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Abstract. We present a distributed algorithm for environmental mon-

itoring of a scalar field (such as temperature, intensity of light, atmo-

spheric pressure, etc.) using a random sensor network. We derive an error

estimate, discuss the average complexity of the algorithm, and present

some simulation results.

Introduction

In this paper, we present a distributed algorithm for estimating the gradient of

a scalar field (such as temperature, intensity of light, atmospheric pressure, etc.)

using a random wireless sensor network. Environmental monitoring is one of the

main applications of the emerging technology of wireless sensor networks. Our

algorithm has potential applications in preventing forest fires, energy conserva-

tion, oceanography, building science, etc. We envision using a large number of

sensor nodes to automatically detect the emergence of critical points (such as

heat sources in the context of forest fires) and notifying the base station which

can then take further action.

This work is mainly motivated by the Sensorwebs and Smart Dust [KKP]

projects at UC Berkeley, whose aim is to develop a unified framework for dis-

tributed sensor networks. Some previous theoretical work on environmental mon-

itoring using random sensor networks was done in [Doh00]. For a study of wire-

less sensor networks in real-world habitat monitoring, see [MPS+02]. We also

mention [MEM01], which deals with gradient estimation from scattered data in

geology.
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Due to high long range communication costs, low battery power, and need

for robustness to node failures, it is natural to seek decentralized, distributed

algorithms for sensor networks. This means that instead of relaying data to a

central location which does all the computing, the nodes process information in

a collaborative, distributed way. For instance, they can form computational clus-

ters, based on their distance from each other. The outcome of these distributed,

local computations is stored in local memory and can, when necessary, be relayed

to a base station.

The basic idea of our algorithm is the following. Each node communicates

with its neighbors and computes the maximal difference quotient of the sensed

scalar field. The estimate of the gradient at each node is taken to be the vector

in the corresponding direction with norm equal to the maximal difference quo-

tient. The algorithm is not new or sophisticated; however it has two redeeming

features: (1) it is sufficiently simple and computationally non-intensive to be

implementable on the current sensor network platform [Cul]; (2) it allows us to

compute analytic error estimates. We are able to prove that, in a probabilistic

sense, the algorithm converges (i.e., as the number of nodes goes to infinity, the

probability that the error is as small as we want converges to one), and to answer

questions like “What should the number of nodes be so that the probability that

the error is less than some ε, is greater than 1 − η?”

We believe that in the sensor network literature, there is a need for a more

precise theoretical analysis of known problems and proposed solutions. We there-

fore emphasize that the main purpose of this paper is to rigorously analyze the

accuracy and complexity of the proposed algorithm from a probabilistic point

of view, not to discuss any implementation issues, which will be dealt with in

future work.

The paper is organized as follows. In Section 1, we introduce the terminology,

notation, and the environmental monitoring problem. Section 2 describes the

algorithm. In Section 3, we derive error estimates; Section 4 discusses average

complexity, followed by simulation results in Section 5. The paper concludes with

a summary of the results and discussion of future work.

1 Preliminaries

In this section we introduce the basic mathematical framework and formulate

the problem.

Assume that a random sensor network consisting of N nodes S1, . . . , SN is

deployed in some region D ⊂ R
2. The number i will be called the ID of the node

Si. We make the following simplifying assumptions:



– Every node is aware of its own position pi in some fixed coordinate system

in D. That is, the network is assumed to have performed node localization

(see, e.g., our earlier work [SS02]).

– Each node Si measures some environmental scalar field V such as temper-

ature, pressure, or the amount of light at its own location. We assume that

its measurement vi is exact, i.e., vi = V (pi).

– Each node has a maximal isotropic RF communication range R, i.e., two

nodes can communicate if they are less then R meters apart. For every

0 < r ≤ R, each node can adjust it signal strength to achieve communication

range r. In this case, two nodes whose distance is ≤ r are called r-neighbors.

Our goal is:

Using only local information, design a distributed algorithm for estimating

the gradient of V at p1, . . . , pN , and find its error.

We make the following assumptions on D, V , and the network.

– D has unit area and is homeomorphic to the closed unit disk in R
2;

– V : W → R is a function of class C2, i.e., twice continuously differentiable,

where W is some neighborhood of D in R
2.

– Random variables p1, . . . , pN are independent and uniformly distributed in

D.

Notation. Throughout this paper, · will denote the standard dot product on

R
2. The corresponding 2-norm of a vector v ∈ R

2 is |v| =
√

v · v. For a matrix

A ∈ R
2×2, ‖A‖ will denote its operator norm relative to | |,

‖A‖ = sup{|Av| : v ∈ R
2, |v| = 1}.

Further, for a, b ∈ D, a 6= b, denote the difference quotient of V at a relative to

b by

Q(a, b) =
V (b) − V (a)

|b − a| .

Finally, let

G(a, b) = Q(a, b)
b − a

|b − a| .

2 The algorithm

Let S = Si, for some 1 ≤ i ≤ N , be a node with position p = pi. Assume

the signal strength of all the nodes has been adjusted to achieve maximum

communication range of r meters.

We now state our algorithm for estimating ∇V (p), called GRADS(r).



Step 1 INITIALIZE variables: q(S) = 0, n(S) = i.

Step 2 COLLECT IDs, positions, and measurements from all r-neighbors.

Each r-neighbor Sν contributes (ν, pν , vν), where ν is its ID, pν its position,

and vν its measurement of V at pν .

Step 3 For each r-neighbor Sν , COMPUTE Q(p, pν).

If Q(p, pν) > q(S) then

n(S) = ν, q(S) = Q(p, pν).

Step 4 STOP when all data have been processed. The estimate of ∇V (p) is

Grad(p) = G(p, pn(S)).

Note that vν = V (pν); q(S) is the current value of the maximal difference quo-

tient, and n(S) is the ID of the corresponding node.

Remark. The algorithm maximizes the difference quotient Q(p, pν) over all

neighbors Sν of S. Grad(p) is the vector parallel to pn(S)−p of length Q(p, pn(S)).

Observe that the algorithm is distributed over the nodes of the network. The

number of operations it executes is a constant multiple of the number of r-

neighbors of S. The only operations a node needs to be able to perform are the

four elementary arithmetic operations, squaring, square root, and comparisons.

Presently, we assume that in Step 2 we use one of the existing data fusion

algorithms. We refer the reader to some of the relevant data fusion literature such

as [KM94,QWIC01,IJ01,GDW94]. We are currently investigating this problem in

the context of environmental monitoring, but for reasons of space, we postpone

its discussion to future work.

3 Error estimates for GRADS(r)

In this section we estimate the error of the proposed algorithm. The proofs of

all statements are elementary and are therefore included, but can be skipped in

first reading.

We will need the following estimate. Here ∠(u, v) will denote the angle be-

tween vectors u, v ∈ R
2.

Proposition 1 For all p, q ∈ D, p 6= q,

|G(p, q) −∇V (p)| ≤ |∇V (p)| sin |∠(∇V (p), q − p)| + 1

2
‖D2V ‖∞|q − p|.

Proof. By the Fundamental Theorem of Calculus,

V (q) − V (p) = ∇V (p) · (q − p) +
1

2
D2V (ξ)(q − p) · (q − p),



for some ξ lying on the segment connecting p and q. Therefore,

|G(p, q) −∇V (p)| =

∣

∣

∣

∣

V (q) − V (p)

|q − p|2 (q − p) −∇V (p)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∇V (p) · (q − p)

|q − p|2 (q − p) −∇V (p)

∣

∣

∣

∣

+
1

2

∣

∣

∣

∣

D2V (ξ)(q − p) · (q − p)

|q − p|2 (q − p)

∣

∣

∣

∣
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Consider first

I =
|[∇V (p) · (q − p)](q − p) − |q − p|2∇V (p)|

|q − p|2 . (1)

Letting v = ∇V (p) and x = q − p, by elementary linear algebra we obtain that

the numerator of (1) is

|(v · x)x − |x|2v| = {[(v · x)x − |x|2v] · [(v · x)x − |x|2v]}1/2

= |x|2|v| sin |∠(v, x)|.

Thus,

I = |∇V (p)| sin |∠(∇V (p), q − p)|.

It is not hard to see that

II ≤ 1

2
‖D2V ‖∞|q − p|.

This completes the proof of the Proposition.

For every 1 ≤ i ≤ N , denote by θi the angle between ∇V (pi) and the vector

pn(Si) − pi (Fig. 1).

PSfrag replacements

D

pi

pn(Si)
θi

∇V (pi)

Fig. 1. The angle θi.



Corollary 1 For every 1 ≤ i ≤ N ,

|Grad(pi) −∇V (pi)| ≤ |∇V (pi)| sin |θi| +
1

2
‖D2V ‖∞|pn(Si) − pi|.

The following lemma says that if we are sufficiently close to a node, it is the

direction that matters in estimating the gradient.

Lemma 1 Let q, q1, . . . , qK ∈ D be distinct points and let

αi = |∠(∇V (q), qi − q)|.

There exist ρ > 0 such that for all qi, qj with |qi−q|, |qj−q| < ρ and αi, αj < π/2,

the following holds:

αi < αj ⇒ Q(q, qi) > Q(q, qj).

In other words, in a sufficiently small polar coordinate neighborhood of q, qi 7→
Q(q, qi) is a decreasing function of αi.

Therefore, if qi’s are sufficiently close to q and the angles ∠(∇V (q), qi − q) are

not too big, then the difference quotient Q(q, qi) increases as the vector qi − q

becomes more parallel to ∇V (q).

Proof. Let A = |∇V (q)| and

c = min{| cosαm − cosαn| : αm 6= αn, αm, αn < π/2, 1 ≤ m, n ≤ K}.

Since c > 0, we can choose ρ > 0 so that

ρ < min

{

Ac

2H
: 1 ≤ i ≤ K

}

.

Assume |qi − q|, |qj − q| < ρ, αi, αj < π/2, and αi < αj . Then

Q(q, qi) − Q(q, qj) =

{

∇V (q)
qi − q

|qi − q| +
1

2
D2V (ξi)(qi − q) · qi − q

|qi − q|

}

−
{

∇V (q)
qj − q

|qj − q| +
1

2
D2V (ξj)(qj − q) · qj − q

|qj − q|

}

= |∇V (q)|(cos αi − cosαj)

+
1

2

{

D2V (ξi)(qi − q) · qi − q

|qi − q| − D2V (ξj)(qj − q) · qj − q

|qj − q|

}

,

= I + II,

where ξi is a point on the segment connecting q and qi, and similarly for ξj .

Further, I ≥ Ac and |II| ≤ 2ρH . Therefore,

I + II ≥ I − |II| ≥ Ac − 2ρH > 0,

implying Q(q, qi) > Q(q, qj).



Denote by P(A|B) and E(A|B) the conditional probability and expectation

of A given B [GS97]. Let ∂D be the boundary of D, and d(x, ∂D) the distance

from x to ∂D. Also let

Ai = |∇V (pi)| and H = ‖D2V ‖∞.

Proposition 2 For all 1 ≤ i ≤ N and ε > 0 small enough,

P(|Grad(pi) −∇V (pi)| < ε | d(pi, ∂D) ≥ r) ≥ 1 − [1 − µV (ε)]N−1,

where

µV (ε) = max{u2
2 sin−1 u1 : Aiu1 +

1

2
Hu2 = ε, u1, u2 > 0}.

In particular, if pi is an equilibrium of ∇V , then

P(|Grad(pi)| < ε | d(pi, ∂D) ≥ r) ≥ 1 −
(

1 − 4πε2

H2

)N−1

.

Proof. Let Ci(u1, u2) (Fig. 2) be the circular sector at pi of radius u2 > 0, angular

width sin−1 u1 (u1 > 0), and axis of symmetry ∇V (pi). Assume Aiu1+
1
2Hu2 < ε

and d(pi, ∂D) ≥ r. If pn(Si), the node which realizes the maximal difference

quotient among the neighbors of Si, belongs to Ci(u1, u2), then by Corollary 1,

|Grad(pi) −∇V (pi)| ≤ Aiu1 + 1
2Hu2 < ε. Therefore,

P(|Grad(pi)−∇V (pi)| < ε | d(pi, ∂D) ≥ r) ≥ P(pn(Si) ∈ Ci(u1, u2) | d(pi, ∂D) ≥ r).

PSfrag replacements
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Fig. 2. The circular sector Ci(u1, u2).

For ε small enough, Ci(u1, u2) ∩ D = Ci(u1, u2); its area is

α(u1, u2) = u2
2 sin−1 u1.

If ε is sufficiently small, then by Lemma 1, pj 7→ Q(pi, pj) is a decreasing func-

tion of |∠(∇V (pi), pj − pi)| on Ci(u1, u2). Therefore, if at least one node is in



Ci(u1, u2), then pn(Si) ∈ Ci(u1, u2); the converse is clear enough. Hence the

probability that pn(Si) ∈ Ci(u1, u2) (given d(pi, ∂D) ≥ r) equals the probability

that at least one node different from Si lands in Ci(u1, u2), so

P(pn(Si) ∈ Ci(u1, u2) | d(pi, ∂D) ≥ r) =

N−1
∑

k=1

P(exactly k nodes 6= Si lie in Ci(u1, u2) | d(pi, ∂D) ≥ r)

=

N−1
∑

k=1

(

N − 1

k

)

α(u1, u2)
k[1 − α(u1, u2)]

N−1−k

= 1 − [1 − α(u1, u2)]
N−1.

Since this is true for any pair (u1, u2) with the above properties, it follows that

P(|Grad(pi) −∇V (pi)| < ε | d(pi, ∂D) ≥ r) ≥ 1− [1 − max
u1,u2

α(u1, u2)]
N−1

= 1− [1 − µV (ε)]N−1.

If pi is an equilibrium of ∇V , then Ai = 0. By Corollary 1, |Grad(pi)| < ε if

|pn(Si) − pi| < 2ε/H , so P(|Grad(pi)| < ε| d(pi, ∂D) ≥ r) is not less than the

area of the disk centered at pi of radius 2ε/H , proving the second part of the

Proposition.

Corollary 2 For every 1 ≤ i ≤ N and ε > 0,

lim
N→∞

P(|Grad(pi) −∇V (pi)| < ε | d(pi, ∂D) ≥ r) = 1.

Therefore, the algorithm, in the sense specified by the Corollary, “converges in

probability”.

Proposition 3 Suppose pi is an equilibrium of ∇V and 0 < η < 1. If

N ≥ N(ε, η) = 2 +
log η

log
(

1 − 4πε2

H2

) , (2)

then

P(|Grad(pi)| < ε | d(pi, ∂D) ≥ r) > 1 − η.

Proof. Follows directly from Proposition 2. Observe that as ε, η → 0, N(ε, η) is

of the order O
(

1
ε log 1

η

)

.

4 Average complexity

One way to measure the average complexity of GRADS(r) is to require that the

probability that |Grad| < ε be greater than 1 − η, and then count the average



number of computations and communication steps the algorithm has to perform.

The random variable crucial in this count is the number Xr of r-neighbors of a

randomly picked but fixed node Si. If the position of Si is pi, it is not difficult

to show that

E(Xr | d(pi, ∂D) ≥ r) = (N − 1)πr2. (3)

Proposition 4 If ∇V (pi) = 0 and N ≥ N(ε, η), guaranteeing that

P(|Grad(pi)| < ε | d(pi, ∂D) ≥ r) > 1 − η,

than on average, the number of computations GRADS(r) performs is of the order

O
(

1
ε log 1

η

)

, as ε, η → 0.

Proof. The number of computational steps S performs in GRADS(r) is pro-

portional to the number of its r-neighbors, that is, on average, of the order

O(E(Xr | d(pi, ∂D) ≥ r)) = O(N). The statement then follows from (3) and

Proposition 3, since N has to be chosen of the order O
(

1
ε log 1

η

)

.

Remark. The average communication complexity of the algorithm depends on

the data fusion algorithm chosen in Step 2.

5 Simulation results

Let F = ∇V . If p is not an equilibrium of F , then in a neighborhood of p, F looks

essentially like a constant vector field, up to a smooth change of coordinates.

This is known as the Flow Box Theorem in dynamical systems. If F (p) = 0,

then the picture can be much more complicated. However, if A = DF (p) has

no eigenvalues on the imaginary axis, then in a neighborhood of p, F looks

essentially like A, or, more precisely, up to a continuous coordinate change near

p, the flow of F is the same as the flow of A. This is known as the Hartman-

Grobman theorem. Observe that the condition “DF (p) has no eigenvalues on

the imaginary axis” is generic, i.e., it is satisfied by almost all F . Furthermore,

it is well known that, generically (when D2V is nonsingular), the equilibria of

∇V can only be saddles and stable or unstable nodes.

Therefore, it is sufficient to test our algorithm in three cases: near a nonequi-

librium point for ∇V , near a saddle for ∇V , and near an unstable node for ∇V .

Consequently, we present three examples: in the first one, V is a linear function

(Fig. 3); in the second one, V is quadratic and ∇V has a saddle at (10, 10)

(Fig. 4); in the last one, V is quadratic, but ∇V has an unstable node at (10, 10)

(Fig. 5). In all cases, the algorithm gives good results away from the boundary

of D = [0, 20]× [0, 20]. Observe that if we excluded the edge effects from the cal-

culation of the average relative error (i.e., average absolute error divided by the

norm of the gradient at the corresponding point), the accuracy would improve.
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Estimate of the gradient of V(x,y) = x + y, with N = 300 , s = 20 , r = 5 , avg. rel. error = 0.08598
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Estimate of the gradient of V(x,y) = x + y, with N = 500 , s = 20 , r = 5 , avg. rel. error = 0.068191

Fig. 3. V (x, y) = x + y, D = [0, 20] × [0, 20].
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Estimate of the gradient of V(x,y) = (x−10)2 − (y−10)2, with N = 200 , s = 20 , r = 5 , avg. rel. error = 0.074508
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Estimate of the gradient of V(x,y) = (x−10)2 − (y−10)2, with N = 500 , s = 20 , r = 5 , avg. rel. error = 0.068774

Fig. 4. V (x, y) = (x − 10)2 − (y − 10)2, D = [0, 20] × [0, 20].
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Estimate of the gradient of V(x,y) = (x−10)2 + (y−10)2, with N = 200 , s = 20 , r = 5 , avg. rel. error = 0.057327
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Estimate of the gradient of V(x,y) = (x−10)2 + (y−10)2, with N = 500 , s = 20 , r = 5 , avg. rel. error = 0.065583

Fig. 5. V (x, y) = (x − 10)2 + (y − 10)2, D = [0, 20] × [0, 20].

6 Conclusion

We presented a distributed algorithm which estimates the gradient of a smooth

function using a random sensor network. The method amounts to approximate

differentiation of the function given its value on a set of random points. We

estimated the probability that the error is small and showed that it converges

to one, as the number of nodes goes to infinity.

It would be useful to estimate the expected value of the error and investigate

robustness of the algorithm to noise and node failures. Further, it would be

interesting to compare this algorithm with others, e.g., the one in [MEM01],

which is also sufficiently simple to be implementable on the current platform for

sensor network. We plan to do this in future work.
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