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Distributed Event-Based Set-Membership Filtering
for A Class of Nonlinear Systems with Sensor

Saturations over Sensor Networks
Lifeng Ma, Zidong Wang,Fellow, IEEE, Hak-Keung Lam,Senior Member, IEEE, and Nikos Kyriakoulis

Abstract—In this paper, the distributed set-membership filter-
ing problem is investigated for a class of discrete time-varying
system with an event-based communication mechanism over sen-
sor networks. The system under consideration is subject to sector-
bounded nonlinearity, unknown but bounded noises and sensor
saturations. Each intelligent sensing node transmits the data to
its neighbors only when certain triggering condition is violated.
By means of a set of recursive matrix inequalities, sufficient
conditions are derived for the existence of the desired distributed
event-based filter which is capable of confining the system state in
certain ellipsoidal regions centered at the estimates. Within the
established theoretical framework, two additional optimization
problems are formulated: one is to seek the minimal ellipsoids (in
the sense of matrix trace) for the best filtering performance, and
the other is to maximize the triggering threshold so as to reduce
the triggering frequency with satisfactory filtering performance.
A numerically attractive chaos algorithm is employed to solve
the optimization problems. Finally, an illustrative example is
presented to demonstrate the effectiveness and applicability of
the proposed algorithm.

Index Terms—Nonlinear time-varying systems; Distributed set-
membership filtering; Sensor networks; Event-based filtering;
Sensor saturations; Unknown but bounded noise

I. I NTRODUCTION

The past decades have witnessed a rapid growth on the
utilization of sensor networks consisting of a large number
of sensing nodes geographically distributed in certain areas.
Sensor networks have found extensive applications in vari-
ous fields ranging from information collection, environmental
monitoring, industrial automation, to intelligent buildings [6],
[29], [31], [40], [44], [45]. The practical significance of sensor
networks has recently led to considerable research interest on
the distributed estimation or filtering problems whose aim is to
extract the true signals based on the information measurements
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collected/transmitted via sensor networks. Compared withthe
traditional filtering algorithms in a single sensor system [21],
[26], [33], [42], the key feature of the distributed filtering
over sensor networks is that each sensor estimates the system
state based not only on its own measurement but also on the
neighboring sensors’ measurements according to the topology
[35]. So far, much effort has been made to the investigation
on the distributed filtering problems and several effective
strategies have been developed, see [7] for a survey. It is worth
mentioning that, up to now, the resource efficiency issue has
not been adequately addressed towards the distributed filter-
ing problems especially for nonlinear time-varying systems,
and this gives rise to the primary motivation of our current
research.

With the nowadays revolution of microelectronics tech-
niques, there is an incremental adoption of small-size micro-
processors which are embedded in the sensing nodes respon-
sible for information collecting, signal processing, datatrans-
mitting and sometimes instruction actuating within the sensor
networks. In engineering practice, these micro-processors are
apparently subject to limited resource such as battery storage.
For energy-saving purposes, it is often favorable to exploit
the event-based rules under which the information receivedby
sensing nodes is transmitted to the controllers/filters only when
some events occur. Compared to the traditional time-based
communication mechanism, the event-based communication
scheme has the advantage of improving the efficiency of
resource utilization by reducing the unnecessary executions
over the network, see [20] and the references therein for
some earlier works. Due to its clear physical implication and
promising application prospect, in the past decade or so, the
event-based filtering problem has stirred remarkable interest
and many research results have been reported in the literature,
see e. g. [11], [27]. It is worth noting that, despite the recent
progress in event-triggering filter/control, it remains anopen
problem to develop more generic triggering conditions that
could play a reasonable tradeoff between the efficiency of
the resource utilization and the specification of the system
performance.

Apart from the aforementioned resource limitation issue,
it is well known that the embedded micro-processors are
typically of limited capacity within a sensor network due
primarily to the physical and communication constraints.
Consequently, some new phenomena (e.g. signal quantiza-
tion, sensor saturation and actuator failures) have inevitably
emerged that deserve particular attention in the system design.
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These phenomena are customarily referred to as the incom-
plete information that has attracted much research interest
in developing filtering schemes [1], [8]–[10], [16]–[18], [22],
[23], [25], [32], [37], [39], [41], [43], [46]. However, when it
comes to the event-based distributed filtering problems with
incomplete information, the corresponding results have been
very few owing mainly to the lack of appropriate techniques
for coping with 1) the complicated node coupling according to
the topological information and 2) the demanding triggering
mechanism accounting for the limited capability. As such,
another motivation for our current investigation is to examine
the impact of the incomplete information on the performance
of the event-based distributed filtering over the sensor network
with a given topology.

In real-world engineering, almost all practical systems are
time-varying. For such time-varying systems, a filter that could
provide better transient performance than those traditional
methods developed to achieve specified steady-state perfor-
mance is more effective and applicable. Therefore, the filtering
problems for time-varying systems have stirred considerable
research interests in the past few years. For example, the
difference Riccati equation method has been proposed in [38]
to solve the robust Kalman filtering problem for uncertain
time-varying systems. Recently, the recursive linear matrix
inequality (RLMI) method has become another effective ap-
proach to deal with the filtering and control problems for
time-varying systems. Originally proposed in [12], the RLMI
method has been so far widely recognized and extensively
utilized in both theoretical research and engineering applica-
tions associated with time-varying systems, see e. g. [7], [32].
However, up to now, the distributed filtering problem has not
been adequately investigated yet for systems subject to time-
varying parameters, especially for the case where the event
triggering mechanism and sensor saturation are also involved.

On another research frontier, the set-membership filtering
problem originated in [36] aims to use the measurements
to calculate recursively a bounding ellipsoid to the set of
possible states, see [2], [30] and the references therein. Re-
cently, there has been renewed interest in the set-membership
filtering problems for various systems by developing com-
putationally efficient algorithms. For instance, in [13], the
convex optimization method has been utilized to handle the
set-membership filtering with the guaranteed robustness a-
gainst the system parameter uncertainties. In [14], the set-
membership filtering issue has been discussed in frequency
domain and an adaptive algorithm has been developed with
applications in the frequency-domain equalization problem. It
is worth mentioning that the set-membership filtering problem
has been addressed in [37] for stochastic system in the
presence of sensor saturations, where a recursive scheme has
been provided for constructing an ellipsoidal state estimation
set of all states consistent with the measured output and the
given noise. Unfortunately, for large-scale distributed systems
such as sensor networks, the set-membership filtering has not
received adequate research attention, and this motivates us to
investigate the set-membership filtering problem for nonlinear
systems under an event-based distributed information process-
ing mechanism.

Motivated by the above discussions, in this paper, it is
our objective to design a distributed event-triggering set-
membership filtering scheme for a class of discrete time-
varying nonlinear systems subject to unknown but bounded
noises and sensor saturations. A novel triggering condition
with clear engineering insight is proposed to better reflectthe
reality of practical applications. The nonlinearity is assumed to
satisfy the so-called sector condition, which is quite general
and could cover several classes of nonlinearities as special
cases.We endeavor to answer the following questions: i)
how to deal with the proposed triggering condition within the
unified framework for filter analysis and synthesis? ii) how to
quantify the influences on the filtering performance from the
given topology, the sector-bounded nonlinearity, the unknown
but bounded noises as well as the sensor saturations? iii)
how to characterize the relationship between the triggering
threshold and the filtering performance or, in other words, how
to exploit the trade-offs between the size of the ellipsoidsand
the triggering threshold so as to make compromise between the
filtering performance and the triggering frequency?We shall
respond to the three questions raised above by investigating
the so-called distributed set-membership filtering problem.

The novelties of this paper lie in the following four as-
pects.i) The system model under study is comprehensive that
includes sector-bounded nonlinearity, unknown but bounded
noises and sensor saturations. ii) A new ellipsoidal triggering
condition is presented in which the threshold is adjustable
to make the compromise between filtering performance and
communication cost. iii) Two optimization problems are solved
and the developed algorithms can be applied to seek the
minimal ellipsoids ensuring the enhanced filtering perfor-
mance and the maximal triggering threshold guaranteeing
the reduced communication cost. iv) Within the established
theoretical framework, we can easily handle the distributed
event-based set-membership filtering problems for systems
with heterogeneous structures and/or time-varying topology.

The rest of this paper is organized as follows. Section II
formulates the distributed event-based filter design problem
for nonlinear discrete time-varying system with unknown but
bounded noises as well as sensor saturations. Our main results
are presented in Section III where sufficient conditions for
the existence of the desired filter are given in terms of
recursive linear matrix inequalities (RLMIs). Section IV gives
a numerical example and Section V draws our conclusion.

Notation The notation used here is fairly standard except
where otherwise stated.Rn denotes then-dimensional Eu-
clidean space,1n denotes ann-dimensional column vector
with all ones.In and0n denote the identity matrix and zero
matrix of n dimensions, respectively. The notationX ≥ Y
(respectivelyX > Y ), where X and Y are symmetric
matrices, means thatX − Y is positive semi-definite (re-
spectively positive definite). For matricesA ∈ R

m×n and
B ∈ R

p×q, their Kronecker product is a matrix inRmp×nq

denoted asA⊗B. The superscript “ T ” denotes the transpose.
For a vector a, ‖a‖ = aTa. tr[A] means the trace of
matrix A and diag{F1, F2, . . . , Fn} denotes a block diagonal
matrix whose diagonal blocks are given byF1, F2, . . . , Fn.
The notationdiagn{Ai} represents the block diagonal matrix
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diag{A1, A2, . . . , An} andcoln{xi} denotes the column vec-
tor [xT1 xT2 . . . xTn ]

T.

II. PROBLEM FORMULATION

In this paper, it is assumed that the sensor network hasN
sensor nodes which are distributed in the space according toa
specific interconnection topology characterized by a directed
graphG = (V , E ,L ), whereV = {1, 2, ..., N} denotes the
set of sensing nodes,E ⊆ V × V is the set of edges, and
L = [θij ]N×N is the nonnegative adjacency matrix associated
with the edges of the graph, that is,θij > 0 if and only if
edge(i, j) ∈ E (i.e. there is information transmission from
sensorj to sensori). If (i, j) ∈ E , then nodej is called one
of the neighbors of nodei. Also, we assume thatθii = 1 for
all i ∈ V and, therefore,(i, i) can be regarded as an additional
edge. The set of neighbors of nodei ∈ V plus the node itself
is denoted byNi , {j ∈ V |(i, j) ∈ E }.

Consider a time-varying nonlinear system withN sensors
described by the following state-space model:

{

xk+1 = Akxk +Dkwk + f(xk)

yi,k = σ(Ci,kxk) + Ei,kvk i = 1, 2, . . . , N
(1)

where xk ∈ R
n is the system state andyi,k ∈ R

m is the
measurement output measured by sensori. The parameters
Ak, Dk, Ci,k andEi,k are real-valued time-varying matrices
of appropriate dimensions.wk ∈ R

ω and vk ∈ R
ν represent

the process and measurement noises, respectively, which are
deterministic and satisfy the following assumption.

Assumption 1:The noise sequenceswk andvk are confined
to the following ellipsoidal sets:

{

Sk , {wk : wT
k S

−1
k wk ≤ 1}

Rk , {vk : vTkR
−1
k vk ≤ 1}

(2)

whereSk > 0 andRk > 0 are known matrices with compati-
ble dimensions characterizing the sizes and orientations of the
ellipsoids.

Remark 1: In practical engineering, due to the man-made
electromagnetic interference as well as other natural sources,
sometimes the noises are not really stochastic. Rather, they are
deterministic, unknown but bounded (by energy or amplitude)
[13]. As such, most statistics-based filtering algorithms (such
as Kalman filtering scheme requiring exact information on the
Gaussian noises) are no longer applicable. It is worth noting
that the unknown but bounded noise serves as an important
type of non-Gaussian noises that has received considerable
research attention with respect to the filtering problems, see
e.g. [13], [34]. In this paper, the process noiseswk and mea-
surement noisesvk are assumed to be deterministic, unknown
but bounded within certain ellipsoidal sets, and this givesrise
to the set-membership filtering problem to be addressed in the
sequel.

Definition 1: [19] Let K1 andK2 be some real matrices
with K , K2−K1 > 0. A nonlinearityκ(·) is said to satisfy
the sector condition with respect toK1 andK2 if

(
κ(y)−K1y

)T(
κ(y)−K2y

)
≤ 0. (3)

In this case, the sector-bounded nonlinearityκ(·) is said to
belong to the sector[K1,K2].

Assumption 2:The nonlinear functionf(xk) in the system
(1) belongs to the sector[U1, U2], whereU1 andU2 are known
real-valued matrices with appropriate dimensions.

The saturation functionσ(·) is defined as

σ(·) =
[
σ1(y

(1)) σ2(y
(2)) · · · σm(y(m))

]
(4)

whereσs(y(s)) = sign(y(s))min{y
(s)
max, |y(s)|} with y(s) rep-

resenting thesth entry of the vectory. Note that, if there exist
diagonal matricesG1i andG2i such that0 ≤ G1i < I ≤ G2i,
then the saturation functionσ(Ci,kxk) in (1) can be written
as follows:

σ(Ci,kxk) = G1iCi,kxk + ϕ(Ci,kxk) (5)

whereϕ(Ci,kxk) is certain nonlinear vector-valued function
satisfying the sector condition withK1 = 0 andK2 = Gi ,

G2i−G1i, that is,ϕ(Ci,kxk) satisfies the following inequality:

ϕT(Ci,kxk)
(
ϕ(Ci,kxk)−GiCi,kxk

)
≤ 0. (6)

Before introducing the distributedevent-basedfilter struc-
ture, we first recall traditional distributed time-based filter as
follows:

x̂i,k+1 = Fi,kx̂i,k +
∑

j∈Ni

θijHij,krj,k i = 1, 2, . . . , N

(7)
wherex̂i,k ∈ R

n is the estimate of the system state based on
the ith sensing node,Fi,k andHij,k are the filter parameters,
andri,k represents the innovation sequence defined by

ri,k , yi,k − Ci,kx̂i,k. (8)

Remark 2: In traditional distributed filtering algorithms, it
is usually assumed that the sensing nodes broadcast their
local information ateveryperiodic sampling instant, and this
might result in unnecessary waste of communication resources
especially when the energy saving becomes a concern. For
the purpose of improving the efficiency of network utiliza-
tion, as an alternative to the periodic control method, the
event-triggeringmechanism will be proposed here to reduce
the network communication burden with guaranteed filtering
performance, where the main idea is to broadcastimportant
messages rather thanall messages.

Let us now elaborate the event-triggering mechanism to be
adopted. Suppose that the sequence of the triggering instants
is {kit} (t = 0, 1, 2, . . .) satisfying0 < ki0 < ki1 < ki2 < · · · <
kit < · · · , wherekit represents the time instantk at which the
(t+ 1)th trigger occurs for agenti. Then, define

ei,k , ri,ki
t
− ri,k (9)

which indicates the difference of the broadcast innovations
at the latest triggering time and the current time. With the
notation of ei,k, the sequence of event-triggering instants is
defined iteratively by

kit+1 = inf{k ∈ Z
+|k > kit, e

T
i,kΩ

−1
i,kei,k > 1} (10)

where Ωi,k > 0 (i = 1, 2, . . . , N) is referred to as the
triggering threshold matrix of agenti at time instantk.
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Remark 3:The ellipsoidal triggering condition defined in
(10) is quite general that covers several well-studied triggering
conditions as special cases. For example, it is observed from
(10) that, when the matrixΩi,k is set to be a fixed positive
scalar, then the ellipsoidal triggering condition specializes to
the frequently used one as shown in [11] and the references
therein. In particular, in the case thatΩi,k → 0 (i.e. the size of
ellipsoid approaches0), the event-triggering mechanism will
reduce to the traditional time-driven one. Moreover, another
advantage of the proposed ellipsoidal triggering condition
lies in the fact that the triggering threshold matrixΩi,k is
actually a parameter that can be co-designed with the filter
parameters, and this provides much flexibility in making trade-
offs between the filtering performance and the triggering fre-
quency, thereby achieving the balance between desired filtering
accuracy and affordable resource consumption.

By incorporating (9)-(10) with (7), we come up with the
following event-basedfilter structure to be adopted in this
paper:

x̂i,k+1 = Fi,kx̂i,k +
∑

j∈Ni

θijHij,krj,kj
t
, k ∈ [kit, k

i
t+1) (11)

whereFi,k andHij,k (i, j ∈ V ) are the filter parameters to
be designed.

By (9)–(11), we have established the structure of a distribut-
ed filter with an event-triggering mechanism, which invokes
the transmission of information when the difference between
the current value and its latest transmitted value exceeds
certain threshold. Before proceeding further, we give the
following assumption.

Assumption 3:The initial statex0 and its estimatêxi,0
satisfy

(x0 − x̂i,0)
TP−1

0 (x0 − x̂i,0) ≤ 1 (12)

whereP0 > 0 is a given positive definite matrix.
The objective of this paper is twofold.Firstly, for system

(1) and filter (11), let the directed communication graphG , the
sequence of positive definite threshold matrices{Ωi,k}k≥0 and
the sequence of positive definite matrices{Pk}k≥0 (constraints
imposed on the filtering performance) be given. It is our first
aim to design the sequences of filtering gains{Fi,k}k≥0 and
{Hij,k}k≥0 subject to the given triple

(
G , {Ωi,k}, {Pk}

)
such

that the following inequality is satisfied:

∆i,k , (xk−x̂i,k)
TP−1

k (xk−x̂i,k) ≤ 1, i ∈ V , k ≥ 0. (13)

Secondly, two optimization problems will be investigated for
minimizing Pk and maximizingΩi,k in the sense of matrix
trace at each time instant, respectively. This problem is re-
ferred to as a distributed event-based set-membership filtering
problem.

III. D ISTRIBUTED EVENT-BASED SET-MEMBERSHIP

FILTER DESIGN

In this section, we will design a distributed event-based filter
of form (11) for system (1) subject to sector-bounded nonlin-
earity, unknown but bounded noises and sensor saturations.
A sufficient condition for the existence of the desired filter
will be formulated in terms of a set of recursive linear matrix

inequalities (RLMIs). First of all, we recall two useful lemmas
for our following development.

Lemma 1: (S-procedure [3]) Letψ0(·),ψ1(·),. . .,ψp(·) be
quadratic functions of the variableς ∈ R

n: ψj(ς) , ςTXjς
(j = 0, . . . , p), whereXT

j = Xj . If there existǫ1 ≥ 0, . . .,
ǫp ≥ 0 such thatX0 −

∑p

j=1 ǫjXj ≤ 0, then the following is
true:

ψ1(ς) ≤ 0, . . . , ψp(ς) ≤ 0 → ψ0(ς) ≤ 0. (14)

Lemma 2: (Schur Complement Equivalence) Given con-
stant matricesS1,S2,S3 whereS1 = ST

1 and0 < S2 = ST
2 ,

thenS1 + ST
3 S

−1
2 S3 < 0 if and only if

[
S1 ST

3

S3 −S2

]

< 0 or

[
−S2 S3

ST
3 S1

]

< 0. (15)

A. Filter Design Subject to Fixed Triple
(
G , {Ωi,k}, {Pk}

)

For simplicity of notation, before giving the main results,
we denote

ξk , colN{xk}, x̂k , colN{x̂i,k}, ek , colN{ei,k},

f̃k , colN{f(xk)}, ϕ̃k , colN{ϕ(Ci,kxk)},

Gk , diagN{G1iCi,k}, Ck , diagN{Ci,k},

Ek , diagN{Ei,k}, Fk , diagN{Fi,k},

Φ̺,i , diag{0̺, . . . , 0̺
︸ ︷︷ ︸

i−1

, I̺, 0̺, . . . , 0̺
︸ ︷︷ ︸

N−i

}, ̺ = {n, q,m},

L̺,i , (1TN ⊗ I̺)Φ̺,i, ̺ = {n, q,m}.

From system (1) and filter (11), the one-step-ahead estima-
tion error is obtained as follows:

xk+1 − x̂i,k+1

=Akxk +Dkwk + f(xk)

−
(

Fi,kx̂i,k +
∑

j∈Ni

θijHij,krj,kj
t

)

=Akxk +Dkwk + f(xk)− Fi,kx̂i,k

−
( ∑

j∈Ni

θijHij,k

(
σ(Cj,kxk) + Ej,kvk

− Cj,kx̂j,k + ej,k
))

. (16)

By denotingx̃i,k , xk − x̂i,k and x̃k , colN{x̃i,k}, we
rewrite the filtering error dynamics (16) into the following
compact form:

x̃k+1 =(IN ⊗Ak)ξk + (1N ⊗Dk)wk + f̃k

−Fkx̂k −HkGkξk −Hkϕ̃k

−HkEk(1N ⊗ Iν)vk +HkCkx̂k −Hkek (17)

whereHk ,
[
θijHij,k

]

N×N
. Obviously, sinceθij = 0 when

j /∈ Ni, Hk is a sparse matrix which can be expressed as

Hk ∈ Tn×m (18)

whereTn×m ,
{
T = [Tij ] ∈ R

nN×mN
∣
∣Tij ∈ R

n×m, Tij =
0 if j /∈ Ni

}
.

The following theorem gives a sufficient condition for
the solvability of the addressed distributed event-based set-
membership filtering problem.
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Theorem 1:For system (1) and filter (11), let the triple
(
G , {Ωi,k}, {Pk}

)
be given. The design objective (13) is

achieved if there exist sequences of real-valued matrices
{Fk}k≥0 and {Hk}k≥0

(
Hk ∈ Tn×m

)
, sequences of non-

negative scalars{ǫ(1)i,k}k≥0, {ǫ(2)i,k}k≥0, {ǫ(3)k }k≥0, {ǫ(4)k }k≥0,

{ǫ
(5)
i,k}k≥0 and {ǫ

(6)
i,k}k≥0 (i = 1, 2, . . . , N) satisfying the

following N recursive linear matrix inequalities:
[

−Γk ΠT
kL

T
n,i

Ln,iΠk −Pk+1

]

≤ 0 (19)

where

Γk =

N∑

i=1

(

ǫ
(5)
i,kΞi,k + ǫ

(6)
i,kΨi,k

)

+ Γ̄k, (20)

Γ̄k = diag
{

1−

N∑

i=1

(

ǫ
(1)
i,k + ǫ

(2)
i,k

)

− ǫ
(3)
k − ǫ

(4)
k ,

N∑

i=1

ǫ
(1)
i,kL

T
q,iLq,i,

N∑

i=1

ǫ
(2)
i,kL

T
m,iΩ

−1
i,kLm,i,

ǫ
(3)
k S−1

k , ǫ
(4)
k R−1

k , 0, 0
}

,

Ξi,k =













x̂Ti,kU
T
1 U2x̂i,k x̂Tk

(
IN ⊗ (ŪQk)

)
Φq,i

∗ IN ⊗ (QT
k ŪQk)Φq,i

∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

0 0 0 −x̂Tk (IN ⊗ Ũ)Φn,i 0

0 0 0 −IN ⊗ (QT
k Ũ)Φn,i 0

0 0 0 0 0
∗ 0 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ InNΦn,i 0
∗ ∗ ∗ ∗ 0













, (21)

Ū =
UT
1 U2 + UT

2 U1

2
, Ũ =

UT
1 + UT

2

2
,

Ψi,k =
1

2

[
0 0 0 0 0 0 Ψ̄i,k

]
, (22)

Ψ̄i,k =













−x̂Tk diag{C
T
i,kG

T
i }Φm,i

−diag{QT
kC

T
i,kG

T
i }Φm,i

0
0
0
0

2ImNΦm,i













,

Πk =
[
Π11 Π12 −Hk Π14 Π15 InN −Hk

]
, (23)

Π11 = (IN ⊗Ak −Fk −Hk(Gk − Ck)) x̂k,

Π12 = IN ⊗ (AkQk)−HkGk(IN ⊗Qk),

Π14 = 1N ⊗Dk, Π15 = −HkEk(1N ⊗ Iν),

with Qk ∈ R
n×q being a factorization ofPk

(
i.e., Pk =

QkQ
T
k

)
.

Proof: The proof is performed by induction. First, it can
be immediately known from Assumption 3 that∆i,0 ≤ 1

holds. Then, suppose that∆i,k ≤ 1 is true at time instant
k > 0, we shall proceed to prove that∆i,k+1 ≤ 1 holds.

According to [13], since∆i,k ≤ 1 andPk = QkQ
T
k , there

exist zi,k ∈ R
q (i = 1, 2, . . . , N) with ‖zi,k‖ ≤ 1 such that

xk = x̂i,k +Qkzi,k. (24)

Obviously, by denotingzk , colN{zi,k}, (24) is equivalent
to

ξk = x̂k + (IN ⊗Qk)zk. (25)

From (24) and (25), the filtering error system (17) is
rewritten as follows:

x̃k+1 =(IN ⊗ Ak)
(
x̂k + (IN ⊗Qk)zk

)

+ (1N ⊗Dk)wk + f̃k −Fkx̂k

−HkGk

(
x̂k + (IN ⊗Qk)zk

)

−Hkϕ̃k −HkEk(1N ⊗ Iν)vk

+HkCkx̂k −Hkek

=(IN ⊗Ak −Fk −Hk(Gk − Ck)) x̂k

+ (IN ⊗ (AkQk)−HkGk(IN ⊗Qk)) zk

+ (1N ⊗Dk)wk + f̃k −Hkϕ̃k

−HkEk(1N ⊗ Iν)vk −Hkek. (26)

Denoting

ηk ,
[

1 zTk eTk wT
k vTk f̃T

k ϕ̃T
k

]T
, (27)

the filtering error dynamics can be further expressed by

x̃k+1 = Πkηk (28)

whereΠk is defined in (23).
It follows from (2), (10) and (24) that the vectorszi,k, ei,k,

wk andvk are satisfying






‖zi,k‖ ≤ 1

eTi,kΩ
−1
i,kei,k ≤ 1

wT
k S

−1
k wk ≤ 1

vTk R
−1
k vk ≤ 1

(29)

which, by (27), can be rewritten in terms ofηk as follows:






ηTk diag
{
−1,LT

q,iLq,i, 0, 0, 0, 0, 0
}
ηk ≤ 0

ηTk diag
{

−1, 0,LT
m,iΩ

−1
i,kLm,i, 0, 0, 0, 0

}

ηk ≤ 0

ηTk diag
{
−1, 0, 0, S−1

k , 0, 0, 0
}
ηk ≤ 0

ηTk diag
{
−1, 0, 0, 0, R−1

k , 0, 0
}
ηk ≤ 0

(30)

We now proceed to investigate the sector-bounded nonlin-
earityf(xk) in system (1). From Assumption 2,f(xk) belongs
to sector[U1, U2], which can be formulated by

(
f(xk)− U1xk

)T(
f(xk)− U2xk

)
≤ 0. (31)

Substituting (24) into (31) results in

fT(xk)f(xk) + x̂Ti,kU
T
1 U2x̂i,k + zTi,kQ

T
kU

T
1 U2Qkzi,k

+x̂Ti,kU
T
1 U2Qkzi,k + zTi,kQ

T
kU

T
1 U2x̂i,k − fT(xk)U2x̂i,k

−fT(xk)U2Qkzi,k − x̂Ti,kU
T
1 f(xk)

−zTi,kQ
T
kU

T
1 f(xk) ≤ 0 (32)
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which can be expressed byηk as

ηTk Ξi,kηk ≤ 0 (33)

with Ξi,k being defined in (21).
By the same token, we have from the sensor saturation

constraints in (6) that

ϕT(Ci,kxk)
(
ϕ(Ci,kxk)−GiCi,k(x̂i,k +Qkzi,k)

)
≤ 0 (34)

which can be formulated byηk as

ηTk Ψi,kηk ≤ 0 (35)

with Ψi,k being defined in (22).
In the following, according to the principle of induction,

it remains to show that∆i,k+1 ≤ 1 is true if the condition
of this theorem is satisfied at time instantk, i.e., there exist
real-valued matricesFk andHk

(
Hk ∈ Tn×m

)
, non-negative

scalarsǫ(1)i,k ≥ 0, ǫ(2)i,k ≥ 0, ǫ(3)k ≥ 0, ǫ(4)k ≥ 0, ǫ(5)i,k ≥ 0 and

ǫ
(6)
i,k ≥ 0 (i = 1, 2, . . . , N) satisfying RLMIs (19).

By resorting to the Schur Complement Equivalence (Lemma
2), it can be seen that the set of RLMIs (19) holds if and only
if

ΠT
kL

T
n,iP

−1
k+1Ln,iΠk − Γk ≤ 0 (36)

which, by (20), is equivalent to

ΠT
kL

T
n,iP

−1
k+1Ln,iΠk − diag{1, 0, 0, 0, 0, 0, 0}

−

N∑

i=1

ǫ
(1)
i,kdiag{−1,LT

q,iLq,i, 0, 0, 0, 0, 0, 0}

−

N∑

i=1

ǫ
(2)
i,kdiag

{

−1, 0,LT
m,iΩ

−1
i,kLm,i, 0, 0, 0, 0

}

−ǫ
(3)
k diag

{
−1, 0, 0, S−1

k , 0, 0, 0
}

−ǫ
(4)
k diag

{
−1, 0, 0, 0, R−1

k , 0, 0
}

−

N∑

i=1

ǫ
(5)
i,kΞi,k −

N∑

i=1

ǫ
(6)
i,kΨi,k ≤ 0. (37)

In view of (30), (33) and (35), it follows directly from the
S-procedure (Lemma 1) that

ηTk
(
ΠT

kL
T
n,iP

−1
k+1Ln,iΠk

−diag{1, 0, 0, 0, 0, 0, 0}
)
ηk ≤ 0. (38)

It is evident that the following equivalences hold:

Inequality (38)

⇐⇒ ηTk Π
T
kL

T
n,iP

−1
k+1Ln,iΠkηk ≤ 1

(28)
⇐⇒ x̃Tk+1L

T
n,iP

−1
k+1Ln,ix̃k+1 ≤ 1

⇐⇒ (xk+1 − x̂i,k+1)
TP−1

k+1(xk+1 − x̂i,k+1) ≤ 1. (39)

We can now conclude from (39) that∆i,k+1 ≤ 1 is achieved,
and the induction is accomplished. Therefore, the design ob-
jective (13) is met with the obtained sequences of parameters
{Fk}k≥0 and{Hk}k≥0 for fixed triple

(
G , {Ωi,k}, {Pk}

)
. The

proof is now complete.
In the following, an iterative algorithm is presented to

compute the sequences of the filtering parameters{Fi,k}k≥0

and{Hij,k}k≥0 recursively.

Algorithm 1: Computational Algorithm for {Fi,k}k≥0

and {Hij,k}k≥0

1) Initialization: Setk = 0 and the maximum computation
stepkmax. Set the triple

(
G , {Ωi,k}, {Pk}

)
for 0 ≤ k ≤

kmax. Then factorize{Pk} appropriately to obtain the
sequence of matrices{Qk}. Select the initial values of
x0 and x̂i,0 satisfying (12). Then̂x0 = colN{x̂i,0} is
known.

2) With the obtained̂xk andQk, solve the RLMIs (19) for
Fk andHk. ThenFi,k andHij,k can be obtained.

3) With the obtainedFk andHk, computêxi,k+1 according
to (11). Thenx̂k+1 = colN{x̂i,k+1} is obtained.

4) Setk = k + 1. If k > kmax, exit. Otherwise, go to2).

B. Filter Design Subject to Constraint of Average Filtering
Errors

In many cases, from a global point of view, we are more
interested in the filtering performance in terms of an average
of estimation errors among all the sensing nodes rather than
the individual ones, see [32], [35] for references. As such,
in this subsection, based on the results obtained so far, we
will further discuss the distributed filtering problem subject to
constraints imposed on the average of filtering errors. To begin
with, we define the average filtering errorζk as follows:

ζk ,

N∑

i=1

λi(xk − x̂i,k)

= (1TΛ⊗ In)(ξk − x̂k)

= (1TΛ⊗ In)x̃k (40)

where the weighting parametersλi (i = 1, 2, . . . , N) represent
the priorities with respect to the corresponding sensing nodes.

AssumeζT0 Y
−1
0 ζ0 ≤ 1 whereY0 > 0 is a given matrix.

Let the triple
(
G , {Ωi,k}, {Yk}

)
be given, where{Yk}k≥0

is a sequence of positive definite matrices describing the
constraints imposed on the average filtering performance. It is
our objective in this subsection to design the filter parameters
in (11) such that the following requirement is met fork ≥ 0:

ζTk Y
−1
k ζk ≤ 1. (41)

Theorem 2:For system (1) and filter (11), let the triple
(
G , {Ωi,k}, {Yk}

)
and the initial conditionζT0 Y

−1
0 ζ0 ≤

1 be given. The requirement (41) is achieved if there
exist sequences of real-valued matrices{Fk}k≥0 and
{Hk}k≥0

(
Hk ∈ Tn×m

)
, sequences of non-negative scalars

{ǫ
(1)
i,k}k≥0, {ǫ

(2)
i,k}k≥0, {ǫ

(3)
k }k≥0, {ǫ

(4)
k }k≥0, {ǫ

(5)
i,k}k≥0 and

{ǫ
(6)
i,k}k≥0 (i = 1, 2, . . . , N) satisfying the following RLMI:

[
−Γk ΠT

k (1
TΛ⊗ In)

T

(1TΛ⊗ In)Πk −Yk+1

]

≤ 0 (42)

whereΓk andΠk are defined in (20) and (23), respectively.
Proof: With the fixed triple

(
G , {Ωi,k}, {Yk}

)
and given

the initial conditionζT0 Y
−1
0 ζ0 ≤ 1, the proof of Theorem 2

can be accomplished by induction which is analogous to that
of Theorem 1 and is therefore omitted here.
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C. Optimization Algorithms

Theorems 1 and 2 in previous subsections outline the
principles of designing the filtering parameters by solvingthe
corresponding set of RLMIs. It should be pointed out that,
however, neither of the proposed methodologies provides an
optimal solution. As discussed previously, we now proceed
to deal with the second part of our design objective, that
is, minimizing {Pk}k≥0 (for the locally best filtering per-
formance) and maximizing{Ωi,k}k≥0 (for the locally lowest
triggering frequency) in the sense of matrix trace, respectively.
In the following stage, two optimization problems based on
Theorem 1 will be proposed to demonstrate the flexibility
of our developed strategy. Such a kind of flexibility allows
us making compromise between filtering performance and
triggering frequency to achieve a balance between accuracy
and cost.

Optimization Problem 1: Minimization of {Pk}k≥0 (in
the sense of matrix trace) for the locally best filtering per-
formance.

Corollary 1: For the discrete time-varying nonlinear system
(1) with filter (11), let the pair

(
G , {Ωi,k}

)
be given. A

sequence of minimized{Pk}k≥0 (in the sense of matrix trace)
is guaranteed if there exist sequences of real-valued matrices
{Fk}k≥0 and {Hk}k≥0

(
Hk ∈ Tn×m

)
, sequences of non-

negative scalars{ǫ(1)i,k}k≥0, {ǫ(2)i,k}k≥0, {ǫ(3)k }k≥0, {ǫ(4)k }k≥0,

{ǫ
(5)
i,k}k≥0 and {ǫ

(6)
i,k}k≥0 (i = 1, 2, . . . , N) solving the fol-

lowing optimization problem:

min
Pk+1,Fk,Hk,ǫ

(1)
i,k

,ǫ
(2)
i,k

,ǫ
(3)
k

,ǫ
(4)
k

,ǫ
(5)
i,k

,ǫ
(6)
i,k

trace[Pk+1] (43)

subject to
[

−Γk ΠT
kL

T
n,i

Ln,iΠk −Pk+1

]

≤ 0.
(44)

Notice that the inequalities (44) are linear to the variables
Pk+1, Fk, Hk, ǫ(1)i,k , ǫ(2)i,k , ǫ(3)k , ǫ(4)k , ǫ(5)i,k andǫ(6)i,k . Therefore, it
follows directly from Corollary 1 that Optimization Problem 1
can be readily solved via the existing semi-definite program-
ming methods [28].

Optimization Problem 2: Maximization of triggering
threshold matrices{Ωi,k}k≥0 (in the sense of matrix trace)
for the locally lowest triggering frequency.

Corollary 2: For the discrete time-varying nonlinear system
(1) with filter (11), let the pair

(
G , {Pk}

)
be given. The locally

lowest triggering frequency can be determined if there exist
sequences of positive definite matrices{Υi,k}k≥0, sequences
of real-valued matrices{Fk}k≥0 and {Hk}k≥0

(
Hk ∈

Tn×m

)
, non-negative scalars{ǫ(1)i,k}k≥0, {ǫ(2)i,k}k≥0, {ǫ(3)k }k≥0,

{ǫ
(4)
k }k≥0, {ǫ(5)i,k}k≥0 and{ǫ(6)i,k}k≥0 (i = 1, 2, . . . , N) solving

the following optimization problem:

min
Fk,Hk,Υi,k,ǫ

(1)
i,k

,ǫ
(2)
i,k

,ǫ
(3)
k

,ǫ
(4)
k

,ǫ
(5)
i,k

,ǫ
(6)
i,k

trace

[
N∑

i=1

βiΥi,k

]

(45)

subject to
[

−Γ̃k ΠT
kL

T
n,i

Ln,iΠk −Pk+1

]

≤ 0 (46)

where

Γ̃k =

N∑

i=1

(

ǫ
(5)
i,kΞi,k + ǫ

(6)
i,kΨi,k

)

+ diag

{

1−

N∑

i=1

(

ǫ
(1)
i,k + ǫ

(2)
i,k

)

− ǫ
(3)
k − ǫ

(4)
k ,

N∑

i=1

ǫ
(1)
i,kL

T
q,iLq,i,

N∑

i=1

LT
m,iǫ

(2)
i,kΥi,kLm,i,

ǫ
(3)
k S−1

k , ǫ
(4)
k R−1

k , 0, 0

}

and βi > 0 (i = 1, 2, . . . , N) are the weighting scalars
satisfying

∑N

i=1 βi = 1. The threshold matrixΩi,k at each
time instant can be determined byΩi,k = Υ−1

i,k .
Remark 4:With the satisfaction of certain predetermined

filtering performance (i.e., a prescribed sequence of{Pk}k≥0),
Corollary 2 presents a way to maximize certain combina-
tion of individual triggering threshold so as to reduce the
triggering frequency. The values of weighting scalarsβi
(i = 1, 2, . . . , N) are usually set to be equal but they can be
adjusted according to the priorities of certain sensing nodes.
Similarly, by borrowing idea from the proposed optimization
problem (45)–(46), we are able to determine the “largest”
noises that can be tolerated with the satisfaction of certain
prespecified filtering performance.

Noting that (46) is actually a set of bilinear matrix inequal-
ities (BMIs) because of the termǫ(2)i,kΥi,k, in the following
stage, we provide a numerical algorithm based on the chaos
optimization [15] to solve the Optimization Problem 2. To start
with, we introduce the following iterative chaotic mapping
[15]:

ρ(τ + 1) = sin

(
α

ρ(τ)

)

(47)

whereρ(τ) ∈ [−1, 0) ∪ (0, 1] is a chaotic variable andα >
0 is a properly selected parameter andτ (τ = 0, 1, 2, . . .)
indicates the iterative counter.

Remark 5:Recently, the chaos optimization techniques
have been employed to solve a variety of global optimization
problems due to the properties of unique ergodicity and
irregularity of the series generated by chaos [24]. Noticing
that in the chaotic mapping (47), if the initial value is set as
ρ(0) 6= 0, then the chaotic variableρ(τ) is able to traverse
every state in the interval[−1, 0)∪ (0, 1] in an ergodic way,
and each state is visited only once. As such, it makesρ(τ) a
potential candidate for solving the set of BMIs (46) iteratively.

We now present a detailed algorithm to solve Optimization
Problem 2. Letǫ(2)i,k in (46) be chaotic variable. We first need to

determine the interval over whichǫ(2)i,k can traverse ergodically.
It can be easily seen that if (46) holds, then it follows directly
that

−Γ̃k ≤ 0 (48)

which indicates by (21) that

f̄k + 1−

N∑

i=1

(

ǫ
(1)
i,k + ǫ

(2)
i,k

)

− ǫ
(3)
k − ǫ

(4)
k ≥ 0 (49)



ACCEPTED 8

wheref̄k ,
∑N

i=1 ǫ
f
i,kx̂

T
i,kU

T
1 U2x̂i,k.

Taking into account thatǫ(1)i,k ≥ 0, ǫ(2)i,k ≥ 0, ǫ(3)k ≥ 0

and ǫ(4)k ≥ 0, we acquire0 ≤ ǫ
(2)
i,k ≤ f̄k + 1. In order

to determine the maximum of̄fk, we propose the following
auxiliary optimization problem:

max
Pk+1,Fk,Hk,ǫ

(1)
i,k

,ǫ
(2)
i,k

,ǫ
(3)
k

,ǫ
(4)
k

,ǫ
(5)
i,k

,ǫ
(6)
i,k

f̄k (50)

subject to (44)

We present the optimization problem (50) to seek the
maximum off̄k thereby determining the interval in whichǫ(2)i,k

is confined. If it is solvable, then we denote the optimal value
as f̄∗

k , and it follows directly thatǫ(2)i,k ∈ (0, f̄∗
k + 1]. Denote

the chaotic variable during theτ th iteration asǫ(2)i,k (τ), and by
taking (47) into consideration, it can be set as

ǫ
(2)
i,k (τ) =

f̄∗
k + 1

2

(

1 + ρi(τ)
)

, i = 1, 2, . . . , N (51)

With ǫ(2)i,k (τ) obtained during theτ th iteration, the addressed
optimization problem (45) subject to constraint (46) is con-
verted into a semi-definite programming problem with LMI
constraints which can be effectively solved by existing tools.

For time instantk, denoteφk
(
ǫ
(2)
i,k

)
, trace

[
∑N

i=1 βiΥi,k

]

.
Then, during the τ th iteration, the intermediate index
φk

(
ǫ
(2)
i,k (τ)

)
is given as follows:

φk
(
ǫ
(2)
i,k (τ)

)
=







trace
[ N∑

i=1

βiΥi,k(τ)
]

, if (45) is solvable

ϑ, otherwise

whereϑ > 0 is a sufficiently large constant. In the following,
we will formulate the detailed algorithm for solving Optimiza-
tion Problem 2.

Algorithm 2: Algorithm for Solving Optimization Prob-
lem 2

1) Initialization: Setk = 0. Set the maximum stepkmax.
2) Set τ = 0, φ∗k = ϑ. Set the maximum iteration times

τmax for the chaotic optimization and select the proper
initial value of ρi(0) 6= 0.

3) Solve the optimization problem (50) and obtain̄f∗
k .

4) Obtainǫ(2)i,k (τ) from equation (51) with knownρi(τ).
5) Solve the semi-definite programming problem (45)

with constraint (46) by using the obtainedǫ(2)i,k (τ). If

φk
(
ǫ
(2)
i,k (τ)

)
< φ∗k, then let φ∗k = φk

(
ǫ
(2)
i,k (τ)

)
and

ǫ∗i,k = ǫ
(2)
i,k (τ). Otherwise, go to6).

6) Setτ = τ + 1. Calculateρi(τ) according to (47).
7) If τ > τmax, or φ∗k does not change after certain iteration

times, output the optimal values and go to8). Otherwise,
go to 4).

8) Setk = k + 1. If k > kmax, exit. Otherwise, go to3).

Up to now, the addressed distributed event-based set-
membership filtering problem has been discussed for the
nonlinear systems subject to unknown but bounded noises and
sensor saturations. In terms of the feasibility of certain RLMIs,
the sufficient conditions for the solvability of the addressed

problem have been presented. Moreover, in order to show the
advantage of our developed algorithm, two optimization prob-
lems have been investigated to demonstrate the flexibility of
filter design technique which is capable of making compromise
between filtering accuracy and communication cost. It will be
further verified later in Section IV by an illustrative example.

Remark 6:The advantages of the developed method can
be summarized as follows: i) within the established gener-
ic framework, the sector-bounded nonlinearity, unknown but
bounded noises, sensor saturations can be tackled simulta-
neously with the proposed ellipsoidal triggering condition;
ii) it allows much flexibility in making trade-offs between
the filtering accuracy and communication cost, while both
of the essential objectives can be met at the same time;
iii) the proposed method has the potential to deal with the
distributed filtering problem over sensor networks with time-
varying topology. It is worth pointing out that one of our
possible research topics in future is to consider the distributed
filtering problems with other performance requirements such
asH∞ specifications investigated in [4], [5].

IV. A N ILLUSTRATIVE EXAMPLE

In this section, an illustrative example is presented to show
the validity of the proposed filter design strategy. Consider
a nonlinear discrete time-varying nonlinear system with 3
sensing nodes and have the following parameters:

Ak =

[
0.55 + 0.11 sin(0.5k) 0.01 + 0.01 sin(2k)

0.01 0.55 + 0.11 sin(0.5k)

]

,

Dk =

[
−0.1 + 0.05 cos(3k)

0.2 + 0.04e−k

]

,

C1,k =
[
0.73 + 0.2 sin(k) 0.1

]
,

E1,k = 0.2 + 0.05 cos(3k),

C2,k =
[
0.1 0.75 + 0.4 sin(2k)

]
,

E2,k = 0.2 + 0.15 sin(2k),

C3,k =
[
0.75 0.1

]
,

E3,k = 0.15 + 0.05 sin(2k).

Suppose that the sensor network is represented
by a directed graph G = (V , E ,L ) where the
set of nodesV = {1, 2, 3}, the set of edgesE =
{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)},
and the adjacency elements associated with the edges of the
graph areθij = 1.

Let the disturbances bewk = 1.2sin(2k) and vk =
1.5cos(5k) and setS = 2 andR = 3. It then can be easily
checked thatwk andvk belong to the ellipsoidal sets defined
in (2). Let the initial values be given as follows:

x0 =

[
5
3

]

, x̂1,0 = x̂2,0 = x̂3,0 =

[
5.02
3.01

]

,

P0 =

[
0.1 0.01
0.01 0.1

]

.

Then it can be easily verified that Assumption 3 is satisfied.
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The nonlinear functionf(xk) is chosen as

f(xk) =




−0.1x

(1)
k + 0.15x

(2)
k +

0.1x
(2)
k

sin(x
(1)
k

)
√

(x
(1)
k

)2+(x
(2)
k

)2+10

−0.05x
(1)
k + 0.05x

(2)
k





wherex(1)k , [1 0]xk andx(2)k , [0 1]xk represent the first
and second entries of the system state, respectively. It canbe
verified thatf(xk) belongs to the sector[U1, U2] with

U1 =

[
−0.4 0
−0.2 −0.3

]

, U2 =

[
0.2 0.3
0.1 0.4

]

.

Denote the first and second entries ofCi,kxk as ỹ(1)i,k and

ỹ
(2)
i,k , respectively. With the purpose of showing the influence

from the sensor saturation on the filtering performance, we
consider the following two cases:

Case 1:






σ
(
ỹ
(1)
1,k

)

max
= σ

(
ỹ
(2)
1,k

)

max
= 20,

σ
(
ỹ
(1)
2,k

)

max
= σ

(
ỹ
(2)
2,k

)

max
= 30,

σ
(
ỹ
(1)
3,k

)

max
= σ

(
ỹ
(2)
3,k

)

max
= 20.

(52)

Case 2:






σ
(
ỹ
(1)
1,k

)

max
= σ

(
ỹ
(2)
1,k

)

max
= 10,

σ
(
ỹ
(1)
2,k

)

max
= σ

(
ỹ
(2)
2,k

)

max
= 15,

σ
(
ỹ
(1)
3,k

)

max
= σ

(
ỹ
(2)
3,k

)

max
= 10.

(53)

In this section, we proceed to utilize the algorithms pro-
posed in Corollary 1 and Corollary 2 to solve Optimization
Problem 1 (OP1) and Optimization Problem 2 (OP2), respec-
tively. The simulations are performed by means of Matlab
software (YALMIP 3.0), and the results are shown in Figs. 1–
8.

Fig. 1 and Fig. 2 depict the time instants of each agent
when the trigger occurs inOP1 and OP2, respectively. By
comparison between triggering times shown in the figures, we
can obviously see that 1) the proposed event-triggering mech-
anism can effectively reduce the frequency of the innovation
broadcasting; 2) the total triggering times inOP2 is much
less than that inOP1, indicating that the triggering frequency
can be further reduced if we implement the strategy provided
in OP2, exactly as anticipated. For the system subject to the
saturation in Case 1, the trajectories of the estimation errors
of the system state entriesx(1)k , x(2)k are shown in Figs. 3–6.
Generally, the adoption of the scheme developed in Corollary 1
results in a better filtering accuracy as expected, since it can
be seen that the values of estimation errors shown in Fig. 3
and Fig. 4 are smaller than those shown in Fig. 5 and Fig. 6,
respectively.

In order to figure out the impact from the saturation bound
on the filtering performance, we now consider the proposed
Case 2expressed by (53). The simulation results are shown
in Fig. 7 and Fig. 8, where the figures of the estimation errors
are presented. We can see that the filtering performance can
be improved if the saturation bound becomes larger.

In summary, the proposed design technique for the desired
distributed event-based filter offers much flexibility in making
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Fig. 1. The triggering sequences forOP1 (Case 1).
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Fig. 2. The triggering sequences forOP2 (Case 1).

trade-offs between the two essential requirements (i.e., filtering
performance and triggering frequency) and therefore provides
the engineers with an effective methodology of achieving the
balance between accuracy and cost in practical applications.

V. CONCLUSION

In this paper, the distributed event-based set-membership
filtering problem has been addressed for a class of discrete
nonlinear time-varying systems subject to unknown but bound-
ed noises and sensor saturations over sensor networks. A
novel event-triggering communication mechanism has been
proposed for the sake of reducing the sensor data transmission
rate and the energy consumption. By means of recursive linear
matrix inequalities approach, the sufficient conditions have
been established for the existence of the desired distributed
event-triggering filter. With the established framework, two
optimization problems have been discussed to demonstrate the
flexibility of the proposed methodology in making trade-offs
between accuracy and cost. Finally, a numerical simulation
example has been exploited to verify the effectiveness of the
distributed event-triggering filtering strategy.
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Fig. 3. The estimation errors ofx(1)
k

for OP1 (Case 1).
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Fig. 4. The estimation errors ofx(2)
k

for OP1 (Case 1).
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Fig. 5. The estimation errors ofx(1)
k

for OP2 (Case 1).
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Fig. 6. The estimation errors ofx(2)
k

for OP2 (Case 1).
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Fig. 7. The estimation errors ofx(1)
k

for OP1 (Case 2).
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Fig. 8. The estimation errors ofx(2)
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for OP1 (Case 2).



ACCEPTED 11

REFERENCES

[1] M. V. Basin, S. Elvira-Ceja and E. Sanchez. Mean-squareH∞ filtering
for stochastic systems: application to a 2DOF helicopter.Signal Pro-
cessing, vol. 92, no. 3, pp. 801–806, 2012.

[2] D. P. Bertsekas and I. B. Rhodes, Recursive state estimation for a set-
membership description of uncertainty,IEEE Transactions on Automatic
Control, Vol. 16, No. 2, pp. 117–128, 1971.

[3] S. Boyd, L. Ghaoui, E. Feron and V. Balakrishnan,Linear matrix
inequalities in system and control theory, Philadelphia: SIAM Studies
in Applied Mathematics, 1994.

[4] J. Cao, R. Sivasamy and R. Rakkaiyappan, Sampled-dataH∞ synchro-
nization of chaotic Lur’e systems with time delay,Circuits, Systems &
Signal Processing, Vol. 35, No. 3, pp. 811–835, 2016.

[5] S. Dharani, R. Rakkiyappan and J. Cao, Robust stochasticsampled-
dataH∞ control for a class of mechanical systems with uncertainties,
Journal of Dynamic Systems Measurement and Control, Vol. 137,
No. 10, 101008, 2015.

[6] A. De Paola, S. Gaglio, G. Lo Re, F. Milazzo and M. Ortolani,
Adaptive distributed outlier detection for WSNs,IEEE Transactions on
Cybernetics, Vol. 45, No. 5, pp. 888–899, 2015.

[7] D. Ding, Z. Wang and B. Shen, Recent advances on distributed filtering
for stochastic systems over sensor networks,International Journal of
General Systems, Vol. 43, No. 3–4, pp. 372–386, 2014.

[8] D. Ding, Z. Wang, B. Shen and G. Wei, Event-triggered consensus
control for discrete-time stochastic multi-agent systems: the input-to-
state stability in probability,Automatica, Vol. 62, pp. 284–291, Dec.
2015.

[9] H. Dong, Z. Wang, X. Bu and F. E. Alsaadi, Distributed fault estimation
with randomly occurring uncertainties over sensor networks, Interna-
tional Journal of General Systems, Vol. 45, No. 5, pp. 662–674, Jul.
2016.

[10] H. Dong, Z. Wang, S. X. Ding and H. Gao, OnH∞ estimation of
randomly occurring faults for a class of nonlinear time-varying systems
with fading channels,IEEE Transactions on Automatic Control, Vol. 61,
No. 2, pp. 479-484, Feb. 2016.

[11] X. Ge and Q-L. Han, Distributed event-triggeredH∞ filtering over sen-
sor networks with communication delays,Information Science, Vol. 291,
pp. 128–142, 2015.

[12] E. Gershon, A. Pila and U. Shaked, Difference LMIs for robustH∞

control and filtering. InProceedings of the European Control Confer-
ence, Porto, Portugal, pp. 3469–3474, 2001.

[13] L. El Ghaoui and G. Calafiore. Robust filtering for discrete-time systems
with bounded noise and parametric uncertainty.IEEE Transactions on
Automatic Control, Vol. 46, No. 7, pp. 1084–1089, 2001.

[14] L. Guo and Y-F. Huang, Frequency-domain set-membership filtering and
its applications,IEEE Transactions on Signal Processing, Vol. 55, No. 4,
pp. 1326–1338, 2007.

[15] D. He, C. He, L. Jiang, H. Zhu and G. Hu, Chaotic characteristic of a
one-dimensional iterative map with infinite collapses,IEEE Transactions
on Circuits and Systems-I: Fundamental Theory and Applicaitons,
Vol. 48, No. 7, pp. 900–906, 2001.

[16] N. Hou, H. Dong, Z. Wang, W. Ren and F. E. Alsaadi, Non-fragile state
estimation for discrete Markovian jumping neural networks, Neurocom-
puting, Vol. 179, pp. 238–245, Feb. 2016.

[17] J. Hu, Z. Wang, S. Liu and H. Gao, A variance-constrainedapproach
to recursive state estimation for time-varying complex networks with
missing measurements,Automatica, Vol. 64, pp. 155–162, Feb. 2016.

[18] H. R. Karimi. RobustH∞ filter design for uncertain linear systems over
network with network-induced delays and output quantization. Model,
Identification, and Control, vol. 30, no. 1, pp. 27–37, 2009.

[19] H. K. Khalil, Nonlinear systems, Upper Saddle River, Prentice-Hall, NJ,
1996.

[20] H. Kopetz, Event-triggered versus time-triggered real-time systems,
Operating Systems of the 90s and Beyond, Lecture Notes in Computer
Science, Vol. 563, pp. 86–101, 1991.

[21] M. Kumar, N. Stoll, R. Stoll and K. Thurow, A stochastic framework for
robust fuzzy filtering and analysis of signals - part II,IEEE Transactions
on Cybernetics, Vol. 45, No. 3, pp. 486–496, 2015.

[22] H. Liu, Z. Wang, B. Shen and F. E. Alsaadi, State estimation for discrete-
time memristive recurrent neural networks with stochastictime-delays,
International Journal of General Systems, Vol. 45, No. 5, pp. 633–647,
Jul. 2016.

[23] Y. Liu, F. E. Alsaadi, X. Yin, and Y. Wang, RobustH∞ filtering for dis-
crete nonlinear delayed stochastic systems with missing measurements
and randomly occurring nonlinearities,International Journal of General
Systems, Vol. 44, No. 2, pp. 169–181, 2015.

[24] Z. Lu, L.-S. Shieh, G. Chen and N. P. Coleman, Simplex sliding mode
control for nonlinear uncertain systems via chaos optimization, Chaos,
Solitions and Fractals, Vol. 23, pp. 747–755, 2005.

[25] Y. Luo, G. Wei, Y. Liu, and X. Ding, ReliableH∞ state estimation
for 2-D discrete systems with infinite distributed delays and incomplete
observations,International Journal of General Systems, Vol. 44, No. 2,
pp. 155–168, 2015.

[26] K. Mathiyalagan, H. Su, P. Shi and R. Sakthivel, Exponential H∞

filtering for discrete-time switched neural networks with random delays,
IEEE Transactions on Cybernetics, Vol. 45, No. 4, pp. 676–687, 2015.

[27] M. Miskowicz, Send-on-delta concept: an event-based data reporting
strategy,Sensors, Vol. 6, No. 1, pp. 49–63, 2006.

[28] Y. Nesterov and A. Nemirovski, Interior point polynomial methods in
convex programming: Theory and applications. Philadelphia, PA: SIAM,
1994.

[29] R. Rakkiyappan, N. Sakthivel and J. Cao, Stochastic sampled-data
control for synchronization of complex dynamical networkswith control
packet loss and additive time-varying delays,Neural Networks, Vol. 66,
pp. 46–63, 2015.

[30] A. V. Savkin and I. R. Petersen, Robust state estimationand model
validation for discrete-time uncertain systems with a deterministic de-
scription of noise and uncertainty,Automatica, Vol. 34, No. 2, pp. 271–
274, 1998.

[31] S. Seifzadeh, B. Khaleghi and F. Karray, Distributed soft-data-
constrained multi-model particle filter,IEEE Transactions on Cybernet-
ics, Vol. 45, No. 3, pp. 384–394, 2015.

[32] B. Shen, Z. Wang and Y. S. Hung, Distributed consensusH∞ filtering in
sensor networks with multiple missing measurements: the finite-horizon
case,Automatica, Vol. 46, No. 10, pp. 1682–1688, 2010.

[33] X. Su, P. Shi, L. Wu and M. V. Basin, Reliable filtering with strict
dissipativity for T-S fuzzy time-delay systems,IEEE Transactions on
Cybernetics, Vol. 44, No. 12, pp. 2470–2483, 2014.

[34] R. Tempo, Robust estimation and filtering in the presence of bounded
noise,IEEE Transactions on Automatic Control, Vol. 33, No. 9, pp. 864–
867, 1988.

[35] V. Ugrinovskii, Distributed robust filtering withH∞ consensus of
estimates,Automatica, Vol. 47, No. 1, pp. 1–13, 2011.

[36] H. S. Witsenhausen, Sets of possible states of linear systems given per-
turbed observations,IEEE Transactions on Automatic Control, Vol. 13,
No. 5, pp. 556–558, 1968.

[37] F. Yang and Y. Li, Set-membership filtering for systems with sensor
saturation,Automatica, Vol. 45, No. 8, pp. 1896–1902, 2009.

[38] F. Yang, Z. Wang and Y. S. Hung, Robust Kalman filtering for discrete
time-varying uncertain systems with multiplicative noises, IEEE Trans-
actions on Automatic Control, Vol. 47, No. 7, pp. 1179–1183, 2002.

[39] F. Yang, H. Dong, Z. Wang, W. Ren and F. E. Alsaadi, A new approach
to non-fragile state estimation for continuous neural networks with time-
delays,Neurocomputing, Vol. 197, pp. 205–211, Jul. 2016.

[40] Y. Yoon and Y.-H. Kim, An efficient genetic algorithm formaximum
coverage deployment in wireless sensor networks,IEEE Transactions
on Cybernetics, Vol. 43, No. 5, pp. 1473–1483, 2013.

[41] Y. Yu, H. Dong, Z. Wang, W. Ren and F. E. Alsaadi, Design ofnon-
fragile state estimators for discrete time-delayed neuralnetworks with
parameter uncertainties,Neurocomputing, Vol. 182, pp. 18–24, Mar.
2016.

[42] S. Zhang, Z. Wang, D. Ding and H. Shu, Fuzzy filtering withrandomly
occurring parameter uncertainties, interval delays, and channel fadings,
IEEE Transactions on Cybernetics, Vol. 44, No. 3, pp. 406–417, 2014.

[43] S. Zhang, Z. Wang, D. Ding, H. Dong, F. E. Alsaadi and T. Hayat,
NonfragileH∞ fuzzy filtering with randomly occurring gain variations
and channel fadings,IEEE Transactions on Fuzzy Systems, Vol. 24, No.
3, pp. 505–518, Jun. 2016.

[44] Y. Zhang, B. Zheng, P. Ji and J. Cao, A key management method based
on dynamic clustering for sensor networks,International Journal of
Distributed Sensor Networks, Volume 2015 (2015), Article ID 763675,
9 pages.

[45] S. Zhu, C. Chen, W. Li, B. Yang and X. Guan, Distributed optimal
consensus filter for target tracking in heterogeneous sensor networks,
IEEE Transactions on Cybernetics, Vol. 43, No. 6, pp. 1963–1976, 2013.

[46] L. Zou, Z. Wang, H. Gao and X. Liu, Event-triggered stateestimation for
complex networks with mixed time delays via sampled data information:
the continuous-time case,IEEE Transactions on Cybernetics, Vol. 45,
No. 12, pp. 2804–2815, Dec. 2015.



ACCEPTED 12

Lifeng Ma received the B.Sc. degree in Automa-
tion from Jiangsu University, Zhenjiang, China, in
2004 and the Ph.D. degree in Control Science and
Engineering from Nanjing University of Science and
Technology, Nanjing, China, in 2010. From August
2008 to February 2009, he was a Visiting Ph.D.
Student in the Department of Information Systems
and Computing, Brunel University London, U.K.
From January 2010 to April 2010 and May 2011
to September 2011, he was a Research Associate
in the Department of Mechanical Engineering, the

University of Hong Kong.
He is currently an Associate Professor in the School of Automation, Nanjing

University of Science and Technology, Nanjing, China, and is currently a
Visiting Research Fellow at the King’s College London, U.K.His current
research interests include nonlinear control and signal processing, variable
structure control, distributed control and filtering, time-varying systems and
multi-agent systems. He has published more than 20 papers inrefereed
international journals. He serves as an editor forNeurocomputing. He is a
very active reviewer for many international journals.

Zidong Wang (SM’03–F’14) was born in Jiang-
su, China, in 1966. He received the B.Sc. degree
in Mathematics in 1986 from Suzhou University,
Suzhou, China, and the M.Sc. degree in Applied
Mathematics in 1990 and the Ph.D. degree in Elec-
trical Engineering in 1994, both from Nanjing Uni-
versity of Science and Technology, Nanjing, China.

He is currently a Professor of Dynamical Systems
and Computing in the Department of Computer
Science, Brunel University, U.K. From 1990 to
2002, he held teaching and research appointments

in universities in China, Germany and the U.K. He has published more than
300 papers in refereed international journals. His currentresearch interests
include dynamical systems, signal processing, bioinformatics, control theory
and applications.

Prof. Wang was a recipient of the Alexander von Humboldt Research
Fellowship of Germany, the JSPS Research Fellowship of Japan, and the
William Mong Visiting Research Fellowship of Hong Kong. He serves
or has served as the Editor-in-Chief forNeurocomputingand Associate
Editor for 12 international journals, including the IEEE TRANSACTIONS ON

AUTOMATIC CONTROL, the IEEE TRANSACTIONS ONCONTROL SYSTEMS
TECHNOLOGY, the IEEE TRANSACTIONS ON NEURAL NETWORKS, the
IEEE TRANSACTIONS ONSIGNAL PROCESSING, and the IEEE TRANSAC-
TIONS ON SYSTEMS, MAN , AND CYBERNETICS: SYSTEMS. He is a Fellow
of the Royal Statistical Society and a Program Committee Member for several
international conferences.

Hak-Keung Lam (M’98–SM’10) received the
B.Eng. (Hons.) and Ph.D. degrees from Hong Kong
Polytechnic University, Hong Kong, in 1995 and
2000, respectively.

From 2000 to 2005, he was a Post-Doctoral Fel-
low and Research Fellow with the Department of
Electronic and Information Engineering, Hong Kong
Polytechnic University. He joined Kings College
London, London, U.K., as a Lecturer, in 2005,
where he is currently a Reader. He has coedited the
books entitledControl of Chaotic Nonlinear Circuits

(World Scientific, 2009) andComputational Intelligence and Its Applications
(World Scientific, 2012), and coauthored the monograph entitled Stability
Analysis of Fuzzy-Model-Based Control Systems(Springer, 2011). His cur-
rent research interests include intelligent control systems and computational
intelligence.

Dr. Lam is an Associate Editor of the IEEE TRANSACTIONS ONFUZZY

SYSTEMS, the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II:
EXPRESSBRIEFS, IET Control Theory and Applications, the International
Journal of Fuzzy Systems, and Neorocomputing, and a Guest Editor and an
Editorial Board Member for a number of international journals. He served as
a Program Committee Member and an International Advisory Board Member
for various international conferences, and a Reviewer for various books,
international journals, and international conferences.

Nikos Kyriakoulis is a European Proposals Man-
ager at Brunel University London, U.K. He holds
a Diploma of Mechanical Engineering and a PhD
on Robotic Vision Systems for Target Identification
and Tracking, from the Democritus University of
Thrace, Greece, 2005 and 2010, respectively. He has
published more than 20 scientific papers and serves
as a reviewer to numerous scientific journals and
international conferences. Since 2006, he has par-
ticipated as a senior researcher and project leader in
more than 15 EC funded projects (applied research),

all in the field of Multimodal sensory systems, for multiple applications
such as computer and robotic vision, Ultrasounds-Acoustic, NDT, rehabil-
itation, security, and heterogeneous data fusion, advanced data processing
and computational intelligence. Moreover, since 2012 he has been Business
Developer and New product development Consultant where he exercised
extensive market analysis, dissemination and exploitation strategies, as well
as conduction of business models and business plans.


