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a  b  s t  r a  c t

The increasing complexity of real-world  optimization  problems  raises  new challenges  to  evolutionary

computation.  Responding  to  these  challenges,  distributed  evolutionary computation  has received  consid-

erable  attention  over the  past  decade. This  article provides  a comprehensive  survey  of the  state-of-the-art

distributed  evolutionary algorithms and  models, which  have  been  classified into two  groups according to

their  task  division mechanism.  Population-distributed  models  are  presented  with  master-slave,  island,

cellular,  hierarchical, and  pool  architectures,  which  parallelize  an evolution  task at  population, individual,

or  operation  levels. Dimension-distributed  models  include coevolution and  multi-agent  models, which

focus  on dimension reduction.  Insights into  the  models,  such  as  synchronization,  homogeneity, commu-

nication,  topology, speedup, advantages  and  disadvantages are  also  presented  and discussed. The study

of  these  models helps  guide future  development  of different and/or  improved  algorithms.  Also high-

lighted  are  recent hotspots  in this area, including the  cloud  and MapReduce-based  implementations,  GPU

and  CUDA-based  implementations,  distributed  evolutionary  multiobjective  optimization,  and  real-world

applications.  Further,  a number  of future  research  directions  have  been  discussed, with  a  conclusion that

the  development  of distributed  evolutionary  computation  will continue  to flourish.

©  2015  Published by  Elsevier  B.V.
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1. Introduction

Q3

With metaheuristic and stochastic characteristics, evolution-

ary computation (EC) has shown to be effective solvers for hard

optimization problems in  real-world applications. However, with

rapid development of the information age and the emergence of

“big data”, the increasing size and complexity of the problems has

posed new challenges to  EC. This is  especially so if the search space

involves a huge number of local optima or the computational cost

of fitness evaluation becomes extremely high. When a  traditional

sequential evolutionary algorithm (EA) is  unable to provide satis-

factory results within a  reasonable time, a distributed EA (dEA),

which deploys the population on distributed systems, can improve

the availability. It  also offers an opportunity to solve extremely

high dimensional problems through distributed coevolution using

a divide-and-conquer mechanism. Further, the distributed envi-

ronment allows a dEA to  maintain population diversity, thereby

avoiding local optima and also facilitating multiobjective search.

The framework of developing a  distributed EA is  illustrated in

Fig. 1. Its fundamental algorithms embrace all kinds of EAs includ-

ing the genetic algorithm (GA), evolutionary programming (EP),

evolution strategy (ES), genetic programming (GP), and differen-

tial evolution (DE). Moreover, other population-based algorithms,

such as ant colony optimization (ACO) and particle swarm opti-

mization (PSO), share common features with EAs and are hence also

included in this survey. Then, by  employing different distributed

models to parallelize the processing of EAs, various dEAs can be

designed. The logistical distributed models have several issues to

address, such as the distribution of evolution tasks and the proto-

cols for communications among processors. The granularity of the

distribution may  be at the population level, the individual level, the

operator level, or  the variable level. Correspondingly, there can be

various communication rules in terms of the content, frequency,

and direction of message passing. In the literature, master-slave

[31],  island (a.k.a. coarse-grained model) [56,99],  and cellular (a.k.a.

fine-grained model) [51,1] models have been commonly used to

build dEAs. Moreover, other models such as the hierarchy (a.k.a.

hybrid model) [41],  pool [104],  coevolution [121,122],  and multi-

agent models [10] are  also widely accepted. After designing a  dEA,

different programming languages and tool sets can be adopted to

implement the algorithm, such as the Message-Passing Interface

(MPI) [63], MapReduce [81], and Java [129,38].  There also exist

software packages for dEC, such as the Paladin-DEC [126,127] and

ParadisEO [14,15]. Finally, the format of the physical platform that

can be used to deploy the algorithms includes cluster [73], grid

[39],  P2P network [141], cloud [44],  and GPU [151]. These plat-

forms have different architectures, network connectivity, resource

management schemes, and operating systems. Two recent papers,

[133,65], review and discuss the parallel and distributed GAs

in considering different physical platforms. The selection of the

underlying platform partially influences the implementations of

dEA models, and also determines the system performance such as

scalability and fault-tolerance.

As there exist a  very large number of research outputs in  dEAs, it

is impossible to cover all the relevant works within the page limit

of this article. Therefore, references are presented based on their

influence, rigor, years of publication, numbers of citations, and cov-

erage. Models (the second layer in Fig. 1)  continue to be  a focus of

interest in developing dEAs and will hence form the main body of

this article.

We  aim  at providing readers with an updated, comprehen-

sive and systematic coverage of dEAs and the state-of-the-art

dEA models. The characteristics (or novelties) of this article are

presented as follows. (1) Compared with [3,16,4,131] published

ten years ago, this survey introduces and describes more recent

works in  this area. In addition to the master-slave, island, cellular,

and hierarchical models surveyed in the literature [3,16,4,131,97],

we further review some state-of-the-art distributed models for

EC, including resource pool-based model, coevolution model, and

multi-agent model. To the best of our knowledge, no previous

survey of dEC covers these fields. (2) To update with a system-

atic treatment on the research progress, we  semantically divide

dEA models into two  major categories, i.e., population-distributed

models and dimension-distributed models. The operating mech-

anisms of different dEA models are analyzed and compared, as

well as their corresponding performance, advantages, disadvan-

tages, and ranges of applicability. (3) Recent research hotspots,

including cloud and MapReduce-based implementations, GPU

and CUDA-based implementations, multiobjective dEAs, and real-

world applications, are  also discussed in this survey. (4) In addition

to a  literature review, emerging research directions and applica-

tions are presented for possible further development.

The rest of this article is organized as follows. Section 2

introduces terminologies for a systematic treatment and classifi-

cation. Section 3 presents population-distributed and dimension-

distributed models, followed by a  summary and analysis of

characteristics in Section 4. Section 5 is devoted to the four recent

research hotspots. Finally, we  highlight some potential future direc-

tions in  Section 6 and draw conclusions in Section 7.

2. Terminologies

In  this section, we briefly introduce the terminologies that

will be used throughout this article. The first two  concepts, i.e.,
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Fig. 1. The general dEC framework.

“synchronism/asynchrony” and “homogeneity/heterogeneity”, are

widely used to  describe the properties of dEAs, whereas the

“speedup”, “distributed efficiency”, “fault-tolerance”, and “scala-

bility” are performance metrics for evaluating dEAs.

Synchronism and asynchrony. An indispensable issue in a dEA

as well as any other distributed algorithm is the communications

among processors. If all communications are controlled by a  clock

signal, then the algorithm is said to  be synchronous, otherwise

asynchronous. In an asynchronous dEA, communications take place

more freely or automatically driven by  data.

Homogeneity and heterogeneity. For dEAs, homogeneity and het-

erogeneity are used to  describe whether the evolution tasks on

different processors are of the same settings. In a homogeneous

dEA, each processor adopts the same operators, control parame-

ters, fitness evaluation, etc., whereas in a  heterogeneous dEA, the

local algorithmic settings for different processors vary.

Speedup and distributed efficiency. The distributed processing

performance of dEAs is qualified by  a  speedup measure, the ratio of

sequential execution time to parallel execution time of the algo-

rithm [31]. Ideally, the speedup should be equal to the number

of processors being used. Based on this, distributed efficiency is

defined as the ratio of speedup to  the number of processors and its

ideal value is 100%. In practice, the speedup and efficiency of dEAs

may  be limited by  the computational overhead, the performance

of the most loaded node, and the communication speed between

processors.

Fault-tolerance. When running EAs on a physical distributed sys-

tem, part of the underlying hardware or network may  encounter

failure. Fault-tolerance measures the ability of a  dEA to continue

optimization in  the condition of some physical components fail-

ing. A fault-tolerant dEA will not  be suspended in such condition,

instead, it continues search with the remaining working nodes at a

level of graceful degradation.

Scalability. The scalability of dEAs involves two aspects: “size

scalability” and “task scalability”. Size scalability refers to  the ability

of the algorithm to achieve proportionally increased performance

by increasing the number of processors. Task scalability refers to

the ability of algorithm to adapt to  the changes in  the problem

scale, e.g., whether the algorithm can retain its efficiency when the

problem dimension increases.

As a  final note, within this paper, the terms dEC and dEAs are

used in a  general sense, which include both the algorithms imple-

mented on parallel systems (where the processors or threads are

tightly coupled with a  shared memory) and the algorithms imple-

mented on distributed systems (where the processors are loosely

coupled with a computer network).

3.  Models of distributed evolutionary algorithms

Basically, a  distributed EA  divides computing tasks based on

two types of models. As  illustrated in Fig. 2(a), a  “population-

distributed” model distributes individuals of the population (or

subpopulations) to multiple processors or computing nodes, whilst

a  “dimension-distributed” model distributes partitions of the prob-

lem dimensions (or subspaces). The population-distributed model

can be further divided to  master-slave [31], island (a.k.a. coarse-

grained model) [56,99],  cellular (a.k.a. fine-grained model) [51,1],

hierarchical (a.k.a. hybrid model) [41], and pool models [104], as
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Fig. 2. Classification of the “population-distributed” and “dimension-distributed” models: (a) task division manners; (b) taxonomy.

illustrated in Fig. 2(b). On the other side, the dimension-distributed

model can be divided to coevolution [121,122] and multi-agent

models [10].

3.1. Master-slave model

The master-slave model summarizes a  distributed approach

to the EA operations and domain evaluations as illustrated in

Fig. 3. The master performs crossover, mutation, and selection

operations, but sends individuals to slaves for fitness evaluations

because these form the majority of the computing load. As the

evaluations of individuals are mutually independent, there is no

requirement of communication among slaves. The master-slave

model is hence simple, in which communications only occur when

the unique master sends individuals to  slaves and the slaves return

the corresponding fitness values back to  the master in each gener-

ation.

Variants to improve efficiency. For problems whose evaluation

costs are not relatively high, however, employing a  master-slave

model may  become inefficient in  that communications occupy

a large proportion of time in the dEA. In recent years, variants

of master-slave dEAs have been developed to  address this issue.

A commonly used method is to  distribute not only the evalu-

ation tasks but also the individual update tasks to slave nodes

[63,84,105,61]. Another approach is  a  coarse-grained master-slave

model in which each slave processor contains a  subpopulation,

while the master receives the best individual from each slave and

sends the global best information to  all slaves [144].  Note that such

a coarse-grained master-slave model is different from the island

model being introduced in the next subsection. First, the control of

the former is centralized whereas the control of an island model can

be either centralized or  distributed. Second, as mentioned above,

slaves do not communicate with slaves, but in  an island model, the

Fig. 3. Illustration of master-slave EAs.

islands frequently communicate with each other. The third possi-

ble way to improve the distributed efficiency of master-slave dEAs

is to conduct local search on slaves [147,119].  In the algorithms,

master conducts basic EA for global search whereas the slaves exe-

cute local search by considering the individuals received from the

master as neighborhood centers.

Synchronism and asynchrony. Most existing master-slave dEAs

are  synchronous that the master stops and waits to  receive the

information of all slaves before proceeding to the next genera-

tion. Some are asynchronous, where the selection operations on the

master node perform on a  fraction of the population only [106,107].

In an experimental study of a master-slave PSO algorithm [110],  it

is shown that synchronization plays a  vital role in algorithm perfor-

mance on load-balanced problems, whilst asynchronous dEAs are

more efficient for load-imbalanced problems.

Speedup. The speedup and efficiency of master-slave dEAs may

be limited by the master’s performance and by the communication

speed between master and slaves [17].  Specifically, the limitation is

determined by the computational costs of the tasks executed on the

slaves. For  example, Dubreuil et al. [31] show that the master-slave

model can perform well as long as the individual evaluation time is

much greater than the message passing time, as can be  expected.

In their experiment, solving a  problem requiring 0.25 s for evalua-

tion yields an efficiency of 82%, but if the evaluation time increases

to 1 s while the communication overhead remains the same, the

efficiency becomes 95%.

Fault-tolerance. For massive dEAs, how to  improve the fault-

tolerance is another important issue. Gonzalez and De Vega [55]

argue that master-slave dEAs are intrinsically fault-tolerant. In

[120], a fault-tolerant DE algorithm based on a  master-slave

model is  proposed, where the individuals are distributed to a

grid of nodes for fitness evaluations and if certain individu-

als  fail to  return from their nodes in  an acceptable time, they

can be replaced with random individuals. This mechanism not

only shows fault-tolerance, but can also help improve population

diversity.

3.2. Island model

An  island model, as well as a cellular model, is  a  spatially dis-

tributed model. The difference between an island model and a

cellular model lies in  the parallelization grain. As  depicted in  Fig. 4,

an island model is coarse-grained, where the global population is

divided into several subpopulations, each of which is processed by

one processor. Communications between the islands occur when

certain individuals in one island migrate to another at a  set interval.
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Fig. 4. Illustration of island EAs.

The migration mechanism includes the migration frequency and

extent, the selection policy on the source island, and the replace-

ment policy on the target island.

Synchronism and asynchrony. An island dEA is often synchronous

that the best individual on each island propagates to  all the other

islands at a specific interval of generation [89,100,148].  Asyn-

chronous island models also exist [30,80],  where an island can

receive migrated information as soon as it is ready. In general,

synchronous island dEAs are  simpler to design and implement,

whereas asynchronous algorithms are more flexible and can max-

imize efficiency.

Homogeneity and heterogeneity. In a  homogeneous island model,

each subpopulation adopts the same settings of operators, control

parameters, and fitness evaluations, etc. There exist two short-

comings. First, if  the underlying physical system is  heterogeneous,

slower processors will hinder the efficiency of the algorithms.

Second, using the same algorithmic settings on different subpopu-

lations may  not balance global exploration and local exploitation.

Because of these, heterogeneous island models are developed. One

example is the heterogeneous island GA [112], where subpopu-

lations are arranged in  a  three-layer hierarchal manner: the top

layer refines exploitation, the intermediate layer balances explo-

ration and exploitation, and the bottom layer conducts full-on

exploration. A hypercube island model is  developed in [56], where

subpopulations on the front side use different crossover operators

for exploration and the others on  the rear side adopt crossover

operators that are more suitable for exploitation. Moreover, the

exploration and exploitation degrees of subpopulations on the

same side are gradual. Other heterogeneous island dEAs can be

found in [138,139].

Topology and migration strategy. The original island dEAs adopt

a complete graph as the topology of the islands (i.e.,  they are

fully connected “using no topology”). Whitley and Starkweather

[140] and Lorion et al. [79] put forward that, if the migration con-

ducts among all islands, the distributed algorithm has almost the

same search behavior as a sequential algorithm. In recent years,

research into network topology of island models has attracted

much attention [140,79,148].  In [62], island DE algorithms with

different network topologies including ring, torus, hypercube, and

hierarchy are studied, and experimental results confirm the supe-

rior performance of adopting a network topology in island DE.

The advantages of using an island model include not only time

saving, but also the improvement of global search ability of EAs.

Traditional EAs with a single population suffer from premature

convergence problem when all individuals gather in  a same val-

ley. By deploying a number of subpopulations on isolated islands,

it is possible to maintain more than one best individual (attractor).

Within the time interval between communications, individuals on

different islands can evolve with different directions. This helps

EAs to maintain population diversity so as to repel local optimality

Fig. 5. Illustration of cellular EAs.

[99,76].  In  [7], an island-based distributed DE algorithm is tested on

the well-known CEC 2005 test suite for real-parameter optimiza-

tion [123],  with results showing that the algorithm outperformed

eight sequential EAs. Further, the work in  [62] shows a  tradeoff

between the exploration and convergence feature of  DE by using

different migration frequencies. With a  higher communication fre-

quency, the island DE can converge faster but may  get trapped, and,

oppositely, the algorithm exhibits better global exploration ability

but converges much slower when the communication frequency is

lower. Moreover, the work in [130] indicates that the migration

extent also bears a  significant impact on the algorithm perfor-

mance. In [18],  a Markov chain model of predicting the expected

solution quality of dEAs is developed, with correctness verified by

numerical experiments.

Scalability and fault-tolerance. Regarding the system perfor-

mance of island model, Hidalgo and Fernandez [58] argue that, as

performance of island-based dEAs is highly sensitive to  the number

of islands used and the resulting granularity, scalability of  the island

model can be limited. Besides, Hidalgo et al. [59] point out that, to

a  certain extent, fault-tolerance also exists in  an island model.

3.3. Cellular model

Illustrated in  Fig. 5,  a  cellular model is fine-grained and spatially

structured, which has only one population but arranges the indi-

viduals on the grid, ideally one per processor (cell). The interaction

among individuals is realized through the communication defined

by a  network topology. Each individual can only compete and mate

within its neighborhood. As the neighborhood of individuals over-

laps, good individuals can propagate to  the entire population.

Synchronism and asynchrony. Similar to an island EA, a cellular EA

(cEA) can also be either synchronous or asynchronous [132].  In the

former, all cells update their individuals simultaneously, whereas in

the latter, the cells are updated one by one. The four commonly used

asynchronous update strategies are the fixed line sweep (LS), fixed

random sweep (FRS), new random sweep (NRS), and uniform choice

(UC), as proposed in  [109].  Alba et al. [2] compare the asynchronous

cEAs using these four update strategies with synchronous cEAs on

both discrete and continuous problems. Their experimental results

show that, with respect to discrete problems, asynchronous algo-

rithms are more efficient, but synchronous algorithms can achieve

better fitness. On the contrary, in  solving continuous problems, they

draw complementary conclusions that asynchronous cEAs are bet-

ter in solution quality whereas synchronous cEAs win in efficiency.

A novel asynchronous communication method for a  cEA is proposed

in [71],  which uses self-adaptation of the migration rate to provide

a better leverage network capacity than using a  fixed migration

rate.

Topology. So far, most efforts in  cEAs have been devoted to

analyzing the effects of different topologies on the algorithm
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performance. In particular, the selection intensity in cEAs on var-

ious topologies has been widely investigated. In [51,47,49,46],

Giacobini et al. study the selection intensity of cEAs with lin-

ear topology, toroid topology, and regular lattices as well as the

asynchronous cEAs, respectively. In their studies, a takeover time

measure proposed by  Goldberg and Deb [53] is  used. The takeover

time is defined as the duration of a single individual propagating

to the entire population with no variation other than selection. The

shorter the takeover time is, the higher the selection intensity is,

which represents a higher exploitation degree of the algorithm.

Their experiments show that choosing of a  network topology can

have significant impact on the selection intensity and the algorithm

performance.

In recent years, as the network scale of cEAs becomes larger,

complex networks such as the well-known small-world network

and scare-free network have been introduced to cEAs. In [50,48],

Giacobini et al. use takeover time  analysis to  investigate the selec-

tion intensity of cEAs based on small-world topology and scale-free

topology, respectively. In [68], the performance of cEAs using

four topologies, including the 2D regular lattice, small-world net-

work, random graph, and scale-free network, is investigated. Their

experimental results show that, with the increase of the problem

complexity, the ideal topology should change from one with a  high

mean degree distribution (the regular topologies) to a network with

a high clustering coefficient (the complex networks).

Apart from the takeover time, a  ratio measure of the neighbor-

hood radius to the topology radius proposed in [108] has been

widely used to study the performance of cEAs. In [5], Alba and

Troya conduct a  set of tests to  analyze the performance of cEAs

with different ratio values on different classes of problems. The

paper concludes that a cEA with low ratio is more effetive for mul-

timodal and/or epistatic problems, whereas a  cEA with high ratio

performs better on non-epistatic and simple problems. Based on

these, a novel cEA with dynamic ratio from low to high during a

run is developed, which is  verified to be efficient in the paper. Fur-

ther, an adaptive cellular GA  is  developed in [1],  which adaptively

adjusts the neighborhood-to-topology ratio during the search pro-

cess according to some rules defined on the average fitness (AF),

population entropy (PH), and their combination (AF +  PH).

3.4. Hierarchical model

The hierarchical model, also known as hybrid model, combines

two (or more) distributed models hierarchically to take advantages

of both models for improving scalability and problem-solving capa-

bility.

Island –  master-slave hybrid. In [12,13,75], the population is

divided into several subpopulations, which run on different master

processors and communicate in  some specific time. For each sub-

population, the master sends the individual evaluation tasks to its

own slave processors so as to  further improve parallelization grain.

As shown in Fig. 6(a), the model is island and master-slave hybrid,

which uses island model in  upper layer and master-slave model in

lower layer. Such a  model not only eases scalability limitation of

an island model but also reduces dependency of the single master

node in a master-slave model. In [13], Burczyski et al. show that

the speedup of their island–master-slave hierarchical algorithm is

relatively linear.

Island – cellular hybrid. The hybridization of island and cellu-

lar models has also attracted attention. Folino and Spezzano [42]

develop a distributed GP algorithm running on  multiple islands

that contain local cellular GP approaches. Such a model is shown

in Fig. 6(b), where an island and a  cellular model are adopted

in the upper and lower layers, respectively. Numerical results

on benchmark functions show that a  hierarchical GP algorithm

presents accuracy comparable with classical distributed models,

while providing advantages of high scalability and fault-tolerance

[42].  The algorithm has been further improved by Folino et al. and

applied in  pattern classification in [41].

Island – island hybrid. Another hierarchical model of dEAs is to

adopt the island models in  both upper and lower layers, as shown

in Fig. 6(c). Herrera et al. [57] point out that, in  this kind of  model, a

key issue is  to  develop two  different migration approaches, i.e., local

and global ones, since they establish the real hierarchy between

basic dEAs and the hierarchical dEAs. Moreover, the advantages of

using such a  hierarchical model include improved efficiency of each

node, more diverse collaboration, and good conjunction of homo-

geneous and heterogeneous dEAs. Based on these, Herrera et al.

develop a heterogeneous hierarchical dEA and achieve promising

results.

3.5. Pool model

The above master-slave, island, cellular, and hierarchical models

offer the promise of massive scalability and fault-tolerance if the

problem to solve can be properly adapted to their size  and peculiar-

ities [85]. However, there is still certain inflexibility and inefficiency

that hinders the use of these models. For example, in  a master-

slave model, with the increase of the number of slave nodes, the

speedup will eventually become poor when the master saturates.

In island and cellular models, the predefined topology and the rigid

connectivity restrict the amount of islands or cells to be used and

the spontaneous cooperation among the nodes. Although the mod-

els can be  asynchronous and heterogeneous, the asynchronization

and heterogeneity pose restriction on  the performance of corre-

sponding dEAs. Compared with this, a pool model deploys a  set

of autonomous processors working on a  shared resource pool. The

processors are loosely coupled, which do not know each other’s

existence and interact with only the pool. The model provides a

natural approach to realizing asynchronization and heterogene-

ity.

Instance. For better understanding of the pool model, we

describe a  distributed pool architecture for EC proposed by  Roy

et al. [104] in detail as an instance. As illustrated in  Fig. 7,  the pool

is a  shared global array of length n representing n individuals in the

population. Then, the array is  partitioned into p segments of  size u,

which correspond to  p  processors (or threads). Each processor can

read individuals from any segments of the array, but can only write

the individuals back to its own partition. In the optimization pro-

cess, a  processor randomly chooses u individuals from the entire

pool to undergo genetic operations. After generating u offsprings

c1, c2,  . . .,  cu,  the processor writes each new individual ci back to

the ith entry of its own partition if the fitness of ci is better than

that of the current ith entry. In summary, key issues of designing

such a dEA include 1) implementing the resource pool, 2) individual

selection policy (consuming policy on the pool), and 3)  individual

replacement policy (producing policy on the pool).

Advantages. As  processors are loosely coupled to work on a

shared resource pool, they can accommodate asynchronization and

heterogeneity relatively easily. Moreover, in  a pool model, the set

of participating processors can be dynamically changed, and the

system works well even when some of the processors crash. By

replicating (backing up) the resource pool, the model can achieve

superior fault-tolerance. Another possible advantage of  such a

loosely coupled distributed model is that it can be cost-efficient.

For example, volunteers around the world can contribute the idle

time of their computers for processing the tasks.

Resource pool. In a  pool-based distributed model for EAs, how to

implement the resource pool is a  crucial issue to  address. Tuple-

Space (TS), the shared-memory programming model of  Linda,

provides a virtual shared-memory data storage that processors can

read and write. By mapping a GA onto TS, a  pool-based distributed
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Fig. 6. Illustration of hierarchical EAs: (a) Island–master-slave hybrid; (b) island-cellular hybrid; (c) island–island hybrid.

GA is built, with a  natural load-balancing effect that faster proces-

sors end up doing more work than slower processors [23]. This

work is perhaps the first dEA based on a  pool model. Since then,

work has been reported on employing a  database as the central

resource pool for dEAs. There are two major advantages of adopting

a database as the pool. First, as suggested by  Bollini and Piastra [9],

an object-oriented database management system provides mature

transaction and data locking mechanisms. It allows any number of

evolutionary processes run in parallel on the underlying population

without extra control policies. Second, the database can persis-

tently and permanently store the population until it is modified

by the users. Therefore, the computation of dEAs can span weeks

or even months, such as the distributed BEAGLE proposed in  [43].

In recent years, there are many pool dEAs developed, based

on matching implementations of EAs to programming models or

toolkits such as MapReduce and CouchDB. As this section mainly

focuses on the models rather than the implementations, these

works will be described briefly in  Section 5.1.

3.6. Coevolution model

A coevolution model is a dimension-distributed model. Instead

of dividing the population, a  dimension-distributed model divides

a high dimensional complex problem into several lower dimen-

sional and hence simpler problems. Note that, however, dimension

distributed and population-distributed models have  no clear

boundaries, and a  dimension-distributed model can also arrange

its tasks in an island, cellular, or  hierarchical manner, etc.

If the problem is  decomposable, i.e., the sub-problems can

be solved independently, the subcomponent on each proces-

sor can evolve without interacting with the others. At  the end

of the optimization, by jointing the sub-solutions together, an

optimal solution of the entire problem emerges. Unfortunately,

most of practical optimization problems exhibit complex inter-

dependencies, for which the solution obtained by the above

divide-conquer-and-joint mechanism may  be inferior. It is sug-

gested that a  change of one subcomponent (e.g., a  new optimal

solution found in one processor) can lead to the deformation or

warping of the fitness landscapes in  its interdependent subcompo-

nents. The distributed coevolution model is developed to deal with

the above problem.

In  biology, coevolution indicates that the change of a species

triggers the change of its related species, and then leads to an

adaptive change of its own part, and so forth. This way, different

species in the environment have  correlative dependence, and, from

a  general viewpoint, they evolve cooperatively. The coevolution

model for dEC borrows this concept, where each node performs

a local evolution process in  a solution subspace. Then, by inter-

communication, the nodes interact with the others, adaptively

adjust their search direction, and cooperatively find the global opti-

mum.  Potter and De Jong [101] point out that, when developing

coevolutionary algorithms, four issues need to  be addressed. They

are problem decomposition, the evolution of interdependent sub-

components, credit assignment (evaluation), and maintenance of

diversity.

Fundamental framework. In 2004, Subbu and Sanderson

[121,122] develop a  fundamental framework for distributed coevo-

lutionary algorithms, analyze the convergence of the framework,

and examine the network-based performance. As  illustrated in

Fig. 8, assuming the variable vector x  consisting of  p blocks (x1,

x2,  . . .,  xp), each node i in the algorithm performs a  local evolu-

tionary search process by considering the ith block xi primarily and

the other p −  1 blocks secondly. Specifically, the local reproduce

operation is conducted on the primary block xi while the remain-

ing variables are  clamped. In  the evaluation, the fitness of the

whole solution (including both the primary and secondary blocks)

Fig. 7.  Illustration of resource pool-based EAs.
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Fig. 8. Illustration of distributed coevolutionary algorithms.

is  calculated, and the local algorithm is  more likely to preserve solu-

tions with better fitness. In this way,  the primary variable block

on the node evolves. Then, in  the intercommunication phase, the

nodes update their secondary variable blocks. By alternating the

local search and intercommunication phases, an adaptive system

is built, capable of solving high-dimensional complex problems.

Most recent distributed coevolutionary algorithms have adopted

the above framework, but differ in problem decomposition strate-

gies, local EAs, and intercommunication.

Decomposition strategy. It  may  be possible to decompose an n-

dimensional problem into n one-dimensional problems in some

applications. However, this is  often not the case and hence Yang

et al. [145] suggest using a  group-based decomposition strategy to

better capture variable interdependencies for nonseparable prob-

lems. For this, an adaptive weighting strategy is developed in [145],

where the chance of one dimension to  be assigned into a sub-

component is adaptively adjusted during the search process. Li

and Yao [72] further improve the decomposition strategy of Yang

et al. by dynamically changing the group size, and successfully

solve up to 2000-dimensions problems. In [73],  a  coevolutionary

DE is designed for power system optimization. The whole system

is decomposed into a series of subsystems with different numbers

of control variables by using an agglomerative hierarchical cluster-

ing  (AHC) method. Each species is  responsible for the regulation of

control variables in its own subsystem, while taking the values of

the other control variables from the global best individual found so

far. Ray and Yao [102] develop an adaptive variable partition strat-

egy, in which all variables involve together at the beginning of the

algorithm and then be  grouped by a correlation coefficient.

Intercommunication and credit assignment. Intercommunica-

tions in [149] are realized through adaptive migration of the best

primary variable block of each node during the optimization. Potter

and De Jong [101] and Tan et al. [128] point out that combin-

ing the primary block of one species with only the best blocks

from the other species is often too greedy, which may  result in

getting trapped in  local optima. In their proposed algorithms, the

primary block of  each species is first combined with the best blocks

from other species and then combined with some random repre-

sentatives of every other species. After evaluation, the better one

is retained. In [52],  Goh and Tan further introduce a competitive

process in the coevolution to improve the contribution of each

species. In their proposed competitive-cooperative coevolutionary

paradigm, the interplay of competition and cooperation facilitates

the discovery of interdependencies among species.

3.7. Multi-agent model

In the above coevolution model, the global goal of  the entire

system is  essentially the local goal of each subcomponent, which

is  achieved by coordination of subpopulations. In comparison, a

multi-agent model does not require any direct coordination of

agents to achieve the global goal. Instead, it adopts game-theoretic

method in the field of distributed artificial intelligence (DAI) that

agents optimize local functions and establish some equilibrium.

In the equilibrium, once the local objectives cannot be further

improved, the global goal of the entire system is  achieved. In this

way, the global goal is realized by observation rather than evalua-

tion.

Methodology. The main idea of a  multi-agent model is to consider

a  dEA as a multi-agent system that p  players (agents) are playing a

strategy game. Each player in the game has a payoff function that

depends on the actions of itself and its limited neighbors. Then,

each player plays independently in the game and selects actions to

maximize its own  payoff selfishly. A widely accepted solution for

this non-cooperative game is the Nash equilibrium point, a  p-tuple

of actions for all players that  anyone who  deviates from it cannot

improve its own payoff [96]. One issue to be addressed here is how

to  convert the global optimal solutions of the problem (or the max-

imal price points in the game) into Nash equilibrium points. Not all

practical problems can be solved by dEAs based on a multi-agent

model, unless the problem accommodates the above converting

process.

Loosely coupled GA. EA based on a  multi-agent model appeared

as early in the 1990s as the loosely coupled GA (LCGA) proposed by

Seredynski [113].  In this algorithm, each player creates a  subpopu-

lation of its actions, and the payoff is  considered as the evaluation

value of the local fitness function. Standard genetic operations,

including selection, crossover, and mutation, are applied locally to

the subpopulation of actions. Then, after a  number of iterations, the

players find actions corresponding to the Nash equilibrium. Exper-

imental study in  [113] has shown that the LCGA can optimize the

global objective in a  fully distributed way of evaluating only local

fitness functions. Afterwards, the LCGA is widely used in  both func-

tion optimization and real-world applications such as mapping and

scheduling problems [10,114].

Comparisons between multi-agent and coevolution models. A com-

prehensive comparison between the LCGA and the cooperative

coevolutionary GA (CCGA) is reported in [115],  which can also

be regarded as a  comparison between the multi-agent model

and the coevolution model. As  introduced above, the main dif-

ference between LCGA and CCGA is  that the former evolves local

objectives on agents and requires no coordination of agents. The

experimental study in  [115] illustrates that if the global objec-

tive problem can be expressed in  a  sum of local objectives, using

LCGA is  more efficient, as it can obtain high-quality solutions

at a  relatively low computational cost. However, for the other

complex problems that are hard to be expressed in a fully dis-

tributed way, CCGA outperforms LCGA. The study in [22] shows

similar conclusions, although Danoy et al. further point out that

LCGA is more scalable than CCGA. Besides the LCGA, a  multi-agent

memetic algorithm named MA2 is developed in  [98],  in  which

each agent in the multi-agent system is  a  subpopulation of  a

memetic algorithm (GA with local search). The algorithm has also

shown its powerfulness in  tackling high-dimensional optimization

problems.

4. Summary and analysis

In this section, we  summarize and analyze dEC models by

comparing their parallelism, search behaviors, objectives, com-

munication costs, scalability, and fault-tolerance, for the ease to
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Table 1

Comparisons of dEC models.

Model Parallelism level Objective function Search behavior Commun. cost Scalability Fault-tolerance

Master-slave Operation, evaluation Global Similar to sequential EA Medium to  high Medium High

Island  Population Global Better diversity Low to medium Low Medium

Cellular Individual Global Better diversity Medium Medium to  high Medium to high

Hierarchical Population, individual, operation Global Better diversity Medium Medium to  high Medium to high

Pool  Population, individual, operation Global Depending on

algorithmic components

Low High High

Coevolution Variable, variable-block Global Dimension reduction Medium Low Low

Multi-agent Variable, variable-block Local Dimension reduction Low Low Low

readers in considering future work. This is conducted in a  general

sense regarding our above presentation of models. For example, if

model A offers a  higher scalability than model B, it implies that algo-

rithms with model A “generally” offer a higher scalability than B,

but exceptions may  exist in  implementations. Further, in the com-

parisons, we assume that the five population-distributed models do

not use problem decomposition, which is also in accordance with

most reported work. The comparisons are summarized in  Table 1

and are explained as follow.

4.1. Parallelism level

As a master-slave model parallelizes its individual evaluation

tasks as well as some other operations (such as local search)

on the slave nodes, the model has an operation-level of paral-

lelism. Island and cellular models are population and individual

level-based because they deploy subpopulations and individuals

on  the processors, respectively. As the hierarchical model can be

island–master-slave hybrid, island-cellular hybrid, or island–island

hybrid, etc., the parallelism level of the model can be operation-,

individual-, and population-based. The two dimension-distributed

models in Fig. 2(b) divide the evolution tasks by  dimensions, where

a model is variable-based if each processor engages with one

variable only. Otherwise, if each processor optimizes a group of

variables, the model has a variable block-based parallelism level.

4.2. Objective function

The first six models listed in  Table 1 apply the unique global

objective function to evaluate individuals on different processors.

Differently, in multi-agent model, each processor has a  local objec-

tive function to  optimize. Nevertheless, it is  to be noticed that the

local objective-based multi-agent model can be  implemented by

different population-distributed models such as island, cellular, etc.

In this sense, these population-distributed models can also have

local objective functions on their parallel processors.

4.3. Search behavior

The search behavior of master-slave dEAs is similar to  that of

sequential EAs because it conducts the major evolution process of

the algorithm on its master node and only sends some computa-

tionally expensive tasks to the slave nodes. For an island model,

by deploying a number of subpopulations on isolated islands, the

algorithm maintains more than one best individual (attractor) dur-

ing the optimization and hence increases the population diversity.

Literature also shows that using an island model not  only saves

computing time but also improves the global search ability of EAs

[99,76,7]. For a cellular model, the use of local topologies reduces

the selection intensity as well as the information propagation speed

on the population network, which also results in a  better popula-

tion diversity. Besides, as a  hierarchical model hybridizes the island

model with others, it exhibits the effect of an increasing diversity

as well.

The core method of a  pool model is that the processors auto-

matically evolve the individuals in the resource pool. The search

behavior of the corresponding EAs is  highly dependent on the

algorithmic components in  use (such as individual selection and

replacement policies on the pool). Without specifying implemen-

tations of the algorithm, it is hard to identify the search behavior

of a  pool-based dEA. On the other hand, for the two dimension-

distributed models with a divide-and-conquer method, the primary

effect is  the reduction of the problem space.

4.4. Communication cost

The entire computational cost of a  dEA consists of  three parts,

namely, the evaluation cost Ceval of  the problem, the operation cost

Coper of the baseline EA, and the communication cost Ccomm of the

distributed model. As Ceval and Coper are relatively fixed, the com-

munication cost Ccomm, if significant, may  affect the speedup and

efficiency of the algorithm.

In a master-slave model, the communication cost is  relatively

high as the master frequently communicates with slaves send-

ing individuals and receiving fitness values. Some variants, such

as the coarse-grained master-slave model, decrease the frequency

of communication between master and slaves and hence par-

tially reduce the communication cost. For an island model, as the

subpopulations share their information only at set intervals, the

communication cost is relatively low. Nevertheless, the number

of islands and the migration strategy can affect the communica-

tion cost to a  great extent. In cellular and hierarchical models,

communications occur between individuals, and hence the com-

munication costs are considered to be  medium. These are however

highly related to the topology or hierarchical structure in  use. In

pool and multi-agent models, communication costs are relatively

lower because no coordination among processors is  needed. In a

coevolution model where local search and intercommunication

phases are alternated, the communication costs lie in a medium

level.

4.5. Scalability

The scalability of a  master-slave model is  limited by the work-

load of the master node. When it is saturated, increasing the

number of slaves would only decrease the distributed efficiency

of the algorithm. For an island model, as the performance of the

algorithm is  sensitive to  the number of islands used [58],  the scal-

ability is  relatively low. In the literature, dEAs with island model

always use a  small number of processors. The scalability of a cellu-

lar model is better than an island model. With the introducing of

the complex network-based topologies, the scalability of cellular

models can be further improved.

Considering the hierarchical mode, as described in  Section 3.4,

it combines different models in a  hierarchical fashion to improve

its scalability. The pool model employs loosely coupled processors

that do not  know each other’s existence. This offers high scalability.

For the two  dimension-distributed models, as the performance of
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the algorithms depends on the problem decomposition strategy

(task division mechanism) used by  the models to a  great extent,

the scalability of  these two models is limited.

4.6. Fault-tolerance

The master-slave dEAs are fault-tolerant unless the master node

fails. For island, cellular, and hierarchical models, failure of some

processes will result in loss of some subpopulations or  individu-

als. The fault-tolerance is medium to high. In a pool model, the

set of participating processors can be dynamically changed, which

enables the algorithms to achieve superior fault-tolerance. On the

other hand, for the two dimension-distributed models, failure of a

processor will result in  losing subcomponents of the global solution

and hence lead to a  crash of the entire algorithm. Therefore, these

two models are not fault-tolerant.

5. Recent research hotspots of  dEAs

In this section, recent research hotspots of dEAs will be

presented, including the cloud and MapReduce-based imple-

mentations, GPU and CUDA-based implementations, distributed

multiobjective optimization, and some real-world applications. The

work is however diverse, and hence this article is restricted to

derivations, benefits and representative references.

5.1. Cloud and MapReduce-based implementations

Cloud computing represents a pool of virtualized computer

resources. Compared to grid computing, the major difference is

that cloud computing utilizes virtualization and autonomic com-

puting techniques to realize dynamic resource allocations. As an

on-demand computing paradigm, cloud offers high scalability and

cost-effectiveness. Therefore, it is well suited to building highly

scalable and cost-effective dEA systems for solving problems with

requirements of variable demands. Although cluster [73],  comput-

ing grid [39,28] and P2P  network [141,71,111] have been widely

used as physical platforms for dEAs, the studies of dEAs based

on a cloud platform has received increasing attention since 2008

[44,45,27,16].

MapReduce is a  programming model for accessing and process-

ing of scalable data with parallel and distributed algorithms. Since

introduced by Dean and Ghemawat [25] in 2004, MapReduce has

been seen in various web-scale and cloud computing applications.

The infrastructure of MapReduce provides detailed implementa-

tions of communications, load balancing, fault-tolerance, resource

allocation, and file distribution, etc. All the things a  user has to

do are to implement the Map  and the Reduce functions. In this

way, the user can focus on the problem and algorithm only, with-

out caring about the distributed implementation details. Because of

this, implementing dEAs using MapReduce has attracted increasing

attention in recent years [81,64,135,78,142,153,124].

Note that, although Google has described its MapReduce infras-

tructure, it has not released its system to public. Much of the work

has been developed on Hadoop, a  Java-based open-source clone of

Google’s private MapReduce infrastructure (by the Apache Lucene

project). Moreover, Apache CouchDB, an open-source database, is

used together with MapReduce to implement pool-based dEAs by

Merelo et al. in [85,88,86,87].

Possessing many advantages, such as high scalability, cost-

effectiveness, and transparency, the cloud and MapReduce-based

implantations of  dEAs still have some shortcomings. Generally, the

speedup and distributed efficiency of dEAs deployed on clouds

are lower than those deployed on clusters and computing grids,

due to the increased communication overhead. The cloud com-

puting paradigm prefers availability to efficiency, and hence the

corresponding dEAs are more suitable for business and engineering

applications, but rather the scientific computing where the speedup

and distributed efficiency continue being a  core index for perfor-

mance evaluation.

5.2. GPU and CUDA-based implementations

A Graphics Processing Unit (GPU) is a  powerful electronic cir-

cuit capable of executing hundreds of threads simultaneously. Early

GPUs functioned as coprocessors to offload CPUs from tedious

graphics tasks in video or  game applications. As they are more

efficient than CPUs, modern GPUs are not restricted to accelerate

graphics or video coding, but  used as a  general-purpose process-

ing  unit for algorithms with intensive data processing tasks. With

this trend, some recent research concentrates on implementing EAs

on general-purpose GPUs (GPGPUs) to reduce the communication

overhead and arrive at a  high speedup. Numerous GPGPU-based

EAs have thus been designed, with coverage of GA [117,82,83],

GP [103], ES [155],  EP [40],  DE [136], PSO [151,91,154],  and ACO

[8].  Among these works, [40,136,103,83] apply master-slave model,

[82,91] use island model, [117,155,8,154] adopt cellular model, and

[151] applies hierarchical model.

It is  to be noted that not all dEAs can benefit from being imple-

mented on a  GPU platform, but only the ones being synchronous,

homogeneous, and lightweightly parallelized. The reasons are pre-

sented as follows. First, most GPGPU-based dEAs consider CPU and

GPU as a  host and a  coprocessor, respectively, in  which the data

transferred between CPU and GPU are the population of  individ-

uals. The memory transfer process from CPU to GPU  is commonly

a synchronous operation, where the bus bandwidth and latency

influence the performance significantly. Second, the “single pro-

gram, multiple data (SPMD)” model of GPU device assumes that

multiple processors execute the same program on different data

(individuals in EAs). Thus, the distributed components of  dEAs

should contain the same operators. Third, as the thread of GPU

is lightweight which can be  considered as processing a  data ele-

ment, the task allocated to  a thread by the EA should be  in a

very lightweight/fine-grained level. Although has some restric-

tions, a well-designed GPGPU-based EA can bring considerable

speedup, e.g.,  “121×” when using 2014 threads and “286×”  when

using 15360 threads on  the platform of Intel XeonTM E5420 CPU

@2.5GHz, 2GB RAM, and nVidia GeForce GTX 280 GPU, as reported

in [155].

Considering the programming environments, the Compute Uni-

fied Device Architecure (CUDA) developed by Nvidia is  currently the

most commonly used programming model to  implement GPGPU-

based EAs [136,8,155,91,154,103].  CUDA provides a  sophisticated

application programming interface (API) for an easy access of the

“single instruction, multiple data (SIMD)” architeture. It  builds a

comprehensive environment to  translate the C and C++ codes to

the GPU platform, as well as Fortran, C#, Python, etc.

5.3. Distributed evolutionary multiobjective optimization

Unlike traditional single-objective problems (SOPs), a multiob-

jective optimization problem (MOP) involves multiple conflicting

objectives with Pareto optimal solutions. MOPs are more difficult to

solve than SOPs because the algorithms should be able to approx-

imate a Pareto front instead of a  single optimum. Because an EA  is

population-based, it is  suitable to deal with a  set of optimal solu-

tions simultaneously in a  single run. In order to characterize the

entire Pareto front, a  multiobjective EA (MOEA) employs a  number

of additional mechanisms, such as Pareto selection, solution main-

tenance, and diversity preservation. These mechanisms are often

time consuming. The emergence of distributed MOEAs (dMOEAs)

helps in speed and also provides a  natural way to realize diversity
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preservation. In 2003, Veldhuizen et al. [134] paint a  picture of

dMOEAs with different paradigms, which leads dMOEAs to becom-

ing  one of the currently hottest research spots in the field of EC,

dEC, and MOEAs.

Many dMOEAs are extensions of the Non-dominated Sorting

GA (NSGA-II), a  well-known MOEA proposed in [26]. Distributed

NSGA-II with master-slave [35],  island [39,11],  and cellular models

[69] can be found in  the literature. Proposed in 2007, MOEA/D uses

a decomposition method to transform an MOP  into a  set of SOPs

to solve, which has remarkable performance in  optimizing diffi-

cult MOP  instances [150].  To make further improvement, parallel

and distributed versions of MOEA/D are developed in  [92,36,32,33].

Other dMOEAs include the distributed Strength Pareto EA (SPEA)

[143], the distributed multiobjective PSO (MOPSO) [90],  the dis-

tributed vector evaluated PSO (VEPSO) [137],  and the parallel single

front GA (PSFGA) [24],  all of which are based on island models.

In comparison, the dMOEAs proposed in  [93,34] employ cellular

models. In addition, Tan et al. [128] developed a  distributed coop-

erative coevolutionary algorithm for multiobjective optimization,

where the decision vectors are divided into subcomponents and

evolved by cooperative subpopulations. By executing intercommu-

nication of subpopulations residing in  the distributed system and

incorporating archiving, dynamic sharing, and extending operators,

the  algorithm is able to  efficiently approximate solutions uniformly

along the Pareto front. Other dMOEAs based on divide-and-conquer

and coevolution techniques can be found in [29,152].

Although being a vibrant area, the research of dMOEAs still

has some critical issues to be further addressed. Existing dMOEAs

assume an ideal running environment that  all  processors are homo-

geneous and the communication costs between processors are

identical, which is  not always the case. The design of heterogeneous

and asynchronous dMOEAs needs exploration. As described in Sec-

tion 3.5, the resource pool-based model provides a  natural way

to realize asynchronization and heterogeneity. The model is very

suitable for developing dMOEAs since we can deploy the searched

nondominated solutions (or the so-called external archive) in  the

shared resource pool and let processors autonomously access and

process them. This also brings more flexibility in  designing the

algorithms because it is now possible to assign heterogeneous

tasks, such as individual reproduction, Pareto selection, solution

maintenance, and diversity enhancement, to  different sets of pro-

cessors. Currently, the study of pool-based dMOEAs is still missing,

which could be a  potentially useful future direction. On  the other

hand, few efforts have been paid on regularizing the evaluation of

dMOEAs such as proposing uniform test suites and performance

metrics. Instead, the test suites and metrics of traditional MOEAs

are applied, however, they are  inadequate to investigate and ana-

lyze the performance of different dMOEAs, such as the scalability

and speedup. To fully test the performance of dMOEAs, the test suite

should cover a wide range of instances, by taking into account the

variation of computational cost, symmetry, scalability, decompos-

ability, etc. Meanwhile, the metrics of effectiveness, efficiency, or

their hybrid, can be refined, as well as the significance test method

in the distributed multiobjective environment.

5.4. Real-world applications

Because of  its powerfulness, dEC can have and has seen a vari-

ety range of applications in science and engineering. Areas where

dEAs have shown particular promise are problems with compu-

tationally expensive objective functions and extremely complex

landscapes. The applications are so numerous and diverse that

they exceed the scope of this paper. Hence we focus on several

main fields and representative references here. Applications of

dEAs in the literature can be classified into several categories,

including the system design [99,137,74,118], resource scheduling

[39,125,70,94],  network planning [122,21,20], intelligent trans-

portation [66,67,146],  classifier optimization [129,95,6],  feature

extraction [77], and parameter training [37].  Compared to sequen-

tial EAs, the main benefits brought by dEAs are two-fold. On one

hand, they improve the efficiency of EAs, and on the other, they

enhance the global search ability and solution accuracy. In this

sense, the dEC techniques improve the availability for solving real-

world problems with large-scale, high-dimensional, and complex

features.

6. Future directions

As surveyed in  the above sections, significant efforts have been

devoted to  utilizing distributed computing resources to  enhance

the performance of EC. It  is  expected that dEC will continue to be a

hot research topic because the complexity of real-world optimiza-

tion problems is  growing rapidly and there still exist many issues

unexplored. In this section, we highlight several research directions

of dEC.

6.1. Highly scalable dEC

Scalability is an important factor in distributed systems. For

dEC, the increasing scale of real-world optimization problems

requires the algorithm to  scale up well to satisfy the intensive data

processing need, but an overuse of computing resources is  not  cost-

effective. Therefore, it is important to  develop highly scalable dEC

techniques that can increase or decrease resources, depending on

the problem at hand. To address this issue, adopting a virtualiza-

tion technique and an adaptive population size may  be effective.

Besides, some brand new branches of EC, such as the imperialist

competitive algorithm (ICA) [60] and the social learning algorithm

(SLA) [54], can be adopted as baseline algorithms for possible per-

formance enhancement.

6.2. Theoretical basis/proof of convergence

As the communication bandwidth in  a  dEA is limited, it becomes

harder to  make clear how dEAs converge. Beside experimental anal-

yses in  the literature, studying the convergence of dEAs from a

theoretical perspective will be  appealing and meaningful. By build-

ing up a  theoretical base for dEC, it may  be convenient to  develop

some more powerful dEAs in the future.

6.3. Systematical control of parameters

Another issue introduced by the distributed paradigm is that

dEAs have more parameters than sequential EAs. Compared with

parameters of classical EAs, the newly introduced parameters have

not yet been studied carefully, although they influence the perfor-

mance of dEAs to a large extent. Therefore, it is  crucial to  control

parameter settings systematically in dEAs or even automatically

during the search process.

6.4. Many-objective optimization

Currently, MOEAs and dMOEAs have been effectively applied

to  deal with MOPs with a few, generally two  or three, objectives.

However, when facing the many-objective optimization problems

involving four to tens of objectives, the performance of the algo-

rithms deteriorates severely. The challenges arise from both the

increased computational cost for evaluating the objective functions

and the rapidly increased number of nondominated solutions in the

population that breaks the Pareto selection pressure. Developing

dEAs for many-objective optimization is promising since, by  uti-

lizing the distributed platform, it is now possible to  manipulate a
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large population without incurring overlong computational time.

The interplay of local evolution and global migration helps to seek a

balance between convergence and diversity, which plays a  decisive

role in the performance of many-objective optimization. Moreover,

the “many objectives, many processors (MOMP)” scheme, which

optimizes a single objective on each processor and coordinates

the optimization of different objectives during the intercommu-

nication phase, forms an interesting and potentially useful future

research direction.

6.5. Evolutionary big data optimization

The coming era of big data poses new challenges to data

management and processing since the data involved are always

large-scale, sparse, unstructured, uncertain, and spatial–temporal

dependent. Owing to that EC  does not require explicit mathematical

models in  problem solving, and that it can respond to applica-

tion queries in a  relatively short time, the EC  paradigm can be

considered as a  promising solution in current data-driven opti-

mization domain. Further, dEC, especially the cloud-based dEC and

the mobile dEC being described in the next subsection, greatly

improves the computational volume of EC and the cost-efficiency of

deploying massive EC  system, which is  rather suitable for handling

real-world big data optimization applications, such as information

recommendation, disease prediction, and logistics transportation

control, etc.

6.6. Mobile evolutionary computation

Smartphones possess useful computational capacity and the

market is proliferating rapidly in  recent years. The increasing

quantity, mobile data connectivity and computational power have

made smartphones a  new and promising distributed system for

dEC. Specifically, mobile crowdsourcing [19] is  a  probable form

of deploying dEC on smartphones. Most existing mobile crowd-

sourcing applications emphasize on the sensing capability of

smartphones, while in the context of dEC, the computation resource

is of a central place. The challenge lies in  that  the deployment of

dEAs on smartphones should not decrease the user experience,

which is a basic requirement for the success of mobile crowdsourc-

ing. Hence it is necessary to develop adaptive scheduling methods

for executing mobile dEAs.

7. Conclusions

This article provides a  comprehensive survey of the state-of-the-

art distributed evolutionary algorithms and models. The models

have been classified into two groups according to the task division

mechanism. Population-distributed models include master-slave,

island, cellular, hierarchical, and pool models, which parallelize

an optimization task at population, individual, or operation levels.

Dimension-distributed models include coevolution and multi-

agent models that focus on the reduction of problem space. The

characteristics of different models, such as the search behaviors,

objectives, communication costs, scalability, and fault-tolerance,

have been summarized and analyzed. It  can be seen that these dis-

tributed models have different features and characteristics, which

are suitable for developing different dEAs and solving different

kinds of problems. We have also highlighted recent hotspots in

dEC, including the cloud and MapReduce-based implementations,

GPU and CUDA-based implementations, dMOEAs for multiobjec-

tive optimization, and real-world applications. Further, a  number

of future research directions have been discussed. Based on the

survey, we believe that the study and development of distributed

evolutionary computation will continue to be a  vibrant and active

field in the future.
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