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ABSTRACT In order to solve the problem that the standard extended Kalman filter (EKF) algorithm has

large errors in Unmanned Aerial Vehicle (UAV)multi-sensor fusion localization, this paper proposes a multi-

sensor fusion localization method based on adaptive error correction EKF algorithm. Firstly, a multi-sensor

navigation localization system is constructed by using gyroscopes, acceleration sensors, magnetic sensors

and mileage sensors. Then the information detected by the sensor is compared and adjusted, to reduce

the influence of error on the estimated value. The nonlinear observation equation is linearized by Taylor,

and the normal distribution hypothesis is carried out in two steps of prediction and correction respectively.

Finally, the parameters of system noise and measurement noise covariance in EKF are optimized by using

the evolutionary iteration mechanism of genetic algorithm. The adaptive degree is obtained according to

the absolute value of the difference between the estimated value and the real value of EKF. The individual

evaluation results of EKF algorithm parameters are used as the measurement standard for iteration to obtain

the optimal value of EKF algorithm parameters. Experimental simulation results show that the improved

algorithm proposed has higher real-time localization accuracy and higher robustness than those of the

standard EKF algorithm.

INDEX TERMS EKF algorithm, smart sensing, distributed error correction, parameter optimization,

multi-sensor fusion, Internet of Things.

I. INTRODUCTION

Location Based Services (LBS) is a basic service that

obtains the current location and provides information

resources through various mobile location technolo-

gies [1]–[3]. At present, the most basic localization

technology generally uses GPS sensors for real-time local-

ization, but GPS signals are easily blocked, or interfered,

thus high-precision localization cannot be realized [4]–[6].

Therefore, based on a single data source, many research

institutions, universities, etc. use multi-source sensor data

fusion to complement each other’s advantages and realize

accurate localization [7]–[9].

The common multi-sensor fusion localization method

is to collect real-time data of gyroscopes, acceleration
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sensors, magnetic sensors, mileage sensors, inertial measure-

ment units, vision sensors and other sensors, and to use data

fusion for high-precision localization. Ghosh et al. [10] used

wheel tester, inertial measurement unit and rotating 2D laser

scanner to locate and correct the mobile robot in real time.

Nada et al. [11] took odometer, magnetic compass and

acceleration sensor data as inputs of Unscented Kalman

Filter (UKF) to realize data fusion and real-time local-

ization. Belmonte-Hernández et al. [12] proposed a multi-

sensor fusion adaptive fingerprint (MUFAF) algorithm,

which uses interpolation to improve the responsiveness of

the algorithm to the environment. Shivanand et al. [13] pro-

posed an asynchronous multi-rate multi-sensor state vector

fusion algorithm, which optimizes the localization accuracy

by eliminating the coupling between covariance terms.

Muniandi and Deenadayalan [14] used wheeled sensors,

radar andGNSS as data acquisition sensors, and constructed a
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nonlinear real-time localization model by probability weight-

ing method. Al-Sharman et al. [15] used Kalman innovation

sequence and covariance matching technology to continu-

ously adjust through fuzzy inference system, and proposed

real-time localization based on adaptive fuzzy Kalman

fusion algorithm (AFKF). Plangi et al. [16] proposed a

real-time localization algorithm based on Kalman filter algo-

rithm to solve the routing problem in real-time localization.

Kumar and Hegde [17] established a multi-sensor com-

bined attenuation model and adopted joint error optimiza-

tion for multi-sensor data to reduce localization error.

Gabela et al. [18] used GNSS and LPS as data sources

and improved the localization accuracy by combining

extended Kalman filter (EKF) and particle filter (PF).

Al Hage et al. [19] proposed an optimal thresholding method

based on Kullback-Leibury criterion (KLC), which improves

Kalman filter and realizes cooperative localization of robots.

Zsedrovits et al. [20] realized a real-time localization system

for unmanned aerial vehicles through airborne cameras and

avoidance systems, and useed inertial measurement units

and GPS. Ruotsalainen et al. [21] introduced the error

probability density function in particle filter, and used the

model fitting method to verify the measurement error, thus

improving the accuracy of multi-sensor fusion localization.

Hosseinyalamdary [22] optimized and improved the mea-

surement error of inertial measurement unit through deep

Kalman filter. Rodger [23] used Markov fuzzy, statistical,

artificial neural network and nearest neighbor prediction

methods to analyze multi-sensor indexes and used improved

Kalman filter method to reduce noise in the localization sys-

tem. Li et al. [24] converted the measured values of different

sensors into a set of measurement matrices, which are solved

by improving PHDfiltering. Cappello et al. [25] implemented

a new hybrid controller using fuzzy logic and proportional-

integral-derivative (PID) technology and proposed a real-time

localization system based on improved unscented Kalman

filter.

The contributions of this paper are as follows.

(1) Proposed a multi-sensor fusion localization based on

adaptive error correction EKF algorithm to improve the

real-time localization accuracy.

(2) Through the contrast adjustment of the sensor detection

information, the influence of the error on the estimated value

is reduced.

(3) In the two steps of prediction and correction, the nor-

mal distribution assumption is carried out twice, so that

the predicted value of EKF algorithm is closer to the real

value.

(4) Using GA algorithm to optimize EKF algorithm

parameters.

The rest of this paper is arranged as follows: Section 2 sum-

marizes the related work; Section 3 performs adaptive error

correction on the EKF algorithm; Section 4 performs simula-

tion testing on the improved algorithm; Section 5 summarizes

the paper.

FIGURE 1. Multi-sensor principle based on EKF.

II. PROBLEM DESCRIPTION

The multi-sensor navigation system [26]–[33] of unmanned

aerial vehicle (UAV) is taken as the research object in this

paper. Its main sensors are gyroscopes, acceleration sensors,

magnetic sensors, mileage sensors, etc. The above sensor data

is corrected and fused through the Extended Kalman Fil-

ter (EKF) algorithm [34]–[40] to obtain the real-time location

and attitude information of UAV, as shown in FIGURE 1.

The UAV is a dynamic motion process of six degrees

of freedom, and its motion state X̄ can be expressed by

four elements of location vector P̄tet , space motion speed

vector V̄ t
et , attitude representation q̄ and gyroscope rotation

vector b̄tω of the space coordinate system.

X̄ =
[

P̄tet V̄ t
et q̄ b̄tω

]

(1)

P̄tet , V̄
t
et , q̄, and b̄

t
ω are obtained as:



















P̄tet =
[

Ptx Pty Ptz
]

V̄ t
et =

[

V t
x V t

y V t
z

]

q̄ =
[

q0 q1 q2 q3
]

b̄tω =
[

btωx btωy btωz
]

(2)

Considering that ambient noise of the four elements in the

space motion velocity vector and the attitude representation

when the sensor collected data, it is necessary to perform

noise reduction processing first.






V̂ t
et = D

f
b f̄
b + ḡt + Dtbδ̄

b
a

q̂ =
1

2
� · q̄ ·

(

ω̄b
ib − b̄bω + δ̄bω

)t (3)

where, δ̄ba is the environmental noise when the acceleration

sensor is detected, f̄ b is the specific force measurement value,

δ̄bω is the environmental noise when the gyroscope is mea-

sured, ω̄b
ib is the measured value of the gyroscope, and b̄bω is

the measurement deviation correction value of the gyroscope.

The UAV state representation equation of Equation (1) can be

converted into

X̄ =
[

P̄tet V̂ t
et q̂ P̄tω

]

(4)

Set δ̄ =
[

δ̄btω δ̄bta δ̄btb

]

as system noise, Equation (4) can

be simplified to

X̄ = f (X̄ , Ū , δ̄) (5)

Due to the nonlinear characteristics of UAV multi-sensor

fusion localization system, Equation (5) must be linearized.
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FIGURE 2. EKF-based state estimation flow.

Firstly, Taylor series expansion is used and expressed by

Jacobian matrix.
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∣

∣

X̄ = X̂k,k−1

(6)

where, F is the external force vector, G is the acceleration

vector, and H is the horizontal direction vector.

The motion state can be taken as the state quantity by the

location vector P̄tet of the spatial coordinate system, the spa-

tial motion speed vector V̄ t
et , the four elements of the attitude

representation q̄ and the gyro rotation vector b̄tω, and the

EKF algorithm is used for state estimation to obtain the

covariance matrix, which is used to correct the state parame-

ters. The process is shown in FIGURE 2.

Although EKF algorithm can better fuse and locate the data

collected by multi-sensors, there are still certain localization

errors. Therefore, it is necessary to further optimize it.

III. ADAPTIVE ERROR CORRECTION EKF ALGORITHM

A. CONTRAST AND ADJUSTMENT OF PARAMETER ERROR

Due to the system noise in the process of multi-sensor fusion

localization, there is a certain error between the state estima-

tion value and the actual value of EKF algorithm. Therefore,

this paper compares and adjusts the information detected by

sensors to reduce the influence of the error on the estimation

value.

If the error of the state estimation value is Wt , it can be

expressed as:

Wt = X̂t − Zt,t−1X̄t−1 (7)

where, Z is the state transition matrix of the system, the error

of the t time state estimation system is obtained to be

Wt = Gt X̂t − gt (8)

where, gt is the observation value of the t time and Gt is

the observation matrix of the state estimation system. Adding

an adaptive adjustment factor σt to dynamically adjust the

weight of the state observation parameters of the system






Wt = −P̄t · ηt

Wxt =
1

σ
PxtG

T
t · ηt

(9)

where, P̄t is the covariance matrix of the system and

ηt is Lagrange multiplier vector. The adaptive adjustment

factor σt is

σt =















1, |1Wt | ≤ β0

β0

|1Wt |

(

β1 − |1Wt |

β1 − β0

)

, β0 < |1Wt | ≤ β1

0, β1 < |1Wt |

(10)

where, β0 and β1 are the experience values.

B. DISTRIBUTED ERROR SECONDARY CORRECTION

In order to make the predicted value obtained by EKF algo-

rithm closer to the real value, this paper also assumes that it

is normal distribution twice in the two steps of prediction and

correction respectively. Set the filtering value of the system is

(x̂t−1, 0), the observation value is g(xt , vt ), and the predicted

value is (x̂t,t−1, 0) at t time, then the Taylor expansion is

approximately

xt = f (x̂t−1, 0) +Mt−1x̃t−1 + Nt−1wt−1 (11)

gt = g(x̂t,t−1, 0) + Ot x̃t,t−1 + Qtvt (12)

The sum ofMt−1, Nt−1, Ot , and Qt are Jacobian matrices,

and their values are obtained by

Mt−1 =
∂ft−1

∂ x̂t−1
=

∂f (xt−1,wt−1)

∂xt−1

∣

∣

∣

∣ (xt−1,wt−1) = (x̂t−1, 0)

(13)

Nt−1 =
∂ft−1

∂ŵt−1
=

∂f (xt−1,wt−1)

∂wt−1

∣

∣

∣

∣ (xt−1,wt−1) = (x̂t−1, 0)

(14)

Ot =
∂gt

∂ x̂t,t−1
=

∂g(xt , vt )

∂xt

∣

∣

∣

∣ (xt , vt ) = (x̂t,t−1, 0)
(15)

Qt =
∂gt

∂ v̂t,t−1
=

∂g(xt , vt )

∂vt

∣

∣

∣

∣ (xt , vt ) = (x̂t,t−1, 0)
(16)

Then, in the prediction phase of the EKF algorithm,

the error covariance matrix Pt,t−1 predicted by the

EKF algorithm is

Pt,t−1 = Mt−1Pt−1M
T
t−1 + Nt−1Qt−1N

T
t−1 (17)

Then the gain matrix of the state estimation system can be

expressed as

Yt = Pt,t−1H
T
t

(

HtPt,t−1H
T
t

)−1
+ Rt (18)

where, Rt is the probability matrix of the system. In the

correction phase of the EKF, error correction is performed

on the system observation values

W̃t = Wtg · xt,t−1 (19)

The system state prediction equation can be expressed as

x̂t = x̂t,t−1 + Yt · W̃t (20)
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FIGURE 3. Parameter optimization process of EKF algorithm based on GA.

C. PARAMETER OPTIMIZATION OF EKF ALGORITHM

BASED ON GA

In order to quickly and accurately find the optimal value

of EKF algorithm parameters Pt , Gt , and Wt , this paper

introduces Genetic Algorithm (GA) to find the optimal value

of EKF algorithm.

Taking EKF algorithm parameters Pt ,Gt , and Wt as indi-

viduals of GA algorithm, and setting the absolute value ρ of

the difference between EKF estimation value and real value

as the standard of measurement performance, the smaller

the ρ, the more accurate the prediction value of EKF algo-

rithm and the smaller the localization error of the system.

The parameter optimization process of EKF algorithm

based on GA is shown in FIGURE 3.

Firstly, the individual is initialized, i.e. the parameters

Pt ,Gt , and Wt are assigned values. Then, according to the

absolute value of the difference between EKF estimation

value and real value, the adaptability is obtained to realize

individual evaluation. Through the replication, crossover and

mutation processes of GA algorithm, parameter iteration is

carried out, and evaluation function ρ values are compared to

obtain the parameter Pt , Gt and Wt When ρ is the smallest.

IV. PERFORMANCE SIMULATION

In order to verify the algorithm proposed in this paper, the

performance simulation of the improved EKF algorithm is

carried out in the environment of experiment 1. Set the sam-

pling period is T = 0.2, the total number of simulations is

N = 50, the random number [0, 1] of environmental noise δ̄ba
when the acceleration sensor detects and the random number

[0, 2] of environmental noise δ̄bω when the gyroscope detects,

and randomly set two localization targets D1 and D2.

A. EKF ALGORITHM SIMULATION TEST

The comparison results of EKF-based state parameter estima-

tion values are shown in FIGURE 4 and FIGURE 5.

From the results in Figure 4, the parameter estimation tends

to the actual value and its error is reduced.

In the above experiment, the multi-sensor fusion local-

ization error is counted, and the results are shown

in FIGURE 5.

From the results of simulation experiments, although

EKF algorithm can better fuse and locate the data collected by

FIGURE 4. Comparison results of estimated state parameters of
localization targets.

FIGURE 5. Error results of multi-sensor fusion localization.

FIGURE 6. Comparison results of estimated state parameters of
localization targets.

multi-sensors, better fit between actual and estimated values,

there are still certain localization errors.

B. RESULTS WITH PARAMETER ERROR COMPARISON

AND ADJUSTMENT

After the standard EKF is optimized by parameter error

comparison adjustment proposed in this paper, the compar-

ison results of state parameter estimation values are shown

in FIGURE 6.
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FIGURE 7. Error results of multi-sensor fusion localization.

FIGURE 8. Comparison results of estimated state parameters of
localization targets.

From the results in Figure 6, the parameter estimation tends

to the actual value and its error is reduced.

The error result of multi-sensor fusion localization is

shown in FIGURE 7.

As the information detected by the sensor is compared and

adjusted, the influence of the error on the estimated value is

reduced, so the localization error is reduced by comparing the

results of FIGURE 7 and FIGURE 5.

C. RESULTS WITH DISTRIBUTED ERROR SECONDARY

CORRECTION

Based on parameter error comparison and adjustment,

the optimization is carried out through the distributed error

secondary correction strategy proposed in this paper, and the

comparison results of state parameter estimation values are

shown in FIGURE 8.

From the results in Figure 8, the parameter estimation tends

to the actual value and its error is reduced.The error result of

multi-sensor fusion localization is shown in FIGURE 9.

Since the normal distribution assumption is carried out

twice in the prediction and correction steps, the predicted

value obtained by the improved EKF algorithm is closer to

the real value. Compared with the results of FIGURE 9 and

FIGURE 7, the localization accuracy is further enhanced.

FIGURE 9. Error results of multi-sensor fusion localization.

FIGURE 10. Comparison results of state parameter estimation values of
localization targets.

D. RESULTS WITH GA PARAMETER OPTIMIZATION

Based on distributed error secondary correction, the

optimization is carried out through the GA-based parameter

optimization processing strategy proposed in this paper, and

the comparison results of state parameter estimation values

are shown in FIGURE 10.

From the results in Figure 10, the parameter estimation

tends to the actual value and its error is reduced.

The error result of multi-sensor fusion localization is

shown in FIGURE 11.

As GA algorithm is used to optimize the parameters,

the multi-sensor fusion localization error is further reduced.

Comparing the results of FIGURE 11 and FIGURE 9,

the improved algorithm has better localization accuracy.

V. UAV REAL-TIME LOCALIZATION TEST

In order to verify the application effect of the improved

algorithm in the actual system, this paper constructs a

multi-sensor UAV real-time localization system for simula-

tion tests. The UAV sensor MCU uses STM32F405 chip,

the inertial measurement unit uses MPU6050 chip (integrat-

ing accelerometer and gyroscope at the same time), and the

VOLUME 8, 2020 93215
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FIGURE 11. Error results of multi-sensor fusion localization.

TABLE 1. Statistics of experimental environment 1.

FIGURE 12. Schematic diagram of experimental environment.

magnetometer uses LSM303D chip. The state estimation

equation shown in Equation (1) is constructed, and 5, 10 and

15 localization points are respectively set in the experimental

area (10 × 10) (FIGURE 12).

TABLE 2. Statistics of experimental environment 2.

TABLE 3. Statistics of experimental environment 3.

FIGURE 13. Simulation test results of experimental environment 1.

In the experimental environment 1, the actual localization

error statistical results of the improved EKF algorithm pro-

posed in this paper are as follows.
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FIGURE 14. Simulation test results of experimental environment 2.

FIGURE 15. Simulation test results of experimental environment 3.

In the experimental environment 2, the actual localization

error statistical results of the improved EKF algorithm pro-

posed in this paper are as follows.

In the experimental environment 3, the actual localization

error statistical results of the improved EKF algorithm pro-

posed in this paper are as follows.

From the results of Figure 13 and table 1, the average posi-

tioning error is 0.1936 for three positioning points, 0.2324 for

six positioning points and 0.2421 for nine positioning points.

Therefore, the following conclusions can be drawn, with

the continuous increase of localization points, the improved

algorithm proposed in this paper still maintains a certain

localization accuracy and has strong robustness.

VI. CONCLUSION

The traditional single sensor localization method cannot meet

the requirements of high precision and high reliability for

moving objects. However, the fusion localization method

based on multi-sensor information avoids the deficiency of

single sensor and has been studied and applied more and

more. In this paper, a multi-sensor fusion localization method

based on adaptive error correction EKF algorithm is proposed

to solve the problem that the standard extended Kalman

filter algorithm has large errors in UAV multi-sensor fusion

localization. Experimental simulation results show that the

improved algorithm proposed in this paper has higher real-

time localization accuracy and higher robustness than the

standard EKF algorithm.
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