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Abstract— Event-driven strategies for distributed multi-agent
systems are motivated by the future use of embedded micro-
processors with limited resources that will gather information
and actuate the individual agent controller updates. The event-
driven control actuation updates considered in this paper are
distributed, in the sense that agents require knowledge only of
the states of their neighbors for the controller implementation.
The proposed distributed strategy is compared with an earlier
approach.

I. I NTRODUCTION

Decentralized control of networked multi-agent systems is
an important research field due to its role in a number of ap-
plications, including multi-agent robotics [1]–[4], distributed
estimation [5], [6] and formation control [7]–[9] just to name
a few.

Recent advances in communication technologies have fa-
cilitated multi-agent control over communication networks.
On the other hand, the need to increase the number of agents
leads to a demand for reduced computational and bandwidth
requirements per agent. In that respect, a future control
design may equip each agent with a small embedded micro-
processor, which will collect information from neighboring
nodes and trigger controller updates according to some rules.
The control update scheduling can be done in a time-driven
or an event-driven fashion. The first case involves the tradi-
tional approach of sampling at pre-specified time instances,
usually separated by a specific period. Since our goal is
allowing more agents into the system without increasing the
computational cost, an event-driven approach seems more
suitable. Stochastic event-driven strategies have appeared in
[10], [11]. Similar results on deterministic event-triggered
feedback control have appeared in [12]–[14]. A comparison
of time-driven and event-driven control for stochastic sys-
tems favoring the latter can be found in [15].

Motivated by the above discussion, in previous work [16],
[17] a deterministic event-triggered strategy was provided for
a large class of cooperative control algorithms, namely those
that can be reduced to a first order agreement problem [18].
The distributed control design in [16], [17] enforced each
agent to update its control law whenever a certain error
measurement threshold was violated, as well as when the
control law of its neighbors was updated. In this paper we
review the previous control designs and compare it with a
distributed event-triggered strategy where an agent does not
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have to update its control law when when the control law of
its neighbors is updated.

The rest of this paper is organized as follows: Section II
presents some necessary background and discusses the prob-
lem treated in the paper. In Section III where we first review
the distributed event-triggered formulation of [16], and then
the corresponding formulation of [17]. Section IV presents
the novel distributed event-triggered control approach. Some
examples comparing the three different designs are given in
Section V while Section VI includes a summary of the results
of this paper and indicates further research directions.

II. PRELIMINARIES

A. System Model

We considerN agents, withxi ∈ R denoting the state of
agenti. Note that the results of the paper are extendable to
arbitrary dimensions. We assume that the agents’ dynamics
obeys a single integrator model:

ẋi = ui, i ∈ N = {1, . . . , N}, (1)

whereui denotes the control input for each agent.
Each agent is assigned a subsetNi ⊂ N of the rest of

the team, called agenti’s communication set, that includes
the agents with which it can communicate. The undirected
communication graph G = {V,E} of the multi-agent team
consists of a set of verticesV = {1, ..., N} indexed by the
team members, and a set of edges,E = {(i, j) ∈ V ×
V |i ∈ Nj} containing pairs of vertices that correspond to
communicating agents.

B. Background and Problem Statement

The agreement control laws in [19], [18] were given by

ui = −
∑

j∈Ni

(xi − xj) , (2)

and the closed-loop equations of the nominal system (without
quantization) werėxi = −

∑

j∈Ni

(xi − xj , ), i ∈ N , so that

ẋ = −Lx,

wherex = [x1, . . . , xN ]T is the stack vector of agents’ states
andL is the Laplacian matrix of the communication graph.
For a review of the Laplacian matrix and its properties, see
the above references and [20]. For a connected graph, all
agents’ states converge to a common agreement point which
coincides with the average1

N

∑

i

xi(0) of the initial states.

We redefine the above control formulation to take into
account event-triggered strategies for the system (1). The



formulation of the distributed event-triggered strategies is
provided next.

1) Distributed Event-triggered Multi-agent Control: We
assume that there is a separate sequence of events, occurring
at times tk0 , tk1 , . . ., defined for each agentk. A separate
distributed condition triggers the events for agentk ∈ N .
The decentralized control law fork is updated both at its
own event timestk0 , tk1 , . . ., as well as at the last event times
of its neighborstj0, t

j
1, . . . , j ∈ Nk. Thus it is of the form

uk(t) = uk



tki ,
⋃

j∈Nk

t
j

i′(t)



 , (3)

wherei′(t)
∆
= arg min

l∈N:t≥t
j

l

{

t − t
j
l

}

.

A different formulation of the distributed event-triggered
control law relaxes the need for the agents to update their
control laws at the event updates of their neighbors. Such a
control has the general form

uk(t) = uk(tki ) (4)

where each agent uses the values of its own state and the
states of its neighbors to update its control law at its own
event times. This formulation will be used in the strategy of
Section IV.

The decentralized cooperative control problem can be
stated as follows: “derive control laws of either the form
(3) or (4, and event timestk0 , tk1 , . . ., for each agentk ∈ N
that drive system (1) to an agreement point.”

III. R EVIEW OF PREVIOUS APPROACHES

The distributed event-triggered formulations of [16], [17]
is reviewed in this section.

A. Review of Event-Triggered Control Design in [17]

The measurement error for agenti is defined as

ei(t) = xi(t
i
k) − xi(t), t ∈ [tik, tik+1). (5)

The decentralized control strategy for agenti is now given
by:

ui(t) = −
∑

j∈Ni

(

xi(t
i
k) − xj(t

j

k′(t))
)

, (6)

where
k′(t)

∆
= arg min

l∈N:t≥t
j

l

{

t − t
j
l

}

.

Hence, each agent takes into account the last update value of
each of its neighbors in its control law. The control law for
i is updated both at its own event timesti0, t

i
1, . . ., as well as

at the event times of its neighborstj0, t
j
1, . . . , j ∈ Ni.

We then have

ẋi(t) = −
∑

j∈Ni

(

xi(t
i
k) − xj(t

j
k′)

)

=

= −
∑

j∈Ni

(xi(t) − xj(t)) −
∑

j∈Ni

(ei(t) − ej(t)).

Denote by x̄(t) = 1
N

∑

i

xi(t) the average of the agents’

states.

˙̄x =
1

N

∑

i

ẋi = −
1

N

∑

i

∑

j∈Ni

(xi(t) − xj(t))

−
1

N

∑

i

∑

j∈Ni

(ei(t) − ej(t)) = 0,

so that x̄(t) = x̄(0) =
1

N

∑

i

xi(0) ≡ x̄, i.e., the average

of the agents’ states remains constant and equal to its initial
value.

Denote nowLx , z = [z1, . . . , zN ]T and consider

V =
1

2
xT Lx.

Then

V̇ = xT Lẋ = −xT L(Lx + Le) = −zT z − zT Le.

From the definition of the Laplacian matrix we get

V̇ = −
∑

i

z2
i −

∑

i

∑

j∈Ni

zi (ei − ej)

= −
∑

i

z2
i −

∑

i

|Ni|ziei +
∑

i

∑

j∈Ni

ziej .

Using now the inequality|xy| ≤ a
2x2 + 1

2a
y2, for a > 0, we

can boundV̇ as

V̇ ≤−
∑

i

z2
i +

∑

i

a|Ni|z
2
i

+
∑

i

1

2a
|Ni|e

2
i +

∑

i

∑

j∈Ni

1

2a
e2
j ,

wherea > 0.
Since the graph is symmetric, by interchanging the indices

of the last term we get
∑

i

∑

j∈Ni

1

2a
e2
j =

∑

i

∑

j∈Ni

1

2a
e2
i =

∑

i

1

2a
|Ni|e

2
i ,

so that

V̇ ≤ −
∑

i

(1 − a|Ni|)z
2
i +

∑

i

1

a
|Ni|e

2
i .

Assume thata satisfies

0 < a <
1

|Ni|
, (7)

for all i ∈ N . Then, enforcing the condition

e2
i ≤

σia(1 − a|Ni|)

|Ni|
z2
i , (8)

we get
V̇ ≤

∑

i

(σi − 1)(1 − a|Ni|)z
2
i

which is negative definite for0 < σi < 1.
Thus for eachi, an event is triggered when

e2
i =

σia(1 − a|Ni|)

|Ni|
z2
i , (9)



where zi =
∑

j∈Ni

(xi − xj). The main result of [17] is

summarized in the following:
Theorem 1: Consider the systeṁx = u with the control

law (6), (9) and assume that the communication graphG is
connected. Suppose that0 < a < 1

|Ni|
and 0 < σi < 1 for

all i ∈ N . Then the states of all agents converge to their
initial average, i.e.,limt→∞ xi(t) = x̄ = 1

N

∑

i

xi(0) for all

i ∈ N .

B. Review of Event-Triggered Control Design in [16]

The same control design but a different event-triggered
formulation was proposed in [16] and is reviewed in the
following paragraphs.

We use the decompositionx(t) = x̄(t)1 + δ(t), where, as
shown previously, we havē̇x(t) = 0 and whereδ is called
the disagreement vector in [18] and1 is the vector of ones.
We now have

ẋ = δ̇ = −L(x + e) = −L(x̄1 + δ + e)

so that
δ̇ = −L(δ + e) (10)

For an undirected graph, an important property ofδ proven in
[18] is δT Lδ ≥ λ2 (G) ‖δ‖2 for all δ satisfyingx = x̄1 + δ.

The difference with respect to the design in [17] is the use
of

V =
1

2
‖δ‖2

=
1

2

∑

i

δ2
i

as a candidate Lyapunov function. Then

V̇ = δT δ̇ = −δT L(δ + e) = −δT Lδ − δT Le

so that

V̇ ≤− λ2 (G) ‖δ‖2 − δT Le =

− λ2 (G)
∑

i

δ2
i −

∑

i

∑

j∈Ni

δi (ei − ej)

and thus,

V̇ ≤ −λ2 (G)
∑

i

δ2
i +

∑

i

∑

j∈Ni

|δi| |ei − ej |

≤ −λ2 (G)
∑

i



δ2
i −

∣

∣

∣

∣

δi

λ2 (G)

∣

∣

∣

∣

∑

j∈Ni

(|ei| + |ej |)





Enforcing the condition
∑

j∈Ni

(|ei| + |ej |) ≤ λ2 (G) σi |δi| (11)

we get

σiδ
2
i ≥

∣

∣

∣

∣

δi

λ2 (G)

∣

∣

∣

∣

∑

j∈Ni

(|ei| + |ej |)

so that

V̇ ≤ −λ2 (G)
∑

i

(

δ2
i − σiδ

2
i

)

= −λ2 (G)
∑

i

(1 − σi) δ2
i

which is negative semidefinite for0 < σi < 1.

Thus for eachi, an event in this formulation is triggered
when

∑

j∈Ni

(|ei| + |ej |) = λ2 (G) σi |δi| , (12)

At an event timetik, we haveei(t
i
k) = xi(t

i
k) − xi(t

i
k) = 0,

and since
∑

j∈Ni

(|ei(t)| + |ej(t)|) ≥
∑

j∈Ni

|ej(t)| for all t ≥ 0,

the condition (11) is enforced.
The main result of [16] is summarized in the following:
Theorem 2: Consider the systeṁx = u with the control

law (6), (12) and assume that the communication graphG

is connected. Suppose that0 < σi < 1 for all i ∈ N . Then
the states of all agents converge to their initial average, i.e.,
limt→∞ xi(t) = x̄ = 1

N

∑

i

xi(0) for all i ∈ N .

The main drawback of this approach is that knowledge of
the initial average of the states is required by the agents in
order to implement the control strategy. In contract, the for-
mulation of [17] present previously relaxes this assumption.
In particular, no knowledge of the initial average is required.

IV. N OVEL DISTRIBUTED EVENT-TRIGGEREDSTRATEGY

In this section, we propose a control law of the form (4) for
each agent. In particular, the decentralized control strategy
for agenti is now given by:

ui(t) = −
∑

j∈Ni

(

xi(t
i
k) − xj(t

i
k)

)

, (13)

and thus each agent updates its control law only at its own
error update times. We then have

ẋi(t) = −
∑

j∈Ni

(

xi(t
i
k) − xj(t

i
k)

)

=

= −
∑

j∈Ni

(xi(t) − xj(t)) −
∑

j∈Ni

ei(t) +
∑

j∈Ni

eij(t)

where we use the notation

eij(t) = xj(t
i
k) − xj(t), t ∈ [tik, tik+1).

Note that initial average is not invariant in this case, and thus
agents may reach a different agreement point.

Using now

V =
1

2
xT Lx

as a candidate Lyapunov function we get

V̇ = −
∑

i

z2
i −

∑

i

∑

j∈Ni

zi (ei − eij)

= −
∑

i

z2
i −

∑

i

|Ni|ziei +
∑

i

∑

j∈Ni

zieij .

The derivative ofV is now bounded as follows:

V̇ ≤−
∑

i

z2
i +

∑

i

|Ni||zi||ei|

+
∑

i

∑

j∈Ni

|zi||eij |,



Enforcing the condition
∑

j∈Ni

(|ei| + |eij |) ≤ σi |zi| (14)

we get
V̇ ≤

∑

i

(1 − σi) z2
i

which is negative semidefinite for0 < σi < 1.
Thus for eachi, an event in this formulation is triggered

when
∑

j∈Ni

(|ei| + |eij |) = σi |zi| , (15)

At an event timetik, we haveei(t
i
k) = xi(t

i
k) − xi(t

i
k) = 0,

and since
∑

j∈Ni

(|ei(t)| + |eij(t)|) ≥
∑

j∈Ni

|eij(t)| for all t ≥

0, the condition (14) is enforced.
Following the proofs of Theorems 1 and 2, the following

is easily derived:
Theorem 3: Consider the systeṁx = u with the control

law (13), (15) and assume that the communication graphG

is connected. Suppose that0 < σi < 1 for all i ∈ N . Then
the states of all agents converge to an agreement point.

Note that the agreement point is not guaranteed to be the
initial average in this case.

V. EXAMPLES

The results of the previous sections are illustrated through
computer simulations. In the following paragraphs, we con-
sider all three distributed event-triggered algorithms pre-
sented previously and compare the derived results.

Consider a network of four agents whose Laplacian matrix
is given by

L =









1 −1 0 0
−1 3 −1 −1
0 −1 2 −1
0 −1 −1 2









The four agents start from the same initial conditions and
evolve under the control laws (6),(12),(13) respectively.We
have setσ1 = σ2 = 0.55, σ3 = σ4 = 0.75 anda = 0.2 for
the examples of the paper.

The next simulations depicts how the framework is real-
ized in each of the three cases for agent 4. In particular, the
solid line in the top plot of Figure 1 shows the evolution of
|e4(t)| in the case of the first control strategy (6),(9). This
stays below the specified state-dependent threshold given

by (9) |e4|max =
√

σ4a(1−a|N4|)
|N4|

|z4|, which is represented
by the dotted line in the plot. In the middle plot, the
solid line shows the evolution of|e3(t)| + |e4(t)| in the
case of the second control strategy (6),(12). This also stays
below the specified state-dependent threshold given by (12)
M4 = λ2(G)σ4|δ4|, represented by the dotted line in the
Figure. Finally, the solid line in the bottom plot of Figure 1
shows the evolution of|e4(t)| + |e43(t)| in the case of the
third control strategy (13),(15), which also stays below the
specified threshold given by (15)M4 = σ4|z4|, represented
by the dotted line in the plot.
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Fig. 1. Four agents evolve under the three distributed event-triggered
strategies.

As can be seen in the figure, the first approach that
uses less information has a slightly slower convergence rate.
The third approach seems to have less updates and a faster
convergence rate, however, the property of converging to the
initial average is lost in this case.

VI. CONCLUSIONS

Distributed event-triggered control strategies for a multi-
agent system with single integrator agents were reviewed and
proposed. Future work will involve extending the proposed
approach to more general dynamic models, as well as finding
sufficient conditions for a strict lower bound on the inter-
execution times of all agents in the decentralized case.
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