a(t)

Q̂(s(t),a(t);w) w.r.t. 1-ϵt

random a ∈ A w.r.t. ϵt

6: Observe the user preference q(t), the content popularity

p(t);
7: Determine the present state s(t);
8: Calculate the reward r(s,a) based on Eq. (7);

9: Get the instantaneous error ε̂(s,a) based on Eq. (15);

10: Update the weight vector wt based on Eq. (16).

11: end for

gradient descent method [17] as follows,

w ← w + ρ
√

ε̂(s,a)z(s,a), (16)

where ρ is the step size. The pseudo code for Q-VFA-learning

method is presented in Algorithm 1, where parameter ϵt trades

off exploration for exploitation during time slot t.
3) Complexity Analysis: The complexity of the policy eval-

uation step of Q-learning method is O(|S||A|), because the Q

values [20] are updated for per state-action pair. Furthermore,

given Q(s,a), ∀s,a, the complexity of the policy update step

is O(|A|). Thus, the complexity of Q-learning per iteration is

O(|S||A|). In Q-VFA-learning, the complexity of the policy

evaluation is O(|A||F |), and the complexity of the weight

vector update is O(|F |). Notice that |A| = CB
F , which means

that |A|≫ F . Therefore, to a certain extent, the Q-VFA-

learning method could resolve the curse of dimension problem

in traditional Q-learning method.

IV. SIMULATION RESULTS

In this section, the performance of the proposed RL-based

edge caching method is evaluated. We consider the F-RAN

with F = 20 and the F-AP with storage capacity B = 5.

The user preference is modeled by a five-state Markov chain

with different parameters α drawn from the kernel function.

The content popularity is modeled by a four-state Markov

chain drawn from Zipf distributions with different distribution

parameters β. We choose the Least Recently Used (LRU)

method, the Least Frequently Used (LFU) method, and the

Q-learning method as the benchmark edge caching methods.

Fig. 3 shows the cache hit rate of our proposed method

in comparison with the three benchmark methods, and the

instantaneous cache hit rate is averaged for every 100 time

slots to avoid contingency. It can be observed that the perfor-

mance of the Q-learning method and Q-VFA-learning method

are superior to those of the other methods, and the Q-VFA-

learning method achieves the largest cache hit rate. Moreover,

the cache hit rates of the Q-learning method and the Q-

VFA-learning method constantly increase until both reach the

Fig. 3. Cache hit rate versus time slot for the proposed

method and the benchmark methods.

Fig. 4. Convergence rate of the Q-learning and the Q-VFA-

learning.

maximum, while the LRU and LFU methods show fluctuations

at the beginning as a result of the inevitable cold-start problem.

In Fig. 4, we show the convergence performance of the Q-

learning method and the Q-VFA-learning method in term of

the mean discrepancy, where the mean variance of Q values is

updated in every 100 iterations in order to avoid contingency.

We have set the discount factor γ = 0.9 and the step size

ρ = 0.005 for a relatively fast convergence. It can be observed

that the Q-VFA-learning method converges faster than the Q-

learning method. The reason is that the Q values in tabular

form must be updated per state-action pair, while Q-VFA-

learning method reduces dimension of the problem as updating

the learning parameters of model characteristic per iteration.

In Fig. 5, we compare the cache hit rate of the Q-VFA-

learning method with different dimensions of the content

popularity Markov chain and the user preference Markov

chain. It can be observed that the Q-VFA-learning method

has better performance with the increase of |P| and |Q|. This

reveals that the our proposed method can adapt to the complex

environment, which contains the fluctuating content popularity

and the dynamically arriving and leaving users.

Fig. 6 shows the cache hit rate of the Q-VFA-learning

method under different library size and storage capacity of

the F-AP. It can be observed that with the increase of |A|,
the convergence becomes slower while the performance gets

better. This is due to the fact that the iteration process of the Q-

VFA-learning method makes the edge caching policy sensitive

to the dimension of the action set A. With more explorations,

Fig. 5. Cache hit rate versus time slot for the Q-VFA-learning

method under different dimensions of the content popularity

Markov chain and the user preference Markov chain.

Fig. 6. Cache hit rate versus time slot for the Q-VFA-learning

method under different library size and the storage capacity

of the F-AP.

the F-AP can track and learn a large content library more

intelligently.

V. CONCLUSIONS

In this paper, we have proposed a RL-based distributed

edge caching method by learning and tracking the potential

dynamic process of user requests. The user request model

based on hidden Markov process, which utilizes the joint influ-

ence of the local content popularity and the user preference,

has been proposed to describe the fluctuant spatio-temporal

traffic demands in F-RANs. The Q-VFA-learning method has

been proposed to seek the optimal edge caching policy and

accelerate convergence in an online fashion. Simulation results

have shown that our proposed method can achieve a better

caching performance compared to the traditional methods.

ACKNOWLEDGMENTS

This work was supported in part by the Natural Science Foundation

of China under Grant 61521061, the Natural Science Foundation of

Jiangsu Province under grant BK20181264, the Research Fund of

the State Key Laboratory of Integrated Services Networks (Xidian

University) under grant ISN19-10, the Research Fund of the Key

Laboratory of Wireless Sensor Network & Communication (Shang-

hai Institute of Microsystem and Information Technology, Chinese

Academy of Sciences) under grant 2017002, the National Basic Re-

search Program of China (973 Program) under grant 2012CB316004,

and the U.K. Engineering and Physical Sciences Research Council

under Grant EP/K040685/2.

REFERENCES

[1] E. Ahmed, A. Gani, M. Sookhak, and et al., “Application optimization in
mobile cloud computing: Motivation, taxonomies, and open challenge,”
J. Netwk. Comput. App., vol. 52, no. 9, pp. 52–68, 2015.

[2] “Cisco visual networking index: Global mobile data traffic forecast
update, 2013-2018,” 2014, [Online] Available http://goo.gl/l77HAJ.

[3] H. Kim, J. Park, M. Bennis, and et al., “Ultra-dense edge caching under
spatio-temporal demand and network dynamics,” in Proc. IEEE Int.

Conf. Commun. (ICC), May 2017, pp. 1–7.

[4] M. Peng, S. Yan, K. Zhang, and et al., “Fog-computing-based radio
access networks: Issues and challenges,” IEEE Netwk., vol. 30, no. 4,
pp. 46–53, Jul. 2016.

[5] J. Li, Y. Chen, Z. Lin, and et al., “Distributed caching for data
dissemination in the downlink of heterogeneous networks,” IEEE Trans.

Commun., vol. 63, no. 10, pp. 3553–3568, Oct. 2015.

[6] Z. Zhang and D. Liu, “A distributed scheduling algorithm for heteroge-
neous cache-enabled small cell networks using ADMM,” in Proc. IEEE

VTC 2015 Fall, Sept. 2015, pp. 1–5.

[7] Y. Hu, Y. Jiang, M. Bennis, and F. Zheng, “Distributed edge caching in
ultra-dense fog radio access networks: A mean field approach,” in Proc.

IEEE VTC 2018 Fall, Aug. 2018, pp. 1–6.

[8] H. Kenza and S. Walid, “Mean-field games for distributed caching in
ultra-dense small cell networks,” in Proc. American Control Conference,
2016, pp. 4688–4704.

[9] P. Blasco and D. Gndz, “Learning-based optimization of cache content
in a small cell base station,” in Proc. IEEE Int. Conf. Commun. (ICC),
June 2014, pp. 1897–1903.

[10] A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis, “Optimal and
scalable caching for 5G using reinforcement learning of space-time
popularities,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 1, pp.
180–190, Feb. 2018.

[11] L. Marini, J. Li, and Y. Li, “Distributed caching based on decentralized
learning automata,” in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2015,
pp. 3807–3812.

[12] Y. Jiang, M. Ma, M. Bennis, and et al., “A novel caching policy with
content popularity prediction and user preference learning in Fog-RAN,”
in Proc. 6th IEEE GLOBECOM Workshop ET5GB, Dec. 2017, pp. 1–6.

[13] ——, “User Preference Learning Based Edge Caching for Fog Radio
Access Network,” IEEE Trans. Commun., vol. 67, no. 2, pp. 1268–1283,
Feb. 2019.

[14] S. Müller, O. Atan, M. van der Schaar, and A. Klein, “Context-
aware proactive content caching with service differentiation in wireless
networks,” IEEE Trans. Wireless Commun., vol. 16, no. 2, pp. 1024–
1036, Feb 2017.

[15] J. Khan, C. Westphal, Y. Ghamridoudane, and et al., “Offloading content
with self-organizing mobile fogs,” in Proc. Int. Teletraffic Congress

(ITC), Sep. 2017, pp. 1–9.

[16] M. Leconte, G. Paschos, L. Gkatzikis, and et al., “Placing dynamic
content in caches with small population,” in Proc. 2016 IEEE Int. Conf.

Compt. Commun. (INFOCOM), April 2016, pp. 1–9.

[17] A. Barto and R. Sutton, Reinforcement learning: An introduction. MIT
press Cambridge, 2016.

[18] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Prentice-Hall, 2010.

[19] A. Geramifard, T. J. Walsh, and et al., “A tutorial on linear function
approximators for dynamic programming and reinforcement learning,
foundations and trends in machine learning,” Foundations and Trends in

Machine Learning, vol. 6, no. 4, pp. 375–451, 2013.

[20] P. Li, Y. Jiang, W. Li, and et al., “A CMDP-based approach for energy
efficient power allocation in massive MIMO systems,” in Proc. IEEE

Wireless Commun. Netwk. Conf. (WCNC), Mar. 2016, pp. 1–6.

