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4Abstract With increasingly ubiquitous use of web-based technologies in society

5today, autonomous sensor networks represent the future in large-scale information
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9reviewed, validated sensing applications are described and the contribution of

10high-resolution temporal data to better decision-making is discussed.
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Abbreviations

mFIA34 Micro-flow injection analysis

mTAS35 Miniaturised total analysis system

ANN36 Artificial neural network

DCU37 Dublin City University

EPA38 Environmental Protection Agency

FET39 Field-effect transistor

GC40 Gas chromatography

GHG41 Greenhouse gas(es)

GPRS42 General packet radio service

GSM43 Global system for mobile communications

ICT44 Information and communication technology

IR45 Infra-red

ISE46 Ion selective electrode

LED47 Light emitting diode

LOD48 Limit of detection

MS49 Mass spectroscopy

OEJT50 Organic electrochemical junction transistors

PEDD51 Paired emitter detector diodes

SC-ISE52 Solid contact ion selective electrode

UME53 Ultra miniature electrode

VOC54 Volatile organic compound

WFD55 Water framework directive

WSN56 Wireless sensor network

57 1 Introduction

58 The past decade has witnessed a dramatic upsurge in activity and commercial

59 interest in the area of wireless sensor networks (WSNs). This is understandable

60 given the availability of infrastructure capable of providing a functioning

61 communications backbone for these devices. This infrastructure has already had

62 enormous impact on society, with people becoming accustomed to instantaneous

63 access to a wide range of information through mobile phones, laptops and digital

64 TV screens. This in turn has given rise to new industries providing services that

65 have profoundly changed how we function as individuals and how we collectively

66 function as a society. In order to survive, major industry players seek to predict
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67where the next big opportunity will come from, in order to position themselves in

68this space as early as possible before the rapid growth phase begins. However, in a

69world wherein the dynamic of change is itself accelerating and financial

70uncertainties increase risk, predicting the next big win has become critical for the

71future stability of many companies. Given this context, it is unsurprising how many

72of these major corporations are predicting the emergence of WSNs as the next big

73opportunity for the ICT (information and communication technologies) sector. For

74example, Hewlett Packard’s visionary strategy [1] for globally connected sensor

75networks envisages heterogeneous sensor networks monitoring a multitude of

76parameters and feeding this information to the “cloud” from where a host of

77service-based applications can be realized. HP’s Thought Leader Peter Hartwell

78captures the excitement of the scale of the opportunity, albeit somewhat sensation-

79ally; “one trillion nanoscale sensors and actuators will need the equivalent of 1,000

80internets: the next huge demand for computing!” Predictions from companies like

81INTEL, IBM and Nokia lead to the same conclusion, with Nokia presenting a very

82convincing case for sensor networks in its strategic vision for sensor networks (the

83Nokia visionary video “Morph” is a conceptual graphic summary of what could

84happen over the coming decade as nanotechnology-based sensing technologies and

85communications technologies begin to merge the molecular and digital worlds [2]).

86Hence there is a driving force from major industry players to develop the basic

87building blocks of WSNs, i.e., sensors with integrated communications capabilities

88[3]. It has been envisaged that WSN developments will involve a “top-down”

89emergence of sensor nodes [4]. Under such a strategy, initial activity would focus

90on relatively sophisticated systems that would fully meet the criteria of the sensing

91operation though having associated drawbacks in terms of expense and power

92consumption; once established, the focus would shift to more densely distributed

93lower-cost and lower-power intensive nodes, albeit with lower functionality. Indeed

94these two levels of node complexity can co-exist as two distinct layers of sensing

95capability, where the simpler and more expansively deployed nodes can be used to

96adjust the operating characteristics of the less densely distributed but more sophis-

97ticated devices (e.g., wake up, increase sample rate), thus circumventing the

98limitations arising from expense and power consumption. The interaction between

99two layers of sensor networks with different levels of complexity enables the

100respective advantages of dense distribution (yielding extensive temporal and spatial

101data) and sophisticated capability (involving high accuracy and reliability) to be

102capitalized upon, thus allowing what has been termed “adaptive monitoring” [5–7].

103Our specific interest in sensor networks is related to the integration of chemical

104sensors and biosensors (autonomous instruments that provide information about the

105molecular world) into sensor networks [4, 8]. In particular, we seek to identify and

106overcome the obstacles that inhibit the full realization of widely deployed chemo/

107bio-sensors in sensor networks [5]. The WSN literature is predominantly concerned

108with sensors that target physical parameters such as temperature, pressure, move-

109ment, vibration, light level, sound and such like. This is understandable, as these

110sensors tend to be low-cost, rugged, durable and reliable, maintain calibration over

111time and consume little power. Such characteristics are essential for the massive
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112 scale-up implicit in the WSN concept, as articulated above. In contrast, chemo/

113 biosensors are expensive to buy and maintain, are unreliable in autonomous opera-

114 tion, do not maintain calibration, have limited lifetime and consume considerable

115 power [9]. Our research focuses on understanding the factors underlying these very

116 considerable obstacles, and identifying strategies through which they may be

117 overcome [10].

118 Conventionally, chemical sensing begins in the laboratory under strictly con-

119 trolled conditions, which often involves the addition of chemical species that ideally

120 reacts selectively with a target analyte and subsequently changes in some measur-

121 able property that is proportional to the concentration of the target analyte; many

122 such examples exist in the literature [11–14]. More importantly to the context

123 presented here are practical examples of such chemical sensing capabilities. In

124 this contribution, we shall describe several sensing platforms that can provide

125 remote access to information arising from the molecular world of chemistry and

126 biology, and illustrate their use in several on-going environmental deployments.

127 Sections 2 and 3 shall discuss sensing technologies pertaining to gas and water

128 quality monitoring, respectively, with case studies provided to illustrate on-going

129 collaboration with relevant agencies and industrial partners. These efforts in envi-

130 ronmental monitoring endeavour to develop sophisticated sensor nodes with a view

131 to advancing to ubiquitous sensor nodes’ deployment—such networks would pro-

132 vide the flexibility, scope and comprehensiveness that simply cannot be achieved

133 from currently employed manual spot measurement techniques. The ability to

134 monitor air/water quality is essential for maintaining quality—this is exemplified

135 by the finding by Bernhardt et al. [15] that the effectiveness of $14–15bn on river

136 restoration projects in the USA between 1990 and 2005 is not fully known. Autono-

137 mous sensor networks featuring large-scale, dense distribution of sensor nodes

138 necessitate very low-cost sensor nodes with adequate reliability and longevity.

139 Such challenges are sought to be overcome by electrochemical sensors; the potential

140 of such sensors is outlined in Sect. 4. Section 5 outlines the end-to-end acquisition

141 and meaningful analysis of data collected fromWSNs. An example of an air quality

142 monitoring dataset is analyzed to illustrate the reasoning that can be derived from

143 such data and how it can be conducive to better informed decision-making based on

144 observed events. In the course of such discussion, we will demonstrate how even

145 limited scale deployments of these emerging technologies can give rise to entirely

146 new information accessible through web databases to industry, enforcement bodies,

147 government agencies and the general public alike.

148 2 Gas Sensing: Autonomous Systems for Air Quality
149 Monitoring

150 2.1 Introduction

151 Numerous motivations exist for gas detection: pollution minimization to reduce

152 emissions that adversely affect local ecosystem as well as having potential global
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153implications; human risk mitigation in the form of characterizing toxic and/or odorant

154gases; and gas handling diagnosis, where the unintentional leaking of gases from

155industrial plants and transfer pipes holds financial loss ramifications, in addition to

156posing a risk with regard to flammable or toxic gases. The impact of industrially

157generated gas emissions on the environment has prevailed in the world media in

158recent years [16, 17]. The significance of this has been further reinforced with the

159formation of international legislation to quantify and subsequently reduce harmful

160emissions [18]. The emphasis of such international efforts and media attentions has

161been targeted at the so-called greenhouse gases (GHG): carbon dioxide (CO2) and

162methane (CH4) gases have been identified as contributors to the greenhouse effect

163[19], which has been linked to climate change through modification of the insulating

164properties of Earth’s atmosphere. In addition to their contribution to the greenhouse

165effects on a global scale, gas emissions can be detrimental to their local environment.

166CO2 poses an asphyxiation risk as it is denser than air [20], while excessive CH4

167levels results in the death of surrounding vegetation [21]. Sulphur dioxide (SO2) and

168mono-nitrogen oxides (NOx), principally arising from internal combustion in auto-

169motive vehicles [22], produce acid rain from reactions with oxygen and water vapour

170to form sulphuric acid (H2SO4) and nitric acid (HNO3), respectively [23]. Further-

171more, SO2 is contributory to the formation of smog in cities [24] while nitric oxide

172(NO) leads to excess nitrogen in water, affecting water quality and consuming

173oxygen content to kill fish stocks [25]. Other examples of toxic gases are carbon

174monoxide (CO), hydrogen sulphide (H2S) and volatile organic compounds (VOCs).

175In addition to these toxins, ammonia (NH3) and methane (CH4) are unpleasant

176odorants, with CH4 also posing a significant fire hazard when existing in the highly

177flammable range of 5–15% v/v in air [26].

178The use of autonomous sensor networks can effectively fulfil the sensing

179requirements of the aforementioned target gases, especially concerning remote

180monitoring in inaccessible areas and long-term continuous acquisition. Such acqui-

181sition would enable the characterization of trends in defining the dynamics of the

182target gas generation and migration. This is demonstrated in the following sections,

183where an overview of the predominant sensor devices is outlined. Furthermore,

184these technologies are discussed in the context of developed autonomous gas

185monitoring applications.

1862.2 Gas Sensing Technologies

187In selecting the sensor technologies to fit to a specific application, the most

188prevalent criterion tends to be the minimization of sensor cost. Gas sensors tend

189to be dominant proportion of overall cost of the monitoring device, thus the

190employment of low-cost sensors would serve to reduce the annual cost of routine

191air quality monitoring. In 2000, this expenditure was estimated to be in the region of

192€320,000 per year in Ireland, excluding special studies and research aspects [27].

193With greater industrialization and the substantial increase in the volume of vehicu-

194lar traffic since then, the cost of air monitoring today has undoubtedly increased
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195 substantially in excess of this figure. Other general criteria for sensor selection are

196 power consumption and gas selectivity. Low power consumption is advantageous

197 for low operational costs and extended time deployments. Gas selectivity is appli-

198 cation dependent, where a high sensitivity for the target gas is desirable to prevent

199 interference with other gases present in the sample. The context of autonomous

200 sensor networks introduces a number of other criteria, driving the need for compact

201 and rapid acquisition devices. Traditionally, gas sensing involved the capturing of

202 an air sample either via bagging or absorption on an applicable chemical surface.

203 This sample is subsequently processed in a laboratory, using methods such as gas

204 chromatography (GC), mass spectroscopy (MS) and infrared spectroscopy [28, 29].

205 Such techniques have been used by the UK and USA environmental protection

206 agencies, whereby two methods are employed: the chamber method and the tracer

207 flux method [30–32]. The chamber method involves a volume of gas being col-

208 lected on-site using a sealed gas-tight enclosure, with the sample being transported

209 to a remote laboratory for analysis, e.g., by GC–MS. The tracer flux method

210 involves the controlled release of a tracer gas (selected to be readily distinguishable

211 from the target gas) at specific locations in the landfill, with samples being grabbed

212 at locations downwind to monitor the plume dispersion [26]. The effectiveness of

213 both methods has been reported to be comparable [33]. While these techniques

214 yield very accurate results, the laborious process and substantial time delay between

215 acquisition and results (typically spanning several days) would not be suitable for

216 critical events where a rapid detection and alerting would avert a potential catas-

217 trophe. The predominant sensor technologies employed to enable portable, real-

218 time measurements include semiconductor, pellistor, ionization, electrochemical,

219 infrared and colorimetric sensors.

220 Semiconductor sensors work on the principle that the sensor material (comprised

221 of one or more metal oxides) varies its electrical resistance depending on the

222 absorption of the target gas [34]. When no gas is present, the sensor resistance

223 returns to its default condition. Amongst other applications, these types of sensors

224 have been developed to measure NH3 with reasonably fast response times [35], SO2

225 [36] and gas compositions in catalytic convertors in car exhausts [37]. One of the

226 principle drawbacks of this type of sensor is its susceptibility to poisoning [38], i.e.,

227 the metal oxide materials become unresponsive after reactions with certain types of

228 gases, thus incapacitating the sensor. Furthermore, the behaviour of these sensors is

229 dependent on sample temperature and humidity as well as requiring the presence of

230 oxygen to function [39], hence limiting its range of applicability for WSNs.

231 Pellistor sensors detect gases that have a significantly different thermal conduc-

232 tivity to that of air [40, 41]. Heating elements incorporated into the sensor ignite the

233 target gas; the generated heat produces a change in resistance in the catalyst-loaded

234 ceramic detecting elements. Since the target gas needs to be ignited, the selectivity

235 of the device is limited to combustible gases only. Furthermore, regular mainte-

236 nance is required and measurements can become unreliable over time [42]. As with

237 semiconductor sensors, poisoning is a possibility and the presence of oxygen is

238 required for proper functioning. These limitations signify that pellistor sensors are

239 not particularly suited to WSNs.
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240There are two types of ionization detectors: flame-ionization and photo-

241ionization. The ionization of the target gas results in a change in electrical charge

242output, which is read as the sensor measurement [43]. The two methods differ by

243their means of ionization: flame-ionization employs a hydrogen-air flame to pro-

244duce the ions [44] while photo-ionization involves the gas being bombarded with

245high-energy photons (typically from the UV spectrum) [45]. These methods are

246effective at sensing organic compounds and VOCs, though the flame-ionization

247method is limited to combustible gases. Furthermore, flame-ionization has a disad-

248vantage in that it is a destructive detection method, thus not preserving the sample.

249Ionization methods involve expensive (ca. $2,500) and complex devices, thus not

250being viable as a basis for a large-scale network of nodes required for WSNs.

251The operation of electrochemical sensors is based on the oxidation or reduction

252reaction that occurs between the target gas and device electrodes [46]. Redox

253electrodes often employ amperometry, in which the electrodes are poised at a

254certain potential at which it is known the target gas can be oxidized or reduced,

255and the resulting current is proportional to the concentration; more sophisticated

256sensors use voltammetry in which the electrode voltage is varied and the resulting

257voltammogram used to quantify the concentration. The latter technique is predom-

258inantly used for aqueous samples rather than gas sensing applications. These

259sensors feature very low limits of detection in the region of parts-per-billion

260[47–50]. Electrochemical sensors have very small power consumption, an ideal

261feature when considering autonomous sensor networks. However, these sensors

262tend to have limited functional lifetime—like the other sensors based on an active

263surface, they tend to be poisoned or lose sensitivity as the surface composition

264changes over time in real environments. In addition, these sensors can experience

265interference from other gases [51]. Furthermore, the sensors’ performance is quite

266sensitive to temperature, requiring internal temperature compensation and thermal

267stability in the sample [52]. Electrochemical sensors have been used to successfully

268detect NO [47], NO2 [48, 52], H2S [49] and SO2 [50]. Developmental work in the

269area of electrochemical sensing is discussed in greater detail in Sect. 4.

270Infrared (IR) sensors are typically used to detect hydrocarbons, toxic and

271combustible gases, with limited sensitivity for VOCs [53]. The sensor is comprised

272of an IR radiation emitter and detector pair, wherein a specific portion of the IR

273bandwidth is absorbed based on the molecular vibrations of the target analyte. The

274detector is tuned to specific characteristic bands for each target gases, e.g.,

2752,360 cm�1 for the O¼C¼O stretch in CO2 [54] and 3,017 cm�1 for the C–H

276stretch in CH4 [55]. The extent of the IR wavelength absorption, as identified by the

277detector, indicates the concentration of the target gas in the sample. These types of

278sensors have excellent selectivity, range (up to 100% v/v with resolution in the

279region of parts per million), rapid response time and immunity to poisoning. Such

280characteristics are advantageous for WSNs; however, these features result in the

281sensors being quite expensive and power intensive. The presence of water vapour in

282the gas sample can also affect the IR sensing capabilities due to the airborne

283moisture absorbing IR radiation, thus potentially masking the presence of the target

284gas in humid environments [56].
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285 Colorimetric sensors involve the characterization of a colour change arising

286 from the reaction between the target gas and chemically sensitive colorimetric

287 layer [57, 58]. While the sensing surface is susceptible to changes that are not

288 due to interactions with the target (e.g., surface fouling, dye photobleaching), these

289 sensors show promise in terms of very low-cost devices, particularly when coupled

290 with colour measurement approaches such as optical fibre transducers [59] and

291 paired emitter detector diodes (PEDD) [60, 61]. Recent research has been

292 concerned with optimizing colorimetic sensors in terms of achieving stable, revers-

293 ible reactions with a distinct colour difference between protonated and

294 deprotonated states of the colorimetric states [60–64]. Such research has indicated

295 positive results for sensing CO2 and NH3.

296 Gas sensing studies such as those by Shepherd et al. have demonstrated a WSN

297 set-up within an environmental sensing chamber and showed the ability to detect

298 and track the movement of chemical plumes in gas form [57]. This study allowed

299 for an intermediate step before real deployments where the dynamics of a plumes

300 movement could be studied and modelled [65] and thereby allowing for a more

301 comprehensive understanding of chemical plume movement and detector place-

302 ment. Fraser et al. [66] developed a sensor system for detecting airborne

303 contaminants such as ammonia concentrations via the response of coated piezo-

304 electric crystals. Similarly, Klinkhachorn et al. [67] have implemented a chemical

305 sensing system with five piezoelectric quartz crystals for the detection of chemical

306 spills in hazardous waste sites. Furthermore, the work by Barko et al. [68] has

307 developed a chemical sensor array using this approach but applied the use of

308 Artificial Neural Networks (ANNs) and showed a promising way of differentiating

309 and identifying between volatile compounds (acetone, benzene, chloroform and

310 pentane). Another gas-based study based on sensor networks has been conducted by

311 Becher et al. [69] where they employed metal oxide gas sensors for the detection of

312 a multitude of evaporating hazardous materials including: organic solvents NO2,

313 O3, CH4, CO, H2S, NH3 along with other pollutants in air. Similar work was

314 reported by Somov et al. [70] with more of a focus on the sensing infrastructure

315 and methane detection. In addition, Fay et al. have placed multiple systems capable

316 of detecting greenhouse gas emissions from landfill sites for a period of ca. 3 years

317 [71] that were relatively low in cost compared to others. For instance, a study by

318 Karellas et al. [72] monitored air pollution emissions from a fire started at a factory

319 in Guelph, Ontario who manufactures chemicals for use in swimming pools. The

320 technology employed here was a mobile vehicle capable of monitoring hydrogen

321 chloride and chlorine gas emissions from the factory in real time; however, the cost

322 base for such an approach is not feasible for widespread detection systems. Fur-

323 thermore, a project known as “PROTECT” in the USA was launched where a

324 number of chemo/bio-sensing systems were installed in Penn and Grand Central

325 railway stations with each unit costing ca. $25,000 and a maintenance cost of $1.7

326 million over 3 years [73, 74]. Clearly, more widespread deployments of this kind

327 would be prohibitively expensive. The key to progress is therefore the realization of

328 lower cost, yet reliable, chemical sensing platforms that will form the basis of much

329 larger scale deployments.
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3302.3 Gas Sensing Application Case Studies

331In recent years, Diamond and co-workers [71, 75, 76] have been involved in the

332development of autonomous platforms for the real-time monitoring of gases in the

333environment. Current applications include the monitoring of GHG and odorant gases,

334specifically CO2 and CH4 produced from the anaerobic decomposition of waste at

335landfill sites. Such monitoring is relevant to the mandatory licencing terms of landfill

336sites, as regulated by the Environmental Protection Agency (EPA). Infrared gas

337sensors (sourced from Dynament Ltd., UK) were chosen for this application due to

338their range of detection, rapid response time and poisoning immunity being best

339suited to the unpredictable composition and transient fluctuations associated with

340landfill gas emissions. The compact and rugged construction of the platform, shown

341in Fig. 1, permits the platform to endure long-term deployment in inhospitable

342environments with continually successful operation [71, 75, 77].

343To date, extensive field deployment trials have been conducted at sites collabo-

344ratively selected with the Office of Environment Enforcement (OEE), the regu-

345latory division of the EPA. Systems were fitted to borehole wells located at the

346landfill perimeter to permit monitoring of any gas migration. Key deployments

347include two continuous monitoring durations in excess of 12 months (March 2010

348to March 2011): an active landfill site spanning 364 days/8,736 h in duration with

3491,148 data points collected; and a dormant site spanning 371 days/8,904 h, with

3501,255 data points collected. The full dataset from the active site, an operational

351landfill located in the north-east of Ireland, is shown in Fig. 2.

352Over the deployment duration, it can be seen that the measurements of CO2

353regularly exceeded the threshold level of 1.5% v/v as stipulated by the EPA.

354Measurements of CH4 in excess of the threshold level of 1% v/v were more

355intermittent; however, recurrent peaks can be observed that posed a particular

356concern when occupying the 5–15% v/v flammable range of CH4 in air. Such

Fig. 1 Developed autonomous landfill gas monitoring platform, (a) exploded view, (b) as
deployed on borehole well. (1) control board, (2) GSM module, (3) battery, (4) extraction pump,
(5) sample chamber and sensors, (6) protective casing
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357 high-rate temporal data afforded by the autonomous systems has hitherto been

358 unavailable to enforcement agencies and site management; research is now under-

359 way to attribute the gas generation and migration effects to causes such as weather

360 factors, landfill structure modification and extraction system effectiveness.

361 Further scope of such devices has been affirmed by the EPA and a number of

362 other interested parties with interest in the monitoring of hazardous pollutants and

363 toxins, including but not limited to NOx, CO and H2S. The modular design of the

364 platform allowed for sensors to be interchanged, broadening the number of poten-

365 tial applications for this device. Such a platform had been developed as a pilot trial

366 for the passive (i.e., sample not pumped) monitoring of carbon monoxide. Electro-

367 chemical sensors (Nemototech, Italy) were deemed to be a better choice for this

368 application due to low cost and low power consumption. The autonomous platform

369 was deployed at the exit to a multi-storey car park on DCU campus. An excerpt of

370 the data collected from this deployment is shown in Fig. 3. A number of events are

371 clearly identifiable, as annotated on the graph. Event “a” occurs between 5 and 6 pm

372 during the working week (Mon to Sat) when most people leave the DCU campus.

373 Event “b” corresponds to patrons after a show at the local theatre.

374 2.4 Conclusions

375 Cost, power consumption and selectivity form the basis for establishing a gas

376 sensing network. Regardless of the nature or location of the sensing application,
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377the remote data acquisition from IR or electrochemical sensors via an onboard

378microcontroller and communication using GSM (or, where applicable, radio

379protocols such as GPRS, ZigBee, etc.) enables the appropriate information to be

380transmitted to a central base station. From here, a representation of the statistically

381significant data is uploaded onto a secured online database, allowing a concise and

382intelligible visualization of the monitored data for the relevant authorities and

383stakeholders, as demonstrated in Fig. 2. In this way, a fully autonomous sensor

384node is realized and the value of its monitored data is validated. Current work is

385ongoing in the deployment of multiple systems on a single landfill site to form an

386integrated sensor network. This work represents a pioneering effort in monitoring

387landfill gas in Ireland, whereby distributed sensing platforms will provide increased

388temporal and spatial data. The web-based monitoring enables the site operators and

389EPA to characterize, for the first time, the transient nature of landfill gas migration

390in a real-time and fully autonomous process; this new information can in turn assist

391in the development of more effective management procedures, and control of the

392underlying processes that govern greenhouse gas emissions from such sites.

3933 Water Sensing: Reagent-Based Systems Using Optical
394Detection for Water Monitoring

3953.1 Introduction

396There is a growing need for increased monitoring of natural waters and wastewaters

397that is being motivated by significant legislative and societal drivers. To ensure that

398the quality of water bodies (including rivers, lakes, groundwater, coastal waters and

399the oceans) is protected, data on a large and growing range of chemical species are

400required. Moreover, this data needs to be available at a higher temporal and

401geographic resolution than is achievable using traditional water-monitoring
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402 practices, which have been dominated by manual sample collection followed by

403 laboratory analysis using a range of techniques. While this approach, properly

404 implemented, can provide high-quality data, it is expensive due to the high man-

405 power requirements and in some cases the high cost of analysis, and the sampling

406 frequency is consequently typically quite limited. There is, therefore, a need for

407 portable, robust, accurate water monitoring systems which can be used to measure

408 water quality in situ at relatively high frequency over extended deployment times.

409 Since the “miniaturized total analysis system” (mTAS) concept was introduced

410 by Manz et al. in 1990 [78], microfluidic or “lab-on-a-chip” technology has been

411 seen to offer a range of properties which make it suitable for the development of

412 compact, autonomous analytical devices. In this context, the advantages of

413 microfluidic sensing systems can be summarized as (1) small flow rates used,

414 typically in the mL min�1 range, which minimize sample size, reagent consumption

415 and waste generation, (2) small size, facilitating the development of compact and

416 portable analytical systems, (3) speed of analysis derived from performing chemi-

417 cal analysis on the mm scale, where diffusion-based mixing can be an efficient

418 process and (4) potential for low-cost devices. This combination of properties

419 makes microfluidic systems highly attractive as a basis for reagent-based monitor-

420 ing of chemical species in the aquatic environment.

421 There are, however, also drawbacks associated with operating at the micro-scale;

422 the small samples sizes have implications in terms of properly representing the

423 complete body of water which is to be measured, while the small size of the channels

424 and other features of micro-analytical systems means that they are susceptible to

425 blockage or interference by even fine particulate matter. The former issue can be

426 mitigated by the higher measurement frequency which is possible using in situ

427 systems, while the use of fine filters at the sampling point can minimize the latter

428 issue, although at the cost of limiting the analytical parameter to the dissolved

429 fraction of the target species. Nevertheless, issues such as these and others, including

430 interference caused by bubble formation/trapping within the analytical system, have

431 represented significant barriers to the development of truly successful microfluidics-

432 based in situ sensing systems. Although numerous and frequently highly sophisti-

433 cated micro-analytical systems have been developed and assessed under laboratory

434 conditions, examples of integrated micro-analytical devices which have been suc-

435 cessfully deployed for extended periods under real environmental conditions are

436 much scarcer. While the development of sensing nodes for the aquatic environment

437 which are sufficiently reliable and low in cost to form the basis of extensive WSNs

438 has been anticipated, realization of this goal has been more difficult to achieve. The

439 challenges to developing such systems include stability and reliability of the analyti-

440 cal system, cost and power consumption of the integrated device, robustness in harsh

441 environmental conditions and fouling due to particulate matter and microorganisms.

442 In developing an autonomous environmental monitoring device, deployable lifetimes

443 on the order of months to years are desirable, depending on the specific application.

444 Achieving such lifetimes without elevating the fabrication cost of the integrated

445 system to unviable levels can be described as the key challenge for developers. In

446 this section, we focus on integrated microfluidics-based systems for water quality

447 monitoring applications.
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4483.2 Microfluidic-Based Water Monitoring Technologies

449As the fabrication of microfluidic systems has been reviewed elsewhere [79, 80],

450we will mention this topic only briefly. A wide variety of materials and techniques

451have been used for the fabrication of microfluidic analytical systems. Some of the

452most commonly used materials include silicon, glass, and polymers such as poly

453(dimethylsiloxane) (PDMS), poly(methylmethacrylate) (PMMA) and polycarbon-

454ate. Depending on the material, application, and size and aspect ratio of features

455required, fabrication techniques including photolithography, soft lithography,

456micro-milling, injection moulding and embossing have been used to form

457microfluidic chips with a range of components such as channels, mixers, separators,

458integrated detectors, valves and pumps.

459An area which has seen significant progress is the integration of colorimetric

460methods for nutrients such as phosphate, ammonia and nitrate/nitrite into

461microfluidic manifolds with LED/photodiode-based optical detection systems.

462Worsfold and co-workers developed a miniaturized, LED-based chemical analyzer

463for in situ monitoring of nitrate [81]. The limit of detection (LOD) with a 20 mm

464path length flow cell was 2.8 mg L�1. The linear range was adjustable to suit local

465conditions in the field by changing the flow cell path length and/or sample loop

466volume. The analyzer was used in shipboard mode for mapping nitrate concentra-

467tion in the North Sea and in submersible mode for a transect of Tamar Estuary

468(UK). Doku and Haswell [82] developed a micro-flow injection analysis (mFIA)

469technique for orthophosphate based on the molybdenum blue reaction. The mFIA

470manifold was formed by etching of borosilicate glass, and electro-osmotic flow was

471used both for the mobilization of reagents and for sample injection. An LOD of

4720.1 mg mL�1 was achieved, with a rapid analysis time of 60 s and low sample/

473reagent volume (total system volume of 0.6 mL). Greenway et al. [83] produced a

474similar mFIA system for the determination of nitrite, based on the Greiss reaction to

475form an azo dye. Following optimization of the electro-osmotic flow

476characteristics, reaction chemistry, and injection time, an LOD of 0.2 mmol L�1

477was achieved. A further progression of this work [84] was to incorporate a cadmium

478reductor column within the device to use the same method for the analysis of nitrate

479in water, producing an LOD of 0.51 mmol L�1. Daridon et al. [85] investigated the

480Berthelot reaction for the determination of ammonia in water utilizing a

481microfluidic device consisting of a silicon chip between two glass plates. The

482pathlength in this device was 400 mm, and the integrated system comprised fibre

483optics coupled to an LED. High aspect ratio channels (30 mmwide � 220 mm deep)

484were used for sample/reagent mixing in order to achieve efficient diffusional

485mixing.

486Azzarro et al. [86] described an automatic colorimetric analyzer prototype

487(MicroMAC FAST MP3) for high frequency measurement of nutrients in seawater.

488This system utilizes the Berthelot method for ammonia detection, the

489sulphanilamide/ethylendiamine method for nitrate detection, and the blue

490phosphomolybdate method for phosphate detection, and LODs of 5, 2.5 and
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491 2.5 mg L�1 were reported for N-NH4, N-NO3 and P-PO4, respectively. The system

492 is based on loop flow analysis technology developed by Systea, an Italian company,

493 and has been further developed to provide a system more suited to deployment on

494 typical monitoring platforms [87]. This multi-nutrient analyzer system has been

495 trialled in collaboration with YSI Hydrodata at two locations in the UK

496 (Hannigfield Reservoir and River Blackwater Estuary) [88].

497 Other systems for in situ nutrient monitoring have been field tested by the

498 Alliance for Coastal Technologies (ACT), Chesapeake Biological Laboratory,

499 Maryland, USA [89–91]. The American Ecotech NUT 1000 was originally devel-

500 oped by Monash University and commercialized by Ecotech Pty. Ltd. The system

501 can achieve LODs for reactive phosphate of <3 mg L�1 with a response time of

502 30 s. The high sampling rate is due to the use of rapid sequenced reagent injection in

503 combination with a multi-reflection flow cell. Reagent injection also minimizes the

504 reagent consumption, allowing over 1,000 measurements to be performed with only

505 20 mL of reagent. In the ACT trials, the NUT 1000 (which is non-submersible) was

506 used for surface mapping onboard a research vessel in Monterey Bay, California

507 [90]. Very good correlation with validation samples was achieved, after correction

508 for a measurement offset of 50 mg L�1 P-PO4, which was attributed to differences

509 in refractive index of natural seawater versus the reagent grade water used for

510 preparation of internal standards and machine calibration. The ACT has also

511 reported on successful deployments of the WET Labs Cycle-P nutrient analyzer

512 [91] and the YSI 9600 Nitrate Monitor [89].

513 Vuillemin et al. [92] described a miniaturized chemical analyser (CHEMINI) for

514 dissolved iron and total sulphide, based on FIA and colorimetric analysis. Designed

515 for deep-sea applications, the system is submersible to a depth of 6,000 m, with

516 detection limits of 0.3 mM and 0.1 mM for iron and sulphide, respectively. It has

517 been used to document the chemical environment prevailing within mussel beds,

518 performing 8 assays/day over a 6-month deployment period.

519 Koch et al. [93] presented the individual microfluidic instrument components to

520 be used for an integrated micro-total-analysis device for in situ, colorimetric, water

521 quality monitoring. Components include a microfabricated filter, a passive

522 micromixer, a 1-cm pathlength microfluidic absorbance flow cell, mini-motor-

523 driven peristaltic micropumps, a miniature collapsible reagent storage bag, and

524 compact water-proof packaging.

525 Sieben and co-workers [94, 95] developed a stand-alone sensor platform with

526 integrated sub-systems, which is portable and capable of in situ reagent-based

527 nutrient analysis. The system is based on a continuous flow, microfluidic absorption

528 cell and a low cost optical detection method, together with an automated

529 microfluidic delivery. The system was characterized using the Griess reaction for

530 detection of nitrite, achieving an LOD of 14 nM. The platform can also be

531 configured to detect a range of parameters including nitrate, phosphate, iron and

532 manganese using appropriate colorimetric chemistries. In the nitrite-detection

533 configuration, the system was deployed at Southampton Dock and operated in

534 situ for 37 h, performing 284 discrete measurements.
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535Reagent stability is often a major limitation when considering methods for

536environmental monitoring. Devices ideally need to be left in the field for a significant

537period of time and give reproducible results during this time frame. Sequeira et al.

538[96] addressed the stability of the reagents for the Berthelot reaction for long-term

539monitoring applications. The three key reagents in the reaction are potassium sodium

540tartrate, phenol and hypochlorite. While potassium sodium tartrate and phenol are

541generally regarded as stable if stored properly, hypochlorite solutions are commonly

542unstable and typically decompose to form chlorate ion and oxygen over a period of

543days or weeks. It was shown that ensuring that the hypochlorite solution was free

544from contamination with Fe and Cu, which catalyze the decomposition, allowed

545long-term stable storage of the hypochlorite solution. Salicylate was also used as a

546replacement for phenol and was found to yield broadly similar analytical perfor-

547mance in terms of the sensitivity, and kinetics, while having the major advantages of

548being highly stable and non-toxic. Bowden et al. [97, 98] evaluated the vanadomo-

549lybdophosphoric acid method (yellow method) as an analytical method for the

550determination of phosphorus in water within a microfluidic device using stopped

551flow with the aim of producing an automated device with a field lifetime of 1 year. In

552this method ammonium molybdate, (NH4)6Mo7O24.7H2O, is reacted with ammo-

553nium metavanadate, NH4VO3, under acidic conditions. The combined reagent and

554sample containing orthophosphate react to form the vanadomolybdophosphoric acid

555complex, (NH4)3PO4NH4VO3.16MoO3. The resulting solution has a distinct yellow

556colour arising from the strong absorbance of this complex below 400 nm. It was

557shown that batches of the reagent could be used for over 1 year with no significant

558loss in performance [98]. This method was therefore selected in preference to the

559molybdenum blue method, due to the greater stability of the reagents used in the

560analysis, and resulted in an assay with an LOD of 0.2 mg L�1 and a dynamic linear

561range of 0–50 mg L�1
AU2(Fig. 4).

562The importance of water-based chemical sensing has been highlighted by

563driving forces such as the Water Framework Directive (WFD) [99] and review

564articles outlining the need for reliable analytical methods for monitoring chemical

565pollutants [100]. Examples of deployments reported within the literature include

566one by Wang et al. [101] where electrochemical sensors were employed in the

567detection of pH (potentiometric) and nitrate (amperometric). In addition, the work

568by Yang and Ong et al. [102, 103] has deployed a network of magnetoelastic

569sensors for the detection of pH in drinking water. Zhu et al. describes a system

570capable of remotely monitoring parameters such as pH and dissolved oxygen in a

571fish farm culture site [104]. Another study carried out by Capella et al. has reported

572the ability to measure nitrate, ammonium and chloride within Lake Albufera,

573Valencia, Spain, by means of ion-selective electrodes (ISEs) distributed and

574communicated in an in-line fashion [105]. In addition, recent works by Okoliša

575have been reported the creation of integrated WSNs for the measurement of several

576chemical species in water and wastewater [106]. Other contributions have been

577described by Ilyas/Mahgoub [107] and Buffle/Horvai [108]. Although there are

578many other examples within the literature, the ultimate driving force and imple-

579mentation of such a sensing infrastructure must be driven on a national level. For
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580 example, in Ireland, challenges exist in this area for Irish governmental agencies

581 and a key example includes the “DEPLOY” project by O’Flynn et al. examining a

582 2-year deployment of 5 sensor stations along the length of a river in Ireland capable

583 of continuously measuring parameters such as pH, conductivity, turbidity,

584 dissolved oxygen amongst others with an aim to address the demands of the

585 WFD [109].

586 3.3 Water Monitoring Application Case Studies

587 Diamond and co-workers [110–112] have developed a prototype autonomous

588 integrated microfluidic analyzer based on this method whose performance has

589 been validated in field trials in wastewater and natural waters. More recently, a

590 substantial redesign has yielded a second generation system with similar analytical

591 specifications but with significant improvements in the areas of size and portability,

592 ease of deployment, deployable lifetime and fabrication cost. The current phosphate

593 analyzer, shown in Fig. 5, is designed to autonomously sample, analyze and

594 communicate data for long periods of time in remote locations. Power is supplied

595 by a 3.6 V lithium battery. Sample is drawn into the system through a 0.45 mm filter

596 membrane. Reagent, high standard solutions and low standard solutions are stored

597 in PVC bags. A waste bag is also used to collect all waste generated by the system.

598 Fluid handling is performed using three dual channels peristaltic pump heads driven

599 by geared electric motors. One channel of each pump head pumps reagent while the

600 other pumps the sample, high standard solution or low standard solution. The dual

601 channel set-up minimizes the effect of pump outflow pulsation, an inherent property

602 of peristaltic pump set-ups. The pump outlets are connected directly to the

Fig. 4 Calibration
comparison demonstrating
long-term chemical stability
of the yellow
(vanadomolybdophosphoric
acid) method. Reproduced
with permission from [98]
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603microfluidic chip. The seven inlet/single outlet microfluidic chip can be seen in

604Fig. 6. An air inlet is also supplied to the chip. An air pump is used to flush the chip

605after each reaction cycle. The air flush reduces the effect of sample carry over and is

606also used to flush the chip on occasions when air bubbles interfere with the light

607path in the detector area.

608The optical detection system takes an absorbance measurement on the reacted

609sample through the microfluidic chip optical cuvette. The detection system consists

610of an ultra violet (ca. 380 nm) LED and photodiode. A Texas instruments MSP430

611microcontroller controls all system operations. Measurement data is stored locally

612on flash memory and also broadcast wirelessly using either short range ZigBee

613radio or GSM to a network gateway or base station. The complete system is housed

614in an IP68 rated compact enclosure (dimensions approx. 130 mm diameter by

615320 mm height).

Fig. 5 Nutrient analyzer design (1) sample inlet, (2) IP68 enclosure, (3) PVC bags, (4) dual
channel pump head, (5) microfluidic chip, (6) electronic control board, (7) battery

Fig. 6 Microfluidic chip design
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616 In a recent trial of the second generation phosphate sensor, the system was

617 deployed at a wastewater treatment plant in Co. Kildare, Ireland. The sensor was

618 used to monitor the phosphate levels in the plant’s treated effluent directly prior to

619 discharge. The system was mounted as shown in Fig. 7, with the sensor unit directly

620 immersed in the effluent while the communication unit was raised approx. 1 m

621 above the water level to ensure reliable communications were achieved.

622 An autosampler with refrigerated storage capability was installed adjacent to the

623 effluent tank and used to collect 24 samples per week for validation purposes. These

624 samples were analyzed in the laboratory using the vanadomolybdophosphoric acid

625 method. Data from the trial is shown in Fig. 8, which shows that the sensor and

626 sample readings were generally in good agreement. The unusually high levels of

627 phosphate in the effluent near the start of the trial period were due to a failure of the

628 plant’s tertiary treatment system based on ferric chloride dosing to remove phos-

629 phate by coagulation. After this system was restored to operation a gradual decrease

630 in phosphate level was observed. Thereafter, the phosphate levels were generally in

631 the 2–3 mg L�1 range. Sensor readings were not obtained from 21/05/2011 to

632 24/05/2011 due to an unusually low water level in the effluent tank, which meant

633 that sample was not accessible to the sensor.

634 3.4 Conclusions

635 A range of deployable microfluidic systems for reagent-based optical detection of

636 various water quality parameters have been developed and deployed with varying

637 degrees of success. Significant barriers to the broader uptake of these systems still

638 exist, while these vary depending on the individual system and application in question,

639 they can be summarized as (1) limited deployable lifetime due to factors such as

640 reagent stability or storage capacity, power consumption or susceptibility to biofouling,

Fig. 7 The phosphate sensor
in situ during a trial at a
wastewater treatment
plant. (a) Sensor unit.
(b) Communications unit
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641(2) relatively high cost of manufacture/operation, (3) reluctance on the part of end-users

642to move away from well-characterized and standardized laboratory methods. The key

643to overcoming these barriers is the development of low-cost systems which can operate

644reliably for extended deployment periods without the need for regular maintenance.

645The phosphate analyzer system described here has achieved significant steps towards

646the achievement of this goal, and long-term validation trials are ongoing with the aim of

647demonstrating the reliability of the data which can be collected by this system over

648longer deployment periods. Ongoing work is also focussed on implementing detection

649methods for other analytes of interest with the platform provided by the phosphate

650analyzer, while future plans include the integration of other novel components, such as

651detectors based on paired LEDs [113, 114] and a low-power conductive polymer-based

652microfluidic pump [115].

6534 Electrochemical Sensing: Potential and Challenges of Using
654Electrochemical Methods in Remote Autonomous
655Instruments

6564.1 Introduction

657There are a numerous publications on electrochemical sensors in the literature

658[116–125] due to their low potential cost and their compatibility with conventional

659mass production [118, 126, 127]. Electrochemical sensors have advantages over

660optical ones related to situations wherein the use of reactive dyes may have issues

661related to stability, toxicity and cost [123] or is precluded, for example, in strongly
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662 coloured or turbid samples [122, 124], or in cases for which no appropriate dye

663 exists. Moreover, the combination of different sensor types can offer complimen-

664 tary information allowing the extraction of a richer set of data [118]. Presently,

665 screen printing appears to be a convenient technology for the preparation of

666 electrochemical biosensors which may allow commercialization of low cost

667 devices on a large scale [128–130]. This technique allows the preparation of

668 substrates in a variety of geometries at very low cost, especially when carbon

669 inks are used [131]. Translation from conventional electrodes to screen printed

670 designs has already succeeded in many cases, particularly for biosensors aimed at

671 biomedical, environmental and industrial applications [130, 131].

672 The issue of sensor calibration in keeping the response within an accurate

673 calibration domain is particularly significant in the development of chemo/

674 bio-sensor networks [9]. In this regard, changes in the conditions of the transducing

675 surface/layer cause changes in the response characteristics, necessitating the need

676 for regular recalibration. The integration of electrochemical sensors in deployable

677 WSN platform has to cope with the latter issue; this review will give particular

678 emphasis to this aspect. Detection schemes combined with separation techniques

679 such as microdialysis, electrophoresis, chromatography and laboratory-on-a-chip

680 approaches [132] are not included here as these significantly increase the overall

681 cost. Devices like electronic noses/tongues are also not covered because they are

682 essentially an array of non-specific sensors. It is worthwhile to note that the

683 response patterns obtained are not stable over time although their potential to

684 extract complex information from the sensor array seems very powerful [133].

685 Anodic and cathodic stripping voltammetry [134–136] is commonly used as

686 analytical method to detect ions with remarkable sensitivity, often in the ppb range

687 or below, thanks to the “built-in” pre-concentration step, i.e., accumulation of

688 analyte at the electrode [127]. Currently, anodic stripping analysis combined with

689 screen printed electrodes seems to represent the best candidate for monitoring

690 heavy-metals in remotely deployed submersible sensors. Work for the creation of

691 in situ metals sensing platform has been pursued extensively in Buffle’s and

692 Wang’s group [135, 137–140], and some commercial submersible voltammetric

693 probes for trace element monitoring, e.g., Idronaut. The latter device has been used

694 for in situ monitoring of heavy metals (Pb, Cd, Cu) at subnanomolar levels in

695 coastal waters and results compared to established laboratory methodologies

696 showing good accuracy over several days of monitoring [141]. However, calibra-

697 tion standards are stored within the device and the instrument is also quite bulky and

698 prohibitively costly.

699 Stripping peak currents are not only proportional to deposition period and metal

700 concentration but also depend on the area of electrode, diffusion coefficient of the

701 species and convection rate [135]. Thus, environmental factors which may affect

702 any of the latter properties would require a recalibration of the sensing device with

703 obvious difficulty and cost to do this remotely in situ. While changes in the

704 environmental temperature may be compensated by ex situ calibration at different

705 temperature and use of a temperature probe, careful device design is required to

706 avoid the other artefacts.
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707An additional agent can be required for some substrate types, e.g., Cu2+ inhibits

708the stripping response of Pb2+whose concentration correlated with ICP-MS method

709only after masking with 0.1 M ferricyanide as complexing agent [142, 143]. This

710necessitates extra complexity in the remotely deployed sensing platform, such as

711that described in Sect. 3.3, where the masking agent would have to be stored and

712added to the sample within the instrument prior to analysis with the sensor. The use

713of reagents, where avoidable, is undesirable due to the complexity and associated

714increase in cost of the microfluidic system. The use of solid-phase extraction has

715been found to limit the use of reagents [144–148], suggesting a greater suitability

716for remote applications such as WSNs.

7174.2 Electrochemical Sensor Technologies Review

7184.2.1 Potentiometric Sensors

719The principles of operation in potentiometric ISEs can be found elsewhere [149,

720150]. Potentiometric sensors represent an interesting approach to environmental

721monitoring thanks to the simplification in the software/hardware interface to the

722sensor [123, 151, 152] and the very small power consumption requirement. The

723field of potentiometric sensors has gone through a revolution in the last 10 years

724with a major effort focused in the theoretical developments [153–161] which has

725led not only to a deeper understanding of these devices, but also more significantly

726to dramatic improvements in the detection limits, which has opened up new

727opportunities in environmental monitoring [162–164]. Solid-state ISEs are more

728convenient for remote monitoring than liquid-filled ISEs as they are compatible

729with microfabrication technologies and they are easier to miniaturize [150, 160,

730165–167]. Conducting polymer-based solid-contact (SC) ISEs have produced sig-

731nificant results for the detection of Pb at concentrations comparable with current

732legislation requirements [168–170], i.e., down to 10 nM under laboratory

733conditions in simulated samples and down to ppb levels in real samples when

734standard addition methodology was employed [171, 172]. However, Radu et al.

735[173] showed that the calibration trends of these sensors are significantly distorted

736upon exposure with environmental samples which may indicate that sensors can be

737used only in combination with standard addition to compensate for the matrix

738effects.

739Overall, these results confirmed that autonomous in situ environmental moni-

740toring with potentiometric ISEs may be feasible for Pb, as the Water Framework

741Directive (WFD) has fixed its upper limit to 35 nM as standard for the environ-

742mental water quality. However, regarding a realistic employment of ISEs for

743remote monitoring, several aspects deserve further consideration. In potentiometry,

744the dependence of the signal response on the logarithm of the analyte activity has

745been considered as an inherent drawback [117] though it also means that sensors

746have a wider dynamic range. Potentiometric methods detect the activity and not the
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747 concentration of free ions, which can lead to ionic strength artefacts—this can also

748 be an advantage as the activity is often the more relevant property in terms of

749 bioavailability in many natural processes. One of the main hurdles for the use of

750 ISEs in autonomous in situ applications is the complications of the conditioning

751 protocols. Appropriate conditioning steps appear to be essential in order to achieve

752 the very low detection limits reported in the literature, though guidelines for

753 standardizing a protocol are not widely agreed upon [166]. Prolonged contact

754 with a sample containing a strong interferent causes completely different

755 reconditioning and subsequent distortion of the analytical response to the primary

756 ion [117, 174]. Therefore, it may be necessary to make measurements over a short

757 timescale, followed by longer storage periods in the conditioning media. The time

758 required for the conditioning operations prior to measurement (e.g., conditioning

759 step lasting several hours) may be a major drawback in terms of practicality of the

760 sensing platform, limiting the capability of the sensor to operate at a high sampling

761 rate. Using ISEs after long time periods of storage in a conditioning solution

762 without calibration (all sensors are perfectly predictable) or limited to one-point

763 calibration [175] (i.e., change in offset but not in sensitivity) would be very

764 desirable, as the resulting device would be very simple and low cost signifying

765 that they would be ideal for WSNs. In spite of extensive research in the area, it

766 seems that obtaining SC-ISEs with reproducible standard potentials is still a

767 substantial challenge [160] exhibiting very limited reproducibility of the

768 measurements without frequent recalibration [176]. However, encouraging results

769 on the sensor reproducibility and real samples analysis have been obtained by

770 Saltisza et al. [172] using ISEs based on screen AU3printed electrodes which may

771 open the opportunity of calibrationless devices for in situ applications. Interest-

772 ingly, Radu et al. [173] proposed the use of electrochemical impedance spectros-

773 copy as means of self-diagnostics for remotely deployed chemical sensors in order

774 to make a decision on whether a calibration is necessary or not, thus limiting the

775 need of in situ calibration.

776 4.2.2 Conductometric/Impedimetric Devices and Field-Effect Transistors

777 Conductometric devices measure the change in conductivity between electrodes or

778 reference nodes due to the presence of a certain analyte [118, 123]. These sensors

779 have been used in combination with enzymes, whose reaction with the analyte

780 changes the sample conductivity [117, 120, 123]. In impedimetric sensors, changes

781 in the resistive and capacitive properties of modified electrodes arising from the

782 recognition event are measured by perturbation of the system using a small ampli-

783 tude sinusoidal excitation signal [118]. Both the impedimetric and conductometric

784 approaches do not require a reference electrode, which simplifies the experimental

785 set-up and electronic circuitry [125, 152]. However, conductometric and

786 impedimetric devices seem to have limited applicability in real samples due to

787 their sensitivity to matrix effects such as changes in the ionic strength and the non-

788 specific nature of these techniques [118, 119, 123, 127].
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789The field-effect transistor (FET) employs an electric field to control the conduc-

790tivity of a channel between two electrodes, i.e., source and drain, embedded in a

791semiconducting material by varying the potential of a third electrode, the gate [118,

792123, 177]. In biosensing applications, the metal layer at the gate is replaced by or

793coated with an appropriate biochemically sensitive surface, which is in contact with

794the analyte solution to produce the so-called ChemFET. ChemFETs, particularly ion-

795selective and enzyme FETs, have received considerable attention because they are

796suitable for weak signal and/or high impedance applications [118]. In addition, they

797seem strong candidates as disposable electronic biosensors particularly thanks to the

798low-power operation and the mass production capability [118, 125]. In particular,

799organic electrochemical junction transistors (OEJTs) have attracted certain interest

800for the construction of novel small, light weight, portable, disposable and low-cost

801sensor which seems suitable for mass production by using different way of printing

802[178]. However, a number of critical issues inhibit the feasibility of FET sensors for

803autonomous sensor networks. Firstly, establishing standard methods for the surface

804functionalization/patterning compatible with silicon-based device fabrication (e.g.,

805enzyme immobilization and/or antifouling membranes) is a difficult and delicate task

806[118]. Secondly, the design of a miniaturized reference electrode compatible with the

807ChemFETs has yet to achieve the stability and performances comparable to the

808classical reference electrodes [179]. Thirdly, the detection sensitivity depends on

809solution ionic strength [180] and a desalting step would be an additional complication

810in an autonomous monitoring situation. Finally, the speed of the response, the

811recovery time, detection limit, and their cost as disposable platform compared to

812screen printing technology make them less attractive than they would appear to be

813conceptually [118, 123, 178].

8144.2.3 Miniaturized Sensors

815UltraMicroElectrodes (UMEs) have received substantial interest thanks to several

816favourable characteristics [181, 182]. For instance, decreasing the size of the

817electrode allows direct measurement in low ionic strength samples (e.g., freshwa-

818ter) [127] and smaller capacitance currents are obtained, which increases the signal/

819noise ratio [181–183] improving the detection limit. It is significant to note that

820Bond and co-workers reported that measuring concentrations of redox species in the

821order of 10 nM using UMEs proved to be very challenging [182]. Decreasing the

822size of the electrode to the nanometer range seems impractical as imperfect seals

823cause stray capacitance to increase [181, 182]. In addition, as the current depends

824on the electrode size, its decrease has the obvious disadvantage of generating

825progressively smaller currents whose measurement, especially in the short time

826scales, may be challenging [182]. Miniaturized sensors offer the advantage of

827reducing the amount of material used per device (which can be significant particu-

828larly for certain biosensors) but they tend to be more susceptible to long-term

829stability problems, e.g., loss of biological molecules is progressively more serious

830as the electrode size decreases [123]. Overall, a trade-off in decreasing the size of

831the electrode exists.

Distributed Environmental Monitoring



832 Arrays of sensors enable new analytical approaches, e.g., multiplexed or redun-

833 dant sensing, which are attractive features for cost-effective pollution control and

834 protection of the natural environment [180, 183–185]. In a microelectrode array

835 chip, simultaneous current measurements are possible using integrated circuits

836 where the addressing hardware is built onto each electrode [186]. For instance,

837 stripping analysis based on a gel integrated microelectrodes array have been

838 employed for remote in situ monitoring and are the sensing core of Idronaut device

839 [141, 183, 187]. On the other hand, potentiometric sensors array appear to have not

840 advanced beyond the stage of laboratory research with no practical application in

841 real samples being found [188].

842 The manufacturing of microelectrodes and microelectrodes arrays is still a

843 complex process [189–191]. Among several methods of preparation, silicon-based

844 microfabrication technology still offers probably the best results while micro-

845 contact printing could represent a cheaper method, although practical control of

846 the geometric features and reproducibility is inferior [182, 184–186]. However, the

847 long-term stability of microelectrodes and microelectrodes arrays is often question-

848 able, e.g., defects in the metal layer, poor resistance to corrosion together with

849 subsequent swelling and delamination of the metal layers [128]. Finally, multi-

850 calibration in an array becomes complicated and time consuming as the array

851 response pattern becomes important and, as each electrode drifts, the pattern is

852 unstable in use. In this regard, factorial regimes have been suggested to simplify

853 these issues [192].

854 4.2.4 Enzyme Sensors

855 Enzymes constitute one of the most attractive approaches to transduction, as they

856 facilitate amplification of the signal, due to the biological catalytic reaction, and

857 display excellent selectivity, due to the high specificity towards a particular sub-

858 strate [120, 123, 193]. As enzymes accelerate the equilibrium formation of a

859 chemical reaction, sensors based on enzymes are intrinsically reversible and may

860 be regenerated [123, 193], which is beneficial for lowering the cost basis. Screen

861 printing and inkjet formulations for the preparation of disposable enzyme-based

862 sensors have been explored [131]. The principal type of detection for these sensors

863 is amperometric and while potentiometric [174] and conductometric [193]

864 approaches have also been used, these tend to be more dependent on the ionic

865 strength and pH of the sample solution [123], i.e., less suitable for autonomous

866 remote monitoring. However, in sensors wherein the products of enzymatic reac-

867 tion are gaseous, conductometric detection can be very successful when coupled

868 with a gas-permeable membrane to remove most interferences [123].

869 It is important to note that it is preferable for a sensor to detect a specific analyte

870 rather than the total amount of similar compounds. This is the case of enzyme sensors

871 which respond to a class of compounds, e.g., phenols, organophosphate, carbamates,

872 etc., more than to one specific compound [3, 194–196]. For instance, detection of

873 common pesticides is based on the inhibitory effect that these chemicals have on
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874acetyl-cholinesterase (AChE) [131, 197]. Yet, this type of sensors may be interesting

875as early-stage alarms. Thus, for instance, enzyme disposable biosensors proved useful

876for assaying a phenol “index” in wastewater, surface and river water with shelf

877stability up to months and detection limits down to nanomolar levels, although

878sensors responses differ in absolute magnitude and requires in situ calibration [3].

879Entrapment of enzymes in gel formulations and/or water-based carbon ink, compati-

880ble with screen printing and capable of improving the enzymatic stability, yet holds

881great promise for the preparation of enzyme biosensors [123, 130, 193]. General

882concerns for enzyme sensors are connected to the shelf-stability and cost of the

883biomaterial, co-substrate concentration changes in time and space, biofouling, redox

884interferents, reproducibility over time and operational lifetime of the device [118,

885123, 131, 198–202]. Despite the success of glucose sensors [3, 120, 193], the above

886reasons probably explain the lack of commercial enzyme-based analyzers applied to

887in situ environmental monitoring of specific targets.

888Whole-cell sensors have been reported for environmental monitoring in replace-

889ment of enzyme sensors because they obviate the need for enzyme purification and

890they may extend the lifetime of the device [203]. Overall, these sensors are

891probably more suitable for the evaluation of toxicity and an early stage alarm

892than sensing a particular analyte [116]. Nevertheless, it is important to note that

893Unisense offer a sensor based on a biofilm for NO3
� and NO2

� monitoring with a

894month lifetime which is claimed to be suitable for in situ applications. The sensor

895has size comparable to a normal pH-meter but, with a cost of approximately €800,

896its integration in deployable modules is quite costly and its operational continuous

897monitoring is said to be limited by the charge of the battery, i.e., up to 100 h without

898need of repeated calibrations.

8994.2.5 Affinity Sensors: DNA and Immunosensors

900In environmental monitoring, DNA sensors have been applied to the detection of

901nucleic acids, e.g., Escherichia coli, environmental pollutants and carcinogenic

902compounds [116, 117, 121] while immunosensors have been mainly employed in

903order to monitor pesticides, herbicides and virus toxins [122, 124]. The specificity

904of the sensors is defined by the stability constant, which for antibody-antigen

905binding is in the order of 108–1010 LM�1, i.e., three orders of magnitude higher

906than enzyme-substrate binding [122]. Difficulties in patterning of the biomaterials

907on electrode substrates, i.e., functional orientation, cost, lifetime and reproducibil-

908ity of the biomaterial layers, even without considering the eventual labelling, are

909the main drawbacks for these sensors [118, 121, 122]. In addition, poor reproduc-

910ibility and low specificity of the sensors during operation have led to unsatisfactory

911results in terms of further commercialization for trace analysis, e.g., environmental

912pollutants [122, 124], and remote sensing platforms. Molecular imprinting may

913offer a cheap and valuable alternative as recognition element with longer shelf and

914operational lifetime [204]; however, their poor performances, especially in terms of

915selectivity, are still a main limiting factor [205].
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916 4.3 Conclusions

917 Anodic stripping voltammetry in combination with screen printed electrodes (per-

918 haps also modified for solid-phase extraction), which may be regenerated and

919 reused without re-calibration, seems to be the best candidate for autonomous in

920 situ sensing of heavy metals thanks to very low detection limits achieved, fast

921 response time and relative low cost. It is significant that ISEs may allow monitoring

922 of Pb below the current legislation concentration limits as this detection mode

923 would further decrease the device’s power consumption. Regarding other toxic

924 chemicals targeted by WFD legislation, such as herbicides, it appears that research

925 is still focused on the fundamental studies and we are still far from a practical

926 device which can claim to detect a particular analyte excluding an eventual

927 interferent bias. Therefore, a priori knowledge of the interferents is required or

928 the sensor should be combined with separation techniques to avoid a large number

929 of false detections which, unfortunately, hampers the advent of deployed sensing

930 platform because of the increased costs.

931 It is significant to note that coulometry as a detection mode has not been

932 extensively applied to commercial devices although it may represent a viable

933 alternative for fast analysis when coupled to a microfluidic device able to accurately

934 control small sampling volumes i.e., mL and below. Indeed, the coulometric analy-

935 sis is independent from the kinetics parameters and the physical properties of the

936 system, e.g., enzyme activity, electrolyte concentration, temperature, viscosity, etc.

937 which would render the device less prone to sample matrix changes and may not

938 require calibration. For instance, the Abbott FreeStyle™ glucose tester produced at

939 the rate of 109 devices/year is actually based on thin layer micro-coulometer with a

940 submicroliter fluidic sampling.

941 At the present state, the preparation of disposable sensors seems the simplest

942 solution in order to cope with needs and issues arising from a deployed platform but

943 new approaches are still required to increase ruggedness, shelf- and operational life-

944 time of the sensors. This conclusion emphasizes the fundamental research in

945 nanotechnology as the key strategy to design, engineer and control the sensing

946 layer at the electrode interface thus addressing these needs.

947 5 Instrumentation and Data Processing

948 5.1 Introduction

949 Although elements within the chemical sensor research community (such as gas,

950 water and electrochemical sensing) are excelling within their own fields, a key

951 question that often goes unanswered is how to make practical implementation of

952 such newfound sensing capabilities. The literature, in these cases, is rich with past

953 and current studies with demonstrations of highly selective and sensitive chemical

954 measurements [206]. Correspondingly, studies within the technological domain
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955describe how sensing platforms can easily incorporate chemical sensors [102, 103].

956However, there are relatively few reports describing the application of chemical

957sensing capabilities outside the confines of the laboratory environment and even

958less so describing chemical sensor integration into autonomous WSNs for in situ

959deployments [5]; examples of these will be outlined within this section. Further-

960more, it has been widely recognized that many chemical parameters of interest vary

961broadly in the temporal and spatial domains and that the current manual-based

962sampling methods employed by government agencies is inadequate for understand-

963ing the underlying principles of these changes within the environment [207–209].

964Therefore, there is a need for the creation and deployment of chemical sensing

965systems capable of performing complex analytical measurements in situ i.e., to join

966these two independent domains [8]: the molecular and digital worlds. It has been

967generally recognized [210] that a practical environmental chemical sensing system

968must:

969• Be fully autonomous

970• Operate for long periods of time

971• Sample at periods when “events” occur

972• Reflect needs in terms of spatial and/or selective measurements

973• Successfully communicate the sensor data remotely

974• Present the data to relevant users in an easy to use and understandable manner

975In order to fully realize such a system, a multidisciplinary approach must be

976undertaken involving teams of chemists, electronic/mechanical/telecommu-

977nications engineers, computer scientists, middleware managers, visualization

978experts, web designers, etc. all working together towards a common goal. It is

979clear that this effort is not trivial and it is not surprising that few entities can achieve

980such an objective. The difficulties lie mainly in the nature of chemical sensors

981where they frequently encounter problems in their response characteristics such as

982baseline drift and changes in sensitivity (usually reduction effects) [9]. In fact, this

983goal has been identified in a recent Analytical Chemistry Editorial as the next

984“grand challenge” for analytical chemists [211]. However, there are those who have

985been fortunate with resources to include cross-disciplinary expertise, amongst

986others, and therefore have risen to the challenge of implementing WSNs.

987Clearly, distributed real-time chemical sensing is vital for air- and water-based

988areas at risk; however, the costs associated with current deployments place

989limitations on the spatial density and/or selectivity of these sensors for future

990demands. It is therefore important to drive down the cost of the sensing platforms

991and invest in energy scavenging capabilities [212], where possible, to maximize the

992sensing lifetime and minimize the persistent maintenance costs and initial cost base.

993To achieve this, every element within the architecture of such an end-to-end sensing

994system must be examined. A common approach adopted by those in this area has

995been largely based on standard WSN set-ups [6, 213] where nodes equipped with

996chemical sensing capabilities communicate through central gateways/coordinator

997nodes to remote storage centres and eventually to end users. Figure 9 depicts this

998approach showing the progression of information from a single node to the system’s
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999 end device. Here the information is traversed along three distinct stages or “layers.”

1000 Firstly, the sensing layer is denoted as that where chemical interactions occur; a

1001 target analyte is identified for measurement, followed by filtering and/or anti-

1002 biofouling sub-systems and finally allowing the analyte to interact with the active

1003 surface. The active surface will change in some measurable properties, e.g., resis-

1004 tance, optical, potential, etc. and thus opening a doorway into the hardware layer

1005 via the transducer. Specifically, the transducer conditions the resulting signal into a

1006 measureable form for a microcontroller/microprocessor to digitize. The controller’s

1007 responsibilities range from sampling frequency, sub-system actuation, timing, data

1008 storage and communications to a base station located in the online layer via

1009 gateway platforms. The online layer in this context is where a human user interacts

1010 with the sensed data. The data is received by the base station and stored on a

1011 database located on a server or on the “cloud” where data is always accessible via

1012 the Internet. Finally, users can interact with the sensor network(s) through media

1013 such as Internet browsers, smart phones/tablets, etc. Depending on the complexity

1014 of the architecture, the users can propagate back through the sensing chain and alter

1015 properties such as sampling frequency, nodal communication assignment,

1016 diagnostics, etc. Additionally, the basic node-base station configuration can have

1017 multiple network topologies with scale-up to include the most commonly employed

1018 type (i.e., star configuration) and more complex systems (e.g., tree and mesh

1019 set-ups); all of which are considered classical and reported in review articles [214].

Fig. 9 Flow diagram tracing the sensory information path from the target analyte to the end user
via a single sensing node-single, single base station model
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1020The ability to harvest chemical information from target locations and sustain this

1021ability over long periods of time can open up a new world of information from

1022target sensing areas. The reasons for pursuing such a task lie in the potential to

1023recognize patterns in the data and predict “events” based on historical and/or other

1024sources of information e.g., weather data. Moreover, opportunities now exist to

1025unveil new sources of information describing a system which were otherwise

1026unavailable and can ultimately allow for a further understanding of the dynamics

1027of a target area. In other words, such a sensing approach essentially results in a time

1028series of environmental data embedded with specific “signatures” that need to be

1029classified so that it can ultimately be used for the prediction of events. Analysis of

1030this data is an important aspect of environmental monitoring [215] and a generic

1031approach can be employed for many target analytes.

10325.2 Data Processing Case Study

1033This approach can be illustrated by analyzing harvested data from the air monitor-

1034ing domain that was introduced in Sect. 2. With clearly defined limits on emissions

1035being released into our environment, there are national and international agencies in

1036place to regulate and monitor such emissions. Considering data gathered from a

1037single borehole well on a landfill site over a 4- to 5-month period, acquired using the

1038gas sensing platform described in Sect. 2.3, a comparison can be made between the

1039manual-based sensing method and the autonomous sensing device placed in situ. To

1040recap, two of the prominent emission gases from landfills (i.e., CO2 and CH4) have

1041strict limits in place (i.e., 1.5% and 1%, respectively). Figure 10 shows a plot of

1042CO2 emissions with vertical lines simulating a sampling routine performed by site

1043personnel or governing inspectors every workday, i.e.,Monday at 11:00 a.m. in this

1044case. From the plot it can be seen that a number of “events” occur between each

1045manual sampling routine (labels A–E), i.e., where the concentration of CO2 rises

1046and is missed by adopting the manual sampling method. Similarly, Fig. 11 shows

1047the CH4 gas constituent for the same data acquisition duration.

1048To further quantify the discrepancy between periodic measurements and contin-

1049uous in situ monitoring, as visually demonstrated by points A–E in AU4Figs. 10 and 11,

1050the 4-month dataset has been subjected for a more rigorous temporal analysis. To

1051this end, the validity of data points at regular periods (i.e., weekly or monthly to

1052simulate the manual sampling routine) was assessed with respect to the whole

1053dataset duration by means of two statistically descriptive components: the “maxima

1054percentage error” defining the difference between the maximum of the periodic data

1055points and the maximum in situ measurement; and the “averages percentage error”

1056describing the difference between the average of the periodic data points and the

1057average in situ measurement. Such information is beneficial as the selection of the

1058day of week or of month can have a substantial impact of achieving a representative

1059time profile of a target sensing area and each gas constituent measured.
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1060 To illustrate this, the percentage errors of these two statistics were compiled for

1061 weekly sampling in Table 1. It can be seen that by taking a sample on Fridays, the

1062 maxima error was 0% for CH4; however, the averages error was as high as 13.7%.

1063 In terms of averages error, it appears that Wednesdays were best for CO2 while

1064 Mondays were best for CH4. In other words, while optimizing the time to sense one

1065 target analyte, one cannot necessarily conclude that this is representative for every

1066 target thus presenting a challenge in choosing an optimum day for sampling. It

1067 should be mentioned at this point that weekly measurements is a relatively high

1068 sampling frequency for this process. It has been discussed previously that only

1069 monthly measurements are required for compliance with existing landfill

1070 regulations. To this end, the same comparison can be drawn by interpolating

1071 monthly measurements from the full dataset. Table 2 shows the same data when

1072 manual measurements are recorded on the first Monday, Tuesday. . . Friday of each

1073 month. As a result, the percentage error has increased dramatically for both

1074 statistically compiled parameters for this location when compared to weekly

1075 measurements shown in Table 1. It is clear that the granularity of data from monthly

1076 to weekly has shown an overall greater accuracy towards a representative time

1077 profile of this site. Furthermore, neither monthly nor weekly measurements appear

Fig. 10 Harvested CO2 emission data from 4-month deployment on an active landfill site (blue
line: measured emissions; black line: legal gas limit; red lines: simulated manual weekly sampling;
A–E: concentration spikes unaccounted for by a weekly measurements)
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1078to be sufficient for understanding the dynamics occurring at this site, hence

1079affirming the value of sensors placed in situ.

1080Another important factor in environmental monitoring when considering temporal

1081sampling is the number of breaches that are missed when sampling as infrequently as

1082once per month or once per week relative to the capabilities of a dedicated chemical

1083sensing platform. A simple data processing tool to evaluate this is a threshold

1084algorithm which easily compliments environmental data as there are strict quantita-

1085tive limits in place by governing authorities. Table 3 shows two datasets, the first is

1086how many breaches are missed when sampling on a weekly (workday) basis, the

Fig. 11 Harvested CH4 emission data from 4-month deployment on an active landfill site (blue
line: measured emissions; black line: legal gas limit; red lines: simulated manual weekly sampling;
A–E: concentration spikes unaccounted for by a weekly measurements)

t1:1Table 1 Maximum and average percentage errors for weekly workday readings interpolated from
the full dataset

Weekly

CO2 CH4 t1:2

% Max. error % Avg. error % Max. error % Avg. error t1:3

Mondays 1.59 3.06 3.63 0.20 t1:4

Tuesdays 8.02 0.70 6.43 0.97 t1:5

Wednesdays 3.92 0.00 7.70 5.05 t1:6

Thursdays 6.94 1.24 2.80 5.31 t1:7

Fridays 4.96 15.20 0.00 13.69 t1:8
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1087 second is how many are missed when sampling on the first day (Monday, Tuesday.....

1088 Friday) of each month; both compilations are relative to the full dataset.

1089 Although the difference can be expected to be high when comparing twice-per-

1090 day sampling to weekly sampling, the averages of 68% (CO2) and 49% (CH4) of

1091 breaches missed are excessively large numbers when ideally there should be no

1092 breaches at all. This grows to 72% (CO2) and 52% (CH4) when sampling less

1093 frequently at once per month. The important aspect to derive from this is that by

1094 employing a manual sampling regime, a high percentage of legal limit breaches can

1095 easily be missed which can result in disastrous consequences.

1096 6 Conclusions and Future Perspectives

1097 In this contribution we have tried to give some flavour of the exciting possibilities

1098 that will arise as the cost of chemo/bio-sensing platforms capable of functioning

1099 autonomously for months, if not years, is driven down, enabling larger-scale

1100 deployments to happen. The success of operation of these platforms in collecting

1101 and visualizing an abundant wealth of insightful data on gas and water

t2:1 Table 2 Maximum and average percentage errors for monthly readings (first Monday, Tuesday....
Friday) interpolated from the full dataset

Monthly

CO2 CH4t2:2

% Max. error % Avg. error % Max. error % Avg. errort2:3

First Mondays 11.29 15.06 16.34 23.35t2:4

First Tuesdays 8.02 7.98 10.28 4.27t2:5

First Wednesdays 3.92 12.43 8.49 10.99t2:6

First Thursdays 6.94 4.17 9.38 17.93t2:7

First Fridays 4.96 0.76 4.75 20.94t2:8

t3:1 Table 3 Percentage of breaches missed, relative to the full dataset, when sampling on a
(a) weekly and (b) monthly basis

(a)t3:2

Weekly CO2 breaches missed (%) CH4 breaches missed (%)t3:3

Monday 68.25 48.81t3:4

Tuesday 68.25 48.81t3:5

Wednesday 68.25 49.60t3:6

Thursday 67.86 49.21t3:7

Friday 66.67 49.21t3:8

(b)t3:9

Monthly CO2 breaches missed (%) CH4 breaches missed (%)t3:10

First Mondays 71.83 51.59t3:11

First Tuesdays 71.83 51.59t3:12

First Wednesdays 71.83 51.59t3:13

First Thursdays 71.43 51.59t3:14

First Fridays 71.43 51.98t3:15
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1102characteristics, as exemplified by our collaborations with governmental and indus-

1103trial partners, demonstrates the usefulness of such platforms in any environmental

1104monitoring application. This work represents the realization of autonomous sensor

1105networks for environmental monitoring by developing sophisticated platform

1106technologies that form the basic building blocks of WSNs. The systems described

1107in Sects. 2.3 and 3.3 for air and water monitoring, respectively, have proven their

1108performance in terms of accurate consistency and reliability; the focus henceforth

1109will be the progression towards lower-cost and less power intensive systems such

1110that a denser distribution of sensor platforms can be attained. Information of

1111incredible value to individuals and society will become accessible for the first

1112time, providing a basis for better understanding of the processes that affect our

1113environment, and therefore enabling effective strategies for enhancing the quality

1114of the environment to be implemented. Clearly, ultra-low-cost, reliable, and durable

1115chemo/bio-sensing devices are the key to future massively scaled deployments of

1116such WSNs. Electrochemical sensors, as discussed in Sect. 4, show promise with

1117low cost and accuracy being readily achieved though continued development is

1118necessary to a longer-term consistency in sensing accuracy. Considering the big

1119picture, moving from the current state of the art to the futuristic vision will require

1120fundamental breakthroughs in materials science in order to dramatically reduce the

1121cost of implementing the lab-on-chip liquid handling technologies that underpins

1122the water quality analyzers described previously [216]. In contrast, future platforms

1123are likely to incorporate biomimetic polymer actuators more reminiscent of artifi-

1124cial muscles rather than conventional pumps and valves [217, 218]. This will

1125demand a close alignment of fundamental science and applied engineering research

1126effort—institutions that implement this on the ground through closely integrated

1127teams of researchers will be the places where these advances will happen.
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1528166. Lindner E, Gyurcsányi R (2009) Quality control criteria for solid-contact, solvent polymeric
1529membrane ion-selective electrodes. J Solid State Electrochem 13(1):51–68. doi:10.1007/
1530s10008-008-0608-1
1531167. McGraw CM, Radu T, Radu A, Diamond D (2008) Evaluation of liquid- and solid-contact,
1532pb2 + �selective polymer-membrane electrodes for soil analysis. Electroanalysis 20(3):
1533340–346. doi:10.1002/elan.200704068
1534168. Bobacka J, Ivaska A (2007) Chapter 4: ion sensors with conducting polymers as ion-to-
1535electron transducers. In: Alegret S, Merkoçi A (eds) Comprehensive analytical chemistry,
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