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Abstract—We study the problem of distributed estimation based
on the affine projection algorithm (APA), which is developed from
Newton’s method for minimizing a cost function. The proposed so-
lution is formulated to ameliorate the limited convergence prop-
erties of least-mean-square (LMS) type distributed adaptive fil-
ters with colored inputs. The analysis of transient and steady-state
performances at each individual node within the network is de-
veloped by using a weighted spatial-temporal energy conservation
relation and confirmed by computer simulations. The simulation
results also verify that the proposed algorithm provides not only
a faster convergence rate but also an improved steady-state per-
formance as compared to an LMS-based scheme. In addition, the
new approach attains an acceptable misadjustment performance
with lower computational and memory cost, provided the number
of regressor vectors and filter length parameters are appropriately
chosen, as compared to a distributed recursive-least-squares (RLS)
based method.

Index Terms—Adaptive filters, affine projection algorithm, dis-
tributed estimation, energy conversation.

I. INTRODUCTION

I
N order to reduce the requirement of a powerful central

processor and extensive amount of communications in a

traditional centralized solution, a distributed solution is de-

veloped relying only on local data exchange and interactions

between immediate neighborhood nodes, whilst retaining the

estimation accuracy of a centralized solution [1], [2]. Such

distributed adaptive networks could therefore find a wide range

of potential applications, such as in precision agriculture,

environmental monitoring, military surveillance, transportation

and factory instrumentation [1]–[3]. One of their particular

merits is that a distributed adaptive network has abilities to

collaborate and adapt as explained in [9]–[12]. The individual

nodes within a distributed network share the computational
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burden so that communications are reduced as compared to a

centralized network, and power and bandwidth usage are also

thereby reduced [1], [4]. In addition, the ability to track not

only the variations of the environment but also the topology of

the network is also achieved due to their adaptive capability.

Distributed solutions which exploit consensus implemen-

tation presented in [6]–[8] require two time scales: during the

initial period of time each node makes an individual estimation

and then through consensus iterations the nodes combine esti-

mations to reach the desired estimate. This approach relies on

particular conditions for the coefficients and network topology.

Recent investigations [9]–[12] have therefore developed incre-

mental learning algorithms over a distributed network, which

have a cyclic pattern of cooperation with minimum power and

communications. In such a network, each node cooperates

only with one adjacent node to exploit the spatial dimension,

whilst performing local computations in the time dimension.

The incremental algorithms thereby approximate the global

estimation in a defined cyclic learning framework. In addition,

this approach reduces communications between nodes and

improves the network autonomy as compared to a centralized

solution. In practical wireless sensor networks, it should be

highlighted, however, that it may become more difficult to es-

tablish a Hamiltonian cycle as required in the incremental mode

of cooperation as the number of sensors increases. Moreover,

such incremental distributed processing schemes may not scale

well for very large networks. In this work, we therefore assume

the network size is sufficiently small, typically less than one

hundred, so that incremental schemes can be used. In the future,

we plan to study adaptive algorithms of the diffusion type, which

remove the requirement of a Hamiltonian cycle at the expense

of a slightly reduced mean-square performance [24]–[26]. In

diffusive networks, the nodes share and process information

in real-time and a Hamiltonian cycle is not needed. The in-

cremental approach studied in our paper can be viewed as a

reference point against which other algorithms can be measured;

this is because incremental approaches provide one of the best

performances when cycles are permitted [9]. It is well known

that in the case of a single adaptive filter, one major drawback of

the LMS algorithm is its slow convergence rate for colored input

signals and the APA algorithm is a better alternative to LMS

in such an environment [13]–[15]. For distributed networks,

highly correlated inputs also deteriorate the performance of

the distributed LMS (dLMS) algorithm [5]. In this paper, we

therefore focus on a new APA-based distributed learning scheme

for such a network which was proposed to obtain a good com-

promise between convergence performance and computational

cost, rather than considering a precise application. The term
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“affine projection” represents linear projection type mapping

onto the subspace defined by the columns of a low column-rank

input matrix. In fact, as in [17] where further details can be

found, the precise term would be -APA, where represents

the weighting on a regularizing identity matrix in the algorithm

formulation; however, in this work, as in [17] the is dropped for

notational convenience. A key contribution of this paper is using

the weighted spatial-temporal energy conservation relation to

evaluate the performance of the resulting ring network of nodes,

which incorporates the space-time structure of the data. These

theoretical results are found to agree well with the simulation

results for both Gaussian and uniform distributed input signals

for sufficiently small step-sizes.
The remainder of this paper is organized as follows. In

Section II, a distributed estimation problem is defined and

the derivation of the proposed APA-based algorithm is given.

In Section III, we analyze the performance of the spatial and

temporal adaptive algorithm and provide the closed-form ex-

pressions for the transient and steady-state performances of the

incremental algorithm. Simulation results are compared with

the theoretical results in Section IV.

Throughout the paper, the following notations are adopted:

boldface small and capital letters are used for random complex

vectors or scalars and matrices respectively; normal font is em-

ployed for deterministic complex quantities. For ease of refer-

ence, the main symbols used in this paper are listed:

set of positive real numbers;

transposition;
complex – conjugate transposition;

absolute squared operation;

squared Euclidean norm operation;

differentiation;

statistical expectation of ;

minimum value of its argument;

eigenvalues of a matrix;

smallest eigenvalue of a matrix;

largest eigenvalue of a matrix;

column vector with entries ;

trace of the matrix ;

Kronecker product of two matrices and .

II. ESTIMATION PROBLEM

A motivational example for distributed adaptive networks is

to examine an application in the context of measuring some

quantity such as temperature or humidity across a spatial field.

Consider that a network with sensors is deployed to observe

this physical phenomenon and related events in a specified envi-

ronment. At time , the sensor at node collects a measurement

, where denotes the discrete time index and indicates

the node index, and assuming an autoregressive (AR) model is

adopted to represent these measurements as follows:

(1)

where is additive zero-mean noise and the coefficients

are the parameters of the underlying model. If we define

the 1 parameter vector

(2)

and the 1 regression vector

(3)

then (1) at each node can be rewritten as an equivalent linear

measurement model

(4)

The objective becomes to estimate the model parameter vector

from the measurements and over the network and

thereby has the form of a system identification problem. Thus,

in order to find the 1 vector , we formulate the linear

space-time least-mean-square estimation problem as

(5)

where the global desired response vector and input matrix are

(6)

(7)

where the are realizations of . Thus, the

optimal minimum mean-square error (MMSE) solution is

calculated, for which the normal equations [17] are satisfied,

(8)

where and .

When a multitude of nodes in the network has access to data,

in order to take advantage of node cooperation, we can introduce

a distributed network with incremental learning, where at least

one cyclic path can be established across the network. In such

a network, information should be transferred from one node to

its immediate neighborhood node in a cyclic manner to return

to the initial node (see Fig. 1). As in [9], the cost function can

be decomposed into

(9)

In previous works [9]–[12], the incremental distributed

LMS-based and distributed RLS-based schemes have been in-

troduced. These algorithms exploit a cyclic estimation strategy,

which at each discrete time entails visiting every node within

the whole network only once, i.e., a Hamiltonian cycle. Our

contribution aims at improving upon the convergence perfor-

mance of the dLMS algorithm with colored input signals whilst

reducing the complexity of the low communications distributed

RLS (Lc-dRLS) algorithm and the distributed RLS (dRLS)

algorithm of [11].

Let denote the local estimation of the desired optimal

weight vector at node and time instant and let indicate the
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global estimation at time instant . Consider a Newton’s search

based approach to solving (9) for incremental learning within

a distributed network. The optimal tap weight is estimated

via [17]

(10)

where , , denotes a regu-

larization parameter with small positive value, indicates

an appropriately chosen step-size, which is evaluated in

Section III-E, and the scheme is initialized with an 1

vector .

For a practical scheme to realize (10), and utilizing the corre-

lation of the input signal at each node, we replace

by the following sample sliding-window estimates:

(11)

(12)

with equal to the number of recent regressors of each node

whilst and denote the corresponding input vector and

desired response at instant time for the th node. Hence, using

the matrix inversion formula, recursion (10) becomes,

(13)

where the local block data matrix and 1 data vector

are

...
...

(14)

and is employed to avoid the inversion of a rank deficient ma-

trix . As such, recursion (13) is the distributed APA

(dAPA) learning algorithm in an incremental network, the op-

eration of which is shown in Fig. 1. At each time instant , each

node utilizes local data and received from its

previous node in the cycle to update the local estimation.

At the end of the cycle, the local estimation is employed as

the global estimation and the initial local estimation

for the next discrete time instant . The final weight vector

shown at the bottom of Fig. 1 can either be used to generate

a filter output vector term of the form or the vector

itself can then be used for system identification or equaliza-

tion. The pseudo-code implementation of dAPA is described in

Table I. In addition, dAPA has intermediate computational and

memory cost between dLMS and dRLS, for certain regressor

length, which is verified in the Appendix.

Fig. 1. Data processing of the dAPA algorithm in an incremental network.

TABLE I
PSEUDO-CODE IMPLEMENTATION OF DAPA

III. PERFORMANCE ANALYSIS

The convergence behaviors of classical APA-based algo-

rithms are studied in [15]–[19], exploiting arguments based on

a single adaptive filter. In order to study the performance of the

dAPA algorithm, we extend the weighted energy conservation

approach for the APA-based algorithms of [18], [19] to the

case of a distributed incremental network, which involves both

the space dimension and the time dimension. However, due to

the energy flow across the interconnected filter, some of the

simplifications for a single filter case cannot be adopted. A

set of weighting matrices is particularly chosen to decouple a

set of equations and we evaluate the transient and steady-state

performances at each individual node in terms of mean-square

deviation (MSD), excess mean-square-error (EMSE) and

mean-square error (MSE). The closed-form expressions for

the theoretical results are formed under some simplifying

assumptions described below.

A. Data Model and Assumption

As defined earlier, we use boldface letters as the random

quantities and assume the same model as in [9] to carry out the

performance analysis:

A1) The relation between the unknown system vector

and takes the form:

(15)
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where is a temporally and spatially independent

noise sequence with variance independent of

for or , and for all and ;

A2) is spatially independent and temporally indepen-

dent, namely is independent of and for

or .

We highlight that assumption A2) is an extension of that made

for time-only adaptive filtering to space-time adaptive filtering.

We emphasize that the spatial independence assumption is

generally more likely to hold than the temporal independence

assumption in the context of a distributed network, as a con-

sequence of the different locations of the nodes. The temporal

independence assumption is necessary for analysis purposes

and is commonly used to provide useful performance mea-

sures in adaptive signal processing [27]. In terms of analysis

in this paper, we study only the stationary case due to space

limitations, i.e., where the system vector is fixed and statistics

of the various input and noise signals are time-invariant, but

the following analysis could be extended to a non-stationary

model, such as the random-walk model (see [20]–[22]).

B. Weighted Spatial-Temporal Energy Conservation Relation

Using the following error vectors:

weight-error vector (16)

error ,vector (17)

to represent the update tap weights expression in dAPA, we

obtain

(18)

Multiplying both sides of (18) by from the left, (18)

becomes

(19)

The a posteriori and a priori error vectors are in-

troduced

As a result, we have

(20)

Note that the error vector is given by

(21)

where

(22)

We are interested in evaluating the following performance mea-

sure at each node :

(23)

(24)

(25)

where under the assumed data conditions we introduce the

weighted norm notation with a vector and

a Hermitian positive definite matrix . In order to study

the performance behavior of the dAPA algorithm for incre-

mental networks, the method of weighted energy conservation

described in [9], [17] is used in this paper. As a consequence,

we firstly define the weighted a posteriori and a priori error

vectors at node ,

(26)

(27)

where is a Hermitian positive-definite weighting matrix and

free to choose for each node . Using the weighted definitions

(26) and (27), we can expand (20) in terms of weighted error

vectors and the regressor data as follows:

(28)

If we choose the special case , (28) is simplified to (20).

With the assumption that is invertible, (28) can be

used to replace in (18). After rearrangement, we obtain

(29)

If we equate the weighted energies of both sides of (29), we

can establish the space-time version of the weighted energy-

conservation relation for dAPA:

(30)

Then, substituting (28) into (30) and rearranging the result, we

obtain

(31)

with

(32)

(33)

By using , taking expectations of both

sides and ignoring dependence between and

due to assumption A1), expression (31) becomes

(34)

where is a stochastic weighting matrix

(35)

with

(36)
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Equation (34) is difficult to evaluate due to the dependence of

on previous regressors of and on . In order to

resolve this problem in terms of analysis, we introduce an inde-

pendence assumption on the regressor sequence , namely:

A3) The matrix sequence is independent of .

which guarantees that is independent of both and .

As compared to A2), A3) is a strong assumption. However, we

can introduce a weaker assumption:

A3’) is independent of

which is derived from (35) for to satisfy our purpose. We

highlight that these assumptions violate the dAPA updating re-

cursions, and hence they are not entirely realistic but they are nec-

essary to facilitate analysis similar to those in [18], [19] used for

the original non-distributed APA algorithm. When the step-size

is sufficiently small, we can find a good match between theoret-

ical and practical results, which is verified by simulations. For

compactness of notation, the index is dropped. Using this as-

sumption, we can separate the expectation into

(37)

where the mean of the weighted matrix is given by

:

(38)

where is now a deterministic matrix. In this manner, expres-

sion (34) is replaced by

(39)

For studying the behavior of the distributed learning algo-

rithm, we need to evaluate the following three moments:

(40)

(41)

(42)

The terms in(41)and(42)aredifficult tocalculate, eventheeigen-

decomposition and diagonalization methods used for Gaussian

data in [9] are not available to express (38) and (39) in a com-

pact manner and thereby closed-forms of the mean-square quan-

tities can not be obtained. To proceed, we need to extract from

the right-hand side expressions (41) and (42). This is achieved by

vectorization and exploiting the property of Kronecker products.

C. Weighted Variance Relation

In order to evaluate , we now introduce 1

column vectors as in [17]:

(43)

where the notation is used in two ways: is

an 1 column vector whose entries are formed by stacking

the successive columns of an matrix on top of each

other, and , as will be used below, is a matrix

whose entries are recovered from . One useful property for

the notation when working with Kronecker products is

the following. For any matrices of compatible dimen-

sions, it holds

(44)

By applying (44) to express some items in (38), we find that

(45)

(46)

(47)

Therefore, using (44) in (38), we obtain a linear relation between

the corresponding vectors , namely

(48)

where is an matrix and given by

(49)

As a result, expression (39) becomes

(50)

For the sake of clarity, we reintroduce the time index but drop

the notation from the subscripts in (50) for compactness.

Expression (50) becomes

(51)

Due to the assumption that is independent from , the

last item (51) can be written as

(52)

with and .

Therefore, expression (51) can be written in a compact manner

as

(53)

D. Learning Curves

Expression (53) involves spatially local information from

two nodes, namely, and . The ring topology with

the weighting matrices enables us to resolve this problem. By

iterating (53), coupled equalities are obtained:

...

(54)

...

(55)

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 8, 2010 at 07:07 from IEEE Xplore.  Restrictions apply. 



156 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 1, JANUARY 2010

with . In order to describe the energy flow

through the nodes it is necessary to connect the free parameters

and . Following the approach in [9], we adopt a linear

relation as and thereby combine (54) and (55)

to obtain

(56)

where is as in (49) and includes statistics of local data. The

matrix turns out to determine the dynamics of propagation of

the energy through the network. Conditions to ensure stability

and convergence end up depending on the matrix . A detailed

discussion on such energy relations appears in [27]. Iterating in

this way, we can obtain an equality involving only and

, namely

(57)

We should note that the a posteriori and a priori error vectors

have spatial connotation, which is different from

the traditional terminology as in [17]. By choosing

, we formulate the closed-form expression for the MSD

learning curve at node :

(58)

where the product of matrices for each node, and the

1 row vector are defined by

(59)

(60)

Therefore, the theoretical transient performance of the MSD of

node is formulated as

(61)

where the vectors and are given respectively by

and

null vector

Let and respectively denote the EMSE

and MSE learning curves of the set of adaptive filters, in terms

of time iterations, indexed for . Under the as-

sumption that is i.i.d., we obtain

(62)

(63)

which are used to evaluate the learning curves. Thus, the se-

lection of leads to the closed-form

expressions for EMSE and MSE learning curves at node :

(64)

(65)

where the vectors and are formulated by

and

null vector

E. Mean and Mean-Square Stability

Substitute in (18) by (21), we obtain the relationship ex-

pression between and as

(66)

Then, taking expectation of both sides, we have the corre-

sponding result for the evolution of the mean of the weight-error

vector:

(67)

To guarantee convergence in the mean of dAPA, the step-size

should satisfy the condition

(68)

Note, it is not necessary for there to be an infinite number of

nodes for this to hold, as through the incremental learning the

repeated visits of the nodes at each discrete time will achieve

convergence with only a finite number of nodes. In the same

way, dAPA will be said to be mean-square stable if the eigen-

values of from (53) satisfy as in [17].

Therefore, we express the matrix in (49) as

(69)

with and .

Exploiting the approach as in [17], the convergence of the mean-

square error of dAPA will be achieved for values of in the

range

(70)

where the second condition is the reciprocal value of the largest

positive eigenvalue of

(71)
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F. Steady-State Behavior

In the above, the variance relation (53) is used to evaluate the

transient behavior of dAPA. The same variance relation can be

also used to characterize the steady-state mean-square perfor-

mance of dAPA. For the convenience of studying the steady-

state performance of dAPA, letting , we can rewrite

(53) as

(72)

where the step-size of is chosen to guar-

antee stability of the filter. Iterating (72) for an incremental

network and choosing the proper weighting vectors for

, we obtain an expression only containing

, given by

(73)

Using (59) and (60) to simplify this expression, we get

(74)

We can use expression (74) to evaluate the performance mea-

sures at node , as follows:

(75)

(76)

(77)

Since we are free to choose the weighting vector , we can

exploit it to calculate the steady-state performance of each node.

When we select the weighting vector as the solution of the

linear equation or

, the desired MSD, EMSE and MSE at node are obtained as

(78)

(79)

(80)

The matrix can be regarded as the transition matrix for

the weighting vector and the vector can be inter-

preted as the effect of combining the transformed noise and local

data statistics from all the nodes in the ring topology.

The distributed normalized LMS (dNLMS) algorithm can be

regarded as a special case for dAPA with the number of recent

regressors . Since the autocorrelation matrix of the

input at each node is a Hermitian matrix, we can exploit unitary

and a diagonal matrix with the eigenvalues of to

decompose the autocorrelation matrix into .

Using the following transformed quantities

we can obtain that and

. In addition, at the steady-state stage, we can rewrite

(40) for dNLMS as

(81)

which is a diagonal matrix. For a small step-size,

, namely, also becomes a di-

agonal matrix. Therefore, matrix

will be diagonal as well and . Using

, we can rewrite (78) as

(82)

which clearly explains why there is an equalization effect on

the MSD of dNLMS throughout the network, and is verified in

Figs. 7 and 10 even for a large step-size. We now proceed to

confirm these values through Monte Carlo simulations.

IV. SIMULATIONS

The above analysis is based on the independence assumptions

A2) and A3), but simulations presented in this paper were car-

ried out under independence assumption A2) or a more realistic

situation where the input regressors have shift structure and are

generated by feeding data into a tapped delay line as

(83)

As mentioned in [23], the regularization parameter plays a role

in the convergence behavior of APA-based algorithms.

A large regularization parameter results in a small step-size,

which implies that an APA-based solution has a slow conver-

gence rate but a small misadjustment error in the steady-state,

while a small provides a large step-size, which causes a poor

steady-state performance but a fast convergence rate during

learning. In all the experiments, the regularization parameter

is set as a small value, whose influence on the

step-size of the APA-based solutions is very small and can

be neglected. All the coefficients of the adaptive filters within

the network are initialized to zeros.

A. Comparison of Distributed Algorithms

In the first experiment, we evaluate the proposed algorithm

with shift structure in the inputs for an incremental network in a

system identification scenario, which corresponds to identifying

the parameter vector in (4). Consider a network with

in order to seek the two unknown filters with ,

whose -domain transfer functions are given by,

and

(84)

where for and

for . The elements of the vector in (4)

within this simulation are generated by passing a unit-variance
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Fig. 2. Comparison of simulated EMSE learning curves at node 8 for the
dLMS, dNLMS, dAPA, and dRLS algorithms in a time-varying environment.

white Gaussian sequence through a coloring filter (proposed in

[21]) with the system function as

(85)

which results in the input correlation matrix of each node having

an eigenvalue spread . The noise term in

(4) is a white additive uncorrelated noise component with vari-

ance . As seen in [10], when the forgetting factor

reaches close to unity, both dRLS and Lc-dRLS enable the

networks to have similar steady-state performance. However,

Lc-dRLS has slow convergence rate during the initial learning

stage due to the matrices evolving locally. As such, dRLS

is chosen in the comparison experiment. Each node within the

incremental network is trained by exploiting either dLMS with

step-size , or dAPA with step-size ,

or dRLS, for which we select the forgetting factor ,

the initial value of and the spatial weighting factor

. Since the spatial weighting factor in [11] is not con-

sidered by other distributed algorithms, ensures a fair

comparison. The selection of the parameters for the different al-

gorithms allows dLMS, dAPA and dRLS to converge to a similar

steady-state EMSE. On the other hand, as shown in Fig. 19, the

setting enables dAPA to have approximately one-third of

the computational cost of dRLS per node. For dRLS, the small

value of gives more relevance to recent data in the estima-

tion process so that changes in the input can be better tracked.

We therefore select , which corresponds to a window

length of , to ensure dRLS has the fastest per-

formance over other algorithms in the time-varying environ-

ment. The curves are shown in Fig. 2 by running 8000 iterations

and averaging 500 Monte Carlo runs, where iteration stands for

discrete time. This figure shows that the dRLS algorithm obtains

the fastest convergence rate with the largest computational com-

plexity, while the dLMS algorithm has the slowest convergence

Fig. 3. Node profile: a) Noise power for the Gaussian data network b) Corre-
lation index for the Gaussian data network c) Noise power for the uniform data
network d) Correlation index for the uniform data network.

rate with the smallest computational complexity. The dAPA al-

gorithm provides good compromise between convergence be-

havior and computational complexity, namely, dAPA achieves

the improved convergence rate with reasonable computational

cost. Since for each learning scheme the performances are sim-

ilar at different nodes, Fig. 2 illustrates a comparison of the

EMSE learning curves of the different distributed schemes only

at node 8.

In the following examples, computer simulations are per-

formed to compare the experimental results with the theoretical

values obtained by using the theoretical expressions. Consider

a network with 20 nodes in order to seek an unknown

parameter vector with as in (4), whose elements are

generated randomly from a standardized Gaussian or uniform

distribution. The correlated elements of as in (4) at each

node are obtained by passing a white Gaussian or uniform

random process with variance through a first-order

autoregressive (AR) model filter with -domain transfer func-

tion and . It follows that

the auto-correlation sequence of the resulting process is

(86)

for all integer values . In this way, the covariance matrix

of the regressor vector is a 10 10 Toeplitz matrix with

entries . The noise term

in (4) of each node is a white Gaussian process with variance

. Fig. 3 illustrates respectively the node profiles

of and for both colored Gaussian network inputs and

colored uniform data network inputs. Furthermore, as seen in

Fig. 3, since node 5 and node 12 have the most highly correlated

inputs within the corresponding networks, we draw a compar-

ison of their performance between theory and practice in the

following examples.
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Fig. 4. Simulated MSE curves of dAPA as a function of the step-size: a) Node
5 in the colored Gaussian data network; b) node 12 in the colored uniform data
network.

TABLE II
STABILITY BOUNDS OF STEP-SIZE FOR DAPA
(AT NODE 5 IN THE GAUSSIAN DATA NETWORK)

TABLE III
STABILITY BOUNDS OF STEP-SIZE FOR DAPA (AT NODE 12 IN THE

UNIFORM DATA NETWORK)

B. Mean and Mean-Square Stability

The experimental values are obtained by running dAPA for

10 000 iterations and then averaged over 100 independent exper-

iments to generate the ensemble-average curves. Using expres-

sions (68) and (70), we evaluate the step-size bounds for dAPA

with shift structure at the two corresponding nodes in Tables II

and III, which verify that the stability bounds on are approx-

imately . This fact is further confirmed in Fig. 4,

where steady-state MSE curves are plotted as a function of the

step-size. , , , and which are involved in evalu-

ating the expectations for the bounds of step-size, are calculated

via ensemble averaging.

C. Transient Performance

Figs. 5 and 6 illustrate the transient performance curves of

dAPA with shift structure during the initial 180 samples. Since

we choose the same step-size as for dAPA with dif-

ferent , increasing results in faster convergence rate but poor

Fig. 5. Learning MSE curves of dAPA using � � ���� for node 5 in the
colored Gaussian data network.

Fig. 6. Learning MSE curves of dAPA using � � ���� for node 12 in the
colored uniform data network.

misadjustment expected in the steady-state, namely, dNLMS

obtains the best steady-state performance, which can be clearly

seen in Fig. 4. For the transient performance, the simulation re-

sults present good agreement with the theoretical results using

(65), where and are calculated by ensemble averaging.

D. Steady-State Performance

In these simulations, we aim at satisfy independence assump-

tion A2). Therefore, we perform the following simulations with

temporally independent Gaussian or uniform inputs, i.e., the el-

ements of in (4) satisfy the temporal assumption in A2).

At each node the regressors are generated as independent re-

alizations, so that the spatial assumption in A2) is satisfied.

The sample temporal correlation indexes for those inputs are

as shown in Fig. 3. This figure also illustrates the noise power
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Fig. 7. Steady-state MSD for dNLMS and dAPA using � � ��� for the col-
ored Gaussian data network.

Fig. 8. Steady-state EMSE for dNLMS and dAPA using � � ��� for the
colored Gaussian data network.

at each node for the corresponding networks. In Figs. 7–18, it

is clear to see a good match between theory and simulation.

The simulated curves are obtained by averaging the last 1000

instantaneous samples of 10 000 iterations and then averaging

100 independent trials. The theoretical results are calculated by

using expressions (78)–(80). Figs. 7–12 show the steady-state

MSD, EMSE and MSE curves of dAPA with different using

a particular choice of the step-size for both the col-

ored Gaussian input data network and the colored uniform input

data network. These quantities combine the transformed noise

and local statistics from the whole network. As expression (82)

claims, even for a large step-size , the MSD curves of

dNLMS in Figs. 7 and 10, are approximately flat throughout the

Fig. 9. Steady-state MSE for dNLMS and dAPA using � � ��� for the col-
ored Gaussian data network.

Fig. 10. Steady-state MSD for dNLMS and dAPA using � � ��� for the
colored uniform data network.

networks. Increasing the rank of dAPA leads to large fluctu-

ations of the MSD curves. Compared to the MSD, the EMSE

and the MSE are more sensitive to local statistics. Since the

theoretical MSD of dNLMS is roughly even over the network

(82), (79) enables the EMSE curves of dNLMS to have a sim-

ilar shape as the correlation index. As can be seen in Figs. 8

and 11, there seems a better fit between theory and practice for

the steady state EMSE of dAPA with ranks 2, 4, 6, which

is mostly due to the steady-state EMSE of dNLMS having the

smallest absolute value around 21.4 dB for the Gaussian input

network or around 22.4 dB for the uniform inputs network.

For each node, for the difference between theory and simulation,

dNLMS has smaller absolute value than dAPA, for example, as

shown in Fig. 11 for node 13 the absolute gap value of dNLMS

between 22.25 dB and 22.65 dB is about 0.00052 while that
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Fig. 11. Steady-state EMSE for dNLMS and dAPA using � � ��� for the
colored uniform data network.

Fig. 12. Steady-state MSE for dNLMS and dAPA using � � ��� for the
colored uniform data network.

of dAPA with between 20.4 dB and 20.7 dB is also

about 0.0006. In addition, the theoretical results of MSE evalu-

ated by expressions (80) are very close to the simulated results

even with the large step-size as shown in Figs. 9 and

12. It should be highlighted that the assumptions in A3) and

A3’) underlie the mismatch between the theoretical and simu-

lated results.

Moreover, as shown in Figs. 9 and 12, the MSE curves

roughly coincide with the noise power, which indicates that

when the proper step-sizes are chosen, the adaptive filter of

each node has good performance and can be well estimated

by , namely, the residual error is close to the

background noise. In addition, we obtain similar finding as

in [9] if the whole network is required to have an equalized

Fig. 13. Steady-state MSD curves of dNLMS and dAPA at node 5 in the col-
ored Gaussian data network as a function of the step-size.

Fig. 14. Steady-state EMSE curves of dNLMS and dAPA at node 5 in the col-
ored Gaussian data network as a function of the step-size.

Fig. 15. Steady-state MSE curves of dNLMS and dAPA at node 5 in the colored
Gaussian data network as a function of the step-size.

performance, Figs. 9 and 12 confirm that the spatial diversity

of the adaptive networks can be used to design the step-size for
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Fig. 16. Steady-state MSD curves of dNLMS and dAPA at node 5 in the col-
ored uniform data network as a function of the step-size.

Fig. 17. Steady-state EMSE curves of dNLMS and dAPA at node 5 in the col-
ored uniform data network as a function of the step-size.

each node. Nodes with poor performance, or high noise level,

can be tuned with properly small step-sizes to guarantee a good

level of performance equalization throughout the network. In

certain cases, they are just relay nodes. Figs. 13–18 illustrate

the steady-state MSD, EMSE and MSE curves of dNLMS and

dAPA at node 5 for the colored Gaussian input data network

and at node 5 for the colored uniform input data network for

different choices of the step-size in the range , which

guarantees the stability of the scheme as mentioned before. The

experimental values match well with the theoretical values for

small step-size but deviate from the theoretical ones for a larger

step-size and larger .

V. CONCLUSION AND FUTURE WORK

In this paper, we have considered new incremental adaptive

learning algorithms based on APA for a distributed network

Fig. 18. Steady-state MSE curves of dNLMS and dAPA at node 5 in the colored
uniform data network as a function of the step-size.

and presented detailed performance analysis based on the

weighted space-time energy conservation approach of Lopes

and Sayed [9] under assumptions A1), A2), and A3’). The

theoretical expressions for MSD, EMSE and MSE, derived

in this paper, do not restrict the distribution of the inputs to

being Gaussian or white. Both stationary environments and

one simple non-stationary environment were considered to

test the proposed algorithm. Compared to the dRLS algorithm

for certain regressor lengths, the dAPA algorithm at each

node involves less computational cost and reduced inter-node

communications and memory cost whilst retaining an accept-

able steady-state performance. In addition, this algorithm has

obtained improved performance as compared to dLMS in

the highly correlated input case. The bounds of the step-size

for mean and mean-square stability of dAPA have also been

evaluated, which have been employed consistently within the

simulation experiments. Furthermore, we have compared the

theoretical expressions with the simulated results, for both

the transient and steady-state performance of dAPA in both

Gaussian data network and uniform data network. In addition,

we can clearly see that the theoretical results of the steady-state

performance have a good match with the experimental results

for small step-size.

In the problem of incremental estimation, a Hamiltonian

cyclic path through the network is required to be defined and

nodes communicate with neighbors within this path. However,

this strategy limits the mode of node collaboration in the net-

work and the ability of the network to respond to a topological

change, which is likely to be problematic in practical wireless

sensor networks. Thus, if more communication and compu-

tation resources are available, more sophisticated cooperative

modes (rather than the incremental type) for the APA-based al-

gorithm can also be pursued, e.g., a diffusion mode of the form

used in [24]–[26], where each node cooperates with a subset of

neighboring nodes, but this will be very much dependent upon

the network size and topology. These topics will be addressed

in future work.
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TABLE IV
COMPARISON OF THE ESTIMATED COMPLEXITY PER ITERATION PER NODE FOR

VARIOUS ALGORITHMS FOR THE CASE OF REAL-VALUED DATA

TABLE V
COMPARISON OF THE ESTIMATED COMPLEXITY PER ITERATION PER

NODE FOR VARIOUS INCREMENTAL ALGORITHMS FOR THE CASE OF

COMPLEX-VALUED DATA

Fig. 19. Complexity comparison in terms of operations per node for various
algorithms (dLMS, dNLMS, dAPA and dRLS).

APPENDIX

COMPARISON OF COMPLEXITY,

MEMORY AND TRANSMISSION COSTS

The computational costs for the different schemes in the same

style as the presented complexity formulas in [17] are compared

in this appendix. Tables IV and V show the total number of op-

erations of various algorithms per node per time instant for real-

value data and complex-valued data, respectively. The com-

plexity comparison for each update of the different algorithms

per node is depicted in Fig. 19, where we note that the increase

of the tap length enables the maximum of dAPA, which has

lower complexity than dRLS, to become larger, e.g., at ,

dAPA has less complexity than dRLS when ; whereas at

, . In addition, as presented in [5], dAPA requires

intermediate memory cost between dLMS and dRLS, and the

same transmission complexity as dLMS.
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