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Abstract—We consider the problem of distributed channel
estimation in a sensor network which employs a random sleep
strategy to conserve energy. If the N network nodes are randomly
placed at unknown positions, some prior information about the
channel gains can be obtained due to the path loss effect. When
considered from a single node perspective this prior information
is uninformative because there are on the order of N links
to estimate, while there are on the order of N parameters to
specify the unknown node positions. However, from a network
wide channel estimation perspective, there are on the order
of N2 channel gains, but these are heavily influenced by only
3N position parameters. We show that expectation propagation
(EP) can provide a distributed channel gain estimation algorithm
which makes effective use of this prior information together with
standard channel training methods. Exploiting prior information
significantly improves estimate performance, as is evidenced
by comparison with the prior-information-blind diffusion LMS
algorithm. Provided simulation results affirm this conclusion
even when shadowing is included and path loss exponents are
mismatched or unknown. As communication and computation
are both expensive at sensor nodes, we detail the message passing,
computation, and memory requirements of both algorithms.

Index Terms—Distributed estimation, channel estimation, ex-
pectation propagation, diffusion LMS.

I. INTRODUCTION

ENERGY consumption is a key issue in wireless sensor
networks [1] because they are often deployed in inac-

cessible terrains that forbid replacement or replenishment of
the sensor node power sources [2]. While part of the energy
in the sensors is spent on processing data, a sizable portion
of their energy is expended on communication because of the
necessary power amplification of the communications signals.
This energy consumption for communications purposes can be
minimized, maximizing the communications energy efficiency
of the network, through distributed power control [3] if the
network nodes are aware of the link gains on the network’s
wireless channels.

However, in many cases the sensors are deployed randomly,
for instance by dropping them out of the back of a plane, and,
thus, they do not initially know their positions, neighbors, or
channel gains. Thus, they must first estimate the channel gains
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in order to determine their neighbors and to minimize trans-
mission powers. During this initial channel gain estimation
phase, power consumption may be further reduced by duty
cycling [4], [5], i.e. keeping only a small subset of the sensors
in a high power “awake” state at each time instant.

Following these practical constraints, this paper considers
a wireless sensor network in which each sensor estimates
the channel gains by collaborating with a few other network
nodes. While performing this channel estimation we maintain
a low average network energy consumption by employing a
random sleep strategy. We apply two estimation algorithms,
one derived from the Expectation Propagation (EP)[6] princi-
ple and the other the diffusion Least-Mean Squares (LMS)[7]
algorithm, in order to estimate the channel gains and compare
their performance in terms of estimation error.

The rest of the paper is organized as follows. In Section
II, we formally state our channel gain estimation problem
and model the observations made during “channel sounding”.
In Section III, we model the channel gains for the purpose
of obtaining prior information and discuss how this prior
information influences the estimates. Section IV is perhaps
the most important section of this paper which discusses
expectation propagation based distributed estimation of chan-
nel gains. In this section, we provide a brief introduction
to the EP principle and then elaborate on how EP can be
applied to distributed channel estimation in a sensor network
when a random sleep strategy is employed. To compare the
performance of EP in distributed channel estimation, we apply
the diffusion LMS algorithm to the same estimation problem
in Section V. We simulate both algorithms and provide the
simulation results in Section VI in which we show that EP
gives promising results compared to diffusion LMS. Issues
related to the common constraints in sensor networks such
as power consumption, computational ability and memory
requirements are discussed in Section VII. In particular, we
provide message passing overheads for both algorithms which
determine the energy expended on communication between the
nodes which is a significant portion of total energy expended.
Also, we provide computational complexities and memory
requirements of the algorithms as the performance of the
algorithms are constrained by limited processing power and
limited memory available at the sensor nodes. Section VIII
concludes the paper.

II. PROBLEM STATEMENT

Consider a network of N sensor nodes 1, . . . , N which
are randomly placed on a flat terrain to monitor a common
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(a) Sleep cycle instant
k1

(b) Sleep cycle instant
k2

Fig. 1: Random set of sensor nodes are awake during two
different sleep cycle instants.

phenomenon. Assuming symmetry of the link between two
nodes, let h := [hi,j | i, j ∈ {1, 2, . . . , N}, i < j] be the
set of channel gains in the network, where hi,j is the gain of
the link between nodes i and j. The goal of this paper is to
estimate at each node the length N(N − 1)/2 channel gain
vector h by collaborating with a few other nodes and applying
distributed Bayesian estimation techniques.

To reduce the power consumption during the channel esti-
mation phase, we apply to the network a regular cyclic random
sleep strategy [8], in which at each discrete time instant a
randomly selected collection of d nodes are awake and each
sensor maintains the same average power consumption. Each
sleep cycle consists of K such discrete time instants after
which the cycle repeats. Thus, if we denote the set of nodes
awake at time instant k with S(k), k ∈ {1, . . . ,K}, then
S(K + k) = S(k). Fig. 1 shows two different random set
of nodes which are awake during two different sleep cycle
instants k1, k2 ∈ {1, . . . ,K}, k1 6= k2. Next denote the
number of times one node is awake during a sleep cycle with
c, which we require to be the same for all nodes in order
to maintain equal power consumption throughout the network
and thus equal node lifetime. Then, the total number of time
instants in a sleep cycle is K = c

dN .
To the network model which we described above, we

employ a typical wireless communication channel estimation
technique, channel sounding or channel training, to estimate
the channel gains of the links in the network. For communi-
cations between the nodes during the training phase and the
channel estimation phase which follows the training phase, we
use TDMA based medium access control [9] which increases
the energy savings by avoiding collisions and retransmissions.
These energy savings result at the cost of synchronization
which could be achieved using the schemes proposed in the
literature [10] [11] [12] [13].

To implement the TDMA based medium access control, we
further divide each sleep cycle time instant k into 2c time
slots. During each of the first c of these slots, each awake node
takes turns transmitting its training sequence while all other
awake nodes record their observations. For example, Fig. 2
depicts a node transmitting its training sequence at the first
time slot while the other nodes which are awake during that
sleep cycle instant are listening to it. The remaining slots of
a sleep cycle time instant are used for the nodes to exchange
estimate information in a manner to be described momentarily.

Now consider the first sleep cycle. Suppose that node i is
awake at sleep cycle instant k and it transmits its training

Sleep cycle time instant k

Fig. 2: One of the awake nodes during sleep cycle instant k
transmits its training sequence in the first time slot.

sequence ui = [ui,1, . . . , ui,M ] during its turn, where M is the
length of the training sequence. Then, each node j ∈ S(k) \
{i} records its observation. We model the observation rk,j,i,m

made for the symbol ui,m at the node j as a function of the
channel gain hi,j of the link between nodes i and j as

rk,j,i,m = hi,jui,m + vk,j,i,m (1)

where m ∈ {1, . . . ,M} and vk,j,i,m is noise which is assumed
to be spatially and temporally independent and to be Gaussian
distributed with mean zero and variance σ2

N . Collect all
observations made by node j for symbols ui during sleep cycle
instant k into a vector rk,j,i := [rk,j,i,m|m ∈ {1, . . . ,M}] and
define the following.

rk,j := [rk,j,i | i ∈ S(k) \ j]
rk := [rk,i | i ∈ S(k)]

Note that because of the random sleep strategy we use, a
node which is awake during a sleep cycle instant k can gather
information about only the links with the other nodes that are
awake at that particular time instant.

Next each node estimates the channel gains using the
information gathered and disseminates estimate information
in the following sleep cycles in hopes of helping other nodes
to refine their estimates. When the estimate information is
disseminated, due to the limited computational abilities we
assume that the nodes will take time on the order of the
amount of an entire sleep cycle to decode the information
(messages are encoded because they are to be sent over noisy
channels) and to use it to encode any outgoing information.
Therefore, after a few complete sleep cycles a sensor node
will only have an opportunity to obtain information from
only those nodes that can be communicated with directly or
indirectly(through other nodes) within that number of sleep
cycles. Denote the information available at node i after ` sleep
cycles with r(T (i, `)), i.e.

r(T (i, `)) := {rk|k ∈ T (i, `)} (2)

where we define P(i, `) as the set of indices j of nodes with
which node i can communicate directly or indirectly after `
complete sleep cycles and T (i, `) as

T (i, `) := {k| j ∈ S(k) and j ∈ P(i, `)} (3)
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Then after each complete sleep cycle `, each node i refines
its channel gain estimates by applying Bayesian estimation
techniques, which effectively use the prior information of
the channel gains together with the information r(T (i, `))
received from the other nodes. In particular, each node i
computes its MMSE estimates of the channel gains as

ĥi =
∫

h ph|r(T (i,`)) dh (4)

The prior information used by this MMSE estimator is due
to the path loss effect, and this is both analytically complex
and intractable because of an inverse nonlinear dependence
on the node positions as we show in Section III. Since
the posterior distribution ph|r(T (i,`)) is a function of the
prior distribution, the computation of the MMSE estimate
becomes intractable and the direct application of the Bayesian
techniques is forbidden. Motivated by this problem, we apply
an approximate inference algorithm, expectation propagation
(EP) [6], [8], to approximate the posterior distribution, and,
thus to the channel estimation problem in Section IV. We
first show in the next section how one can obtain the prior
information on the channel gains which is due to the path loss
effect.

III. PRIOR INFORMATION ON THE CHANNEL GAINS

Statistical channel modeling studies have consistently
shown that the channel gain on a link depends on 3 compo-
nents: path loss, large-scale shadowing and small-scale fading
[14] [15] [16] [17] [18]. The small scale fading phenomenon
refers to fast variations of the received power around a nominal
average power which are caused primarily by the constructive
and deconstructive interference of different multipath com-
ponents arriving at mobile receiver [19] [20] [18]. This fast
fading, which is less important in immobile scenarios such
as the one considered here, can be compensated for using
channel coding if the average link gain dictated by the path
loss and large scale shadowing effects can be determined. The
average link gain, henceforth referred to as the channel gain
in this manuscript, can in turn be estimated using periodic
channel training on a link by link basis as described in the
previous section. Since this average link gain is primarily
determined by the path loss and large scale shadowing effects,
distributions on these quantities obtained by numerous channel
measurement campaigns provide significant prior knowledge
about the channel gains to be estimated, as we point out
presently for the path loss component.

Path loss models capture the dependence of the channel
gains on the distance between transmitter and receiver. In
particular, in path loss models the channel gain between two
nodes separated by a distance of R is deemed proportional
to R−n, where n is known as the path loss exponent. Many
measurement campaigns have shown that depending on the
nature of the ground on which the network lies, the path loss
exponent varies between 2 and 6 [14] [15] [16] [17] [18]. We
have chosen a path loss exponent of 4 for our work, although
our analysis is amenable to other exponents and unknown
exponents as well, as simulation results will later show. For
the purposes of prior information for our estimation algorithm,

we then model the channel gain hi,j between two nodes i and
j as

hi,j ∝ ‖χi − χj‖−2
2 (5)

where χi and χj are the positions of the nodes i and j,
respectively.

The influence of this path loss effect has significant im-
plications for channel estimation when viewed from a net-
work standpoint which are far less important when channel
estimation is viewed from a single link perspective (as is
traditionally the case). To see this, observe that if the problem
of channel estimation is viewed as a single node problem, in
which each node in the network estimates only those channel
gains incident on it, and then disseminates this knowledge
throughout the network, each network node would be esti-
mating ≤ N − 1 channel gains. The path loss phenomenon
dictates that these gains are heavily influenced (together with
large scale shadowing effects) by the positions of the sensor
nodes involved, which, if the nodes are assumed to lie on
a flat plain, can be specified using 2N real numbers (e.g.
Cartesian coordinates). The number of parameters dictating
these positions is larger than the number of channel gains
that any one node will estimate in an uncoordinated single
node approach. Thus, it is unlikely that a path loss model
will provide any useful prior information for channel gain
estimation carried out at a single network node, since this
means the number of unknown parameters in the prior (the
positions) is far larger than the number of gains to estimate.

However, when the channel estimation problem is viewed
from a global network coordinated perspective, the situation
changes significantly. There are a total of N(N − 1) (or
N(N−1)

2 depending on whether symmetry is assumed) channel
gains throughout the network, while all of the node positions
are specified with only 2N real numbers (Cartesian coordi-
nates). In this instance, the prior information offered by the
path loss phenomenon is significant. Namely, the prevalence
of path loss models dictates that the N(N − 1) channel gains
are heavily biased (albeit not entirely determined by) by a
model dependent on just 2N parameters (the node positions).
Even for moderate N , that a N(N−1)

2 variate model is largely
determined by 2N parameters is significant. In particular, the
path loss phenomenon dictates that the N(N−1) dimensional
vector of all channel gains in the network will live in a set
that is highly concentrated around a 2N dimensional manifold
in RN(N−1).

In fact, even if the positions of the nodes are not known, the
path loss phenomenon provides significant prior information
for the network channel estimation problem. To see this, sup-
pose that the nodes are placed randomly and independently of
one another, and these positions are unknown. Then consider
two links which are incident on a common node i. The gains of
these two links, hi,j and hi,m, are functions of node positions
(χi,χj) and (χi,χm), respectively. Clearly the random vari-
ables hi,j and hi,m are dependent because they are functions
of a common random variable χi. Now, consider two links
that are not incident on a common node. The gains of these
links, hi,j and hm,n, are functions of node positions (χi,χj)
and (χm,χn), respectively. Since hi,j and hm,n are functions
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of independent variables and these functions do not have a
random variable in common, they are independent of one
another. Thus, in a path loss dominated regime if the nodes are
placed randomly and independently of one another, and these
positions are unknown, any two channel gains incident on a
common network node are statistically dependent. Conversely,
any two channel gains which do not share any common
network nodes are statistically independent. This knowledge
may be expressed in terms of a prior distribution for the
network channel gains.

The prior distribution of the channel gains depends on
the distribution of the node positions which governs the
random placement of the nodes. For the purpose of selecting
a distribution for the node positions, we specify the random
node positions by Cartesian coordinates in R2 space, the
origin of which is taken to be the position of the common
phenomenon. For example, the position of node i is specified
by χi , (xi, yi). We need to keep in mind few things
when selecting a suitable distribution for the coordinates.
The random coordinates can take continuous values; however,
practically there must be a minimum separation between any
two nodes. Also ideally, we would want more sensors to
be placed near the phenomenon to be monitored and fewer
sensors to be placed far from the phenomenon to be moni-
tored. Considering these facts, we choose the sensor positions
{χ1, . . . ,χN} to be i.i.d. according to a Gaussian distribution
satisfying a minimum separation between any two nodes,
although other position distributions may be equally viable and
will also be amenable to our analysis. This prior distribution
is both analytically complex and intractable due to the inverse
nonlinear dependence on the random node positions. For that
reason, we employ an approximate inference algorithm, EP, to
approximate this distribution with a tractable distribution.

The ultimate aim of this paper is to demonstrate that the
network channel gains can be estimated by exploiting this
prior information along with the information received from
standard channel training techniques discussed in the previous
section. While the phenomenon of large scale shadowing
also provides significant prior information which could be
exploited in estimating the average link gains throughout the
network, we start for the sake of simplicity with only the
prior information afforded by path loss. As will be evidenced
in the simulations, which include both shadowing and path
loss exponent mismatch, significant estimation performance
improvement can be obtained by incorporating prior informa-
tion into the estimator due to path loss effects alone.

In the next section, we derive an algorithm from EP which
effectively uses this prior information together with the in-
formation obtained from the channel training to estimate the
channel gains (average link gains) in the network.

IV. DISTRIBUTED ESTIMATION WITH EXPECTATION
PROPAGATION

This section briefly discusses expectation propagation and
then describes expectation propagation based distributed esti-
mation [21] of channel gains.

A. Expectation Propagation

For many probabilistic models of interest, working with the
true posterior distribution is intractable. In such situations,
the true posterior distribution must be approximated with a
tractable probability distribution such that the approximate
distribution is as close as possible to the true distribution.
Expectation propagation [6] [22] is an approximate inference
algorithm which approximates an intractable true posterior
distribution having the form of product of factors with an
exponential family distribution by minimizing the Kullback-
Leibler divergence between the two distributions.

To mathematically describe expectation propagation, let D
be data and θ be latent variables. Suppose that the posterior
distribution of θ given D factorizes as follows.

p(θ|D) =
1

p(D)

n∏

i=0

fi(θ) (6)

where f0(θ) is the prior distribution of θ. Suppose that this
posterior distribution is intractable and let q(θ) be another
distribution such that

q(θ) =
1
T

n∏

i=0

f̂i(θ) (7)

where T is the normalization constant. EP approximates the
posterior distribution p(θ|D) with distribution q(θ) by restrict-
ing the factors f̂i(θ) to be exponential family distributions
and minimizing the KL divergence between the distributions
in the reverse form, i.e. KL(p‖q). Ideally one would want
to minimize KL(p‖q) in one step, but this is intractable
because this involves averaging with respect to p(θ|D). Thus,
EP approximates each factor f̂j(θ) in turn by minimizing

KL

(
1
Tj
fj(θ)q\j(θ)

∥∥∥ qnew(θ)
)

(8)

where

q\j(θ) =
q(θ)

f̂j(θ)
, Tj =

∫
fj(θ)q\j(θ)dθ

In this fashion, each factor is revised in turn and the approx-
imation is continued for several iterations. The approximate
distribution is given by qnew(θ). With this brief description
of EP, we begin describing how EP can be applied for channel
estimation.

B. Gaussian Approximation of the Prior Distribution

EP is applied in this inference problem after approximating
the complex nonlinear joint prior distribution for the channel
gains with a Gaussian distribution. Under this Gaussian ap-
proximation, exact statistical inference with belief propagation
[23] or expectation propagation can be performed, provided
the associated approximated factor graph, which is to be
defined momentarily, is without loops. Presently we provide
the specific information about this Gaussian approximation.
We first approximate the distribution of the channel gains in
dB with a Gaussian distribution with the same mean and co-
variance for tractability. Then we show that the distribution of
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the channel gains in the linear scale can also be approximated
to a Gaussian distribution.

To see this, denote the channel gains in dB with hdB .
Suppose that the mean and covariance of the channel gains
in dB are m and Σ, respectively. Then, we can write the
approximate distribution of hdB as

hdB ∼ N (m,Σ)

Furthermore, we can write hdB as

hdB = m + w

where w is a random vector with distribution N (0,Σ). We
can now write the channel gains h as

h = 10(m/10 +w/10) = 10m/10 e(ln(10)/10)w

where element-wise operation exp and element-wise multipli-
cation is implied. Approximating the term e(ln(10)/10)w, the
channel gains h can be written as

h ≈ 10m/10
(

1 +
ln(10)

10
w
)

(9)

Thus the prior distribution of the channel gains can be approx-
imated as

h ∼ N
(

10m/10,
( ln(10)

10

)2

diag(10m/10) Σ diag(10m/10)
)

Even though both the initial log-normal approximation and
then the normal approximation are very coarse, they make
the ultimate inference algorithm tractable. We will observe in
Section VI via simulation that these coarse approximations still
provide sufficient prior information to greatly enhance channel
estimate performance over an algorithm not employing any use
of prior information.

C. Factor Graph and Expectation Propagation

We presently illustrate how EP can be applied to this
inference problem under the Gaussian approximation by as-
sociating the inference problem to a probabilistic graphical
model. Suppose that each node i ∈ {1, 2, . . . , N} in the
network has an estimate hi of h and all nodes have the same
prior information, i.e. ph(hi) = ph(hj) for all i, j.

We write a joint distribution indicating the information
available to node i after ` complete sleep cycles as

pr(T (i,`)),h,h(P(i,`)) =
∏

k∈T (i,`)

prk|h
∏

j∈P(i,`)

δ(h− hj)(ph(hj))
1

g(`) (10)

where δ is the point mass distribution at zero and g(`) =
c(c − 1)`(d − 1)` is the number of sensor nodes with which
node i can communicate directly or indirectly after ` complete
sleep cycles. Also, we define h(P(i, `)) as

h(P(i, `)) := {hj |j ∈ P(i, `)} (11)

and r(T (i, `)) as in (2). Note that in (10), we have used the
fact that the observations rk collected at different time instants
are independent given the channel gains, because all of the
training sequences in the network are known ahead of time at
each node.

[ph(h1)]1/7

[ph(h2)]1/7

[ph(h5)]1/7

[ph(h6)]1/7

[ph(h7)]1/7

[ph(h8)]1/7

[ph(h9)]1/7

pr4|h
∏

i=1,2,7,9 δ(h− hi)

pr5|h
∏

i=1,5,6,8 δ(h− hi)

2

Fig. 3: An example factor graph used for EP based channel
estimation with only one sleep cycle (l = 1)

If the posterior distribution p(h(P(i, `))| r(T (i, `))) is
approximated by applying EP using the set of approximating
distributions q(h(P(i, `)) taking the form

q(h(P(i, `)) ∝
∏

j∈P(i,`)

q(hj) (12)

with a Gaussian initialization to all q(hj), then the optimal
solution for each factor q(hj) is given by the correspond-
ing marginal of p(h(P(i, `))| r(T (i, `))) [22]. In such a
case, the expectation propagation reduces to the loopy be-
lief propagation. These optimal solutions, the marginals of
p(h(P(i, `))| r(T (i, `))), can be computed by associating the
corresponding joint distribution with a bipartite graph called
a factor graph [24].

For that reason, we now associate the model in (10) with an
approximate factor graph as shown in Fig. 3. We will call it
an approximate factor graph since it represents an approximate
joint distribution. Let us represent the sensor nodes 1, . . . , N
with the left side nodes (variable nodes) of the factor graph
and the time instants 1, 2, . . . ,K of the random sleep cycle
with the right side nodes (factor nodes) of the factor graph.
We use an edge to connect the right node i ∈ S(k), which
is awake during the sleep cycle instant k, with kth left node
in the factor graph which corresponds to the kth sleep cycle
instant.

Each node in the network, knowing the prior statistics on
the channel gains, has an initial estimate of channel gains
hi = mh, where mh = 10m/10. They can update their
estimates by updating the statistics (mean and covariance) of
the gains using the observations they made during the training
phase. Once we have associated the joint distribution on the
channel gains h and the observations r with a factor graph
as shown in Fig. 3, we can apply EP [6] [8] to compute
the posterior distribution of h. When the conditions for belief
propagation (BP) [23] are satisfied, exact statistical inference
with expectation propagation (EP) can be performed, provided
the associated factor graph is without loops.
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The computation of the posterior distribution can be de-
scribed as message passing on the factor graph as in Section
IV-D. Equivalently, this computation can be explained in terms
of real information exchange between the sensor nodes as in
Section IV-E.

D. Message Passing on Factor Graphs
The computation of these marginals could be described

using the sum-product algorithm [24] which passes messages
along the edges of the factor graph to calculate beliefs. In
the sum-product algorithm, message from a variable node to a
factor node is computed by taking the product of messages
received at the variable from the factor nodes except the
factor node to which the message is to be sent. A message
from a factor node to a variable node is computed by taking
the product of the function corresponding to the factor node
and the messages received from all variable nodes but the
variable node to which the message is to be sent, and,
then marginalizing. By a “message” we mean an appropriate
description of the corresponding function and by a “product of
messages” we mean an appropriate description of the product
of corresponding functions.

We next determine an appropriate description for the func-
tions connected to our factor graph. The factor graph rep-
resents the approximated prior joint distribution ph of the
channel gains and the conditional joint distributions prk|h of
the observations. Consider first the approximated prior joint
distribution ph which is given by

ph(h) ∝ exp{−1
2

[(h−mh)T Σ−1
h (h−mh)]} (13)

where mh is the mean and Σh is the covariance. Consider
next the conditional joint distribution on the observations rk,i

collected during sleep cycle instant k at node i ∈ S(k) which
is given by

prk,i|h(rk,i|h) ∝ exp{−1
2

[(rk,i −mrk,i|h)T Σ−1
rk,i|h

(rk,i −mrk,i|h)]} (14)

where

mrk,i|h := [hi,juj |j ∈ S(k) \ {i}]
Σrk,i|h := σ2

NI(d−1)M×(d−1)M

where σ2
N is noise variance. Since both distributions are

exponential family distributions (Gaussian), they can be easily
parameterized. This enables us to select the sufficient statistics
of the exponential family distributions to be

v(h) =
(
hy hz h

)T

(15)

where

hy := [h2
i,j |i, j ∈ {1, . . . , N}, i < j]

hz := [hi,jhm,n|i, j,m, n ∈ {1, . . . , N},
i < j,m < n,m > i]

We can rewrite the prior distribution in terms of parameter-
ization of the message exponential family as

ph(h) ∝ exp{−1
2

(v(h).τ + mh
T Σ−1

h mh)} (16)

where the parameter vector τ is

τ =
(
ay 2az − 2Σ−1

h mh

)T

(17)

where Σ−1
h = [ai,j ] 1

2 N(N−1)× 1
2 N(N−1) and

ay := [ai,i|i ∈ {1, . . . ,
1
2
N(N − 1)}]

az := [am,n|m,n ∈ {1, . . . ,
1
2
N(N − 1)}, n > m]

We can also rewrite the conditional joint distribution on the
observations as

prk,i|h(rk,i|h) ∝ exp{− 1
2σ2

N

(v(h).tk,i + rT
k,irk,i)} (18)

where
tk,i =

(
νk,i 0 µk,i

)T

(19)

where

νk,i := [uT
nunδ(i−m)δ(j − n)|m,n ∈ {1, . . . , N},

m < n if i < j,m > n if i > j, j ∈ S(k) \ {i}]
µk,i := [−2uT

nrk,m,nδ(i−m)δ(j − n)|m,n ∈ {1, . . . , N},
m < n if i < j,m > n if i > j, j ∈ S(k) \ {i}]

Here note that each vector in tk,i is of the same length as the
corresponding vectors in v(h).

It is useful to note an important property of exponential
family distributions before we continue. Consider a set of dis-
tributions {pθi|h| i ∈ {1, . . . , L}}, in which each distribution
takes the form

pθi|h ∝ exp{−1
2

[v(h).fi(θi)−wi(θi)]} ∀i ∈ {1, . . . , L}

Then, the product of the distributions can be written as
L∏

i=1

pθi|h ∝ exp{−1
2

[v(h).
L∑

i=1

fi(θi)]}

This special property of the exponential family distribution
makes the calculation of the messages easy. In particular, the
appropriate description of the product of messages (functions)
is the summation of the parameters of corresponding function.
Thus, variable node i computes the message φ(p)

i→k to factor
node k during sleep cycle p in terms of the messages ϕ(p−1)

k′→i

received from the factor nodes during sleep cycle p− 1 as

φ
(p)
i→k =

∑

k′∈N (i)\{k}
ϕ

(p−1)
k′→i (20)

where N (i) := {k|i ∈ S(k)}. Factor node k computes the
message ϕ(p)

k→i to variable node i during sleep cycle p in terms
of the messages φ

(p−1)
i′→k received from the variables nodes

during sleep cycle p− 1 and the corresponding factor as

ϕ
(p)
k→i = tk +

∑

i′∈S(k)\{i}
φ

(p−1)
i′→k (21)

where tk :=
∑

i∈S(k) tk,i. The number of iterations ` that
EP is to be run is decided ahead of time and the message
passing is initialized by setting φ

(0)
i→k = τ/g(`). At the final

iteration, variable node i sums its incoming messages to get
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the parameters corresponding to the approximated posterior
distribution. We explained the computation of the posterior
distribution on the factor graph treating the factor nodes as if
they were processors. Although this is mathematically correct,
there are no such processors in reality. Since all the processors
are located at the sensor nodes in reality, it is interesting to see
the exchange of information between the sensor nodes during
the computation of the posterior distribution.

E. Information Exchange between the Sensor Nodes

We presently describe the information exchange that occurs
between the sensor nodes during the computation of the poste-
rior distribution. Each node initializes the parameter vector τ
of the prior distribution ph(h) to the values in (17). Also, each
node i initializes the N(N−1)

2 vector µk,i in (19) to all zeros.
The remaining vectors in (19) need not be initialized or passed
during message passing, because the parameters corresponding
to the vector hy in v(h) involve only the training sequences
which are already available at each node. Thus, each node can
calculate the parameters corresponding to the vectors hy and
hz using the information available at the node.

During the first sleep cycle p = 1, during each sleep cycle
instant k each node i ∈ S(k) calculates −2uT

j rk,i,j for each
other awake node j ∈ S(k)\{i}, and adds it to the appropriate
element of the vector µk,i.

[µk,i]i,j = [µk,i]i,j − 2uT
j rk,i,j (22)

Here, by [µk,i]i,j we mean the element corresponding to node
j (corresponding to the channel gain hi,j) in the vector µk,i.
At every iteration p and every sleep cycle instant k, the
awake nodes i ∈ S(k) multiply prk,i|h with the functions
corresponding to the messages obtained in all of the other
c − 1 sleep cycle time instants (N (i) \ {k}) it was awake
during the previous (p−1)th sleep cycle to obtain the outgoing
message. Since all the functions are from the same exponential
family with sufficient statistics v(h), when the messages are
multiplied the parameters of the messages sum up as explained
above. Each node then passes the parameters corresponding to
the product of the functions. Furthermore, nodes need to pass
only the vectors µk,i because each node can calculate the other
vectors based on the information available at the node. Thus,
the nodes i ∈ S(k) sum µk,i with the vectors λ

(p−1)
k′→i to obtain

ρ
(p)
i→k.

ρ
(p)
i→k = µk,i +

∑

k′∈N (i)\{k}
λ

(p−1)
k′→i (23)

The N(N−1)
2 dimensional vector ρ(p)

i→k is then broadcast to all
other awake nodes.

Each node i ∈ S(k) then sums the d− 1 messages ρ(p)
j→k it

heard from the other awake nodes j ∈ S(k) \ {i} with µk,i,
and stores the result in λ

(p)
k→i.

λp
k→i = µk,i +

∑

i′∈S(k)\{i}
ρp

i′→k (24)

At the final iteration, node i sums λ
(p)
k→i from k in all c

sleep cycle instants it was awake, adds it to τ , and multiplies

the result by the (offline computed N(N−1)
2 × N(N−1)

2 dimen-
sional) new covariance matrix formed from the training data
to get its estimate. We summarize this algorithm below.

• Initialize µk,i to all zeros and τ as in (17)
• During the 1st sleep cycle p = 1 and each sleep

cycle instant k, at each node i ∈ S(k) calculate
[µk,i]i,j as in (22).

• During sleep cycle 1 ≤ p ≤ ` − 1 and each sleep
cycle instant k, at each node i ∈ S(k) repeat:

– Calculate the message ρ
(p)
i→k as in (23) and

broadcast it.
– Sum the messages ρ(p)

j→k received from nodes
j ∈ S(k)\{i} with µk,i as in (24) to get λp

k→i

and go to sleep.
• At final sleep cycle p = `, at node i:

Sum λ
(p)
k→i from k ∈ N (i), add to τ and multiply

with the new covariance matrix to get the estimate.

F. Convergence and Sensitivity of the Algorithm

Having described the EP based algorithm for distributed
estimation of channel gains, we next discuss the convergence
properties and its sensitivity to node failures. As it was
discussed in Section II, after ` complete sleep cycles each
(variable) node i will have communicated with nodes up to
2` edges away from it in the factor graph. For any finite
number of iterations `, as the number of nodes N → ∞ the
subgraph which has root at i and contains the nodes no more
than 2` edges away from i becomes a tree with probability
→ 1 [25] [8]. When applied for an appropriate finite number
of iterations in such a case, our algorithm converges to the
approximate posterior distribution of the channel gains given
the observations at nodes no more than 2` edges away from
node i, because after approximating the prior distribution this
equivalent to applying BP and it is well known that BP
converges on trees [23] [24].

Under this convergence assumption (which is the case for
larger networks), we now examine the robustness of our
algorithm to node failures. Consider the subgraph (tree) which
has root at node i and contains the nodes no more than 2`
edges away from i. Suppose that one of the internal nodes in
the tree has failed. This node failure results in a situation in
which node i cannot exploit the observations of those nodes
which should be communicated with through the failed node.
However, as it can be seen from the discussion in Section
IV-E, the information exchange between the sensor nodes will
continue until the algorithm converges to a solution which is
less accurate than it would have been otherwise.

V. DISTRIBUTED ESTIMATION WITH DIFFUSION LMS

Since the ultimate aim of this paper is to demonstrate
that the prior information can be effectively used to estimate
network channel gains, we compare the performance of our
EP based estimation algorithm with an another algorithm, the
diffusion LMS [7], which does not make use of the prior
distribution. The diffusion LMS uses only the observations
made during the training phase to estimate the channel gains.
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Suppose that each node has a copy of the channel gain
vector h and it takes an initial value of mh. If node i transmits
its training sequence during a sleep cycle instant k, then all
other nodes which are awake during the sleep cycle instant
k have access to {ui,m, rk,i′,i,m} where i′ ∈ S(k) \ {i} and
ui,m is the input regression signal and rk,i′,i,m is the desired
signal. Note that ui,m and rk,i′,i,m obey the equation

rk,i′,i,m = hi,i′ui,m + vk,i′,i,m

The network nodes i′ ∈ S(k) \ {i} can use the diffusion
LMS algorithm [7] to estimate hi,i′ . Denote the estimate of
hi,i′ at time instant m of sleep cycle instant k by ĥk,m

i,i′ . Then,

ĥk,m
i,i′ = ĥk,m−1

i,i′ + µui,m(rk,i′,i,m − ĥk,m−1
i,i′ ui,m) (25)

where µ is the step size.

At the end of each sleep cycle instant k, the nodes that are
awake diffuse their estimates to get the combined estimate h̃k

as
h̃k =

∑

i∈S(k)

a(k, i)ĥk
i (26)

where ĥk
i is the estimate of h at node i at the end of the sleep

cycle instant k and a(k, i) satisfy
∑

i∈S(k) a(k, i) = 1. The
nodes i ∈ S(k) use the combined estimate h̃k for estimation
during the later sleep cycle instants.

We summarize this algorithm below.

• At each node i, initialize ĥi to mh

• During each sleep cycle and sleep cycle instant k,
at each node i ∈ S(k) repeat:

– For all i′ ∈ S(k)\{i} calculate estimate ĥk,m
i,i′

as in (25).
– At the end of sleep cycle instant k, diffuse the

estimate to get h̃k as in (26).

VI. SIMULATION RESULTS

We have simulated the algorithms described in the previous
sections to estimate the channel gains in a network and have
plotted the estimation errors for both algorithms. We describe
the experiment and present the results in this section. In our
experiment, we estimate the channel gain vector h for a
network with 20 sensors applying EP and LMS. We selected a
moderate size (20 nodes) network for our simulations, because
testbeds on which initial studies can be done consist of nodes
on the order of 10 [26]. The network is formed as described
below. Candidate sensor positions are generated on the plane
R2 such that they are i.i.d. and Gaussian distributed with
mean zero and variance 1. These candidate sensor positions
are then refined to actual sensor positions by keeping only
those positions that are 0.08 apart from one another, because
when the separation is less than 0.08 the channel gains become
unrealistically large. A random sleep strategy with K = 10
and d = 4 is applied to this network, where the value of d
is selected by simulating the algorithm for different values of
d for fixed N,K and by choosing the one which gives better
estimation error performance.

Although the diffusion LMS does not require the statistics
of these channel gains for operation, EP requires the statistics
for the estimation of these channel gains. As discussed in
Section III, the joint prior distribution of the channel gains
is analytically complex and intractable. Thus, we empirically
calculate the statistics (mean and covariance matrix) of the
channel gains using many channel gains generated by plugging
in sensor positions in the equation obtained by applying
proportionality constant 1 to (5). Then, we generate a new
set of channel gains as described in Section VI-A to test
the algorithms with. Next, we generate the BPSK training
sequences of length 1000 randomly and uniformly. We run
1000 Monte Carlo simulations for each algorithm using a noise
variance of σ2

N = 1 for this experiment.
Due to the random sleep strategy and to the local nature of

both algorithms, after ` iterations the observations made at a
particular network node can propagate to the nodes only up
to 2` edges away from that node in the factor graph. Thus,
after ` iterations each node will have observed information
(either directly or indirectly) about only a subset of the
network links and this subset differs for each node. To plot
the average estimation error we consider only these subsets of
links, because including the estimation errors of those channels
unobserved gives large average estimation errors since the
nodes cannot make good estimates of the unobserved channels
unless the correlations between the channels incident on the
same node is very (physically unrealistically) large. Say node
i has information about subset hi,` of links after ` iterations.
Then, we calculate the average squared estimation error first
by averaging the squared estimation errors of hi,` at each node
i and then averaging over all nodes. Note that, here ` can be
chosen independently from the number of iterations that we
run the algorithm and hi,`1 ⊆ hi,`2 for `1 ≤ `2. Thus, one
may consider different such hi,` (each corresponds to different
`) at each node i and plot the average estimation error. For
simplicity, we consider the subsets hi,` only for ` = 1, 2, 3
and plot the average estimation errors in Section VI-A. We
call each of these cases ’Case 1’, ’Case 2’ and ’Case 3’,
respectively.

A. Comparison of EP and Diffusion LMS

We now simulate EP and the diffusion LMS and compare
the performance of the two algorithms. Using these simula-
tions, we show that although EP utilizes a path loss model it
is also robust to the shadowing effects in the channel gains.

We do not consider the fading effects here, because fading
is less important in immobile scenarios such as the one
considered here and any multipath effects caused by the
fixed reflectors can be included in the log-normal shadowing.
Thus, we generate the channel gains to be estimated with
path loss and log-normal shadowing effects. Shadowing effect
is included in the channel gains by first generating gains
as described above, and, then adding a Gaussian variable
distributed N (0, 18.5) to the associated power in dB.

Fig. 4a shows the average squared estimation error of the
observed channel gains in dB when EP is applied. Interest-
ingly, even with the Gaussian approximation of the joint prior
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Fig. 4: Average squared estimation error of only those channel
gains observed directly or indirectly by the nodes after 1st, 2nd
and 3rd sleep cycles

distribution and inclusion of shadowing effects, EP yields
impressive estimation error performance for estimation of the
true channel gains. Note that there is a drastic change in the
average estimation error after first sleep cycle for ’Case 1’
since these links were observed by the nodes directly. Also
note that the drastic change shifts to the second sleep cycle
and third sleep cycle for ‘Case 2’ and ’Case 3’, respectively, as
is to be expected. The estimation errors continue to decrease
even after this initial drastic change because the nodes make
use of the correlation with the other channel gains observed
in subsequent iterations to refine estimates of these particular
channel gains.

Fig. 4b shows the average squared error of the estimated
channel gains when diffusion LMS is used with step size
µ = 1. This step size was chosen to be the maximum step
size for which the diffusion LMS does not diverge in order
to give the algorithm the chance to converge as quickly as
possible, since EP converges faster. Note that EP gives better
performance than the diffusion LMS when the network is
required to estimate the channel coefficients within a small
number of sleep cycles.

B. Mismatch of Path loss Exponent

The presented EP channel estimation algorithm can still be
used to estimate the channel gains with small errors even if the
actual path loss exponent differs by a small range of values
from the path loss exponent used in the prior distribution.
To show this, we generate the prior statistics with path loss

0 2 4 6 8 10 12 14 16 18 20
−40

−30

−20

−10

0

10

20

30

40

50

60

Sleep Cycle

A
ve

ra
ge

 S
qu

ar
ed

 E
rr

or
 (

dB
)

 

 

Case 1
Case 2
Case 3

Fig. 5: Average squared estimation error when EP (uses path
loss exponent 4) is applied to estimate channel gains having
path loss exponent 6

exponent 4 and the channel gains to be estimated as described
in Section VI-A but with path loss exponent 6. Fig. 5 shows
the average estimation error when EP is applied for this
experiment and proves that our algorithm is robust to path
loss exponent mismatch between 4 and 6 when the nodes are
placed i.i.d. according to a Gaussian distribution.

VII. MESSAGE PASSING OVERHEAD, COMPUTATIONAL
COMPLEXITY AND MEMORY REQUIREMENT

Although the estimation error performance is the most
important aspect of channel estimation in sensor networks,
this is not the only aspect that must be considered. Any
operation in sensor networks is constrained by factors such
as power consumption, computational ability and memory
requirements. In this section, we discuss the issues related
to these constraints. In particular, we calculate the number of
messages that are to be passed between the nodes, the number
of computations required and the number of memory required
for both algorithms during distributed estimation of channel
gains.

A. Message Passing Overhead for EP and diffusion LMS

A significant portion of the power in the nodes is expended
on internode communication and this heavily depends on the
message passing overhead. Thus we compute the message
passing overhead of algorithms in this subsection.

The message passing overhead for EP can be calculated
by analyzing the message exponential family. Although the
sufficient statistics vector v(h) of the message exponential
family has a dimension of 2 N(N−1)

2 + [N(N−1)−1][N(N−1)]
8 ,

each node i needs to pass only N(N−1)
2 parameters µk,i

which are corresponding to the vector h in v(h) in (15). The
parameters corresponding to the vector hy in v(h) in (15)
involve only the training sequences that are already available
at each node. Similarly, the parameters corresponding to hz

in v(h) in (15) involve only the elements of the covariance
matrix Σh of the prior distribution. Thus, each node can
calculate the parameters corresponding to the vectors hy

and hz using the internal information. Thus, the number of
messages required to be passed for EP during a complete sleep
cycle is KdN(N−1)

2 .
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TABLE I: Message passing overhead, computational complexity and memory requirements
EP Diffusion LMS

Message passing overhead

(per sleep cycle) Kd
N(N−1)

2
Kd

N(N−1)
2

Computational complexity

Additions (per P cycles) Kd(d− 1)(M + 1) + PK(dc + d2)
N(N−1)

2
PKd

(
2(d− 1)M + d

N(N−1)
2

)

+
N2(N−1)

2

(
c +

N(N−1)
2

)

Multiplications (per P cycles) Kd(d− 1)M + N
(

N(N−1)
2

)2
PKd(d− 1)

(
2M +

N(N−1)
2

)

Memory requirements N(N−1)(N2−N+2c+5)
4

+ MN
N(N−1)

2
+ MN

When the diffusion LMS is applied to the channel gain
estimation, each node calculates its own estimates and, then,
diffuses its estimates at the end of the sleep cycle instant.
Thus, the message passing overhead for the diffusion LMS
is simply the number of channel gains in the network. The
total message passing overhead for the diffusion LMS is
KdN(N−1)

2 per sleep cycle. Thus, the total message passing
overhead is exactly the same for both algorithms.

One might argue that not all N(N−1)
2 parameters in the

vectors need to be passed, because when EP is applied many
elements in µk,i are zero and when diffusion LMS is applied
many elements in ĥk

i remain unchanged. However, if one
wants to take the zero and unchanged elements into account
to reduce the message passing overhead, one must keep track
of the elements that change and perform some indexing when
he passes messages. Thus, clearly there is a trade off between
reduction in the number of parameters that are passed and
increment in the number of computations. It is unclear whether
there is any saving on the energy consumption at the nodes
from such a practice. For that reason, we pass all N(N−1)

2
parameters in the vectors.

B. Computational Complexity of EP and diffusion LMS

We calculate the number of computations required for each
algorithm based on the expressions given in Section IV-E and
Section V. We first consider the computational complexity of
EP.

The computations related to the parameters of the prior
distribution ph(h) are done offline. Each instance of (22)
requires M multiplications and M +1 additions, and is run in
each of d nodes for d − 1 other nodes in each sleep cycle
instant in the first iteration, giving a total of d(d − 1)M
multiplications and d(d − 1)(M + 1) additions spent in (22)
per sleep cycle instant in the first iteration (over the whole
network). Each instance of (23) requires cN(N−1)

2 additions,
and is run in each of d nodes in each sleep cycle instant,
giving a total of dcN(N−1)

2 additions spent in (23) in each
sleep cycle instant (over the whole network). Each instance
of (24) requires dN(N−1)

2 additions, and is run in each of d
nodes in each sleep cycle instant, giving a total of d2 N(N−1)

2
additions spent in (23) in each sleep cycle instant (over the
whole network).

Finally, the final iteration requires each of N nodes to
perform (c + 1)N(N−1)

2 additions, then multiplication of a
matrix times a vector requiring

[N(N−1)
2

]2
multiplications

and N(N−1)
2

[N(N−1)
2 − 1

]
additions. This gives a total of

N
[
(c + 1)N(N−1)

2 + N(N−1)
2

(N(N−1)
2 − 1

)]
additions and

N
[N(N−1)

2

]2
multiplications over the entire network during

the last iteration.
For the diffusion LMS, (25) is run during each sleep cycle

instant k at each awake node i ∈ S(k) for every other awake
node i′ ∈ S(k)\{i} for each training instant m ∈ {1, . . . ,M}.
One calculation of (25) consists of two multiplications and two
additions. Thus, 2d(d− 1)M multiplications and 2d(d− 1)M
additions are spent in each sleep cycle time instant on calcu-
lations of the form (25). Then the nodes diffuse the estimates
and calculate (26). This involves dN(N−1)

2 multiplications and
(d − 1)N(N−1)

2 additions in each of d sensor nodes, giving
a total of d2 N(N−1)

2 multiplications and d(d − 1)N(N−1)
2

additions spent on calculations for (26) per sleep cycle time
instant.

If a total of P sleep cycles are performed, required number
of additions and multiplications over the entire network for
EP and diffusion LMS are given in Table I.

C. Memory Requirement

It is also important to analyze memory requirement of the
algorithms, because in some applications memory is limited.
We first calculate the memory requirement for EP. When EP
is employed for channel gain estimation, some parameters are
calculated offline and stored in the sensor nodes while the
rest of the parameters are calculated and stored online. First,
consider the offline computed parameters. Each node requires
storing information on the prior distribution and the training
sequences of all nodes. The storage of the parameter vector τ
and the training sequences u = {ui|i ∈ {1, . . . , N}} requires
N(N−1)(N2−N+6)

8 and MN memory locations, respectively.
Also, each node initializes the vector µk,i to all zeros which
requires N(N−1)

2 memory. Furthermore, at the final iteration
each node utilizes a offline computed N(N−1)

2 × N(N−1)
2

matrix to calculate its estimate. Since this is a symmetric
matrix, this requires N2(N−1)2

8 memory locations at each node.
When EP is run, each node will allocate memory to store
messages that are to be received during different sleep cycle
instants. This will require cN(N−1)

2 memory locations at each
node. Thus, when EP is employed each node requires a total
of N(N−1)(N2−N+2c+5)

4 +MN memory locations.
When diffusion LMS is employed, each node initializes

the estimates and stores the training sequence offline. The
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initialization of the estimates require N(N−1)
2 memory while

the storage of the training sequence requires MN memory.
The diffusion LMS does not require any additional memory
when the algorithm is in progress. Thus, the diffusion LMS
requires a total of N(N−1)

2 +MN memory at each node.
Table I summarizes the results derived in Section VII.

VIII. CONCLUSION

We considered a distributed channel estimation problem in
a sensor network which employs a random sleep strategy to
conserve energy. We modeled the channel gains in the network
using a path loss model and gathered information about
these channels using channel sounding. One might want to
estimate the channel gains by using the prior information and
information gathered from channel sounding, and by applying
traditional Bayesian estimation techniques. We showed that
a direct application of Bayesian estimation is forbidden in
this case due to the intractability of the prior distribution,
and showed that EP can be applied to this channel estimation
problem through approximation of the posterior distribution.

We compared the performance of EP with the diffusion
LMS and showed EP gives a better estimation error per-
formance using the simulation results. We also proved that
although our algorithm utilizes a path loss model with an a
priori fixed path loss exponent, it is robust to shadowing effects
and variation of path loss exponents. Finally, we compared
the message passing overhead, computational complexity and
memory requirements of both algorithms.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: A survey,” Computer Networks (Elsevier), vol. 38,
no. 4, pp. 393–422, Mar. 2002.

[2] A. Ephremides, “Energy concerns in wireless networks,” IEEE Wireless
Communications, vol. 9, no. 4, pp. 48–59, Aug. 2002.

[3] V. Kawadia and P. R. Kumar, “Principles and protocols for power
control in wireless ad hoc networks,” IEEE Journal on Selected Areas
in Communications, vol. 23, no. 1, pp. 76–88, Jan. 2005.

[4] C. fan Hsin and M. Liu, “Randomly duty-cycled wireless sensor
networks: Dynamics of coverage,” IEEE Transactions on Wireless Com-
munications, vol. 5, no. 11, pp. 3182–3192, Nov. 2006.

[5] O. Dousse, P. Mannersalo, and P. Thiran, “Latency of wireless sensor
networks with uncoordinated power saving mechanisms,” in Proceedings
of Mobihoc, 2004.

[6] T. P. Minka, “A family of algorithms for approximate bayesian infer-
ence,” PhD Thesis, Massachusetts Institute of Technology, 2001.

[7] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over
adaptive networks: Formulation and performance analysis,” IEEE Trans-
actions on Signal Processing, vol. 56, no. 7, pp. 3122–3136, July 2008.

[8] J. M. Walsh, S. Ramanan, and P. A. Regalia, “Optimality of expectation
propagation based distributed estimation for wireless sensor network
initialization,” in IEEE International Workshop on Signal Processing
Advances for Wireless Communications, 2008.

[9] K. Kredo II and P. Mohapatra, “Medium access control in wireless
sensor networks,” Computer Networks (Elsevier), vol. 51, no. 4, pp.
961–994, Mar. 2007.

[10] G. Scutari, S. Barbarossa, and L. Pescosolido, “Distributed decision
through self-synchronizing sensor networks in the presence of propa-
gation delays and asymmetric channels,” IEEE Transactions on Signal
Processing, vol. 56, no. 4, pp. 1667–1684, Apr. 2008.

[11] S. Barbarossa and G. Scutari, “Bio-inspired sensor network design,”
IEEE Signal Processing Magazine, vol. 24, no. 3, pp. 26–35, May 2007.

[12] B. Sundararaman, U. Buy, and A. D. Kshemkalyani, “Clock synchro-
nization for wireless sensor networks: a survey,” Ad Hoc Networks
(Elsevier), vol. 3, no. 3, pp. 281–323, May 2005.

[13] F. Sivrikaya and B. Yener, “Time synchronization in sensor networks:
A survey,” IEEE Network, vol. 18, no. 4, pp. 45–50, July-Aug. 2004.

[14] J. B. Andersen, T. S. Rappaport, and S. Yoshida, “Propagation mea-
surements and models for wireless communications channels,” IEEE
Communications Magazine, vol. 33, no. 1, pp. 42–49, Jan. 1995.

[15] D. Cassioli, M. Z. Win, and A. F. Molisch, “The ultra-wide bandwidth
indoor channel: From statistical model to simulations,” IEEE Journal
on Selected Areas in Communications, vol. 20, no. 6, pp. 1247–1257,
Aug. 2002.

[16] E. Green and M. Hata, “Microcellular propagation measurements in
an urban environment,” in IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications, 1991.

[17] A. Saleh and R. Valenzuela, “A statistical model for indoor multipath
propagation,” IEEE Journal on Selected Areas in Communications,
vol. 5, no. 2, pp. 128–137, Feb. 1987.

[18] A. Goldsmith, Wireless Communications. Cambridge University Press,
2005.

[19] A. F. Molisch, Wireless Communications. John Wiley & Sons, Ltd.,
2005.

[20] G. L. Stuber, Principles of Mobile Communication, 2nd ed. Kluwer
Academic Publishers, 2001.

[21] A. Ribeiro and G. B. Giannakis, “Bandwidth-constrained distributed
estimation for wireless sensor networks - part i: Gaussian case,” IEEE
Transactions on Signal Processing, vol. 54, no. 3, pp. 1131–1143, Mar.
2006.

[22] C. M. Bishop, Pattern Recognition and Machine Learning. Springer
Science + Business Media, LLC, 2006.

[23] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Constructing free-energy
approximations and generalized belief propagation algorithms,” IEEE
Transactions on Information Theory, vol. 51, no. 7, pp. 2282–2312,
July 2005.

[24] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs
and sum-product algorithm,” IEEE Transactions on Information Theory,
vol. 47, no. 2, pp. 498–519, Feb. 2001.

[25] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” IEEE Transactions on
Information Theory, vol. 47, no. 2, pp. 599–618, Feb. 2001.

[26] W. R. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive protocols
for information dissemination in wireless sensor networks,” in Proceed-
ings of the 5th annual ACM/IEEE international conference on Mobile
computing and networking, 1999.

Sivagnanasundaram Ramanan (S’09) received the
B.Sc. degree in electrical and electronic engineering
from the University of Peradeniya, Sri Lanka in
2006. He is currently working towards the Ph.D.
degree in electrical engineering at Drexel University,
Philadelphia, PA.

His research interests include distributed estima-
tion, distributed source coding and wireless commu-
nication.

John M. Walsh (S’01-M’07) received the B.S.
(magna cum laude), M.S. and Ph.D. degrees in
electrical and computer engineering from Cornell
University, Ithaca, NY in 2002, 2004, and 2006,
respectively.

In September 2006, he joined the Department
of Electrical and Computer Engineering at Drexel
University, Philadelphia, PA, where he is currently
an Assistant Professor. His current research interests
include: (a)the performance and convergence of dis-
tributed collaborative estimation in wireless sensor

networks via expectation propagation, (b)delay mitigating codes and rate-delay
tradeoffs in multipath routed and network coded networks, and (c) joint source
separation and identification.

Dr. Walsh is a member of HKN and TBP.


