
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

P. M. B. V IT ANY I

DISTRIBUTED ELECTIONS IN AN ARCHIMEDEAN
RING OF PROCESSORS
(Pre I iminary Version)

Preprint

~
MC

IW 243/83 DECEMBER

kruislaan 413 1098 SJ amsterdam

ifflUOTHEBc MATH8v1A.ilSCH ~~
AMSTH1DAM

Printed at the Mathematical Centre, Kruislaan 413, Amsterdam, The Netherlands.

The Mathematical Centre, founded 11 February 1946, is a non-profit institution for the promotion
of pure and applied mathematics and computer science. It is sponsored by the Netherlands
Government through the Netherlands Organization for the Advancement of Pure Research
(Z.W.O.).

1980 Mathematics subject classification: 68A05, 68B20, 94C99

1982 CR. Categories: C.2.2, C.2.5, D.4.4, F.2.2

Copyright © 1983, Mathematisch Centrum, Amsterdam

by

DISTRIBUTED ELECTIONS IN AN ARClllMEDEAN
RING OF PROCESSORS*

(Preliminary Version)

Paul M.B. Vittinyi

SUMMARY
The use of clocks by the individual processors, in elections in a ring of asynchronous processors
without central control, allows a deterministic solution which requires but a linear number of
message passes. To obtain the result it has to be assumed that the clocks measure finitely
proportional absolute time-spans for their time units, that is, the magnitudes of elapsed time in the
ring network satisfy the axiom of Archimedes. As a result, some basic subtilities associated with
distributed computations are highlighted. For instance, the known nonlinear lower bound on the
required number of message passes is cracked. For the synchronous case, in which the necessary
assumptions hold a fortiori, the method is -asymptotically- the most efficient one yet, and of optimal
order of magnitude. The deterministic algorithm is of -asymptotically- optimal bitcomplexity, and, in
the synchronous case, also yields an optimal method to determine the ring size. All of these results
improve the known ones.

... since the centre of the sphere has no magnitude, we cannot
conceive it to bear any ratio whatever to the surface of the sphere.

Archimedes, The Sand-Reckoner

Keywords & Phrases: decentralized algorithms, distributed systems, local area networks - rings, operating
systems, communications management - message sending

* This work will be published elsewhere.

1. Introduction

Consider a set of processors, arranged in a circle. Each processor has a unique name, say a positive
integer. Apart from this, the situation for the processors is symmetrical. Communication between
processors occurs only between neighbors around the circle. There are N processors, but this is not
known to the processors themselves. It is a common logical organization of a network of processors to
locate them on such a (physical or virtual) ring. A natural feature of crash recovery in computer
networks, or other network tasks where there is no central control, consists in first reaching
unanimous agreement on the choice of a unique leader. For example, in a token ring network, where
the token is lost or multiplied, a single new token has to be created. Thus, following some initial,
possibly local! disturbance observed by at least one process, the distributed processes need to find an
extremum on which they all agree. The problem is treated in [Le, CR, HS, Fr, Bu, GM, DKR, IR];
ring networks in general in e.g. [DSM, St, SPC, Ta]. Elections appear to be a key problem since the
number of message passes one has to expend, in order to reach any agreement whatever in a
decentralized network, seems to be at least that required by leader finding, and usually not of greater
order of magnitude (because after a leader is agreed upon the remainder is not too costly).

Previous Solutions for Elections in Asynchronous Rings. In an asynchronous ring there is no global
clock for synchronizing the actions. Moreover, arbitrarily long delays may occur between the
sending and receiving of a message. Still, all such delays are finite. The easiest election strategy is to
have each processor, which becomes aware that an election is on, send a signed message around the
circle in one direction. If messages of lower indexed processors are not passed on by higher indexed
processors then the only message returning to its origin is that of the highest indexed processor [Le].
This takes O(N2) message passes in the worst case. In [Fr] a method with bidirectional message
passing is given using a worst case amount of 2N LlogN J + 3N message passes. In [Bu] it is shown
that the problem requires D(N logN) message passes. Since the methods of [Fr], also [HS, Bu], use
O(N logN) message passes, they are therefore considered to be asymptotically optimal within a
constant multiplicative factor. The Le Lann method [Le] is superior in the sense that it operates by
passing messages in one direction only. However, in [DKR] a one directional solution is proposed
with O(N logN) message passes. Thus far, there is no lower bound on the average number of
messages needed to solve the problem in the asynchronous case.
Previous Solution for Election in a Synchronized Ring. In a synchronized ring there is a global clock,

or some other device, which coordinates the actions in the individual processors so that they proceed
in lock-step. The communication delay between the sending and receiving of a message is a priori
bounded in terms of time units of the global clock. Probabilistic algorithms have been proposed
[IR] for solving the election problem in linear time on the average, provided the size of the ring is
known and the processes are synchronous (with communication delay zero). There is no nontrivial
lower bound for the average number of messages in the synchronous version when the size of the
ring is not known, nor for the general case where the size of the ring is known.

Improved Solutions using Time and Clocks. The purpose here is to find a better way, by using clocks,
for solving the decentralized election problem for asynchronous ring networks, which cracks the
established lower bound [Bu]. Despite the simplicity of the method, all results below improve the
known ones. ·

Asynchronous case. To achieve the deterministic one-directional solution with a linear number of
message passes, the concept of asynchronicity has to be restricted to what may be called Archimedean
asynchronicity. Unrestricted asynchronicity, it will be argued, is too harsh an environment for the
questions at issue. That is, the D(N logN) lower bound is established in [Bu] under assumptions so
hostile that they preclude a usable solution anyway. In addition, the proposed solution has an optimal
bit complexity. It may need message queues.

Solutions for distributed control problems usually do not use clocks and time and make no
assumptions about relative time rates. This, in order to rule out constructions that depend on timing
for their correct operation. The message pass complexity measure to determine the better one of two
solutions is a consequence of t.'1.is expulsion of time. Sometimes time is introduced afterwards to
determine the running time of a logically time-independent procedure. The correctness and
termination of the solution below is independent of the timing assumptions. The message pass

complexity and the bit complexity depend on the use of time and clocks and are better the more
synchronous the system behaves. In Section 3 we shall express the running time complexity of the
solution in the walk time of the ring, that is, the time for a single bit to circle the entire ring.

2

Synchronous case. The deterministic solution presented below is outright superior, viz. runs in a linear
number of message passes, for synchronous systems, for such systems are a fortiori Archimedean. The
bitcomplexity is optimal, and the method can be used to determine the unknown ring size in optimal
complexity. (Optimal in the sense of order of magnitude.) The method does not need unbounded
message queues.

2. Decentralized leader finding using clocks

Asynchronous Case. In asynchronous distributed systems it is usually assumed that each processor has
its own clock. Although it may have been explicitly stated that these clocks are not synchronized, it is
invariably either implied or stated in plain words that, although these clocks do not indicate the same
time, there is some proportion between elapsed time spans. That is, if an interval of time has passed
on the clock for processor A , a proportional period of time has passed on the clock for processor B .
This assumption allows us to challenge the O(N logN) lower bound on the required number of
message passes in [Bu].

We can express the assumption by stating that in the type of asynchronous network we consider, the
magnitudes of elapsed time satisfy the axiom of Archimedes. The axiom of Archimedes holds for a
set of magnitudes if for any pair a,b of such magnitudes, we have a <b, a =b or a >b, and if b
exceeds a then there is a multiple na which exceeds b for some natural number n. We assume that
the magnitudes of elapsed time, for instance as measured by local clocks amongst different
processors or by the clock of the same processor at different times, as well as the magnitudes
consisting of communication delays between the sending and receiving of messages, measured in for
instance absolute physical time, all together considered as a set of magnitudes of the same kind,
satisfy the Archimedean axiom. This is necessary since:
-Any process, pausing indefinitely long with respect to the time-scale of the others, between events

like the receiving and passing of a message, and also any infinite communication delay, effectively
aborts an election in progress. A process can never be sure that it is the only one which considers
itself elected.
-Without physical time and clocks there is no way to distinguish a failed process from one just

pausing between events.
-A user or a process can tell that a system has crashed only because he has been waiting too long

for a response.

The nature of time and clocks in distributed systems is discussed in detail in [Le, La, GM], where
the notion of a distributed system, in which elections as described are at all possible, agrees with
that of an Archimedean distributed system as defined below. Clocks and timeouts are necessary
attributes of real distributed systems [Ta].

Definition . A distributed system is Archimedean if the ratio of the time intervals between the ticks of
the clocks of any pair of processors, and the ratio between the communication delay between any pair
of processors and the time interval between the ticks of the clock of any processor, is bounded by a
fixed integer for all time.

The basic feature of all efficient solutions for the decentralized election problem is how to
eliminate future losers and the messages they send fast enough. The matter is complicated by the
symmetry of the individual processors in the ring; hence the O(N logN) lower bound on the number
of message passes. Yet the situation for the individual processors is not entirely symmetrical, since
they have unique names. (For a ring consisting of wholly identical processors deterministic leader
finding is impossible, since the situation is symmetrical for each processor.) In previous solutions the
unique names are used in the selection process to shut off losing processors or to eliminate their
messages. Rather than using names only in comparisons, we can also use them to restrict the number
of message passes of messages originated by future losers. To achieve this, we use time and clocks.

3

Assume that each processor has its own clock and that the absolute time span that elapses between
the ticks of any clock, together with the greatest communication delay between two neighbors in the
ring, is always less than a fixed multiple of the absolute time span elapsed between the ticks of any
other clock. By setting that fixed multiple to r u / m l , where u / m is the ratio between the greatest
absolute time interval and the least, for the given clocks, we see that the assumption holds for
Archimedean rings of processors.

The algorithm is basically a souped-up version of Le Lann's method. Initially all processors are
functioning happily in their normal mode which we, for the present purposes, call being asleep .
Suddenly, one or more awake, that is, become aware that an election is due. Between this time and
the time the Elected One is determined, and all processors have been notified thereof, any processor
which awakes executes the Protocol below. Processes awake spontaneously, and in any event when
they receive a wakeup message from their anticlockwise neighbor. On notification of a successful
election by a sleepwe/1 message a process falls asleep again. We give the Protocol, explain the method,
prove it correct and analyse its complexity.

Protocol to be executed when process i awakes.

Send wakeup message to clockwise neighbor; Set k equal to i and set timer equal to 1 ;

REPEAT IN EACH (LOCAL) TIME UNIT:
Read incoming message M from anticlockwise neighbor (if no message is received in this time unit
then assume M = M1 withj>i);

if "I am asleep" and M is the sleepwe/1 message then the election is finished; #Everyone knows the
winner is me, that is, i . The sleepwe/1 message need not contain the name of the Elected One.#

if "I am awake" and M is the sleepwe/1 message then

begin
Elected One - k;

send sleepwell message to clockwise neighbor and go asleep
end
if "I am awake" and M = M1 is an election message then

begin

end

if j =k then

begin
Elected One - k ; # k = i #
send sleepwe/1 message to clockwise neighbor and go asleep

end

if j <k then begin k - j; timer - f (k) end
if J>k then
begin

timer - timer - 1 ;

if timer = 0 then send Mk, containing k, to clockwise neighbor
end

Subsequent to the initial prodding of any processor, in N message passes around the ring, all
processors are aware that an election is in progress. This is encouched in the Protocol as follows. Each
processor can be asleep or awake. If a processor changes its state from asleep to awake it sends a
wakeup message to its clockwise neighbor; a processor changes its state from asleep to awake either
because it receives a wakeup message while asleep or spontaneously. The moment a processor is
awake it knows that an election is in progress. In precisely N message passes of wakeup messages all
processors in the ring are awake. The wakeup message can consist of a single bit. Now recall that all
processors are supposed to have a unique name, which can be interpreted as a positive integer.

4

Following the wakeup message ermss10n, each- processor i generates a single election message M;.
The Protocol states that a message M;, originating from processor i, waits f (i) of the local time units,
of the processor which received it, before being transmitted to the clockwise next processor. Assume
that f is a monotone strictly increasing function. Each election message M; containing i is preceded
by a wakeup signal also originating from processor i. Thus, with respect to the election campaign, all
processors are effectively awake, as soon as one of them is awake. During the campaign, whenever a
message with a higher number meets a lower numbered processor, that message is annihilated.
Whenever a lower numbered message overtakes a higher numbered message, it annihilates the latter.
Hence, all messages -but its own- are annihilated by the lowest numbered processor and the lowest
numbered message annihilates all other messages when it overtakes them. So all messages have been
smashed between hammer and anvil by the time the lowest numbered message returns to its origin,
leaving it the only one in the ring. It immediately follows that the algorithm is correct. It remains to
estimate its complexity. Globally and absolutely speaking, u is an upper bound on the lengths of the
individual time units increased with the largest communication delay, and m >0 is a lower bound on
the length of the individual time units. Let, furthermore, the least name of a processor be l. Then the
message M1 needs no more than Nj(l)u absolute time to make the tour around the ring of
processors. Subsequently, l sends a special s/eepwell message around, informing the other processors it
is the elected one. The sleepwell message circles the ring at top speed, so it takes no more than Nu
absolute time. This message need not contain index /, since message M 1 has passed all processors in
the ring and therefore set all local variables k to I. Thus, the s/eepwell message can consist of but a
few bits. Following the original prodding, in N message passes and in no more than Nu absolute
time, all processors are awake. In the course of these events, an election message M; can, during its
allotted time, engage in no more than

Nu(f (l)+ 1)
mj(i)

message passes. Hence, the total number of message passes in the system is not greater than:

2N + Nu(/(/)+ 1) ~-1-
m ;raf(i) '

(1)

(2)

where I denotes the set of processor names. Thus, for f (i) ;;.,, i, the sum converges to something
between 1 / f O') and 2 / f (/). Consequently, the number of message passes in the system is bounded
above by 3 N u / m + 2N (I ;;.,, 1). Assuming that u / m does not depend on N, the method yields a
linear upper bound on the number of message passes in the system.

Let u' stand for the upper bound on the length of the individual time units of the clocks. Let the
combined interprocessor signal propagation delay around the ring be w,. Then Nu ~Nu'+ w,. If
there is some quality control in the clock factory, so that u' - m < £ for some fixed £, then a
statistically sound assumption is to distribute the clock delays homogeneously over [u ',m), and
u' / m < I + f / m. This approach yields equations analogous to (1) and (2) and a similar result.
In (1) we add 2w, above and w, below, and replace u by u'. The resulting message pass complexity
is less than 7N + 3£N / m.

Another measure of interest is the total number of bits passed in the system. In previous solutions the
way of encoding the signature i in a message M; did not matter very much. Any scheme using log N
bits sufficed. In the present solution though, we can take advantage of the fact that large messages are
not passed often. Thus, we code the signature i of M; in dyadic numbers without leading zeroes.
Recall, that dyadic numbers use the digits 1 and 2, with the normal binary weight in their respective
positions, insti~ad of the customary digits O and 1, and 1, 2, 3, 4, 5, 6, · · · are encoded as
1, 2, 11, 21, 12, 22, · · · . By the argumentation above, and assuming that the message M; contains but
O(log i) bits, by dyadic encoding, the total number of bits passed in the system in the sketched
strategy is bounded by

5

2N + N u (f (/)+I) L ~ .
m ;e1f(i)

Similar to above, for f (i) ;;a. i, the sum converges to c'log/ / f (I) for some constant c', and the
total number of bits passed is bounded above by cNu log// m for some small constant c.

Optimality. The number of message passes is linear in N and thus trivially optimal modulo a
multiplicative constant. We obtained this by assuming that the processors could measure time and
that the notions of elapsed time were boundedly related.

The number of passed bits is linear, if we can assume that apart from the ratio u / m also / is
independent of N. The method is in any case optimal modulo a multiplicative constant since the
name of processor I has to be communicated to all processors. The time complexity given above is,
for f (i) = 2;, no more than Nu(i +2), which is pretty good if I is reasonably low, like I. Note that
any f such that limi oo r / J(i) = 0, for some t:> I, gives more or less the same result.

Synchronous case. In the synchronous case the above deterministic solution yields the various stated
asynchronous upper bounds with u = m. This without any assumptions whatever, since synchronous
systems are a fortiori Archimedean. Since all of the resulting bounds are linear in N and within a
small multiplicative constant of the trivial lower bounds, for the respective measures, the solution is
optimal. By counting time, as part of the Protocol of each processor, we can determine the ring size
N by the extreme processor I in O(N) messages and O(N log/) bits.

3. A closer look

The Worst-Case Performance. For Archimedean ring networks the message pass complexity was
shown to be 2N + 3Nu / m under the timer function f (i) = i. An objection may be that this
contains the factor u / m. However, we may reason that though u / m is a hardware matter, f is
part of the Protocol and thus may be adjusted to u / m . Setting f (i) to u i / m yields a number of
message not greater than 2N + 2N(1 +I/ f (/)) < 5N (/ ;;a,, I) and a number of passed bits not
greater than 2N + 3N log/.

The worst what can happen by adversary scheduling both the unit delays of all processors and the
processor placement around the ring is square in N. This shows that the estimates in the last section
are too crude, since they can exceed this bound (by choice of u / m). Let the unit delay of processor
i be ui = 2N-i+I and j(i) = i. Place furthermore the processors, in ascending order, clockwise
around the ring. Thus, I is the clockwise neighbor of N and i + l the clockwise neighbor of i,
I :i.;.i <N. Under these conditions, no message can overtake another one, so all messages are
annihilated by processor I. So message M; makes N - i + l message passes leading to N (N + 2) / 2
message passes altogether. This is essentially the case covered in [Le, CR].

The Average-Case Perfo_rmance. In [CR] the expected number of message passes over all possible
permutations of the processors over the ring is considered. They find N logN. We will do the same
for the method described under the assumption that each permutation of names of processors over the
ring has the same probability. We do not need to assume anything about the distribution of the
delays. The walk time w = wP + ws consists of the combined I bit per station delay wP plus the signal
propagation delay Ws over the entire ring [DSM, St, Stu, Ta]. Thus, a one-bit message circles the
entire ring in w absolute time, and a i -bit message takes ws + wP log i absolute time. In our problem
we have to assume that all bits of the messages are read by the processors in the ring. Reasoning
analogous to before, the expected number of message passes in the ring is not greater than

w +ws +wpf(l)logl
2N + NL ---~---

iE/ Ws + wpf(i)logi

6

This is, for f(i)~i and 1~1, of O(Nw /wp) If we assume that the communication delays are
negligible then the expected number of message passes is O(N).

Minimal Time Performance. If, instead of the number of message passes in the system, we want to
minimize the absolute time for the solution, then the previous solutions in the references will all do
pretty poorly when we consider an adversary scheduling of delays, processor names and wake-up
moments around the ring. The solution given above will take time not greater than
2w + ws + wpf (1) log 1. By a simple variant we can eliminate the facto~ f (/). Choose f, depending on
both the processor P; and the entering message Mj, as f(i,J) = l2'-' J in the Protocol. Then the
winning election message M1 takes precisely ws +wplogl absolute time to circle the ring. Therefore,
the solution time is not greater than 3w + wP (log 1 - 1). This is virtually the trivial lower bound.

REFERENCES

Bu Burns, J.E., A formal model for message passing systems. Tech. Rep. No. 91, Comp. Sci. Dept., Indiana
Univ., May 1980.

CR Chang, E., & R. Roberts, An improved algorithm for decentralized extrema-finding in circular
configurations of processes, Communications of the Ass. Comp. Mach. 22 (1979) 281 - 283.

DSM Dixon, R.C., N.G. Strole and J.D. Markov, A token-ring network for local data communications, IBM
Systems Journal 22 (1983) 47 -62.

DKR Dolev, D., M. Klawe and M. Rodeh, An O(n logn) unidirectional distributed algorithm for
extremafinding in a circle, Journal of Algorithms 3 (1982) 245 - 260.

Fr Franklin, R., On an improved algorithm for decentralized extrema finding in circular configurations of
processors, Communications of the Ass. Comp. Mach. 25 (1982) 336 - 337.

GM Garcia-Molina, H., Elections in a distributed computing system, IEEE Transactions on Computers, vol. C-
31, (1982) 48 - 59.

HS Hirschberg, D.S., & J.B. Sinclair, Decentralized extrema-finding in circular configurations of processors,
Communications of the Ass. Comp. Mach. 23 (1980) 627 - 628.

IR Itai, A., and M. Rodeh, Symmetry breaking in a distributed environment. Proceedings 22nd Ann. IEEE
Symp. on Foundations of Computer Science, 1981, 150 - 158.

Le Le Lann, G., Distributed systems - Towards a formal approach. In: 1977 IFIP Congress Proceedings,
Information Processing 77, B. Gilchrist Ed.,, North Holland, Amsterdam, 1977, 155 - 160.

La Lamport, L., Time, clocks, and the ordering of events in a distributed system, Communications of the Ass.
Comp: Mach. 21 (1978) 558 - 565.

SPC Saltzer, J.H., K.T.Pogran and D.D. Clark, Why a ring? Computer Networks 1 (1983) 223 - 231.

St Strole, N.C., A local communications network based on interconnected token-access rings: a tutorial, IBM
J. Res. Develop. 27 (1983) 481 - 496.

Stu Stuck, B.W., Calculating the maximum mean data rate in Local Area Networks, Computer 16 (1983) 5: 72
- 76.

Ta Tanenbaum, A.S., Computer Networks. Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

1 0

