ING'S
OPEN (5 ACCESS College
LONDON

King’s Research Portal

DOI:
10.1109/TCYB.2016.2582081

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):

Ma, L., Wang, Z., Lam, H. K., & Kyriakoulis, N. (2017). Distributed Event-Based Set-Membership Filtering for a
Class of Nonlinear Systems with Sensor Saturations over Sensor Networks. IEEE Transactions on Cybernetics,
47(11), 3772-3783. [7505990]. https://doi.org/10.1109/TCYB.2016.2582081

Citing this paper

Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volumel/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

*Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
*You may not further distribute the material or use it for any profit-making activity or commercial gain
*You may freely distribute the URL identifying the publication in the Research Portal

Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 25. Aug. 2022


https://doi.org/10.1109/TCYB.2016.2582081
https://kclpure.kcl.ac.uk/portal/en/publications/distributed-eventbased-setmembership-filtering-for-a-class-of-nonlinear-systems-with-sensor-saturations-over-sensor-networks(ef83e1ab-cae6-4793-b158-7ad4cf819c0c).html
https://kclpure.kcl.ac.uk/portal/en/persons/hakkeung-lam(518da69f-a0af-42fe-9f8a-6f49034c3493).html
https://kclpure.kcl.ac.uk/portal/en/publications/distributed-eventbased-setmembership-filtering-for-a-class-of-nonlinear-systems-with-sensor-saturations-over-sensor-networks(ef83e1ab-cae6-4793-b158-7ad4cf819c0c).html
https://kclpure.kcl.ac.uk/portal/en/publications/distributed-eventbased-setmembership-filtering-for-a-class-of-nonlinear-systems-with-sensor-saturations-over-sensor-networks(ef83e1ab-cae6-4793-b158-7ad4cf819c0c).html
https://kclpure.kcl.ac.uk/portal/en/journals/ieee-transactions-on-cybernetics(7b6e44a1-9868-4c28-8644-b19423204ef9).html
https://doi.org/10.1109/TCYB.2016.2582081

ACCEPTED

Distributed Event-Based Set-Membership Filtering
for A Class of Nonlinear Systems with Sensor
Saturations over Sensor Networks

Lifeng Ma, Zidong Wangfellow, IEEE Hak-Keung Lam Senior Member, IEEEand Nikos Kyriakoulis

Abstract—In this paper, the distributed set-membership filter-
ing problem is investigated for a class of discrete time-vajing
system with an event-based communication mechanism overrse
sor networks. The system under consideration is subject tcestor-
bounded nonlinearity, unknown but bounded noises and senso
saturations. Each intelligent sensing node transmits the ata to
its neighbors only when certain triggering condition is vidated.
By means of a set of recursive matrix inequalities, sufficien
conditions are derived for the existence of the desired digbuted
event-based filter which is capable of confining the systemaie in
certain ellipsoidal regions centered at the estimates. Whin the
established theoretical framework, two additional optimization
problems are formulated: one is to seek the minimal ellipsals (in
the sense of matrix trace) for the best filtering performance and
the other is to maximize the triggering threshold so as to redce
the triggering frequency with satisfactory filtering performance.
A numerically attractive chaos algorithm is employed to sole
the optimization problems. Finally, an illustrative example is
presented to demonstrate the effectiveness and applicaityl of
the proposed algorithm.

Index Terms—Nonlinear time-varying systems; Distributed set-
membership filtering; Sensor networks; Event-based filtenng;
Sensor saturations; Unknown but bounded noise

|. INTRODUCTION

The past decades have witnessed a rapid growth on

of sensing nodes geographically distributed in certairasre
Sensor networks have found extensive applications in v
ous fields ranging from information collection, environrtagn

monitoring, industrial automation, to intelligent buitdjs [6],
[29], [31], [40], [44], [45]. The practical significance oéssor

networks has recently led to considerable research interes

the distributed estimation or filtering problems whose airtoi

extract the true signals based on the information measursm

collected/transmitted via sensor networks. Compared thi¢h
traditional filtering algorithms in a single sensor syste][
[26], [33], [42], the key feature of the distributed filtegin
over sensor networks is that each sensor estimates thensyste
state based not only on its own measurement but also on the
neighboring sensors’ measurements according to the tgpolo
[35]. So far, much effort has been made to the investigation
on the distributed filtering problems and several effective
strategies have been developed, see [7] for a survey. Itiigiwo
mentioning that, up to now, the resource efficiency issue has
not been adequately addressed towards the distributed filte
ing problems especially for nonlinear time-varying syssem
and this gives rise to the primary motivation of our current
research.

With the nowadays revolution of microelectronics tech-
nigues, there is an incremental adoption of small-size nicr
processors which are embedded in the sensing nodes respon-
sible for information collecting, signal processing, datns-
mitting and sometimes instruction actuating within thessen
networks. In engineering practice, these micro-procasa
apparently subject to limited resource such as batteryagéor
For energy-saving purposes, it is often favorable to exploi
{HS event-based rules under which the information recdied

épnsing nodes is transmitted to the controllers/filterg wilen

some events occur. Compared to the traditional time-based

a?Iqmmunication mechanism, the event-based communication

scheme has the advantage of improving the efficiency of
resource utilization by reducing the unnecessary exetsitio
over the network, see [20] and the references therein for
some earlier works. Due to its clear physical implicatiomnl an
promising application prospect, in the past decade or o, th

eevent-based filtering problem has stirred remarkable ester

and many research results have been reported in the literatu
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progress in event-triggering filter/control, it remains @men
problem to develop more generic triggering conditions that
could play a reasonable tradeoff between the efficiency of
the resource utilization and the specification of the system
performance.

Apart from the aforementioned resource limitation issue,
it is well known that the embedded micro-processors are
typically of limited capacity within a sensor network due
primarily to the physical and communication constraints.
Consequently, some new phenomena (e.g. signal quantiza-
tion, sensor saturation and actuator failures) have iakhit
emerged that deserve particular attention in the systeigrdes
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These phenomena are customarily referred to as the incomMotivated by the above discussions, in this paper, it is
plete information that has attracted much research irtteresir objective to design a distributed event-triggering- set
in developing filtering schemes [1], [8]-[10], [16]-[18R]], membership filtering scheme for a class of discrete time-
[23], [25], [32], [37], [39], [41], [43], [46]. However, whe it varying nonlinear systems subject to unknown but bounded
comes to the event-based distributed filtering problemé wihoises and sensor saturations. A novel triggering conditio
incomplete information, the corresponding results havenbewith clear engineering insight is proposed to better refileet
very few owing mainly to the lack of appropriate techniqueseality of practical applications. The nonlinearity is @sged to
for coping with 1) the complicated node coupling accordimg tsatisfy the so-called sector condition, which is quite gahe
the topological information and 2) the demanding trigggrinand could cover several classes of nonlinearities as dpecia
mechanism accounting for the limited capability. As sucltases.We endeavor to answer the following questions: i)
another motivation for our current investigation is to exaen how to deal with the proposed triggering condition withire th
the impact of the incomplete information on the performanamified framework for filter analysis and synthesis? ii) how t
of the event-based distributed filtering over the sensaroit  quantify the influences on the filtering performance from the
with a given topology. given topology, the sector-bounded nonlinearity, the omkn

In real-world engineering, almost all practical systems abut bounded noises as well as the sensor saturations? iii)
time-varying. For such time-varying systems, a filter ttmtld how to characterize the relationship between the trigggrin
provide better transient performance than those traditiorthreshold and the filtering performance or, in other wordswh
methods developed to achieve specified steady-state perforexploit the trade-offs between the size of the ellipsaitt$
mance is more effective and applicable. Therefore, theifitje the triggering threshold so as to make compromise betwesen th
problems for time-varying systems have stirred consideralfiltering performance and the triggering frequency shall
research interests in the past few years. For example, teepond to the three questions raised above by investigatin
difference Riccati equation method has been proposed in [3Be so-called distributed set-membership filtering proble
to solve the robust Kalman filtering problem for uncertain The novelties of this paper lie in the following four as-
time-varying systems. Recently, the recursive linear ixatrpects.i) The system model under study is comprehensive that
inequality (RLMI) method has become another effective amcludes sector-bounded nonlinearity, unknown but bodnde
proach to deal with the filtering and control problems fonoises and sensor saturations. ii) A new ellipsoidal trigiyg
time-varying systems. Originally proposed in [12], the RLMcondition is presented in which the threshold is adjustable
method has been so far widely recognized and extensivély make the compromise between filtering performance and
utilized in both theoretical research and engineeringiagapl communication cost. iii) Two optimization problems areved|
tions associated with time-varying systems, see e. g.37].[ and the developed algorithms can be applied to seek the
However, up to now, the distributed filtering problem has natinimal ellipsoids ensuring the enhanced filtering perfor-
been adequately investigated yet for systems subject ®-tinmance and the maximal triggering threshold guaranteeing
varying parameters, especially for the case where the evér reduced communication cost. iv) Within the established
triggering mechanism and sensor saturation are also iaedolvtheoretical framework, we can easily handle the distridute

On another research frontier, the set-membership filteriegent-based set-membership filtering problems for systems
problem originated in [36] aims to use the measurememdth heterogeneous structures and/or time-varying togglo
to calculate recursively a bounding ellipsoid to the set of The rest of this paper is organized as follows. Section Il
possible states, see [2], [30] and the references theran. Formulates the distributed event-based filter design bl
cently, there has been renewed interest in the set-meniperdgbr nonlinear discrete time-varying system with unknown bu
filtering problems for various systems by developing conbounded noises as well as sensor saturations. Our mairisresul
putationally efficient algorithms. For instance, in [13het are presented in Section Il where sufficient conditions for
convex optimization method has been utilized to handle tiiee existence of the desired filter are given in terms of
set-membership filtering with the guaranteed robustness raeursive linear matrix inequalities (RLMIs). Section 1Wes
gainst the system parameter uncertainties. In [14], the satnumerical example and Section V draws our conclusion.
membership filtering issue has been discussed in frequencyNotation The notation used here is fairly standard except
domain and an adaptive algorithm has been developed withere otherwise stated®™ denotes then-dimensional Eu-
applications in the frequency-domain equalization proble clidean space]l,, denotes am-dimensional column vector
is worth mentioning that the set-membership filtering peobl with all ones.I,, and0,, denote the identity matrix and zero
has been addressed in [37] for stochastic system in tmatrix of n dimensions, respectively. The notatioch > Y
presence of sensor saturations, where a recursive schesne(fespectively X > Y), where X and Y are symmetric
been provided for constructing an ellipsoidal state edtona matrices, means thak — Y is positive semi-definite (re-
set of all states consistent with the measured output and #pectively positive definite). For matrice$ € R”™*" and
given noise. Unfortunately, for large-scale distributgdtems B € RP*4, their Kronecker product is a matrix iR"?*"4
such as sensor networks, the set-membership filtering has denoted asi ® B. The superscript “ T” denotes the transpose.

received adequate research attention, and this motivatés uFor a vectora, |la|| = a%a. tr[A] means the trace of
investigate the set-membership filtering problem for noedir matrix A and diad F1, F», . . ., F,,} denotes a block diagonal
systems under an event-based distributed informationegsac matrix whose diagonal blocks are given By, s, ..., F,.

ing mechanism. The notationdiag,,{ A;} represents the block diagonal matrix
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diag{ A1, As, ..., A, } andcol,, {x;} denotes the column vec-In this case, the sector-bounded nonlinearity) is said to
tor [z 2F ... 21T belong to the secto;, K>)].

Assumption 2:The nonlinear functiorf (z) in the system
(1) belongs to the sect@’;, Us], whereU; andUs are known

real-valued matrices with appropriate dimensions.
In this paper, it is assumed that the sensor networkMias The saturation function(-) is defined as

sensor nodes which are distributed in the space accordiag to @ @ (m)

specific interconnection topology characterized by a déec o()=[ V) @) - oml™)] @
graph¥ = (¥,&,.Z), where? = {1,2,..., N} denotes the ()Y _ o () Verairs £(5) 1 (5) HE o (8) ran.
set of sensing nodeg; C ¥ x ¥ is the set of edges, andWhereUs(y ) = sign(y™®Jmin{ymax, [y |} with y'*) rep

= [0,] is the nonnegative adjacency matrix associat(?r]gsentmg thesth entry of the vectoy. Note that, if there exist
= VijINxN i X : < : < ;
with the edges of the graph, that %; > 0 if and only if lagonal matrices?; and Gy; such that) < Gi; < I' < G,

) Co 4 - then the saturation function(C; in (1) can be written
edgdi,j) € & (i.e. there is information transmission fromals follows: (Cipax) in (1)

sensorj to sensor). If (i,5) € &, then nodej is called one
of the neighbors of nodé Also, we assume that; = 1 for 0(Ci k) = GriCyikxy + o(Ci prk) (5)
all i € ¥ and, therefore(i, i) can be regarded as an additional

edge. The set of neighbors of node ¥ plus the node itself where ¢(C; ) is certain nonlinear vector-valued function
is denoted by 2 {j € ¥|(i, j) € &} satisfying the sector condition with';, = 0 and K, = G; £

Consider a time-varying nonlinear system with sensors G — G, thatis,p(Ci ki) satisfies the following inequality:

Il. PROBLEM FORMULATION

described by the following state-space model: @T(Ci,kxk)(so(ci,kxk) - GiCi,k:vk) <0. (6)
Tpy1 = Apzr + Dywy, + f(z1) Before introducing the distributedvent-basedilter struc-
Yir = 0(Cipar) + Eipor i=1,2 N (1) ture, we first recall traditional distributed time-basetefilas

7 " " T follows:

wherez;, € R" is the system state ang , € R™ is the . N .
“ i1 = Findan+ S O0yHgprin i=1,2,...,N

measurement output measured by sensofhe parameters ~ Ftt T TikTik ;/ igHigklik

Ayg, Dy, C; ), and E; ;, are real-valued time-varying matrices I 7

of appropriate dimensions., € R andv, € R” represent \herei, ;, € R" is the estimate of the system state based on

the process and measurement noises, respectively, whechgg ;th sensing nodef; ;, and H;; ;, are the filter parameters,

deterministic and satisfy the following assumption. andr; ;. represents the innovation sequence defined by
Assumption 1:The noise sequenceas, andv, are confined N .
to the following ellipsoidal sets: ik = Yik — Ciklik. €
L 2 {wy, - wESk_lwk <1 _ Remark 2:1In traditional distribute(_j filtering algorithms, it _
{ a — (2) is usually assumed that the sensing nodes broadcast their
K = {vp v By o < 1} local information ateveryperiodic sampling instant, and this

might result in unnecessary waste of communication ressurc
ble dimensions characterizing the sizes and orientatibtizeo €SPECially when the energy saving becomes a concern. For
ellipsoids. the purpose of improving the efficiency of network utiliza-
Remark 1:In practical engineering, due to the man-madion. as an alternative to the periodic control method, the
electromagnetic interference as well as other naturalcesyr €Vent-triggeringmechanism will be proposed here to reduce
sometimes the noises are not really stochastic. Rathratiee the network communication burden with guaranteed filtering
deterministic, unknown but bounded (by energy or ampmudgerformance, where the main idea is to broadaagbrtant

[13]. As such, most statistics-based filtering algorithisisch missages rathtlerghaﬂ mﬁssages. . . hani b
as Kalman filtering scheme requiring exact information aa th et us now elaborate the event-triggering mechanism to be

Gaussian noises) are no longer applicable. It is worth gotiﬁ‘dOpted' Suppose that the sequence of the triggering testan

that the unknown but bounded noise serves as an importgp{kﬁ (t=0, 1’%’ - ) satisfying0 < ko < ki < ks Ss
type of non-Gaussian noises that has received considerdBle~ " V\{herekt represents th? time instahtat which the
research attention with respect to the filtering probleres, s t + 1)th trigger occurs for agent Then, define

e.g. [13], [34]. In this paper, the process noisgsand mea- ik Z Ty i — Tik 9)
surement noises;, are assumed to be deterministic, unknown ) o ) )
but bounded within certain ellipsoidal sets, and this giies which indicates the difference of the broadcast innovation

to the set-membership filtering problem to be addressedein @ the latest triggering time and the current time. With the

where S, > 0 and R, > 0 are known matrices with compati-

sequel. notation ofe, 5, the sequence of event-triggering instants is
Definition 1: [19] Let K, and K> be some real matrices d€fined iteratively by
with K £ K, — K7 > 0. A nonlinearityx(-) is said to satisfy ki, =inf{k € Z*|k > ki, e;F,kQ;;ei,k > 1} (10)

the sector condition with respect #§; and K5 if _
where Q;, > 0 (i = 1,2,...,N) is referred to as the

(k(y) — Kly)T(m(y) — Kay) <0. (3) triggering threshold matrix of agentat time instantk.
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Remark 3:The ellipsoidal triggering condition defined ininequalities (RLMIS). First of all, we recall two useful lenas
(10) is quite general that covers several well-studiedygigng for our following development.
conditions as special cases. For example, it is observed fro Lemma 1:(S-procedure [3]) Letyo(:),01().. .., ¢p(-) be
(10) that, when the matrix; , is set to be a fixed positive quadratic functions of the variablee R™: v;(c) = ¢TX;¢
scalar, then the ellipsoidal triggering condition spézed to (j = 0,...,p), whererT = Xj. If there existe; > 0, ...,
the frequently used one as shown in [11] and the referenegs> 0 such thatX, — sz):l €;X; <0, then the following is
therein. In particular, in the case thaf, — 0 (i.e. the size of true: '
ellipsoid approaches), the event-triggering mechanism will P1(s) <0,...,9,(s) <0 — 1p(s) <0. (14)
reduce to the traditional time-driven one. Moreover, aapth ) . .

o . . ... Lemma 2:(Schur Complement Equivalence) Given con-

advantage of the proposed ellipsoidal triggering conditio . T T
R ) . . stant matricesS;, S2, S3 whereS; = S and0 < S, = S,
lies in the fact that the triggering threshold matfik ;. is thens, + STS-18, < 0 if and only if
actually a parameter that can be co-designed with the filler™ ' 392 93 y
parameters, and this provides much flexibility in makingléa S ST <0 or -5 83 <0 (15)
offs between the filtering performance and the triggerirgg fr S3 =8 S§ S '
guency, thereby achieving the balance between desiretifite
accuracy and af_fordable resource consumption. _ A. Filter Design Subject to Fixed Tripl&7, {Q; 1}, {P:})

By incorporating (9)-(10) with (7), we come up with the £ gimpjicity of notation, before giving the main results,
following event-basedilter structure to be adopted in this o yenote
paper:

: F Z 0i; H k€ [kikiq) (11) & = coly{mx}, @k = coln{din},  ex = coln{eir},
iz = I'; ji —+ iiH i kT, c 1’ i N ! ’
k1 KLk jet i Hij kT g ts Keg1 fr 2 coly{f(z)}, @r 2 coly{p(Cirzr)},

NP ,, Y ,
where F; , and H;; (i,5 € ¥) are the filter parameters to Gr = diagy {GriCix},  Ci = diagy{Cir},

be designed. & = diagy{Eix}, Fi = diagy{Fix},

By (9)-(11), we have established the structure of a distribu @, , 2 diag{0,,...,0,,1,,0,,...,0,}, 0= {n,q,m},
ed filter with an event-triggering mechanism, which invokes —_—
the transmission of information when the difference betwee . Z_Tl N
the current value and its latest transmitted value exceeds Loi= Ay @1)P0s, 0= {n,q,m}.
certain threshold. Before proceeding further, we give the From system (1) and filter (11), the one-step-ahead estima-
following assumption. tion error is obtained as follows:

Assumption 3:The initial statez, and its estimatez; .
satisfy Tht1l — Tik+1

(20 — #4,0) TPy Hwo — &ip) < 1 (12) =Azy + Dywy, + f(xr)

where ) > 0 is a given positive definite matrix. - (Fi,kfci,k + Z 9inij,k7’j7kg)

The objective of this paper is twofoldirstly, for system JEN;
(1) and filter (11), let the directed communication gr&plithe =Apxy + Dywi + f(ar) — Fip @ik
sequence of positive definite threshold matrif@s . } >0 and
the sequence of positive definite matriQéa}kf(cgnstraints - ( Z 0ijHij (U(Cﬂlkx’“) + Ej kv
imposed on the filtering performance) be given. It is our first jeM
aim to design the sequences of filtering ga{t#$ ; } x>0 and — Cj ik + ej,k)). (16)
{H;j x}r>0 subject to the given tripl¢?, {€2; .}, {Px}) such _
that the following inequality is satisfied: By denoting; , £ wx — &, and @ = coly{Zix}, we

N N . , rewrite the filtering error dynamics (16) into the following

Sgc_on_d!ytwo optimizati(_)n_p_roblems_ will be investigated for Frp1 =(In @ Ap)&k 4+ (An @ Dip)wi + fi
minimizing P, and maximizing(2; , in the sense of matrix — Foin — HiGulr — i

trace at each time instant, respectively. This problem is re ROk T TERIRSE T TRk
ferred to as a distributed event-based set-membershigrfite = He&e(In @ L)vi + HiCr@e — Hrer  (17)

problem. whereH, £ [0;;Hyj i ] 5, - Obviously, sinced;; = 0 when

j ¢ A, Hy is a sparse matrix which can be expressed as
IIl. DISTRIBUTED EVENT-BASED SET-MEMBERSHIP

FILTER DESIGN Hi € Tnuxm (18)

In this section, we will design a distributed event-baseerfil where ..., = {T = [T};] € R"N*™N|T;; € R Ty =
of form (11) for system (1) subject to sector-bounded nenlif if j ¢ «/%}
earity, unknown but bounded noises and sensor saturationsThe following theorem gives a sufficient condition for
A sufficient condition for the existence of the desired filtethe solvability of the addressed distributed event-basgd s
will be formulated in terms of a set of recursive linear matrimembership filtering problem.
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Theorem 1:For system (1) and filter (11), let the tripleholds. Then, suppose that, , < 1 is true at time instant
(9.{Qux},{P:}) be given. The design objective (13) isk > 0, we shall proceed to prove that; .1 < 1 holds.
achieved if there exist sequences of real-valued matricesAccording to [13], sinced; , < 1 and P, = QxQ}, there
{Fi}r>o and {Hi >0 (7—[;C S %Xm), sequences of non-existz; , € R? (i =1,2,...,N) with ||z; x|| <1 such that

negative scalarge () }izo, {€7 b0, {6 Yizo, {€ Jizo, T = Eig + Qrzi. (24)
{ef’,z}kzo and {6576,3}@0 (i = 1,2,...,N) satisfying the _ o 7 _ _
following NV recursive linear matrix inequalities: t Obviously, by denoting;: = coln{zi}, (24) is equivalent
0
{ E_rlicl 1};%’321 } <0 (19) & =2+ (In ® Qi) 2k (25)
Ak h From (24) and (25), the filtering error system (17) is
where rewritten as follows:
N ~ _ A
e = 30 (z+Qwi) + T (20) Brrr =(Iv © ) (& + (I © Qu)2)
P bk ’ ’ + (1]\/ ® Dk)wk + fr — Frig
N — HiGr(2r + (In ® Q)2
T, = dia Z (1) 2 — e W k~k( Ly . k)
k g : ik k k o — Hipr — Hilk(In & 1,)vg
N - N + HiCrr — Hyex
Zeglk) Lo, (2 WL i i Lo i =N ® Ax — Fr — Hi(Gr — Ck)) T,
l(:l) " =1 + (In ® (ArQk) — HeGr(In @ Qi) 2k
e S e B0, 0} + (In ® Di)wy, + fr — Hifr
i‘EkUl UsZi 2y (IN ® (U:Qk))fb%i — Hi&k(In @ I,))v, — Hyey. (26)
I Ine (QE*UQ’“)@‘I Denoting
Bip = . * R T S Sty N 7 S I 7
“ « the filtering error dynamics can be further expressed by
L * * Tpy1 = Mg (28)
_ 4T J T
000 =& (In@U)Pni 0 whereTl, is defined in (23).
8 8 8 —Ive® (%21@ U)®ni 8 It follows from (2), (10) and (24) that the vectotsy, e; &,
and vy, are satisfyin
£00 0 0o, @y P ing
x % 0 0 0 [zikll <1
* ok ok Ian)n i 0 e;fkﬂz_;elk S 1
* ok k * 0 ’)'[‘57)1 < (29)
ULU, + UFU vl Uy WOk k= 1
U = %7 [}:%’ ngglkaI
1 _ i i i :
Uiy = 5 [0 00000 by ] (22) which, by (27), can be rewritten in terms gf as follows
o rdiag {—1, £ ,£,,0,0,0,0,0}m <0
—iy dlag{C Gl @, ] g diag { a,i> 0} e <
~ding{ QTG Ty ntdiag {~1,0, £, 07} £ni,0,0,0,0pmi <0 0
U, _ 8 ngdla’g{_lvoaovsk 707070}77k§0
o 0 ’ i diag {—1,0,0,0, R, *,0,0}m, <0
0 We now proceed to investigate the sector-bounded nonlin-
2L NPm,i earity f(zy) in system (1). From Assumption 2(x;) belongs
I, = [ My My —Hy Iy H15 Iy —Hi], (28) tosector[Uy, Us], which can be formulated by
I = (In® Ax — Fi — Hi(Gr — Ck)) Tk, (f(xn) — lek)T(f(xk) — Usay) 0. (31)
My = In @ (ArQr) — HiGr(IN ® Qr),

Substituting (24) into (31) results in
Iy = 1y ® Dy, s = ~He&(In ® 1),

" ‘4 bei f - tion o (i S @r) f(@r) + 81U Usi g + 2, QR UL UsQrzig
nxq = ~ ~ ~
\thT%k €R eing a factorization offy, (I'e" P +$EkU1TU2QkZi,k +ZE;CQ;£U1TU2:C¢,1< - fT(xk)UQQTi,k
k) T S T
Proof: The proof is performed by induction. First, it can —f (k) U2Qrzig — &5 Uy f (k)
be immediately known from Assumption 3 that;, < 1 —2 QR U far) <0 (32)
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which can be expressed by, as Algorithm 1: Computational Algorithm for {F; x}r>0
_ and {H;;
i Eikme < 0 (33) L Jizo . .
. . . _ 1) Initialization: Setk = 0 and the maximum computation
with Z; . being defined in (21).  stepkax. Set the triple(Z, {Q; ,}, {Pe}) for 0 < k <
By th_e same token, we have from the sensor saturation £, ... Then factorize{P;} appropriately to obtain the
constraints in (6) that sequence of matrice§Q;}. Select the initial values of
@T(Ci,kxk)(ﬁp(ci,kl'k) _ Gici,k(ji,k + kai,k)) <0 (34) i%ownd Tj.0 Satlsfylng (12) Thenro = CO]N{$i70} IS
which can be formulated by, as 2) With the obtained:; and @y, solve the RLMIs (19) for
n;;r\l’i,knk <0 (35) Fir andH;,. ThenF; , and H;; . can be obtained.

3) With the obtainedF;, and?#;, computez; ;41 according
with ¥, ;. being defined in (22). to (11). Thenzyy1 = coln{Z; k+1} IS obtained.

In the following, according to the principle of induction, 4) Setk =k + 1. If k > k., exit. Otherwise, go t@).
it remains to show that\; .41 < 1 is true if the condition
of this theorem is satisfied at time instanti.e., there exist
real-valued matrice&;, andH; (Hk € %Xm), non-negative
scalarSe(l) >0, (2,2 >0, (3) >0, (4) >0, 6(5]2 >0 and

% >0 (2 =1,2,...,N) sat|sfy|ng RLMIs (19).

B. Filter Design Subject to Constraint of Average Filtering
Errors

In many cases, from a global point of view, we are more

By resorting to the Schur Complement Equivalence (Lemrﬁ teret'_stedt.m the filtering perf?lrr:rl]ance n termsdof an tiver?hg
2), it can be seen that the set of RLMIs (19) holds if and on estimation errors among afl thé sensing nodes rather than
if e individual ones, see [32], [35] for references. As such,

T AT B < in this subsection, based on the results obtained so far, we
I Ly Py £l = T < 0 (36) will further discuss the distributed filtering problem seitij to
which, by (20), is equivalent to constraints imposed on the average of filtering errors. Trbe

HTET PkHEn 0y, — diag(1,0,0,0,0,0,0} with, we define the average filtering errQr as follows:

Z eNdiag{~1,£],£,,,0,0,0,0,0,0} G 2> Nilmk — i)
. = (1TA® I,)(& — &)
Z dlag{ 1,0,£T Zgzkcmi,o,o,o,o} (1A L) (40)
_Ek )dlag{ 1,0,0, 5—1 0,0 0} where the weighting parametexs(i = 1,2, ..., N) represent

o) 1 the priorities with respect to the corresponding sensindeso
E’;V dlag{ 1 018 0, &, 0, O} AssumeCOTYO*CO < 1 whereY, > 0 is a given matrix.
WO Og < @37) Let the triple (¢, {Qi,k}_,.{Yk}) _bg given,.where{Yk}k?O
£ Cik =ik T €k =ik = U is a sequence of positive definite matrices describing the
. =1 =1 . _ constraints imposed on the average filtering performarnds. |
In view of (30), (33) and (35), it follows directly from the our objective in this subsection to design the filter paramset

S-procedure (Lemma 1) that in (11) such that the following requirement is met for> 0:
T pT
e (T3 Lo Py Lo il Gy < (41)
—dlag{1,0,0,0,0,070})nk <0. (38)

) ) _ _ Theorem 2:For system (1) and filter (11), let the triple

It is evident that the following equivalences hold: (g {1} {Yk}) and the initial conditionCOTYO”CO <
Inequality (38) 1 _be given. The r?quirelme?t ((141) is. achieved if tgere

PR, HTET Pk+1£nsz77k <1 exist sequences of real-valued matricds;}i>0 an

28 {Hi}re>o0 (He € Tnxm), sequences of non-negative scalars
&l LT P L <1 {0 kz0, {2 iz00 {6 0, {ef brz0, {€% bizo and
= (wr41 — Fiprr) TPy (e — k1) <10 (39)  {elhrso (i =1,2,..., N) satisfying the following RLMI:

We can now conclude from (39) that; .1 < 1 is achieved, T H;Cr(lTA ® I,)T
and the induction is accomplished. Therefore, the design ob 1"A® I,)
jective (13) is met with the obtained sequences of parameter
{Fi}r=0 and{H;} x>0 for fixed triple (¢, {2 1}, {P:}). The wherel', andIl,, are defined in (20) and (23), respectively.
proof is now complete. [ ] Proof: With the fixed triple(#, {€2; 1}, {Y%}) and given

In the following, an iterative algorithm is presented tdhe initial condition(oTY(fl(O < 1, the proof of Theorem 2
compute the sequences of the filtering paramef{éts, }.>o can be accomplished by induction which is analogous to that
and{H;; » }r>0 recursively. of Theorem 1 and is therefore omitted here. [ |

<0 42
—Yit1 - 42)
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C. Optimization Algorithms where

Theorems 1 and 2 in previous subsections outline the _ N ®) ©)
principles of designing the filtering parameters by solvihg = Z (Ei,k:i,k +E ‘I’l}k)

corresponding set of RLMIs. It should be pointed out that, =1

hovyever, neit_her of th(_a proposed mt_athodologies provides an + diaed 1 — XN: (DL @) o) @
optimal solution. As discussed previously, we now proceed & _ ik T Sk k koo

to deal with the second part of our design objective, that =1 N

is, minimizing { P }r>o (for the locally best filtering per- (1) pT T (2 }
formance) and maximizing<2; i }x>o (for the locally lowest Z}Eiﬂkﬁqviﬁq’“Z;Emvieivkr“kﬁm’“

triggering frequency) in the sense of matrix trace, respelgt
In the following stage, two optimization problems based on 5(3)5’1,5(4)}3*1,0,0
Theorem 1 will be proposed to demonstrate the flexibility PR R
of our dgveloped stra}tegy. Such a .k|n(.1l of flexibility allowsand B > 0 (i = 1,2,...,N) are the weighting scalars
us making compromise between filtering performance and,. " *. N )
. . . satisfying ., 8; = 1. The threshold matriX2; , at each
triggering frequency to achieve a balance between accura[\crx ; i . 1 ’
Ime instant can be determined by, =Y.
and cost. o : Lo ik .
Optimization Problem 1: Minimization of {Py}=o (in Remark 4:With the satisfaction of certain predetermined
' 20 filtering performance (i.e., a prescribed sequencgif} ;>o),

the sense of matrix trace) for the locally best filtering per- - . .
formance. Corollary 2 presents a way to maximize certain combina-

Corollary 1: For the discrete time-varying nonlinear syste tion of individual triggering threshold so as to reduce the

(1) with filter (11), let the pair(#,{Q,}) be given. A r{‘riggering frequency. The values of weighting scalats

sequence of minimizefP; } (in the sense of matrix trace) (i=1,2,...,N) are usually set to be equal but they can be
d ksk>0 .adjusted according to the priorities of certain sensingesod

is guaranteed if there exist sequences of real-valued eeatri_." . S A
(Feteso and {Hxdeso (%k c %Xm)’ sequences of non- Similarly, by borrowing idea from the propoged opt|n:|zat|o )

FIkz i 2) 3) (1) problem (45)-(46), we are able to determine the “largest
negative scalarge, ; bi>0, {¢; k>0, {65 Jr>0, {6, }h>0.  noises that can be tolerated with the satisfaction of gertai
{61(-?,3}1@20 and {Eﬁ)}kzo (4 = 1,2,...,N) solving the fol- prespecified filtering performance.

lowing optimization problem: Noting that (46) is actually a set ())f bilinear matrix inequal
L. 2 . .
min trace[Pes1]  (43) ities (BMIs) bef:ause of thg termﬁ_’kT.i,k, in the following
Prst, FroHiel) @ (&) (@) () (© stage, we provide a numerical algorithm based on the chaos

o o optimization [15] to solve the Optimization Problem 2. Tarst

subject  to with, we introduce the following iterative chaotic mapping

Iy ILNLY, (44) [15]:

<. o
Lyl —Pry p(t+1) =sin (—) (47)
p(7)

Notice that the inequalities (44) are linear to the variable ) ) ]
Pesr, Fi Ha, Eglk) 65213 6;(63)' 6](:1), 655]2 a”dﬁl(-,ﬁk)- Therefore, it \(/)vherep(r) € [l—l, (I)) LtJ (é), 1] is atchaonc vaﬁal;le1 a2nd >
follows directly from Corollary 1 that Optimization Promiel U IS @ properly selected parameter and7 = 0,1,2,...)

can be readily solved via the existing semi-definite prograrffdicates the iterative counter. L _
ming methods [28]. Remark 5:Recently, the chaos optimization techniques

Optimization Problem 2: Maximization of triggering have been employed to solve f_;lvariety o_f global opt_irrjization
threshold matrices{Q; ;}r>o (in the sense of matrix trace) Problems due to the properties of unique ergodicity and
for the locally lowest triggering frequency |rreg_ular|ty of th(_a series generatgd by .chgos [24]._Nogcm

Corollary 2: For the discrete time-varying nonlinear systerfat in the chaotic mapping (47), if the initial value is set a
(1) with filter (11), let the pai(%, { P, }) be given. The locally #(0) # 0. then the chaotic variable(r) is able to traverse
lowest triggering frequency can be determined if theretex€Very state in the interval-1, 0) U (0, 1] in an ergodic way,
sequences of positive definite matricgs; . }1=0, sequences and each state is visited only once. As such, it makes a
of real-valued matrices{Fi}r>0 and {Hylrso (Hr € potential candidate for solylng the set of BMIs (46) |te_1\ra_ly. _
T m), NON-negative scala|{$(1k)}k>0, {5(-213}k>01 {6,(3)}100, We now pres((Qe)nf[ a detailed algc_mthrq to solve th|m|zat|on

(4) (5) dq (6)}“ (— B 1“2 = ) solv?n Problem 2. Let;; in (46) be chaotic variable. We first need to
t{heé f%)?li?/\;ii;i’ééfiﬁ)i;z;ion%bkroglzgm:l ST 9" determine the interval overwhicdﬁ?,z can traverse ergodically.

It can be easily seen that if (46) holds, then it follows dilyec
N
min trace [Z BiTik
i=1

that
FHioTogeD) @ (& (@ ©) (©

(45) —Tx<0 (48)
i k%, k%K 2Ci k%,

subject  to which indicates by (21) that

N
P T pT =
e Ly, } <0 (46) fe+1-— Z (ez(lk) + 61(2]3) — e,(f’) — 61(64) >0 (49)
ﬁn,in _Pk+1 i=1
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where f;, £ Zf;l EfkjfkuirUQ.fCiJg. problem have been presented. Moreover, in order to show the
Taking into account thatglk) >0, 61(-2;2 >0, 6](f) > (o advantage of our developed algorithm, two optimizatiorbpro
(4) o @ _ 7 lems have been investigated to demonstrate the flexibifity o
ande,’ > 0, we acquire0 < ¢, < fi + 1. In order _ . . S . .
to determine the maximum of vt/e ropose the followin filter design technique which is capable of making compremis
auxiliary optimization roblem'k, prop 9 between filtering accuracy and communication cost. It wéll b
yop P ' further verified later in Section 1V by an illustrative exalap
max fr (50) Remark 6:The advantages of the developed method can
Prp1, FroHiel e el el ) el be summarized as follows: i) within the established gener-
. ic framework, the sector-bounded nonlinearity, unknowt bu
subject to (44) . . .
bounded noises, sensor saturations can be tackled simulta-
We present the optimization problem (50) to seek theeously with the proposed ellipsoidal triggering conditio
maximum of f;. thereby determining the interval in whieff) i) it allows much flexibility in making trade-offs between
is confined. If it is solvable, then we denote the optimal ealuihe filtering accuracy and communication cost, while both
as f;, and it follows directly thatl(-?k) € (0, fi +1]. Denote .(_).f the essential objectives can be met at the same time;
’ iii) the proposed method has the potential to deal with the
distributed filtering problem over sensor networks witheim
varying topology. It is worth pointing out that one of our
possible research topics in future is to consider the Bisted
filtering problems with other performance requirementshsuc
as H, specifications investigated in [4], [5].

the chaotic variable during theth iteration aSez(.,Qk) (1), and by
taking (47) into consideration, it can be set as

-
fk; (1—|—pi(7’)), i=1,2,...,N (51)

SHORS

With 552,3 (7) obtained during theth iteration, the addressed
optimization problem (45) subject to constraint (46) is con

verted into a semi-definite programming problem with LMI IV. AN ILLUSTRATIVE EXAMPLE
constraints which can be effectively solved by existingigoo
For time instant:;, denotepy, (652]3) 2 trace vazl BiYix|. In this section, an illustrative example is presented taxsho

Then, during the rth iteration, the intermediate indexthe validity of the proposed filter design strategy. Conside
¢k(€z(-,2k)(7’)) is given as follows: a nonlinear discrete time-varying nonlinear system with 3

sensing nodes and have the following parameters:

N
) trace[ZﬂiTiyk(T)}, if (45)is solvable [ 0.55+0.11sin(0.5k)  0.01+ 0.01 sin(2K)
7)) = i=1 b

2
A G 0.01 0.55 + 0.11sin(0.5k) |’
v, otherwise Dy — { —0.1 4 0.05 cos(3k)
. - . - —k ’
whered > 0 is a sufficiently large constant. In the following, 0.2+0.04e

we will formulate the detailed algorithm for solving Optizar ~ C1, = [ 0.73 +0.2sin(k) 0.1 |,

tion Problem 2. _ _ S Ei ) = 0.2+ 0.05cos(3k),
Algorithm 2: Algorithm for Solving Optimization Prob- Cop=[ 01 0.75+04sin(2k) |,

lem 2
1) Initialization: Setk = 0. Set the maximum step,, .. Ep,p = 0.2+0.15sin(2k),
2) Setr = 0, ¢} = 0. Set the maximum iteration times Cs.x=[ 0.75 0.1 |,
Tmax fOr the chaotic optimization and select the properEs ;, = 0.15 + 0.05 sin(2k).
initial value of p;(0) # 0.

3) Solve the optimization problem (50) and obtgih. Suppose that the sensor network is represented
4) Obtaine!)(7) from equation (51) with know; (). by a directed graph¥ = (7,£,%) where the
5) Solve the semi-definite programming problem (45t of nodes?” = {1,2,3}, the set of edges® =

with constraint (46) by using the obtainedf) (7). If {(1da 13{(L;_)v(1a3)7(2Ia1)7(2a2)7(2a3?7(3a1)7_(ﬁa2r37(3a3)}- o
. . ’ and the adjacency elements associated with the edges of the
¢k(€§?]3(7)) < ¢}, then let ¢} = ¢k(€§?]3(7)) and

i graph aref;; = 1.
€K = 552,3 (7). Otherwise, go td). j

) Let the disturbances bey, = 1.2sin(2k) and v, =
6) Setr =7+ 1. Calculatep;(r) according to (47). 1.5cos(5k) and setS = 2 and R = 3. It then can be easily

7) lf T > Tmax: Of @ dogs not change after certain ite_ratio%hecked thatv,, and vy, belong to the ellipsoidal sets defined
times, output the optimal values and goiip Otherwise, (2). Let the initial values be given as follows:

go to 4).
8) Setk =k + 1. If k> kmnax, exit. Otherwise, go t@3). 5 .. [5.02
Up to now, the addressed distributed event-based set- 0 3|0 TLOTE20T 0T 301 |0

membership filtering problem has been discussed for the 0.1 0.01
nonlinear systems subject to unknown but bounded noises and 0= { 001 0.1 ]

sensor saturations. In terms of the feasibility of certaiivigs,

the sufficient conditions for the solvability of the addmeds Then it can be easily verified that Assumption 3 is satisfied.
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The nonlinear functiory (xy) is chosen as

(2) (1)

—0.1:021) 4 0_15I§€2) IR E» sin(z()
f($k) = \/(121))2+(11(€2))2+10
_O.O5I,(€1) + O.O5I;(€2) 3 x x ok k% *% k% K FRAKRK FHRKF

wherez(") £ [1 0]z; andz(?) £ [0 1]z, represent the first

and second entries of the system state, respectively. Ibean E ol & srrrrrx o mxrrrrrxEEcEROOHRRRR KL
verified thatf(z;) belongs to the sectdt/;, Us] with
U1 - |: :8;1 _83 :| 5 U2 - |: 8? 82 :| . 1F * % * *k ok * kokck kkx ko kkop

Denote the first and second entries @f;z; as gjflk) and
311(2,3 respectively. With the purpose of showing the influence 0 5 10 15 20 2 30 3 40
from the sensor saturation on the filtering performance, we Time (9

consider the following two cases:

Fig. 1. The triggering sequences foP1 (Case ).

Case 1:
(1) ~(2)
g (, )max = U(y§,k)max O’
~(1 ~(2
g yéﬂz max = U(yéﬂz)max = O’ (52)
(1) ~(2)
o yé,k)mdx = U(yé,k)mdx =20
(1) (2
U(y§,/€)max = U(y§7/€)max = 10’ @
U(ﬂg,i)mdx _ U(ﬂ;;)ma}( _ 15’ (53) ‘Zgz ¥ kK KK K Rk RRERRERK KK RERRRKKKKK K%
(1) ~(2)
0(93,k)max = U(%,k)max = 10.
In this section, we proceed to utilize the algorithms pro- ! * * *
posed in Corollary 1 and Corollary 2 to solve Optimization
Problem 1 OP1) and Optimization Problem 20P2), respec-
tively. The simulations are performed by means of Matlab o 5 10 15 20 2 30 35 a0
software (YALMIP 3.0), and the results are shown in Figs. 1— Time (k)

8.
Fig. 1 and Fig. 2 depict the time instants of each ageff- 2 The triggering sequences foP2 (Case J.
when the trigger occurs i®P1 and OP2 respectively. By
comparison between triggering times shown in the figures, we
can obviously see that 1) the proposed event-triggeringimedrade-offs between the two essential requirements (ilterifig
anism can effectively reduce the frequency of the innovatigerformance and triggering frequency) and therefore plewi
broadcasting; 2) the total triggering times @P2 is much the engineers with an effective methodology of achievirgy th
less than that ifDP1, indicating that the triggering frequencybalance between accuracy and cost in practical application
can be further reduced if we implement the strategy provided
in OP2 exactly as anticipated. For the system subject to the V. CONCLUSION
saturation in Case 1 the trajectories of the estimation errors In this paper, the distributed event-based set-membership
of the system state entri&él), x,(f) are shown in Figs. 3-6. filtering problem has been addressed for a class of discrete
Generally, the adoption of the scheme developed in Coyollar nonlinear time-varying systems subject to unknown but leun
results in a better filtering accuracy as expected, sincarit ced noises and sensor saturations over sensor networks. A
be seen that the values of estimation errors shown in Fign8vel event-triggering communication mechanism has been
and Fig. 4 are smaller than those shown in Fig. 5 and Fig. ioposed for the sake of reducing the sensor data transmissi
respectively. rate and the energy consumption. By means of recursiverlinea
In order to figure out the impact from the saturation boundatrix inequalities approach, the sufficient conditionseha
on the filtering performance, we now consider the proposeéen established for the existence of the desired distdbut
Case 2expressed by (53). The simulation results are shovewent-triggering filter. With the established framewonkiot
in Fig. 7 and Fig. 8, where the figures of the estimation errooptimization problems have been discussed to demonshate t
are presented. We can see that the filtering performance dlexibility of the proposed methodology in making tradesoff
be improved if the saturation bound becomes larger. between accuracy and cost. Finally, a numerical simulation
In summary, the proposed design technique for the desiredample has been exploited to verify the effectiveness ef th
distributed event-based filter offers much flexibility in kivay  distributed event-triggering filtering strategy.
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