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Distributed Energy Consumption Control via Real-Time
Pricing Feedback in Smart Grid
Kai Ma, Guoqiang Hu, and Costas J. Spanos

Abstract— This brief proposes a pricing-based energy control
strategy to remove the peak load for smart grid. According to
the price, energy consumers control their energy consumption
to make a tradeoff between the electricity cost and the load
curtailment cost. The consumers are interactive with each other
because of pricing based on the total load. We formulate the
interactions among the consumers into a noncooperative game
and give a sufficient condition to ensure a unique equilibrium
in the game. We develop a distributed energy control algorithm
and provide a sufficient convergence condition of the algorithm.
The energy control algorithm starts at the beginning of each time
slot, e.g., 15 min. Finally, the energy control strategy is applied
to control the energy consumption of the consumers with heating
ventilation air conditioning systems. The numerical results show
that the energy control strategy is effective in removing the peak
load and matching supply with demand, and the energy control
algorithm can converge to the equilibrium.

Index Terms— Demand response, energy control, Nash
equilibrium, noncooperative game, real-time pricing (RTP),
smart grid.

I. INTRODUCTION

MATCHING supply with demand has been an active
topic in operating electricity markets. Traditionally, we

need enough generation capacity to meet the peak load, which
requires substantial infrastructure to be idle for all but a few
hours a year. Recently, demand response has been proposed
to control the load instead of providing enough generation
capacity. In practice, demand response can be implemented
by direct load control or market-based pricing. For the direct
load control, energy providers have the ability to remotely shut
down consumer equipments on a short notice when needed
[1]–[3]. For the market-based pricing, energy providers can
adjust the load by flexible pricing, such as time of use,
critical peak pricing, and real-time pricing (RTP) [4]. With
the development of smart grid, which enables reliable and
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real-time communications between the energy providers and
the consumers, the price can be provided to the consumers
daily, hourly, or in even shorter intervals. The communications
between the energy providers and the consumers are based on
an advanced metering infrastructure, which supports the col-
lection of meter readings and the announcement of electricity
price [5].

Recently, game theory and convex optimization have been
applied to model the pricing-based demand response. For
example, the noncooperative game was used to study the cost
minimization of interactive consumers [6], [7], the charging
of large populations of plug-in electric vehicles (PEVs) [8],
and the PEV charging with disturbances and delays [9]. The
Stackelberg game was employed to formulate the energy
exchange between the PEVs and the smart grid [10], and the
interactions between the consumers and the energy providers
[11], [12]. For demand response based on convex optimization
[13]–[15], the energy control strategies and the RTP algorithms
were obtained by dual decomposition. Nevertheless, a few
papers are devoted to pricing conditions to ensure stable
demand response. In this brief, we give a sufficient pricing
condition to ensure a unique equilibrium in the pricing-based
demand response. The interactions among the consumers are
formulated into a noncooperative game, and the equilibrium
in the demand response is aligned with the Nash equilibrium
in the noncooperative game. We develop an energy control
algorithm to search for the unique equilibrium in a distributed
fashion and obtain a sufficient convergence condition of the
algorithm. To the best of our knowledge, there is no work
in the literature providing rigorous analysis of the pricing
condition to ensure a unique equilibrium in demand response.
The pricing condition can guide the energy provider to choose
the pricing function to implement stable demand response.

The rest of this brief is organized as follows. Some prelim-
inaries are given in Section II. An energy system with pricing
is formulated into a noncooperative game in Section III.
Section IV gives the pricing condition to ensure a unique
equilibrium in the game and the convergence condition of
the energy control algorithm. In Section V, the results are
applied to control the energy consumption of the consumers
with heating ventilation air conditioning (HVAC) systems. The
numerical results are shown in Section VI, and the conclusion
is drawn in Section VII.

II. PRELIMINARIES

A. Noncooperative Game

Definition 1 [16]: A noncooperative game is defined
as a triple G = {N , (Si )i∈N , (Ui (l))i∈N }, where N =
{1, 2, . . . , N} is the set of active players participating in the

1063-6536 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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game

Si = {
li
∣
∣li ∈ [

lmin
i , lmax

i

]}
(1)

is the set of possible strategies that player i can take, and Ui (l)
is the payoff function.

Definition 2 [16]: For a noncooperative game
G = {N , (Si )i∈N , (Ui (l))i∈N }, a vector of strategies
l∗ = (l∗1 , l∗2 , . . . , l∗N ) is a Nash equilibrium if and only if
Ui (l∗i , l∗−i ) ≥ Ui (l ′i , l∗−i ) for all i ∈ N and any other l ′i ∈ Si ,
where l−i = (l1, l2, . . . , li−1, li+1, . . . , lN ) denotes the set of
strategies selected by all the consumers except for consumer
i , (li , l−i ) = (l1, l2, . . . , li−1, li , li+1, . . . , lN ) denotes the
strategy profile, and Ui (li , l−i ) is the resulting payoff for the
player i given the strategies of the other players.

Lemma 1 [17]: A Nash equilibrium exists in the game
G = {N , (Si )i∈N , (Ui (l))i∈N }, if for all i ∈ N .

1) Si is a nonempty, convex, and compact subset of some
Euclidean space �N .

2) Ui (l) is continuous in l and quasi-concave in li .

B. Taguchi Loss Function

The Taguchi loss function is a statistical method that cap-
tures the cost to society due to the manufacture of imperfect
products [18]. The loss function is given as

L = θ(y − ŷ)2 (2)

where y is the value of quality characteristic, ŷ is the target
value of y, L is the loss in dollars, and θ is a constant
coefficient. The quadratic representation of the loss function
is minimum at y = ŷ, increases as y deviates from ŷ. The
Taguchi loss function defines the relationship between the
economic loss and the deviation of the quality characteristic
from the target value. For a product with target value ŷ,
ŷ ± �0 represents the deviation at which functional failure
of the product occurs. When a product is manufactured with
the quality characteristic at the extremes, ŷ + �0 or ŷ − �0,
some countermeasure must be undertaken by the customers.
Assuming the cost of countermeasure is A0 at ŷ+�0 or ŷ−�0,
we define the constant θ as

θ = A0

�2
0

. (3)

III. PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, we consider an energy system consisting
of an energy provider and several consumers. The energy
provider purchases electricity from the wholesale markets and
sells it to the consumers. We assume that the consumers
can communicate with the energy provider in real time and
schedule the energy usage of appliances with energy manage-
ment controllers (EMCs). The set of consumers is denoted
by N = {1, 2, . . . , N}, and the intended operation cycle is
divided into K time slots, indexed by k (k ∈ {1, 2, . . . , K }).
We denote the energy consumption of consumers as
lk = (lk

1 , . . . , lk
i , . . . , lk

N ), where lk
i is the energy consumption

of consumer i (i ∈ N ) in time slot k. At the beginning of each

Fig. 1. Energy system with pricing.

time slot, the energy provider publishes the electricity price
p(lk), and the consumers determine the energy consumption
to make a tradeoff between the electricity cost and the load
curtailment cost. Then, the total cost to consumer i can be
defined as

Ci (lk) =

⎧
⎪⎨

⎪⎩

V0 + p(lk)lk
i , if lk

i < lmin
i

Vi (lk
i ) + p(lk)lk

i , if lmin
i ≤ lk

i ≤ lmax
i

V1 + p(lk)lk
i , if lk

i > lmax
i

(4)

where lmin
i and lmax

i are the minimum and maximum energy
consumption of consumer i , Vi (lk

i ) denotes the load cur-
tailment cost, and p(lk)lk

i denotes the electricity cost. To
make Ci (lk) continuous, we assume Vi (lmin

i ) = V0 and
Vi (lmax

i ) = V1.

B. Energy Consumption Game

The consumers determine their energy consumption to min-
imize the total cost. This can be described as the following
individual optimization problems:1

lk∗
i = arg max

lmin
i ≤lk

i <≤lmax
i

−Vi (l
k
i ) − p(lk)lk

i , i ∈ N . (5)

The individual optimization problems are coupled with
each other by assuming the pricing function is known to the
consumers, i.e., the energy consumption strategy of each con-
sumer is affected by the energy consumption strategies of the
other consumers. This coupled optimization problem can be
formulated into a noncooperative energy consumption game,
where the consumers act as the players and select the energy
consumption strategies. The strategy space is defined by (1)
and the payoff function is denoted as Ui (lk) = −C(lk). Before
proceeding further, we need to analyze the Nash equilibrium
of the noncooperative energy consumption game. According to
Definition 2, the Nash equilibrium is a set of strategies where
no consumer has an incentive to change its strategy unilater-
ally given the strategies of the other consumers. Then, the

1The maximization is equivalent to minimizing the total cost.
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Fig. 2. Energy consumption control with RTP feedback.

Nash equilibrium can be obtained from the following
equations:

∂Ui (lk)

∂lk
i

= −dVi(lk
i )

dlk
i

− ∂p(lk)

∂lk
i

lk
i − p(lk) = 0, i ∈ N . (6)

In the subsequent sections, we omit k for convenience.

IV. MAIN RESULTS

In this section, we first give a pricing condition to ensure the
uniqueness of Nash equilibrium in the noncooperative energy
consumption game.

Theorem 1: The noncooperative energy consumption game
has a unique Nash equilibrium if p(l) is a linear rotational
symmetric function and satisfies

(N − 1)

∣
∣
∣
∣
∂p(l)
∂li

∣
∣
∣
∣ − 2

∂p(l)
∂li

≤ d2Vi (li )

dl2
i

, i ∈ N . (7)

Proof: The proof is moved to Appendix A. �
The condition (7) requires the cost function to be convex

when the number of consumers is larger than three, which is
reasonable for consumers in smart grid. For a noncooperative
game, we cannot ensure that the players always find the
Nash equilibrium even if it exists. Therefore, we will turn to
another question: how can the consumers pursue a distributed
search for the unique Nash equilibrium? We develop an
energy control algorithm based on the gradient of the payoff
function

li (m + 1) = [li (m) + αi hi (l)]
lmax
i

lmin
i

, i ∈ N (8)

where

hi (l) = −dVi(li )

dli
− ∂p(l)

∂li
li − p(l), i ∈ N (9)

where m is the iterative step and αi is the step size. As
shown in Fig. 2, the energy control algorithm (8) is embed-
ded inside the EMC in the energy system with RTP feed-
back. The distributed implementation of the control algo-
rithm is dependent on the derivative of the price, which
should be obtained by each consumer with local information.
The distributed implementation will be discussed in detail
in Section V. Next, we give the condition to ensure the
convergence of the energy control algorithm in the following
theorem.

Theorem 2: Suppose the energy consumption game has a
unique Nash equilibrium, the energy control algorithm (8)
converges to the equilibrium if the step size satisfies

αi <
2

d2Vi (li )/dl2
i + (N + 1)∂p(l)/∂li

, i ∈ N . (10)

Proof: The proof is given in Appendix B. �
The condition (10) gives an upper bound on the step

size, within which the algorithm can converge to the Nash
equilibrium. We see that the upper bound is dependent on
both the second derivative of the cost function and the first
derivative of the pricing function. Particularly, the upper bound
is changing during the iterations of the algorithm.

Remark 1: In practice, the cost function may be a com-
bination of multiple step functions [19]. In that case, we
can employ the quadratic convex function to approximate it
and obtain the optimal energy consumption of the consumers.
Then, the suboptimal energy consumption is obtained by
approximating the optimal energy consumption to the step
values.

Remark 2: The convergence speed of the algorithm is
dependent on the choice of step size [20]. From the proof
of Theorem 2, we see that the energy control algorithm can
converge in a single step when the step size is set to be
half of the upper bound, which requires the consumers to
know the pricing function and the number of consumers. This
means that the convergence speed can be optimized when the
whole pricing curve is known to the consumers. However, this
knowledge is subjected to errors stemming from infrequent
communications of that curve, which may be changing rapidly
as the gap between supply and demand is changing. Too large
errors will result in a large deviation in the step size and further
incur instability to the energy control algorithm.

Remark 3: The energy control algorithm (8) is dependent
on the gradient of the payoff function, which may not be
known to the consumers. In this case, we need advanced
optimization methods to search for the equilibrium. Several
iterative algorithms without gradient are studied in [21]–[23].
These methods can be used to design the energy control
algorithm without gradient information.

V. ENERGY CONSUMPTION CONTROL FOR CONSUMERS

WITH HVAC SYSTEMS

In this section, the energy control strategy is applied to
the consumers with HVAC systems. Before giving the control



1910 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 22, NO. 5, SEPTEMBER 2014

algorithm, we first formulate the cost and the price based on
the conditions in Theorem 1.

A. Load Curtailment Cost

For consumers with HVAC systems, the cost of changing
temperature settings is defined by the Taguchi loss function

Vi
(
T in

i (k)
) = θ

(
T in

i (k) − T̂ in
i (k)

)2
, i ∈ N (11)

where θ is the cost coefficient, and T̂ in
i (k) and T in

i (k) denote
the target indoor temperature and the actual indoor temper-
ature in time slot k, respectively. The indoor temperature of
consumer i evolves according to the following linear dynamics
[24], [25]:
T in

i (k) = T in
i (k − 1) + β

(
T out

i (k) − T in
i (k − 1)

) + γ lk
i (12)

where β and γ specify the thermal characteristics of the
HVAC system and the operating environment, T out

i denotes
the outdoor temperature, β(T out

i (k) − T in
i (k − 1)) models the

heat transfer, and γ lk
i models the energy–heat transformation

of HVAC: β > 0 if HVAC is a heater and β < 0 if HVAC
is a cooler. Assuming consumer i requires l̂k

i kWh energy to
maintain the target indoor temperature, we have

T̂ in
i (k) = T in

i (k − 1) + β
(
T out

i (k) − T in
i (k − 1)

) + γ l̂k
i . (13)

Substituting (12) and (13) into (11), we omit k and obtain the
load curtailment cost

Vi (li ) = θγ 2(li − l̂i )
2, i ∈ N . (14)

B. Real-Time Pricing

Recalling the pricing condition obtained in Theorem 1, the
pricing function should be linear and rotational symmetric.
Then, we formulate the following pricing function:

p(l) = λ
∑

i∈N
li + p0 (15)

where λ is a positive parameter to implement elastic pricing
and p0 is a basic price for unit energy consumption. Following
(7), we have:

λ ≤ 2θγ 2

N − 3
, for N > 3. (16)

It is easy to see that the pricing condition is satisfied for
N ≤ 3. The role of the electricity price is similar to the lever
principle in economics. Specifically, the energy provider will
increase the price to remove the peak load and decrease the
price to fill the valley load, which can be implemented by
regulating the parameter λ. Substituting (14) and (15) into the
payoff function Ui (l), we have

Ui (l) = −θγ 2(li − l̂i )
2 −

(

λ
∑

i∈N
li + p0

)

li , i ∈ N . (17)

Next, we will give the method for setting the pricing parameter
λ to match supply with demand at the Nash equilibrium.

Theorem 3: The matching between supply and demand is
achieved at the Nash equilibrium if the pricing parameter λ is
set to

λ∗ = 2θγ 2
( ∑

i∈N l̂i − L
) − N p0

(N + 1)L
(18)

where L is the energy supply.
Proof: The proof can be found in Appendix C. �

Substituting (18) into (15), we obtain the pricing function

p(l) =
(

2θγ 2
(∑

i∈N l̂i − L
) − N p0

(1 + N)L

) ∑

i∈N
li + p0 (19)

with which the balance of supply and demand is achieved.

C. Control Algorithm Implementation

For consumer i with the HVAC system, the energy control
algorithm is denoted as

li (m + 1) = [
li (m) + αi (2θγ 2(l̂i − li ) − λli − p(l))

]lmax
i

lmin
i

(20)

where p(l) is assumed to be known to the consumers. Then,
Algorithm (20) can be implemented in a distributed fashion
because each consumer does not need the information of the
others. In practice, the number of consumers is very large. It
is desirable to analyze the case that the number of consumers
approaches to infinity. We first give the limit of the pricing
parameter as

λ∞ = lim
N→∞

2θγ 2
(∑

i∈N l̂i − L
) − N p0

(1 + N)L

= lim
N→∞

2θγ 2 ∑
i∈N l̂

(1 + N)L
− 2θγ 2

1 + N
− N p0

(1 + N)L

≈ 2θγ 2μ − p0

L
(21)

where μ = ∑
i∈N l̂/N is the average demand of consumers.

The energy provider can estimate the average demand of
consumers from the historical data. Substituting (21) into (15),
we obtain the limit of the electricity price

p∞ = lim
N→∞ p(l) ≈ 2θγ 2μ − p0

L

∑

i∈N
li + p0. (22)

The results in (21) and (22) show that the energy provider can
set the price approximately when the number of consumers is
sufficiently large. In this case, the energy control algorithm can
be implemented with low communication overhead, because
the energy provider does not need to acquire the individual
parameters of the consumers.

D. Error Analysis

The electricity price will deviate from the optimum when
the pricing parameter is set to (21). This will further result
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TABLE I

RESPONSE PERFORMANCE

in some errors in the matching between supply and demand.
Combining with (18), we obtain the matching errors

el =
∣
∣
∣
∣∣

∑

i∈N
li − L

∣
∣
∣
∣∣

=
∣
∣∣
∣
∣
(2θγ 2 ∑

i∈N l̂i − N p0)(N + 1)eλ

	2 + eλ(N + 1)	

∣
∣∣
∣
∣

(23)

where

	 = 2θγ 2 + λ∗(N + 1) (24)

and eλ is the estimation error of the pricing parameter λ

eλ = |λ∞ − λ∗|
=

∣
∣
∣∣
∣
2θγ 2μ − p0

L
− 2θγ 2(

∑
i∈N l̂i − L) − N p0

(1 + N)L

∣
∣
∣∣
∣

=
∣
∣
∣∣
∣
2θγ 2((1 + N)μ − ∑

i∈N l̂i + L) − p0

(1 + N)L

∣
∣
∣∣
∣
. (25)

Remark 4: In practice, the energy provider first estimates
the average demand of consumers based on the historical data
and then publishes the electricity price to the consumers. Each
smart meter calculates the energy consumption plan of the
corresponding consumer by the energy control Algorithm (20)
according to the published price and then sends it back to
the energy provider. Then, the energy provider will publish a
new price to the consumers and the smart meter will send
back a new energy consumption plan to the provider. The
iterations end until all of the consumers converge to the
Nash equilibrium.

VI. NUMERICAL RESULTS

In the simulations, the entire time cycle is divided into
24 time slots representing the 24 h in a day. We evaluate
the proposed energy control strategy in an energy system with
104 consumers. The cost coefficient θ and the heat transfer
parameter γ are normalized to one. The basic price p0 is set to
0.1$/kWh. We assume that the actual load of consumers obey
normal distribution, i.e., li ∼ N(μ, σ 2

i ), where the average
demand μ is obtained from [26] and the standard deviation σi

is assumed to be 0.05 kWh.
The total load with RTP and normal pricing (NP) strategies

are shown in Fig. 3. We see that the peak load is reduced to
the limited supply with the RTP-based energy control strategy
at the peak time. In Table I, we compare the amount of load
curtailment, the daily load, the daily payments, the average
price, the peak-to-average ratio (PAR), and the response as
percent of normal day loads (�) for the two pricing strategies.

Fig. 3. Load curtailment and matching with RTP.

Fig. 4. Convergence of the energy control algorithm (convergence is defined
within 10−3 of the equilibrium).

We see that the peak load, the daily load, and the PAR
are reduced with RTP feedback, whereas the daily payments
and the average price increase a lot. Next, we study the
convergence of the energy control algorithm in one time slot
during the peak time. Assuming the step size errors are 10%,
we show the convergence of the energy control algorithm
in Fig. 4 and the changing of the electricity price during
the iterations in Fig. 5. The energy consumption converges
within five steps, and the price converges with two steps
because the total load is almost same after two iterations.
To see the impact of step size errors on the convergence speed,
we give the simulation results of the iterative steps to reach
convergence versus the step size errors in Fig. 6. We find
that the iterative steps to reach convergence increase with the
step size errors when the errors are bounded in [−90%, 90%],
whereas the energy control algorithm cannot converge to the
equilibrium when the errors are larger than 90%. We also give
the electricity price versus the number of consumers in Fig. 7.
It is concluded that the electricity price is almost constant with
the number of consumers. This shows that the price will not
change a lot when some of the consumers enter or quit the
grid.
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Fig. 5. Changing of the electricity price with iterations.

Fig. 6. Iterative steps to reach convergence versus the step size errors.

Fig. 7. Electricity price versus the number of consumers.

VII. CONCLUSION

In this brief, we propose a distributed energy control strat-
egy with RTP feedback. We find the pricing condition to
ensure a unique equilibrium in demand response and the con-
vergence condition of an energy control algorithm. The results
are further applied to the consumers with HVAC systems.
We find that the energy control strategy with RTP feedback

can remove the peak load and match supply with demand,
and the convergence speed of the energy control algorithm
decreases with the step size errors. This brief only gives a
sufficient pricing condition to ensure a unique equilibrium.
It is more meaningful to find the necessary pricing condition
or more relaxed conditions to ensure the unique equilibrium.
In addition, the energy control strategy is focused on the peak
load curtailment within the time slot. However, it is more
challenging to consider the peak load shifting across different
time slots.

APPENDIX A
PROOF OF THEOREM 1

Proof: Given the strategy space defined by (1), Si is a non-
empty, convex, and compact subset of the Euclidean space �N .
It is straightforward to see that the payoff function Ui (l) is
continuous in l . Taking the second derivative of Ui (l) with
respect to li , we have

∂2Ui (l)

∂l2
i

= −d2Vi (li )

dl2
i

− 2
∂p(l)
∂li

, i ∈ N (26)

where the terms containing the second derivative of the pricing
function are omitted because of ∂2 p(l)/∂l2

i = 0 for the linear
pricing function. Combining with (7), it is sufficient to obtain
∂2Ui (l)/∂l2

i ≤ 0, i.e., the utility function is a quasi-concave
function [20]. Following Lemma 1, the noncooperative game
has Nash equilibrium. In general, the noncooperative game
may have more than one Nash equilibrium, some of which
are not efficient solutions for the game. Next, we will prove
the uniqueness of the Nash equilibrium. First, we denote the
Jacobian matrix of dUi (l)/dli as

J =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎣

∂2U1(l)
∂l2

1

∂2U1(l)
∂l1∂l2

. . . ∂2U1(l)
∂l1∂lN

∂2U2(l)
∂l2l1

∂2U2(l)
∂l2

2
· · · ∂2U2(l)

∂l2∂lN

...
...

. . .
...

∂2UN (l)
∂lN ∂l1

∂2UN (l)
∂lN ∂l2

. . . ∂2UN (l)
∂l2

N

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎦

(27)

where the diagonal elements are denoted by (26) and the other
elements are denoted as

∂2Ui (l)
∂li∂l j

= −∂p(l)
∂l j

, i, j ∈ N , i �= j. (28)

We construct a symmetric matrix H = J + JT , where

Hi,i = −2
d2Vi (li )

dl2
i

− 4
∂p(l)
∂li

, i ∈ N (29)

and

Hi, j = −∂p(l)
∂l j

− ∂p(l)
∂li

, i, j ∈ N , i �= j. (30)

Combining with the rotational symmetry of the pricing func-
tion, we have

∂p(l)
∂l j

= ∂p(l)
∂li

, i, j ∈ N , i �= j. (31)
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Then, Hi, j can be reduced to

Hi, j = −2
∂p(l)
∂li

, i, j ∈ N , i �= j. (32)

From (7), we obtain Hi,i < 0. Combining with (7), it is
sufficient to show that H is strictly diagonally dominant

|Hi,i | ≥
∑

j �=i, j∈N
|Hi, j |, |Hi,i | ≥

∑

j �=i, j∈N
|H j,i | ∀i ∈ N . (33)

Following Gershgorin’s theorem [27], all the eigenvalues are
negative, and H is a negative definite matrix. According to the
Rosen’s result in [28], the Nash equilibrium is unique. �

APPENDIX B
PROOF OF THEOREM 2

Proof: The proof follows the similar analysis in [29]. First,
we define a mapping �i (τ ) : [0, 1] → � as

�i (τ )=τ li + (1 − τ )l∗i +αi hi (τ l+(1 − τ )l∗), i ∈ N (34)

where hi (·) is defined by (9). We denote

Gi (l)= li +αi

(
− dVi (li )

dli
− ∂p(l)

∂li
li − p(l)

)
, i ∈ N . (35)

Combining with (8), (9), and (34), we obtain

|li (m + 1) − l∗i | ≤ |Gi (l) − l∗i |
= |�i (1) − �i (0)|
=

∣
∣∣
∣

∫ 1

0

d�i (τ )

dτ
dτ

∣
∣∣
∣

≤
∫ 1

0

∣
∣
∣∣
d�i (τ )

dτ

∣
∣
∣∣ dτ

≤ max
0≤τ≤1

∣
∣
∣
∣
d�i (τ )

dτ

∣
∣
∣
∣ , i ∈ N (36)

where the first inequality is because |[Gi (l)]lmax
i

lmin
i

− l∗i | ≤
|Gi (l) − l∗i | for all i ∈ N when l∗i ∈ [

lmin
i , lmax

i

]
. Let

l̃ = τ l + (1 − τ )l∗, and then |d�i(τ )/dτ | can be further
bounded by
∣
∣
∣∣
d�i(τ )

dτ

∣
∣
∣∣

=
∣
∣
∣∣
∣
∣
(li − l∗i )(1 + αi

∂U2
i (l̃)

∂ l̃2
i

) + αi

∑

j �=i

∂U2
i (l̃)

∂ l̃i∂ l̃ j
(l j − l∗j )

∣
∣
∣∣
∣
∣

≤
∣
∣∣
∣
∣
∣
1 + αi (

∂U2
i (l̃)

∂ l̃2
i

+
∑

j �=i

∂U2
i (l̃)

∂ l̃i∂ l̃ j
)

∣
∣∣
∣
∣
∣
· ‖l − l∗‖∞, i ∈ N

(37)

where ‖l‖∞ = maxi |li |. To guarantee

0 <

∣∣
∣
∣
∣
∣
1 + αi (

∂U2
i (l)

∂l2
i

+
∑

j �=i

∂U2
i (l)

∂li∂l j
)

∣∣
∣
∣
∣
∣
< 1, i ∈ N (38)

we need

−1 < 1 + αi

(
∂U2

i (l)

∂l2
i

+
∑

j �=i

∂U2
i (l)

∂li∂l j

)
< 1, i ∈ N . (39)

Then, we obtain

αi <
−2

∂U2
i (l)

∂l2
i

+
∑

j �=i

∂U2
i (l)

∂li∂l j

, i ∈ N . (40)

Substitute (26) and (28) into (40), we obtain (10) with the
condition that the pricing function is a linear function, i.e.,
the second derivative is zero. Then, we have

max
τ∈[0,1]

∣∣
∣
∣
d�i (τ )

dτ

∣∣
∣
∣ ≤ �i‖l − l∗‖∞, i ∈ N (41)

where

0<�i =
∣
∣
∣
∣∣
∣
1+αi

⎛

⎝∂U2
i (l)

∂l2
i

+
∑

j �=i

∂U2
i (l)

∂li∂l j

⎞

⎠

∣
∣
∣
∣∣
∣
<1, i ∈ N . (42)

Combining (36) and (41), it is proved that the energy control
algorithm converges to the Nash equilibrium as m → ∞. �

APPENDIX C
PROOF OF THEOREM 3

Proof: Let the first derivative of Ui (l) with respect to li

equal to zero, we obtain

−2θγ 2(li − l̂i ) − λli − λ
∑

i∈N
li − p0 = 0, i ∈ N . (43)

Adding (43) from one to N , we have

−2θγ 2
∑

i∈N
li + 2θγ 2

∑

i∈N
l̂i − λ

∑

i∈N
li − λN

∑

i∈N
li − N p0 = 0 (44)

from which, we obtain the total load

∑

i∈N
li = 2θγ 2 ∑

i∈N l̂i − N p0

2θγ 2 + λ(N + 1)
. (45)

To match supply with demand at the equilibrium, we need
∑

i∈N
li = L . (46)

Substituting (46) into (45), we obtain λ∗ denoted by (18). �
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