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DISTRIBUTED ELECTIONS IN AN ARClllMEDEAN 
RING OF PROCESSORS* 

(Preliminary Version) 

Paul M.B. Vittinyi 

SUMMARY 
The use of clocks by the individual processors, in elections in a ring of asynchronous processors 
without central control, allows a deterministic solution which requires but a linear number of 
message passes. To obtain the result it has to be assumed that the clocks measure finitely 
proportional absolute time-spans for their time units, that is, the magnitudes of elapsed time in the 
ring network satisfy the axiom of Archimedes. As a result, some basic subtilities associated with 
distributed computations are highlighted. For instance, the known nonlinear lower bound on the 
required number of message passes is cracked. For the synchronous case, in which the necessary 
assumptions hold a fortiori, the method is -asymptotically- the most efficient one yet, and of optimal 
order of magnitude. The deterministic algorithm is of -asymptotically- optimal bitcomplexity, and, in 
the synchronous case, also yields an optimal method to determine the ring size. All of these results 
improve the known ones. 

... since the centre of the sphere has no magnitude, we cannot 
conceive it to bear any ratio whatever to the surface of the sphere. 

Archimedes, The Sand-Reckoner 

Keywords & Phrases: decentralized algorithms, distributed systems, local area networks - rings, operating 
systems, communications management - message sending 

* This work will be published elsewhere. 



1. Introduction 

Consider a set of processors, arranged in a circle. Each processor has a unique name, say a positive 
integer. Apart from this, the situation for the processors is symmetrical. Communication between 
processors occurs only between neighbors around the circle. There are N processors, but this is not 
known to the processors themselves. It is a common logical organization of a network of processors to 
locate them on such a (physical or virtual) ring. A natural feature of crash recovery in computer 
networks, or other network tasks where there is no central control, consists in first reaching 
unanimous agreement on the choice of a unique leader. For example, in a token ring network, where 
the token is lost or multiplied, a single new token has to be created. Thus, following some initial, 
possibly local! disturbance observed by at least one process, the distributed processes need to find an 
extremum on which they all agree. The problem is treated in [Le, CR, HS, Fr, Bu, GM, DKR, IR]; 
ring networks in general in e.g. [DSM, St, SPC, Ta]. Elections appear to be a key problem since the 
number of message passes one has to expend, in order to reach any agreement whatever in a 
decentralized network, seems to be at least that required by leader finding, and usually not of greater 
order of magnitude (because after a leader is agreed upon the remainder is not too costly). 

Previous Solutions for Elections in Asynchronous Rings. In an asynchronous ring there is no global 
clock for synchronizing the actions. Moreover, arbitrarily long delays may occur between the 
sending and receiving of a message. Still, all such delays are finite. The easiest election strategy is to 
have each processor, which becomes aware that an election is on, send a signed message around the 
circle in one direction. If messages of lower indexed processors are not passed on by higher indexed 
processors then the only message returning to its origin is that of the highest indexed processor [Le]. 
This takes O(N2) message passes in the worst case. In [Fr] a method with bidirectional message 
passing is given using a worst case amount of 2N LlogN J + 3N message passes. In [Bu] it is shown 
that the problem requires D(N logN) message passes. Since the methods of [Fr], also [HS, Bu], use 
O(N logN) message passes, they are therefore considered to be asymptotically optimal within a 
constant multiplicative factor. The Le Lann method [Le] is superior in the sense that it operates by 
passing messages in one direction only. However, in [DKR] a one directional solution is proposed 
with O(N logN) message passes. Thus far, there is no lower bound on the average number of 
messages needed to solve the problem in the asynchronous case. 
Previous Solution for Election in a Synchronized Ring. In a synchronized ring there is a global clock, 

or some other device, which coordinates the actions in the individual processors so that they proceed 
in lock-step. The communication delay between the sending and receiving of a message is a priori 
bounded in terms of time units of the global clock. Probabilistic algorithms have been proposed 
[IR] for solving the election problem in linear time on the average, provided the size of the ring is 
known and the processes are synchronous (with communication delay zero). There is no nontrivial 
lower bound for the average number of messages in the synchronous version when the size of the 
ring is not known, nor for the general case where the size of the ring is known. 

Improved Solutions using Time and Clocks. The purpose here is to find a better way, by using clocks, 
for solving the decentralized election problem for asynchronous ring networks, which cracks the 
established lower bound [Bu]. Despite the simplicity of the method, all results below improve the 
known ones. · 

Asynchronous case. To achieve the deterministic one-directional solution with a linear number of 
message passes, the concept of asynchronicity has to be restricted to what may be called Archimedean 
asynchronicity. Unrestricted asynchronicity, it will be argued, is too harsh an environment for the 
questions at issue. That is, the D(N logN) lower bound is established in [Bu] under assumptions so 
hostile that they preclude a usable solution anyway. In addition, the proposed solution has an optimal 
bit complexity. It may need message queues. 

Solutions for distributed control problems usually do not use clocks and time and make no 
assumptions about relative time rates. This, in order to rule out constructions that depend on timing 
for their correct operation. The message pass complexity measure to determine the better one of two 
solutions is a consequence of t.'1.is expulsion of time. Sometimes time is introduced afterwards to 
determine the running time of a logically time-independent procedure. The correctness and 
termination of the solution below is independent of the timing assumptions. The message pass 



complexity and the bit complexity depend on the use of time and clocks and are better the more 
synchronous the system behaves. In Section 3 we shall express the running time complexity of the 
solution in the walk time of the ring, that is, the time for a single bit to circle the entire ring. 
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Synchronous case. The deterministic solution presented below is outright superior, viz. runs in a linear 
number of message passes, for synchronous systems, for such systems are a fortiori Archimedean. The 
bitcomplexity is optimal, and the method can be used to determine the unknown ring size in optimal 
complexity. (Optimal in the sense of order of magnitude.) The method does not need unbounded 
message queues. 

2. Decentralized leader finding using clocks 

Asynchronous Case. In asynchronous distributed systems it is usually assumed that each processor has 
its own clock. Although it may have been explicitly stated that these clocks are not synchronized, it is 
invariably either implied or stated in plain words that, although these clocks do not indicate the same 
time, there is some proportion between elapsed time spans. That is, if an interval of time has passed 
on the clock for processor A , a proportional period of time has passed on the clock for processor B . 
This assumption allows us to challenge the O(N logN) lower bound on the required number of 
message passes in [Bu]. 

We can express the assumption by stating that in the type of asynchronous network we consider, the 
magnitudes of elapsed time satisfy the axiom of Archimedes. The axiom of Archimedes holds for a 
set of magnitudes if for any pair a,b of such magnitudes, we have a <b, a =b or a >b, and if b 
exceeds a then there is a multiple na which exceeds b for some natural number n. We assume that 
the magnitudes of elapsed time, for instance as measured by local clocks amongst different 
processors or by the clock of the same processor at different times, as well as the magnitudes 
consisting of communication delays between the sending and receiving of messages, measured in for 
instance absolute physical time, all together considered as a set of magnitudes of the same kind, 
satisfy the Archimedean axiom. This is necessary since: 
-Any process, pausing indefinitely long with respect to the time-scale of the others, between events 

like the receiving and passing of a message, and also any infinite communication delay, effectively 
aborts an election in progress. A process can never be sure that it is the only one which considers 
itself elected. 
-Without physical time and clocks there is no way to distinguish a failed process from one just 

pausing between events. 
-A user or a process can tell that a system has crashed only because he has been waiting too long 

for a response. 

The nature of time and clocks in distributed systems is discussed in detail in [Le, La, GM], where 
the notion of a distributed system, in which elections as described are at all possible, agrees with 
that of an Archimedean distributed system as defined below. Clocks and timeouts are necessary 
attributes of real distributed systems [Ta]. 

Definition . A distributed system is Archimedean if the ratio of the time intervals between the ticks of 
the clocks of any pair of processors, and the ratio between the communication delay between any pair 
of processors and the time interval between the ticks of the clock of any processor, is bounded by a 
fixed integer for all time. 

The basic feature of all efficient solutions for the decentralized election problem is how to 
eliminate future losers and the messages they send fast enough. The matter is complicated by the 
symmetry of the individual processors in the ring; hence the O(N logN) lower bound on the number 
of message passes. Yet the situation for the individual processors is not entirely symmetrical, since 
they have unique names. (For a ring consisting of wholly identical processors deterministic leader 
finding is impossible, since the situation is symmetrical for each processor.) In previous solutions the 
unique names are used in the selection process to shut off losing processors or to eliminate their 
messages. Rather than using names only in comparisons, we can also use them to restrict the number 
of message passes of messages originated by future losers. To achieve this, we use time and clocks. 
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Assume that each processor has its own clock and that the absolute time span that elapses between 
the ticks of any clock, together with the greatest communication delay between two neighbors in the 
ring, is always less than a fixed multiple of the absolute time span elapsed between the ticks of any 
other clock. By setting that fixed multiple to r u / m l , where u / m is the ratio between the greatest 
absolute time interval and the least, for the given clocks, we see that the assumption holds for 
Archimedean rings of processors. 

The algorithm is basically a souped-up version of Le Lann's method. Initially all processors are 
functioning happily in their normal mode which we, for the present purposes, call being asleep . 
Suddenly, one or more awake, that is, become aware that an election is due. Between this time and 
the time the Elected One is determined, and all processors have been notified thereof, any processor 
which awakes executes the Protocol below. Processes awake spontaneously, and in any event when 
they receive a wakeup message from their anticlockwise neighbor. On notification of a successful 
election by a sleepwe/1 message a process falls asleep again. We give the Protocol, explain the method, 
prove it correct and analyse its complexity. 

Protocol to be executed when process i awakes. 

Send wakeup message to clockwise neighbor; Set k equal to i and set timer equal to 1 ; 

REPEAT IN EACH (LOCAL) TIME UNIT: 
Read incoming message M from anticlockwise neighbor (if no message is received in this time unit 
then assume M = M1 withj>i); 

if "I am asleep" and M is the sleepwe/1 message then the election is finished; #Everyone knows the 
winner is me, that is, i . The sleepwe/1 message need not contain the name of the Elected One.# 

if "I am awake" and M is the sleepwe/1 message then 

begin 
Elected One - k; 

send sleepwell message to clockwise neighbor and go asleep 
end 
if "I am awake" and M = M1 is an election message then 

begin 

end 

if j =k then 

begin 
Elected One - k ; # k = i # 
send sleepwe/1 message to clockwise neighbor and go asleep 

end 

if j <k then begin k - j; timer - f (k) end 
if J>k then 
begin 

timer - timer - 1 ; 

if timer = 0 then send Mk, containing k, to clockwise neighbor 
end 

Subsequent to the initial prodding of any processor, in N message passes around the ring, all 
processors are aware that an election is in progress. This is encouched in the Protocol as follows. Each 
processor can be asleep or awake. If a processor changes its state from asleep to awake it sends a 
wakeup message to its clockwise neighbor; a processor changes its state from asleep to awake either 
because it receives a wakeup message while asleep or spontaneously. The moment a processor is 
awake it knows that an election is in progress. In precisely N message passes of wakeup messages all 
processors in the ring are awake. The wakeup message can consist of a single bit. Now recall that all 
processors are supposed to have a unique name, which can be interpreted as a positive integer. 
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Following the wakeup message ermss10n, each- processor i generates a single election message M;. 
The Protocol states that a message M;, originating from processor i, waits f (i) of the local time units, 
of the processor which received it, before being transmitted to the clockwise next processor. Assume 
that f is a monotone strictly increasing function. Each election message M; containing i is preceded 
by a wakeup signal also originating from processor i. Thus, with respect to the election campaign, all 
processors are effectively awake, as soon as one of them is awake. During the campaign, whenever a 
message with a higher number meets a lower numbered processor, that message is annihilated. 
Whenever a lower numbered message overtakes a higher numbered message, it annihilates the latter. 
Hence, all messages -but its own- are annihilated by the lowest numbered processor and the lowest 
numbered message annihilates all other messages when it overtakes them. So all messages have been 
smashed between hammer and anvil by the time the lowest numbered message returns to its origin, 
leaving it the only one in the ring. It immediately follows that the algorithm is correct. It remains to 
estimate its complexity. Globally and absolutely speaking, u is an upper bound on the lengths of the 
individual time units increased with the largest communication delay, and m >0 is a lower bound on 
the length of the individual time units. Let, furthermore, the least name of a processor be l. Then the 
message M1 needs no more than Nj(l)u absolute time to make the tour around the ring of 
processors. Subsequently, l sends a special s/eepwell message around, informing the other processors it 
is the elected one. The sleepwell message circles the ring at top speed, so it takes no more than Nu 
absolute time. This message need not contain index /, since message M 1 has passed all processors in 
the ring and therefore set all local variables k to I. Thus, the s/eepwell message can consist of but a 
few bits. Following the original prodding, in N message passes and in no more than Nu absolute 
time, all processors are awake. In the course of these events, an election message M; can, during its 
allotted time, engage in no more than 

Nu(f (l)+ 1) 
mj(i) 

message passes. Hence, the total number of message passes in the system is not greater than: 

2N + Nu(/(/)+ 1) ~-1-
m ;raf(i) ' 

(1) 

(2) 

where I denotes the set of processor names. Thus, for f (i) ;;.,, i, the sum converges to something 
between 1 / f O') and 2 / f (/). Consequently, the number of message passes in the system is bounded 
above by 3 N u / m + 2N (I ;;.,, 1 ). Assuming that u / m does not depend on N, the method yields a 
linear upper bound on the number of message passes in the system. 

Let u' stand for the upper bound on the length of the individual time units of the clocks. Let the 
combined interprocessor signal propagation delay around the ring be w,. Then Nu ~Nu'+ w,. If 
there is some quality control in the clock factory, so that u' - m < £ for some fixed £, then a 
statistically sound assumption is to distribute the clock delays homogeneously over [u ',m ), and 
u' / m < I + f / m. This approach yields equations analogous to (1) and (2) and a similar result. 
In (1) we add 2w, above and w, below, and replace u by u'. The resulting message pass complexity 
is less than 7N + 3£N / m. 

Another measure of interest is the total number of bits passed in the system. In previous solutions the 
way of encoding the signature i in a message M; did not matter very much. Any scheme using log N 
bits sufficed. In the present solution though, we can take advantage of the fact that large messages are 
not passed often. Thus, we code the signature i of M; in dyadic numbers without leading zeroes. 
Recall, that dyadic numbers use the digits 1 and 2, with the normal binary weight in their respective 
positions, insti~ad of the customary digits O and 1, and 1, 2, 3, 4, 5, 6, · · · are encoded as 
1, 2, 11, 21, 12, 22, · · · . By the argumentation above, and assuming that the message M; contains but 
O(log i) bits, by dyadic encoding, the total number of bits passed in the system in the sketched 
strategy is bounded by 
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2N + N u (f (/)+I) L ~ . 
m ;e1f(i) 

Similar to above, for f (i) ;;a. i, the sum converges to c'log/ / f (I) for some constant c', and the 
total number of bits passed is bounded above by cNu log// m for some small constant c. 

Optimality. The number of message passes is linear in N and thus trivially optimal modulo a 
multiplicative constant. We obtained this by assuming that the processors could measure time and 
that the notions of elapsed time were boundedly related. 

The number of passed bits is linear, if we can assume that apart from the ratio u / m also / is 
independent of N. The method is in any case optimal modulo a multiplicative constant since the 
name of processor I has to be communicated to all processors. The time complexity given above is, 
for f (i) = 2;, no more than Nu(i +2), which is pretty good if I is reasonably low, like I. Note that 
any f such that limi ..... oo r / J(i) = 0, for some t:> I, gives more or less the same result. 

Synchronous case. In the synchronous case the above deterministic solution yields the various stated 
asynchronous upper bounds with u = m. This without any assumptions whatever, since synchronous 
systems are a fortiori Archimedean. Since all of the resulting bounds are linear in N and within a 
small multiplicative constant of the trivial lower bounds, for the respective measures, the solution is 
optimal. By counting time, as part of the Protocol of each processor, we can determine the ring size 
N by the extreme processor I in O(N) messages and O(N log/) bits. 

3. A closer look 

The Worst-Case Performance. For Archimedean ring networks the message pass complexity was 
shown to be 2N + 3Nu / m under the timer function f (i) = i. An objection may be that this 
contains the factor u / m. However, we may reason that though u / m is a hardware matter, f is 
part of the Protocol and thus may be adjusted to u / m . Setting f (i) to u i / m yields a number of 
message not greater than 2N + 2N(1 +I/ f (/)) < 5N (/ ;;a,, I) and a number of passed bits not 
greater than 2N + 3N log/. 

The worst what can happen by adversary scheduling both the unit delays of all processors and the 
processor placement around the ring is square in N. This shows that the estimates in the last section 
are too crude, since they can exceed this bound (by choice of u / m ). Let the unit delay of processor 
i be ui = 2N-i+I and j(i) = i. Place furthermore the processors, in ascending order, clockwise 
around the ring. Thus, I is the clockwise neighbor of N and i + l the clockwise neighbor of i, 
I :i.;.i <N. Under these conditions, no message can overtake another one, so all messages are 
annihilated by processor I. So message M; makes N - i + l message passes leading to N (N + 2) / 2 
message passes altogether. This is essentially the case covered in [Le, CR]. 

The Average-Case Perfo_rmance. In [CR] the expected number of message passes over all possible 
permutations of the processors over the ring is considered. They find N logN. We will do the same 
for the method described under the assumption that each permutation of names of processors over the 
ring has the same probability. We do not need to assume anything about the distribution of the 
delays. The walk time w = wP + ws consists of the combined I bit per station delay wP plus the signal 
propagation delay Ws over the entire ring [DSM, St, Stu, Ta]. Thus, a one-bit message circles the 
entire ring in w absolute time, and a i -bit message takes ws + wP log i absolute time. In our problem 
we have to assume that all bits of the messages are read by the processors in the ring. Reasoning 
analogous to before, the expected number of message passes in the ring is not greater than 

w +ws +wpf(l)logl 
2N + NL ---~---

iE/ Ws + wpf(i)logi 
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This is, for f(i)~i and 1~1, of O(Nw /wp) If we assume that the communication delays are 
negligible then the expected number of message passes is O(N). 

Minimal Time Performance. If, instead of the number of message passes in the system, we want to 
minimize the absolute time for the solution, then the previous solutions in the references will all do 
pretty poorly when we consider an adversary scheduling of delays, processor names and wake-up 
moments around the ring. The solution given above will take time not greater than 
2w + ws + wpf (1) log 1. By a simple variant we can eliminate the facto~ f (/). Choose f, depending on 
both the processor P; and the entering message Mj, as f(i,J) = l2'-' J in the Protocol. Then the 
winning election message M1 takes precisely ws +wplogl absolute time to circle the ring. Therefore, 
the solution time is not greater than 3w + wP (log 1 - 1 ). This is virtually the trivial lower bound. 
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