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Distributed Fault Detection and Isolation of
Large-scale Discrete-time Nonlinear Systems: an

Adaptive Approximation Approach
Riccardo M. G. Ferrari, Thomas Parisini, and Marios M. Polycarpou

Abstract—This paper deals with the problem of designing
a distributed fault detection and isolation methodology for
nonlinear uncertain large-scale discrete-time dynamicalsystems.
As a divide et impera approach is used to overcome the scalability
issues of a centralized implementation, the large scale system
being monitored is modelled as the interconnection of several
subsystems. The subsystems are allowed to overlap, thus sharing
some state components. For each subsystem, aLocal Fault
Diagnoser is designed, based on the measured local state of the
subsystem as well as the transmitted variables of neighboring
states that define the subsystem interconnections. The local
diagnostic decision is made on the basis of the knowledge of the
local subsystem dynamic model and of an adaptive approximation
of the interconnection with neighboring subsystems. The use
of a specially-designed consensus-based estimator is proposed
in order to improve the detectability and isolability of faults
affecting variables shared among overlapping subsystems.The-
oretical results are provided to characterize the detection and
isolation capabilities of the proposed distributed scheme. Finally,
simulation results are reported showing the effectivenessof the
proposed distributed fault diagnosis methodology.

I. I NTRODUCTION

The problem of automated fault diagnosis and accommo-
dation is motivated by the need to develop more autonomous
and intelligent systems that operate reliably in the presence of
system faults. In dynamical systems, faults are characterized
by critical and unpredictable changes in the system dynamics,
thus requiring the design of suitable fault diagnosis schemes
[1], [2], [3]. Moreover, with current technological trends
several systems of practical interest are large-scale and/or
physically distributed and thus the decomposition and spatial
distribution of highly demanding computational tasks is of
critical importance.

Recently there has been significant research activity in
modeling, control and cooperation methodologies for dis-
tributed systems (see, for example, [4], and the referencescited
therein). This activity is motivated by several applications,
especially in complex large-scale systems, such as traffic
networks, environmental systems, communication networks,
power grid networks, water distribution networks, etc. Such
systems, although their dynamics and control objectives may
appear to be completely different, have some important com-
mon characteristics: their dynamics are complex and spatially
distributed, and, as a result, it is typically more convenient to
decompose the system into smaller subsystems which can be
more easily controlled and monitored locally (or regionally).
The study of controlling spatially distributed systems is not a
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new problem. As far back as in the 1970s, researchers sought
to develop so called “decentralized control” methods [5]. Since
then there have been many advancements in the design and
analysis of distributed control schemes. On the other hand,
much less research activity has been devoted at the problem of
designing fault diagnosis schemes specifically for distributed
systems.

Due to the complexity of the problem, in practice it is diffi-
cult to achieve robust fault diagnosis in large-scale distributed
systems within a centralized implementation, mainly because
of scalability issues. In fact, a centralized scheme sooneror
later may hit one of the two following constraints on the
hardware/software architecture used to implement it: limited
available computation power for evaluating the fault decision,
and limited communication bandwidth for acquiring all the
necessary measurements. While considerable effort was aimed
at developing distributed fault diagnosis algorithms suited
to discrete event systems (see, for instance, [6]), much less
attention was devoted to discrete or continuous–time systems
(see [7], where the problem of designing sensor networks for
fault-tolerant estimation is addressed, [8], [9] where fault-
tolerance in distributed systems is considered, [10], [11],
[12], which are focused on decentralized fault detection, and
[13] dealing with fault consensus in networks of unmanned
vehicles).

In previous works [14], [15], [16], the authors developed
some preliminary results on a quantitative distributed fault
detection scheme where a large-scale system was decomposed
into a set of disjoint subsystems, and the physical interaction
between neighboring subsystems was described by uncertain
nonlinear functions. A network ofLocal Fault Detectors
(LFDE) was developed so that each LFDE monitored a single
subsystem by making use of the measurement of local vari-
ables, as well as the value of someinterconnection variables
communicated by neighboring LFDs. But, apart from this
exchange of measurements, the neighboring LFDEs were not
involved in the process of deciding whether a fault occurred
in a subsystem. In this paper, the above distributed detection
scheme is extended to allow cooperation between neighboring
LFDEs by usingoverlapping decompositions[17] of the initial
large-scale system. In this way, more than one LFDE may be
monitoring a singleshared variableand collectively decide
on the presence of faults influencing it. This is implemented
by means of a specially designed consensus-like estimation
scheme that may improve the capability of the LFDEs to detect
a fault with respect to the consensus–less, non overlapping
case.

In [16], a distributed fault detection scheme for continuous–
time systems based on overlapping decompositions of subsys-
tems, in turn monitored by a network of interconnected local
fault detectors has been proposed. The novel contribution of
the present paper, in the context of discrete-time nonlinear
systems, is the extension of this idea by including also local
and global fault isolation capabilities, thanks to the introduc-
tion of specializedFault Isolation Estimatorsand aGlobal
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Fault Diagnoser(see [18] for some preliminary results). A
rigorous characterization of the fault isolation capability of
the proposed scheme is given, while an 11–tanks system
is used throughout the paper to illustrate the decomposition
strategy, the modeling of local and distributed faults and,
finally, to show the effectiveness of the proposed methodology
by extensive simulation results.

The paper is organized as follows: in Section II, a problem
formulation is developed for fault diagnosis of distributed dy-
namical systems. The design and analysis of a distributed fault
detection and isolation architecture is presented in Section III,
followed by the detailed development of its detection part in
Section IV, and of its isolation part in Section V. Finally,
simulation results for illustrating the methodology are given
in Section VI, while Section VII provides some concluding
remarks.

II. BACKGROUND

Let us consider a nonlinear dynamic systemS , referred to
asmonolithic systemand described by the following discrete–
time model

S : x(t+1) = f(x(t),u(t))+η(t)+β(t−T0)φ(x(t),u(t)) ,
(1)

where t ∈ N is the discrete-time instant,x ∈ R
n and

u ∈ R
m denote1 the state and input vectors, respectively, and

f : Rn×Rm 7→ R
n represents thenominal healthy dynamics.

Moreover, the functionη : N 7→ R
n stands for the uncertainty

in the state equation and includes external disturbances as
well as modeling errors and possibly discretization errors.
From a qualitative viewpoint, the termβ(t−T0)φ(x(t),u(t))
represents the deviation in the system dynamics due to a
fault. The term β(t − T0) characterizes the time profile of
a fault that occurs at someunknown discrete-time instant
T0, and φ(x,u) denotes the nonlinear fault function. This
formulation (first introduced in [19]) allows both additive
and multiplicative faults (sinceφ is a function of x and
u), as well as more general nonlinear faults. The fault time
profile β(t− T0) modelsincipient faults characterized by an
exponential decaying time-profile

β(t− T0) =

{

0 if t < T0

1− b−(t−T0) if t ≥ T0
, (2)

where b ≥ 1 denotes the unknown fault-evolution rate (the
case of an "abrupt" fault time-profile can be obtained asb→
∞ in (2)). Note that the fault time profile given by (2) only
reflects the developing rate of the fault, while all its other
basic features are captured by the functionφ(x,u) , which
describes the changes in the dynamics due to the fault.

The problem of detecting and isolating faults in nonlinear
uncertain systems described by (1) using adaptive approxima-
tion methodologies has been addressed in several works in
the literature (see, among others, [20], [21] and the references
cited therein). In this paper, we consider design and analysis of
an adaptive approximation methodology for the case of large-
scale and distributed nonlinear systems for which a centralized
Fault Detection and Isolation(FDI) architecture may not be
possible or not desirable. As the impossibility usually derives
from a centralized implementation being unable to process
and/or convey all the necessary measurements at a single
computation node in real time, in this paper adivide et impera
approach is used, in order to decompose the (possible large)
original FDI problem into a number of smaller problems, eas-
ier to solve with the available hardware/software infrastructure.

1Here and in the rest of the paper the use of bold letters indicates that a
given quantity is related to the monolithic system.

Therefore, we consider the decomposition of systemS into
N subsystems2 SI , I = 1, . . . , N , each characterized by a
local state vectorxI ∈ R

nI , with a separate monitoringagent
designed for eachSI .

In order to introduce system decompositions, first of all the
systemstructure is defined using graph theory [22].

Definition 1: The structureΣS of a dynamical systemS
having a state vectorx ∈ R

n and an input vectoru ∈ R
m is

the set of ordered pairs

ΣS , {(x(i),x(j)) : i, j ∈ {1, . . . ,n}, "x(i) affectsx(j)"}

∪ {(u(i),x(j)) : i ∈ {1, . . . ,m}, j ∈ {1, . . . ,n},

"u(i) affectsx(j)"} .

Definition 2: The structural graph [17] of a dynamical
systemS , having a state vectorx ∈ R

n and an input vector
u ∈ R

m, is the directed graph (digraph) G , {NG , EG} having
the node setNG , {x(i) : i ∈ {1, . . . ,n}} ∪ {u(i) : i ∈
{1, . . . ,m}} and the system structureΣS as the arc set, that
is EG = ΣS .

The decomposition of the monolithic systemS is based on
decomposing its structural graph. The idea of graph decompo-
sition has been used in many fields [23]. For example, graph
decomposition has been used in numerical methods involving
the solution to partial differential equations [24], [25],[26],
[27], in image processing [28], in operations research [29],
and, of course, in large–scale system decomposition [17], [30].

To decompose a monolithic systemS described as in (1)
and having a structural graphG = (NG , EG), we defineN ≥ 1
subsystemsSI , with I ∈ {1, . . . , N}, each one having alocal
state vector xI ∈ R

nI and a local input vector uI ∈ R
mI .

These local vectors are constructed by taking components of
the monolithic system vectorsx andu, based on ordered sets
II , (I

(1)
I , . . . , I

(nI)
I ) of indices, calledextraction index set

[15], [31], [16]. These sets can be defined by introducing the
following extraction mappingbetween local and monolithic
indexes.

Definition 3: For each subsystemSI , its extraction index
set II is obtained by means of anextraction mappingσI :
{1, . . . , nI} 7→ {1, . . . ,n}, so thatII , (σI(1), . . . , σI(nI)).

Definition 4: The local statexI ∈ R
nI and thelocal input

uI ∈ R
mI of a dynamical subsystemSI , arising from the

decomposition of a monolithic systemS , are respectively
the vectorsxI , col(x(j) : j ∈ II) and uI , col(u(k) :
(u(k),x(j)) ∈ EG , j ∈ II , k = 1, . . . ,m), whereII is the
extraction index set of theI–th subsystem.

It is worth noting that, when performing the “col” operation
in the two previous definitions, the elements of the index setII
are taken in the order they appear. According to Definition 4,
the local input contains all the input components that affect at
least one component of the local state vector. At this point,the
structural graph of theI–th subsystem can be easily defined
as the subgraphGI induced onG by the subset made of all the
components ofxI together with those ofuI . The following
provides a definition for the decomposition of a large-scale
system.

Definition 5: A decompositionD of dimensionN of the
large-scale systemS is a multisetD , {S1, ...,SN} made
of N subsystems, defined through a multiset{I1, . . . , IN} of
index sets, such that for eachI ∈ {1, . . . , N} the following
axioms hold:

1) II 6= ∅;
2) I(j)I ≤ n, for eachj ∈ {1, . . . , nI};

2In the paper, a capital-case index denotes a specific sub-system.
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3) the subdigraph ofG induced byII must be weakly
connected, that is, each component ofxI must act on or
must be acted on by at least another component ofxI ;

4)
N
∪

I=1
II = {1, ...,n} .

Axiom 1 prevents the definition of trivial empty subsystems,
Axiom 2 is necessary for well-posedness, Axiom 3 avoids
that resulting subsystems have isolated state components,
while Axiom 4 requires that the decomposition covers the
whole original monolithic system. It is important to note that
the above decomposition does not require that for any two
subsystemsII ∩ IJ = ∅, I, J ∈ {1, . . . , N}. This allows for
a state component ofS to be assigned to more than one sub-
systems, thus being “shared”. Such a decomposition is called
overlapping decomposition. Overlapping decompositions [32]
have been found to be useful tools when addressing large–
scale systems. In particular, problems of stability, control and
estimation [33], and fault diagnosis [34] for large–scale linear
systems were addressed using overlapping decompositions.

As a result of overlaps, some components ofx are assigned
to more than one subsystems thus giving rise to the concepts
of shared state variableandoverlap index set.

Definition 6: A shared state variablex(s) is a component
of x such thats ∈ II ∩IJ , for someI, J ∈ {1, ... N}, I 6= J
and a given decompositionD of dimensionN .

Definition 7: Theoverlap index setof subsystems sharing a
variablex(s) is the setOs , {I : s ∈ II}, whose cardinality
is Ns.

In the following, the notationx(sI )
I , with x

(sI )
I ≡ x(s), will

be used to denote the fact that thes–th state component of the
original large–scale system, after the decomposition became
the sI–th of theI–th subsystem,I ∈ Os.

Now, we define the interaction (if any) between different
subsystems. In this framework, the external variables influ-
encing the dynamics of local state components of subsystem
SI making up the vector ofinterconnection variableszI .

Definition 8: The interconnection variablesvector zI ∈
R

pI , (pI ≤ n − nI) of the subsystemSI is the vector
zI , col(x(k) : (x(k),x(j)) ∈ EG , j ∈ II , k ∈ {1, . . . ,n}).

The set of subsystems acting on a given subsystemSI

through the interconnection vectorzI is theneighbors index set
JI , a concept that naturally leads to the introduction of thefun-
damental graph[17] whose nodes represent subsystems and
whose arcs represent their interaction through interconnection
variables.

Definition 9: Theneighbors index setof a subsystemSI is
the setJI , {K : ∃ (x(k),x(j)) ∈ EG , k ∈ IK , j ∈ II ,K ∈
{1, . . . , N} \ {I}}.

Definition 10: The fundamental graphof a distributed sys-
tem, obtained by applying the decompositionD to the mono-
lithic systemS , is the digraphGD , {NGD

, EGD
}, where

the node setNGD
, {SI : I ∈ {1, . . . , N}} contains the

subsystems and the arc set isEGD
, {(SJ , SI) : I ∈

{1, . . . , N}, J ∈ JI}.
Unlike linear systems, for which powerful model decompo-

sition techniques and descriptions exist (see for instancethe
works published in recent years by D’Andrea et al. [35], [4]),
that can be applied to systems showing either a regular or
arbitrary structure, for nonlinear systems the decomposition
task is much more difficult, and in general it is not possible to
devise an additive decomposition into purely local and purely
interconnection terms. Therefore, a general decomposition as
in [17] is considered:

SI : xI(t+1) = fI(xI(t), uI(t)) + gI(xI(t), zI(t), uI(t))

+ β(t− T0)φI(xI(t), zI(t), uI(t)) , (3)

wherefI : RnI × R
mI 7→ R

nI is the local nominalfunction
and gI : RnI × R

pI × R
mI 7→ R

nI represents theintercon-
nection function, where the effects of the local uncertainty
term ηI has also been incorporated, withηI , col(η(j) :
j ∈ II). Furthermore,uI ∈ R

mI , (mI ≤ m) is the local
input (see Definition 4),zI ∈ R

pI , (pI ≤ n − nI) is the
vector of interconnection variables(see Definition 8), and
φI : RnI × R

pI × R
mI 7→ R

nI is the local fault function.
Let us now introduce two assumptions that will be used in

the subsequent analysis.
Assumption 1:The fault functionφ is such that the funda-

mental graphGD remains the same before and after the fault
event.

Assumption 1 is introduced to simplify the formal analysis;
according to this assumption, in the paper we suppose that
the possible fault event does not cause a change to the system
structureΣS by adding new dependencies between variables
belonging to different subsystems, so that it is possible to
write the local fault functionφI as a function of local and
interconnection variables only3. This also means that the
neighbors index setJI and the interconnection variables vector
zI do not change structure due to the occurrence of a fault.

Assumption 2:For eachSI , I = 1, . . . , N , the state vari-
ablesxI(t) and control variablesuI(t) remain bounded before
and after the occurrence of a fault, i.e., there exist some
stability regionsRI = Rx

I × R
u
I ⊂ R

nI × R
mI , such that

(xI(t), uI(t)) ∈ Rx
I × R

u
I , ∀ I = 1, . . . , N, ∀ t ≥ 0. Finally,

the time profile parameterb is unknown but it is lower bounded
by a known constant̄b, that is 0 < b̄ ≤ b .

As a consequence of Assumption 2, for each subsystem
SI , I = 1, . . . , N , it is possible to define some stability
regionsRz

I for the interconnecting variableszI . Since no fault
accommodation is considered in this work (only fault detection
and isolation), the feedback controller acting on the system S

must be such that the variablesx(t) andu(t) remain bounded
for all t ≥ 0. However, it is important to state in advance
that the design of the distributed FDI methodology does not
depend on the specific structure of the underlying controller
and hence the controller design is not discussed. Assumption 2
is required for well-posedness, but does not cause major loss
of generality to the proposed FDI scheme. In fact, from a
practical perspective, detecting faulty modes characterized by
large or even unbounded "magnitudes" typically turns out to
be quite an easy task by resorting to limit-checking techniques.

The interconnection functiongI in the decomposition de-
scribed by (3) includes the uncertainty represented by the term
ηI . Therefore, in the sequel the following further assumption
will be needed.

Assumption 3:The interconnection functiongI is an un-
structured and uncertain nonlinear function, whosek–th com-
ponent is bounded by some known function4, i.e.,

|g
(k)
I (xI , zI , uI)| ≤ ḡ

(k)
I (xI , zI , uI) , ∀xI ∈ R

x
I ,

∀ zI ∈ R
z
I , ∀uI ∈ R

u
I , (4)

where the bounding function̄g(k)I ≥ 0 is known and bounded
for all I = 1, . . . , N .

A. Example
To gain some more insight into the afore-described decom-

position approach, consider the example depicted in Fig. 1,

3However, it is possible for a fault event to remove some of theintercon-
nections, which can be formally represented by setting somegI function to
zero.

4In the paper, when there is no risk of ambiguity and for the sake of simplic-
ity, a compact notation like, for instance,gI(t) ≡ gI(xI (t), zI(t), uI (t)),
is used.
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where a specific decomposition of a systemS into three
overlapping subsystemsS1, S2 and S3 is considered. The
example of Fig. 1 deals with a 11–tank system, which will be
re-considered in the simulation Section VI.
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(a)

S1

S2
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(b)

Figure 1. (a) Example of decomposition of a systemS into three overlapping
subsystemsS1, S2 andS3, and (b) the corresponding fundamental graph.

The decomposition shown in this example is
such that: x1 = [x(1), x(2), x(3), x(4), x(5)]⊤,
x2 = [x(4), x(5), x(6), x(7)]⊤ and x3 =
[x(5), x(8), x(9), x(10), x(11)]⊤ are the local states,
u1 = u(1), u2 = u(2) and u3 = u(3) are the
local inputs, z1 = [x(6), x(8)]⊤, z2 = [x(3), x(8)]⊤

and z3 = [x(4), x(6)]⊤ are the interconnection
variables. Furthermore,x(4) ≡ x

(4)
1 ≡ x

(1)
2 and

x(5) ≡ x
(5)
1 ≡ x

(2)
2 ≡ x

(1)
3 are shared variables with

O4 = {1, 2} andO5 = {1, 2, 3}.

III. D ISTRIBUTED FAULT DETECTION AND ISOLATION
ARCHITECTURE

The backbone of the proposedDistributed Fault Detection
and Identification(DFDI) architecture is made ofN com-
municating agents calledLocal Fault Diagnosers(LFDs) LI ,
which are devoted to monitor each of theN subsystems. The
LFDs generate afault decisiondFD

I regarding the mode of
behavior (healthy or one among the possible faulty modes) of
the corresponding subsystemSI . These decisions are gathered
by a higher level agentL , which is referred to asGlobal
Fault Diagnoser(GFD), in order to coordinate the LFDs and
formulate a fault decisiondFD about the health of the global
systemS . Fig. 2 shows in pictorial form the structure of the
DFDI architecture using the same illustrative example of a
distributed system already presented in Fig. 1. The various
part of the architecture are arranged in three layers: the first
layer is constituted of the physical subsystems, the second
layer is made up by local fault diagnosers, while the third
one contains the global fault diagnoser. The different typeof
arrows highlight the different interactions between the parts
of the architecture: physical interactions in the first layer,
consistent information flows between layer one and two and
between parts of layer two, while sporadic communication
between the second and the third layer is illustrated by dashed
arrows. More details on the structure of the LFDs and of the
GFD will be provided later on.

Following the fault isolation formulation proposed in [21],
for isolation purposes we assume that for the global systemS

there exists aglobal fault setF containingNF possible non-
linear fault functionsφl(x,u) , l ∈ {1, . . . , NF}. Following
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Figure 2. A scheme of the proposed DFDI architecture concerning the same
three subsystems of Fig. 1 ,S1,

the decompositionD and based on Assumption 1, the intro-
duction of the global fault setF leads to the existence, for each
subsystemSI , of a local fault setFI containingNFI

known
types of possible nonlinear fault functions5 φI,l(xI , zI , uI) ,
l ∈ {1, . . . , NFI

}. Thus, each LFDLI provides a fault deci-
sion dFD

I regarding the health of the corresponding subsystem
SI , by relying onNFI

+1 nonlinear adaptive estimators of the
local statexI , with I ∈ {1, . . . , N}. The first estimator, called
Fault Detection Approximation Estimator(FDAE), is based on
the nominal model (3) and is used for fault detection. The
remainingNFI

estimators, calledFault Isolation Estimators
(FIE), make up a bank of estimators to be used to determine
which of the possibleNFI

faults in the setFI has occurred.
Under normal operating conditions (that is fromt = 0

until a fault is detected) the FDAE is the only estimator that
each LFD employs. After a fault is detected byany of theN
LFDs, the GFD receives the corresponding local fault decision,
and in response triggers the switch of each LFD from fault
detection to fault isolation operating mode. In the latter mode,
each LFD activates its own bank of FIEs in order to try to
locally isolate the occurred fault, by employing kind of a
Generalized Observer Scheme(GOS), (see [36], [37]). The
local fault decisionsdFD

I of the LFDs are communicated to
the GFD, allowing it to determine which one of the faults in
the global setF , if any, affects the systemS (see Section V
and Algorithm 1).

In the DFDI scheme, we assume that every LFD takes uncer-
tain measurements ofxI according toyI(t) , xI(t) + ξI(t) ,
whereξI is an unknown term characterizing the measurement
error associated with the process of measuringxI by each LFD
(we assumeuI to be perfectly available). Moreover, each LFD
communicates with the neighboring LFDs inJI in order to fill
the interconnection vectorzI (see the example in Fig. 2). Due
to the uncertain state measurements, it follows that, instead
of receiving the actual interconnection vectorzI , each LFD
receives from its neighbors the vectorvI(t) , zI(t) + ζI(t) ,
where ζI(t) is made of the components ofξJ affecting the
relevant components of the measurementsyJ , J ∈ JI .

Assumption 4:The measuring uncertainties represented by
the vectorsξI and ζI are unstructured and unknown, but,
for each h = 1, . . . , nI and for eachk = 1, . . . , pI , the
components ofξI and ofζI are bounded, respectively, as

|ξ
(h)
I (t)| ≤ ξ̄

(h)
I , |ζ

(k)
I (t)| ≤ ζ̄

(k)
I , ∀ t ≥ 0 , (5)

where ξ̄(h)I and ζ̄
(k)
I are known positive scalars. Hence, it is

possible to definea priori two compact regions of interestRξ
I

5The global and the local fault sets is described in detail in Sec. V.
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andRζ
I such thatξI(t) ∈ R

ξ
I andζI(t) ∈ R

ζ
I .

Under the assumptions made so far, a shared variablex(s) is
measured by distinct LFDs in the overlap setOs with distinct
uncertainties. Furthermore, because of Assumption 3, the in-
terconnection part of the local model (3) may also be affected
by distinct uncertainties. Following these considerations, in
the sequel, a cooperation mechanism between LFDs in the
overlap setOs will be devised in order to improve the overall
diagnosis performances by exploiting the distributed nature of
the fault diagnosis technique.

IV. D ISTRIBUTED FAULT DETECTION

After the DFDI algorithm is initialized att = 0 by turning
on eachI-th LFD, only its FDAE estimator is enabled and
monitors the subsystemSI , providing a local state estimate
x̂I,0 of the local statexI . The difference between the estimate
x̂I,0(t) and the measurementsyI(t) yields theestimation error
ǫI,0(t) , yI(t)−x̂I,0(t) which plays the role of a residual and
will be compared, component by component, with a suitable
detection threshold6 ǭI,0(t) ∈ R

nI

+ . The following condition

|ǫ
(k)
I,0(t)| ≤ ǭ

(k)
I,0(t) , ∀ k = 1, . . . , nI (6)

is associated with thefault-free hypothesis

HI,0 : "The systemSI is healthy". (7)

By this, we mean that (6) is a necessary (but generally not
sufficient) condition for (7), so that should condition (6) be
violated at some time instantt, then the hypothesisHI,0 is
falsified and the so–calledlocal fault detection signatureSI,0
is generated, thus leading to a local fault detection decision.
In qualitative fault diagnosis schemes, such as [38], the fault
signature is defined as a symbolic vector, that qualitatively
describes the behavior of residuals and their derivatives after
the occurrence of a fault. Instead, in quantitative schemes, such
as [1], [2], [36], the fault signature represents the pattern of
residuals that exhibit abnormal behavior after the occurrence
of a fault. In this regard, we introduce a few further useful
definitions.

Definition 11: Thelocal detection signatureassociated with
the subsystemSI , I ∈ {1, . . . , N} at the discrete-time instant
t > 0 is the index set

SI,0(t) , {k ∈ {1, . . . , nI} : ∃ t1, t ≥ t1 > 0

such that|ǫ(k)I,0(t1)| > ǭ
(k)
I,0(t1)} . (8)

In relation with thefundamental graphintroduced in Defi-
nition 10, the fundamental detection signature can be defined
as follows.

Definition 12: The fundamental detection signatureassoci-
ated with the systemS at the discrete-time instantt > 0 is
the index set

S(t) , {I ∈ {1, . . . , N} : SI,0(t) 6= ∅} . (9)

Now, the local fault detection logic for theI–th LFD can
be stated in terms of the local detection signatureSI,0(t).
Specifically, a fault affecting theI–th subsystem is detected
by its LFD at the first discrete-time instantt̄ such thatSI,0(t̄)
becomes non-empty. This discrete-time instant is called the
local fault detection timeTI,d, as formally defined in the
following.

Definition 13: The local fault detection timeTI,d is defined
as TI,d , min{t : SI,0(t) 6= ∅} .

6To be defined in eq. (20).

Finally, the fault detection timeTd is simply defined as the
earliest among the local detection times.

Definition 14: The fault detection timeTd is defined as
Td , min{t : S(t) 6= ∅} .

This formalizes the fact that in the proposed architecture the
event of a LFD detecting a fault is immediately relayed to the
global fault diagnoserL . The GFD computes the fundamental
detection signatureS and setsTd as the earliest discrete-time
instant at which it becomes non empty. Then, it immediately
informs every LFD that a fault has been detected in the system
and that the isolation mode, introduced in Section III and
further described in Section V, should be activated.

Remark 1:The communication between the LFDs and the
GFD required to implement the DFDI architecture is event-
driven, that is, only events such as the detection or isolation
of a fault are communicated through the channels depicted as
dashed arrows in Fig. 2. As this kind of exchanged information
is limited to simple boolean values, this means that even if the
communication between the LFDs and the GFD follows a one-
to-all pattern, scalability should not be an issue in practical
applications.

A. Local Fault Detection and Approximation Estimator
The local FDAE is a nonlinear adaptive estimator based on

the subsystem model (3), which (as in [16] in the continuos-
time case) generalizes to the distributed context the fault
diagnosis methodology presented in [21].

First of all, the simpler case of a non-shared state variable
is addressed. The estimate of thek-th componentx̂(k)

I,0 is
computed as

x̂
(k)
I,0(t+ 1) = λ(x̂

(k)
I,0(t)− y

(k)
I (t)) + f

(k)
I (yI(t), uI(t))

+ ĝ
(k)
I (yI(t), vI(t), uI(t), ϑ̂I,0) , (10)

where 0 < λ < 1. Following the idea presented in [16],
the termĝ

(k)
I is thek–th output of an adaptive approximator

designed to learn the unknown interconnection functiongI ,
andϑ̂I,0 ∈ Θ̂I,0 denotes its adjustable parameters vector, with
Θ̂I,0 ⊂ R

qI,0 being a compact set7 . As in [16], in this paper
we assume that̂g(k)I represents a linear-in-the-parameters, but
otherwise nonlinear multivariable approximation model, such
as neural networks, fuzzy logic networks, polynomials, spline
functions, wavelet networks, etc.

It is important to emphasize the differences among the
present approach and the one described in [21] regarding the
centralized case. Whilst in [21] the adaptive approximatoris
devoted to learn the fault function after the detection of a fault,
in the present case, the adaptive approximator starts from the
very beginning to learn the uncertain interconnection function
in order to facilitate more accurate and faster detection. It is
worth noting that to implement (10), theI-th LFD needs only
to receive from its neighbors the values of the variables making
up the the interconnection vectorvI(t).

In order for ĝI to learn the interconnection functiongI , the
parameter vector̂ϑI,0 is updated according to the following
law:

ϑ̂I,0(t+ 1) = PΘ̂I,0

[

ϑ̂I,0(t) + γI,0(t)H
⊤
I,0(t)rI,0(t+ 1)

]

,

where HI,0(t) , ∂ĝI(t)/∂ϑ̂I,0 ∈ R
nI×qI,0 denotes the

gradient matrix of the on–line approximator with respect

7For the sake of simplicity we assumêΘI,0 to be a origin–centered hy-
persphere with radiusM

Θ̂I,0
(see [21] for some remarks on this geometrical

simplification).
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to its adjustable parameters, andrI,0(t + 1) is given by
rI,0(t + 1) = ǫI,0(t + 1) − λǫI,0(t) . PΘ̂I,0

is a projection

operator [39] restrictinĝϑI,0 within Θ̂I,0 according to:

PΘ̂I,0
(ϑ̂I,0) ,

{

ϑ̂I,0 if |ϑ̂I,0| ≤MΘ̂I,0

MΘ̂I,0
ϑ̂I,0/|ϑ̂I,0| if |ϑ̂I,0| > MΘ̂I,0

.

The learning rateγI,0(t) is computed at each stept as
γI,0(t) , µI,0/(εI,0 + ‖H⊤

I,0(t)‖
2
F ) , with εI,0 > 0, 0 <

µI,0 < 2 , where ‖ · ‖F denotes the Frobenius norm and
εI,0, µI,0 are design constants that guarantee the stability of
the learning law [39], [40].

The case of a variablex(s) of the original centralized
systemS that, after the decomposition, is shared among more
than one LFDs (see the simple example shown in Fig. 1)
is more complicated. Clearly, one option is for each LFD
to just implement its own version of the recurrent equation
(10), by using the measurementy

(sJ )
J , the local modelf (sJ )

J

and the componentŝg(sJ )J of the adaptive interconnection
approximator. Instead, in order to take advantage of the
redundancy introduced by the overlap and motivated by the
encouraging practical results shown in [16], in this paper we
use a deterministic consensus scheme between the LFDs inOs

so that their FDAEs cooperate towards the estimation of the
shared state variablex(s). The proposed consensus protocol
leads to the following FDAE dynamic equation for the generic
I–th LFD, I ∈ Os:

x̂
(sI )
I,0 (t+ 1) = λ(x̂

(sI )
I,0 (t)− y

(sI )
I (t))

+W (I,I)
s [f

(sI)
I (yI(t), uI(t))+ ĝ

(sI )
I (yI(t), vI(t), uI(t), ϑ̂I,0)]

+ λ
∑

J∈Os\{I}

W (I,J)
s

[

x̂
(sJ )
J,0 (t)− x̂

(sI )
I,0 (t)

]

+
∑

J∈Os\{I}

W (I,J)
s [f

(sJ )
J (yJ (t), uJ(t))

+ ĝ
(sJ )
J (yJ (t), vJ (t), uJ(t), ϑ̂J,0)] , (11)

where the additional terms with respect to (10) appearing
in the second line smooth out the difference between the
various estimate of the shared variable, and those in the third
line average the various local functions and approximated
interconnection functions. It is of customary importance to
note that, in order to implement (11), the LFDLI does not
need the information about the expressions off

(sJ )
J and of

ĝ
(sJ )
J ; instead, it suffices thatLJ , J ∈ Os, computeslocally

the termf
(sJ )
J + ĝ

(sJ )
J and communicates it to the other LFDs,

according to a suitable communication graphGs, alongside
its actual state estimatêx(sJ )

J,0 . Specifically, for the sake of
generality, we assume to have a generic communication graph
Gs , (Os, Es), that may include the all-to-all communication
as a special case. Bearing this in mind, (11) can be rewritten
in more compact form as

x̂
(sI )
I,0 (t+ 1) = λ{x̂

(sI )
I,0 (t)− y

(sI)
I (t)

+
∑

J∈Os

W (I,J)
s [ x̂

(sJ )
J,0 (t)− x̂

(sI )
I,0 (t) ]}

+
∑

J∈Os

W (I,J)
s [f

(sJ )
J (yJ (t), uJ(t))

+ ĝ
(sJ )
J (yJ (t), vJ (t), uJ(t), ϑ̂J,0)] . (12)

The termWs = [W
(I,J)
s ] is a weighted adjacency matrix

reflecting the way the various LFDs estimating the same shared
variable x(s) communicate with each other. In this work,
only doubly-stochastic adjacency matricesWs ∈ R

Ns×Ns are
considered [41]. For example, we may consider theMetropolis
adjacency matrices [42], [43] defined as

W (I,J)
s ,











0 , if (I, J) /∈ Es
1/(1 + max{d

(I)
s , d

(J)
s }) , if (I, J) ∈ Es, I 6= J

1−
∑

K 6=I W
(I,K)
s , if I = J

(13)
whered(I)s is the degree of theI–th node inGs.

Remark 2:Requiring the matrixWs to be doubly stochastic
is a standard assumption in many problems of distributed
control and estimation. As previously said, there exist simple
weights selection schemes such as the Metropolis or the
Maximum-degree[42] that guarantee double-stochasticity. Fur-
ther details on existence conditions for doubly stochasticad-
jacency matrices, which arguments are based on the Birkhoff-
von Neumann theorem, can be found in [44].

Before the occurrence of a fault (i.e., fort < T0), the
dynamics of the LFD estimation error componentǫ

(sI)
I,0 can

be written as

ǫ
(sI)
I,0 (t+ 1) = λ{ ǫ

(sI )
I,0 (t)

+
∑

J∈Os

W (I,J)
s [ ǫ

(sJ )
J,0 (t)− ǫ

(sI)
I,0 (t) + ξ

(sI)
I (t)− ξ

(sJ )
J (t) ] }

+
∑

J∈Os

W (I,J)
s [ f

(sJ )
J (xJ (t), uJ(t))− f

(sJ )
J (yJ(t), uJ(t))

g
(sJ )
J (t)− ĝ

(sJ )
J (t) ] + ξ

(sI)
I (t+ 1) .

Since
∑

I 6=J W
(I,J)
s = 1−W

(I,I)
s by assumption, the estima-

tion error dynamics satisfies

ǫ
(sI)
I,0 (t+1) =

∑

J∈Os

W (I,J)
s {λ[ǫ

(sJ )
J,0 (t)−ξ

(sJ )
J (t)]+∆f

(sJ )
J (t)

+ ∆g
(sJ )
J (t) }+ λξ

(sI )
I (t) + ξ

(sI )
I (t+ 1) , (14)

where the following scalar quantities are defined∆f
(sJ )
J (t) ,

f
(sJ )
J (xJ (t), uJ(t)) − f

(sJ )
J (yJ(t), uJ (t)) , ∆g

(sJ )
J (t) ,

g
(sJ )
J (xJ (t), zJ(t), uJ (t)) − ĝ

(sJ )
J (yJ(t), vJ (t), uJ (t), ϑ̂I,0) .

Accordingly, the vectors∆fI and ∆gI are defined as
∆fI(t) , fI(xI(t), uI(t)) − fI(yI(t), uI(t)) and ∆gI(t) ,
gI(xI(t), zI(t), uI(t))− ĝI(yI(t), vI(t), uI(t), ϑ̂I,0) .

It is worth noting that, in general, the functions∆fI(t)
and ∆gI(t) take on non-zero values due to several factors,
including measurement errors onxI , the measurement errors
of neighbouring LFDs, and the uncertainty in the intercon-
nection functiongI itself. Although the aim of the adaptive
approximator̂gI is to learn the uncertain functiongI , generally
it cannot be expected to match the actual termgI even if
the weights of the adaptive approximator could be optimally
selected. This may be formalized by introducing anoptimal
weight vectorϑ̂∗

I,0 [45]

ϑ̂∗
I,0 , arg min

ϑ̂I,0∈ΘI,0

sup
xI ,zI ,uI

‖gI(xI , zI , uI)

− ĝI(xI , zI , uI , ϑ̂I,0)‖ ,

with xI, zI , uI taking values in their respective domains. This
leads to the definition of theMinimum Functional Approxi-
mation Error (MFAE) νI , which describes the least possible
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approximation error that can be achieved at the discrete-time
instantt if ϑ̂I,0 = ϑ̂∗

I,0:

νI(t) , gI(xI(t), zI(t), uI(t))− ĝI(xI(t), zI(t), uI(t), ϑ̂
∗
I,0) .

By introducing theparameter estimation error̃ϑI,0 , ϑ̂∗
I,0 −

ϑ̂I,0 and the following function

∆ĝI(t) , ĝI(xI(t), zI(t), uI(t), ϑ̂I,0)

− ĝI(yI(t), vI(t), uI(t), ϑ̂I,0) ,

it turns out that∆gI(t) can be written as∆gI(t) = HI,0ϑ̃I,0+
νI(t) + ∆ĝI(t) .

By using (14), the dynamics of the LFD estimation error
componentǫ(sI )I,0 before the occurrence of a fault (i.e.,t < T0)
can be written as

ǫ
(sI)
I,0 (t+ 1) =

∑

J∈Os

W (I,J)
s

[

λǫ
(sJ )
J,0 (t) + χ

(sJ )
J (t)

]

+ λξ
(sI )
I (t) + ξ

(sI)
I (t+ 1) , (15)

where we introduced the followingtotal uncertaintyterm

χ
(sI)
I (t) , ∆f

(sI)
I (t)− λξ

(sI )
I (t) + ∆g

(sI )
I (t) .

In order to analyze the behavior ofǫ(sI)I,0 (t) and define the

thresholdǭ(sI)I,0 (t) (see (6)), it is convenient to introduce the
following vectors related to the detection estimator of allthe
LFDs sharing the variablex(s): ǫs,0(t) , col(ǫ(sI )I,0 , I ∈ Os) ,

χs(t) , col(χ(sI )
I , I ∈ Os) , and ξs(t) , col(ξ(sI )I , I ∈ Os) .

The FDAE estimation error dynamics of all the LFDs inOs

can then be written in a more useful and compact form:

ǫs,0(t+1) = Ws [λǫs,0(t) + χs(t)]+λξs(t)+ξs(t+1) . (16)

Since λ < 1 and Ws is a doubly stochastic matrix, all its
eigenvalues are within the unitary circle. Then, it followsthat
(16) represents the dynamics of a stable LTI discrete–time
system. The solution of (16) is

ǫs,0(t) =Ws{λ[
t−2
∑

h=0

(λWs)
t−2−h(Wsχs(h) + λξs(h)

+ ξs(h+ 1)) + λt−1W t−1
s ǫs,0(0)] + χs(t− 1)}

+ λξs(t− 1) + ξs(t) , (17)

so that, component-wise, it becomes

ǫ
(sI)
I,0 (t) ≡ ǫ

(I)
s,0(t) = w⊤

s,I{λ[
t−2
∑

h=0

(λWs)
t−2−h

(Wsχs(h)

+ λt−1W t−1
s ǫs,0(0) + λξs(h) + ξs(h+ 1))

+ χs(t− 1)}+ λξs(t− 1) + ξ(I)s (t) , (18)

wherew⊤
s,I is a vector containing theI–th row of matrixWs.

Now, a threshold on the estimation error that guarantees no
false–positive fault detections fort < T0 is proposed. The
absolute value of the estimation error fort < T0 can be upper
bounded by using the triangular inequality as follows:

|ǫ
(sI )
I,0 (t+ 1)| ≤

∑

J∈Os

W (I,J)
s [λ|ǫ

(sJ )
J,0 (t)|+ χ̄

(sJ )
J (t)]

+ λξ̄
(sI )
I (t) + ξ̄

(sI )
I (t+ 1) , (19)

where (upper bound on the total uncertainty term)8

χ̄
(sJ )
J (t) , max

ξJ
|∆f

(sJ )
J (t)|+ ‖HJ,0‖κJ,0(ϑ̂J,0) + ν̄J (t)

+ λξ̄
(sJ )
J (t) + max

ξJ
max
ζJ
|∆ĝJ(t)| ,

with the functionκJ,0 being such that9 κJ,0(ϑ̂J,0) ≥ ‖ϑ̃J,0‖.
By taking the absolute value component-wise so that
|ǫs,0| ≡ col(|ǫ(sI )I,0 | : I ∈ Os), the inequalities (19), can be
written as

|ǫs,0(t+ 1)| ≤Ws [λ|ǫs,0(t)|+ χ̄s(t)] + λξ̄s(t) + ξ̄s(t+ 1) .

Using the Comparison Lemma [46], the absolute value of
each component ofǫs can be bounded by the corresponding
component ofǭs, defined as the solution of the following
equation

ǭs(t+ 1) = Ws [λǭs(t) + χ̄s(t)] + λξ̄s(t) + ξ̄s(t+ 1) , (20)

with initial conditions ǭs(0) , col(ξ̄(sI )I (0) : I ∈ Os) . It is
worth noting that the adaptive threshold defined in (20) can be
easily implemented by any LFD inOs by means of a linear
discrete-time first-order filter driven by a suitable input (see
[21] in the continuous-time case).

B. Faulty behavior and Fault Detectability

In this subsection, the behavior of the DFDI algorithm in the
presence of a fault and its detection capabilities is investigated.
Assume that at the discrete-time instantt = T0 a fault φ
occurs. Let

φs(x,u) = col (φ(s)(x,u), s = 1, . . . ,n) (21)

with φ(s) denoting the component of the fault function affect-
ing thes-th state equation of the monolithic system (see (1)).
After the occurrence of the fault, fort ≥ T0, the estimation
error dynamics for a shared state variablex(s) given by (16)
becomes

ǫs,0(t+ 1) = Ws [λǫs,0(t) + χs(t)] + (1− b−(t−T0))φs(t)

+ λξs(t) + ξs(t+ 1) , (22)

whereφs(t) ∈ R
Ns is a vector whose components are all equal

to φ(s). The following theorem gives a sufficient condition
for the estimation error to cross its corresponding threshold in
finite time, thus allowing the fault to be detected by theI-th
LFD. Therefore, it characterizes the class of faults that can be
detected by the proposed scheme, given the bounds available
on the unknown functions.

Theorem 1 (Local Fault Detectability):Given a subsystem
SI , if there exists a discrete-time instantt1 > T0 such that
the faultφI satisfies the inequality
∣

∣

∣

∣

∣

t1−1
∑

h=T0

λt1−1−h(1− b−(h−T0))φ
(sI )
I (h)

∣

∣

∣

∣

∣

> 2ǭ
(sI)
I,0 (t1) , (23)

for at least one componentsI ∈ {1, . . . , nI}, then the fault
is detected at the discrete-time instantt1, that is |ǫ(sI)I,0 (t1)| >

ǭ
(sI)
I,0 (t1).

8The notationmaxξJ is short formax
ξJ∈RξJ

.
9As ΘJ,0 is a compact the functionκJ,0 can always be defined.
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Proof: At the discrete-time instantt1 > T0, by using (17)
and (21), the estimation error vectorǫs,0 can be written as

ǫs,0(t) =

t−1
∑

h=0

(λWs)
t−1−h

[Wsχs(h) +λξs(h) + ξs(h+1)

+ (1− b−(h−T0))φs(h) ] + λt(Ws)
tǫs,0(0) . (24)

By applying the same expansion as in equations (17)
and (18), the solution for the estimation error for thesI–th
component of theI–th subsystem can be written as10

ǫ
(sI)
I,0 (t1) = w⊤

s,I{λ[
t1−2
∑

h=0

(λWs)
t1−2−h(Wsχs(h)

+ λξs(h) + ξs(h+ 1)) + λt1−1W t1−1
s ǫs,0(0)] + χs(t1 − 1)}

+λξ(I)s (t1−1)+ξ(I)s (t1)+

t1−1
∑

h=T0

λt1−1−h(1−b−(h−T0))φ
(sI )
I (h) .

Using the triangle inequality, we obtain

|ǫ
(sI)
I,0 (t1)| ≥ −|w

⊤
s,Iλ

t1−2
∑

h=0

(λWs)
t1−2−h(Wsχs(h)+λξs(h)

+ ξs(h+ 1))| − |λt1w⊤
s,IW

t1−1
s ǫs,0(0)| − |w

⊤
s,Iχs(t1 − 1)|

−|λξs(t1)|−|ξs(t1)|+|
t1−1
∑

h=T0

λt1−1−h(1−b−(h−T0))φ
(sI )
I (h)| .

The threshold can be written as

ǭ
(sI)
I,0 (t1) = w⊤

s,I{λ[
t1−2
∑

h=0

(λWs)
t1−2−h(Wsχ̄s(h) + λξ̄s(h)

+ ξ̄s(h+ 1)) + λt1−1W t1−1
s ǭs,0(0)] + χ̄s(t1 − 1)}

+ λξ̄(I)s (t1 − 1) + ξ̄(I)s (t1) .

Now, from the definition of the threshold̄ǫ(sI)I,0 in Subsec-
tion IV-A, it follows that the last inequality is implied by

|ǫ
(sI)
I,0 (t1)| ≥ −ǭ

(sI)
I,0 (t1)+|

t1−1
∑

h=T0

λt1−1−h(1−b−(h−T0))φ
(sI )
I (h)| ,

so that the fault detection condition|ǫ(sI)I,0 (t1)| ≥ ǭ
(sI )
I,0 (t1) is

implied by the theorem hypothesis.
Remark 3:Theorem 1 provides a (possibly conservative)

sufficient condition for fault detectability: if at some discrete-
time instantt > T0 at least one subsystem shows a non-empty
local detection signatureSI,0(t), then this would cause the
GFD to be alerted by the corresponding LFD. In qualitative
and rough terms, the inequality on the left-hand side of (23)
characterizes the relative "magnitude" of the effect of thefault
versus the upper bound on the unknown functions quantified
by the right-hand side of (23). It is also worth noting that be
easily made specific to the case of non–shared variables.

10As Ws is doubly stochastic and all the components ofφs are equal to
φ(s), it holds (Ws)hφs = φs for all h.

V. D ISTRIBUTED FAULT ISOLATION

A. Formulation of the distributed fault isolation problem
For isolation purposes, it is assumed that the fault function

φ may either be unknown or belong to a known global fault
setF

F , {φ
1
(x,u), . . . ,φNF

(x,u)} .

In general, not all the subsystems are affected by a given
fault functionφl , but only those in the correspondingfault
influence setUl. For eachl–th fault,Ul contains the indexes
of all the subsystemsSI that, after the decompositionD, are
assigned at least a global state componentx(s) for which the
fault function φl is non–zero for at least one discrete-time
instant, as defined below.

Definition 15: The fault influence setUl for the l–th fault
functionφl is the index set

Ul , {I : ∃t, ∃s, s ∈ II , φ
(s)
l (x(t),u(t)) 6= 0} . (25)

For each subsystemSI , a local fault setFI (defined below)
can be built with the local fault functions obtained by all the
global faultsφl such thatI ∈ Ul:

FI , {φI,1(xI , zI , uI), . . . , φI,NFI
(xI , zI , uI)} .

Notice that the local fault functions depend only on the local
variablesxI , zI anduI (see Assumption (1)). The global index
l and the local indexlI of a fault are related by a mapping
ςI : {1, . . . , NFI

} 7→ {1, . . . ,NF}, so thatl = ςI(lI). This
means that, for all the subsystemsSI so thatI ∈ Ul, for the
generic components ∈ II of a global fault function it holds
thatφ(s)

l (x,u) ≡ φ
(sI )
I,lI

(xI , zI , uI), with s = σI(sI) .
The concept of the fault influence sets naturally leads to a

subdivision of the faults into two categories, depending upon
their topology:local faults, whose influence set is a singleton,
anddistributed faults, whose influence set includes more than
one subsystem. Now, these categories are illustrated in the
context of the same simple example of Fig. 1.

1) Local Fault: The simplest situation is exemplified in
Figure 3a. The structure of the faultφ

1
is enhanced: dashed

arcs represent part of the healthy dynamics changed by the
fault, and filled nodes represent variables affected by the fault.
As can be seen, the arc 1 is faulty so that the dynamics
of the variablesx(1) and x(3) are affected, thus leading to
the fault influence set beingU1 = {1}. This implies that
only the local detection signatureS1,0 (see (8)) may become
non-empty as this fault affects only variables "internal" to
subsystemS1 that are not shared by any other subsystems.
More precisely, if the first LFD detects a fault at a discrete-
time instantT1,d, then the local detection signature satisfies
S1,0(T1,d) 6= ∅, S1,0(T1,d) ⊆ {1, . . . , n1}. Furthermore, the
fundamental detection signature (see (25)) isS(T1,d) = {1}.
These faults are referred to aslocal faults.

2) Distributed fault, non-overlapping signature:As shown
in Fig. 3b, a more general situation arises when links and
variables in more than one subsystem are affected by the
same single fault,φ

2
, for which it holdsU2 = {2, 3}. This

means that, if all LFDs detect a fault at discrete-time instants
TI,d, I = 2, 3, thenSI,0(TI,d) 6= ∅, SI,0(TI,d) ⊆ {1, . . . , nI}
andS(t̄) = {2, 3}, ∀t̄ ≥ max{TI,d, I = 2, 3}. Furthermore,
since there are no shared variables, the local detection signa-
tures are such that

⋂

I∈{1,...,N} σI(SI,0(t)) = ∅, ∀t.
3) Distributed fault, overlapping signature:A different

situation is shown in Fig. 3c where links and variables in more
than one subsystem are affected by the same single faultφ

3
,

with U3 = {1, 2, 3} but, now, shared variables are involved.
Specifically, this means that ifTI,d, I = 1, 2, 3, are the local
fault detection times of all the LFDs, thenSI,0(TI,d) 6=
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∅, SI,0(TI,d) ⊆ {1, . . . , nI} and S(t̄) = {1, 2, 3}, ∀t̄ ≥
max{TI,d, I = 1, 2, 3} and there may exist̃t ≥ min{TI,d, I =
1, 2, 3} such that

⋂

I∈{1,...,N} σI(SI,0(t)) 6= ∅, ∀t ≥ t̃.
In cases 2) and 3) above, without loss of generality, we

considered the situation where all LFDs detect a fault at some
finite time. The case where not all LFDs are able to detect a
fault can be addressed in an analogous way.

In qualitative and quite rough terms, in this paper, we
assume that the genericI–th LFD has access only to the
knowledge of the local fault setFI . Furthermore, theI–th
LFD is not informed about the fault influence sets of the global
faults corresponding to the local fault functions belonging to
FI . As a consequence, theI–th LFD may only be able to
detect and isolate the "local part" of a fault that influences
the subsystemSI", but it has not enough information to
discern whether the isolated local part correspond to a local
fault, or it is just caused by a "larger" distributed fault.
This ambiguity is overcome by the third layer (see Fig. 2),
consisting of the global fault diagnoserL , which is assumed
to have information about the global fault setF and the fault
influence sets of all the global fault functions. By exploiting
this knowledge and the local fault decisionsdFD

I gathered by
all the lower level LFDs, the GFD may be able to take a
correct global fault decisiondFD: a successful global isolation
of a fault by the GFD requires that all of the fault "local parts"
have beenlocally isolatedby the LFDs in its influence set. In
other words, while the goal of each LFD is to locally isolate
the local fault among the local fault functions belonging tothe
local fault set, the task of the GFD is to sort out which one of
the global faults has occurred, thus taking a global decision
about the health of the monolithic systemS .

B. Local fault isolation logic

After a fault has been detected at discrete-time instantTd

and the GFD informs every LFD to switch from the detection
to the isolation mode, the FDAE adaptive approximatorĝI(t)
of every LFD stops to learn the interconnection function, that
is ϑ̂I,0(t) = ϑ̂I,0(Td) , ∀ t ≥ Td, to prevent the interconnection
approximator from keeping on learning also the "influce" of
the fault functionφI on the interconnection term. At the same
time, each LFD enables its bank ofNFI

, I = 1, . . . , N , Fault
Isolation Estimators(FIEs) in order to implement a GOS
for the task of fault isolation, such as the one described in
[21]. This scheme relies on the genericl–th FIE of theI–th
LFD being matched to the corresponding fault functionφI,l,
belonging to the local fault setFI . Each fault function inFI

is assumed to be of the form

φI,l(xI(t), zI(t), uI(t)) = [(ϑI,l,1)
⊤HI,l,1(xI(t), zI(t),

uI(t)), . . . , (ϑI,l,nI
)⊤HI,l,nI

(xI(t), zI(t), uI(t))]
⊤ , (26)

where, for k ∈ {1, . . . , nI}, l ∈ {1, . . . , NFI
}, the known

functionsHI,l,k : R
nI × R

pI × R
mI 7→ R

qI,l,k provide the
functional structure of the fault and theunknownparameter
vectorsϑI,l,k ∈ ΘI,l,k ⊂ R

qI,l,k provide its “magnitude”. For
the sake of simplicity and without much loss of generality, the
parameter domainsΘI,l,k are assumed to be origin–centered
hyper–spheres with radiusMΘI,l,k

.
After the genericl–th FIE estimator is enabled, withl ∈
{1, . . . , NFI

}, it monitors its subsystemSI , providing alocal
state estimatêxI,l of the local statexI , analogously to the
FDAE. The difference between the estimatex̂I,l and the
measurementsyI yields theestimation error ǫI,l , yI − x̂I,l

which, again, is used as a residual and compared, component
by component, with a suitabledetection threshold̄ǫI,l ∈ R

nI

+ .

The condition

|ǫ
(k)
I,l (t)| ≤ ǭ

(k)
I,l (t) ∀ k = 1, . . . , nI (27)

is associated to thel–th fault hypothesis

HI,l : "The subsystemSI is affected by thel–th fault",
(28)

with l = 1, . . . , NFI
. Should condition (27) be violated at

some discrete-time instantt, the hypothesisHI,l is falsified
and a so–calledlocal fault isolation signatureSI,l is generated.

Definition 16: The l–th local isolation signatureshown by
the subsystemSI , I ∈ {1, . . . , N}, l ∈ {1, . . . , NFI

} at
discrete-time instantt > 0 is the index set

SI,l(t) , {k ∈ {1, . . . , nI} : ∃ t1, t ≥ t1 > 0

such that|ǫ(k)I,l (t1)| > ǭ
(k)
I,l (t1)} . (29)

As soon as the hypothesisHI,l is falsified and the corre-
sponding isolation signatureSI,l(t) becomes non-empty, the
specific FIE stops its operation and the faultφI,l(t) is excluded
as a possible cause of thedetectionsignature. The first such
time instant is theexclusion timeTe,I,l.

Definition 17: Thel–th fault exclusion timeTe,I,l is defined
asTe,I,l , min{t : SI,l(t) 6= ∅}.

Ideally, the goal of the isolation logic is to exclude every
but one fault, whichmay be said to beisolated. To express
this in a formal way, the following definition is introduced.

Definition 18: A fault φI,p ∈ FI is locally isolated at
discrete-time instantt iff ∀l, l ∈ {1, . . . , NFI

}\{p} ,SI,l(t) 6=
∅ andSI,p(t) = ∅. FurthermoreTlocisol,I,p , max{Te,I,l, l ∈
{1, . . . , NFI

} \ {p}} is the local fault isolation time.
Remark 4:Again we should note that, if a fault has been

locally isolated, we can conclude that it actually occurredif
we assume a priori that only faults belonging to the setFI

may occur. Otherwise, it can only be concluded that it cannot
be excluded that it occurred.

C. Local fault isolation and Fault Isolation Estimators
Now, the FIEs are described in detail. After the faultφ(t)

has occurred, the state equation of thesI–th component of the
I–th subsystem becomes

x
(sI )
I (t+1) = f

(sI )
I (xI(t), uI(t))+g

(sI)
I (xI(t), zI(t), uI(t))

+ β(t − T0)φ
(s)(x(t), u(t)) .

The l–th FIE estimator dynamic equation for the most general
case of a distributed fault, with a shared variable, is defined
as

x̂
(sI )
I,l (t+1) = λ {x̂

(sI )
I,l (t)−y

(sI)
I (t)+

∑

J∈Os

W (I,J)
s [x̂

(sJ )
J,l (t)

− x̂
(sI )
I,l (t)] } +

∑

J∈Os

W (I,J)
s [f

(sJ )
J (yJ (t), uJ(t)) + ĝ

(sJ )
J (t)

+ φ̂
(sJ )
J,l (yJ(t), vJ (t), uJ (t), ϑ̂J,l)] , (30)

where φ̂
(sJ )
J,l (yJ(t), vJ (t), uJ(t), ϑ̂J,l) , (ϑ̂J,l,sJ )

⊤×
HJ,l,sJ (yJ (t), vJ (t), uJ(t)) is the sJ–th component
of a linearly-parameterized function that matches the
structure of the l–th fault function φJ,l, and the vector
ϑ̂J,l , col(ϑ̂J,l,k, k ∈ {1, . . . , nI}) has been introduced.

Analogously to the FDAE case, the parameters vectors are
updated according to the learning law:

ϑ̂J,l,k(t+1) = PΘ̂J,l,k
(ϑ̂J,l,k(t)+γJ,l,k(t)H

⊤
J,l,k(t)rJ,l,k(t+1)) ,
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Figure 3. (a) A local fault: fort ≥ T1,d only the local detection signatureS1,0(t) of the first LFD is non empty, and the fundamental detection signature
is a singletonS(t) = {1}, t ≥ T1,d. (b) A distributed fault with non-overlapping signature:∀t̄ ≥ max{TI,d, I = 1, 2, 3} all the local detection signatures
SI,0(t̄) of the LFDs are non empty, and the fundamental detection signature is equal toS(t̄) = {1, 2, 3} (no shared variables appear in any of the local
detection signatures). (c) A distributed fault with overlapping signature:∀t̄ ≥ max{TI,d, I = 1, 2, 3} all the local detection signaturesSI,0(t̄) of the
LFDs are non empty, and the fundamental detection signatureis equal toS(t̄) = {1, 2, 3} (in this case, shared variables may appear in the local detection
signatures).

where rJ,l,k(t+1) = ǫJ,l,k(t+1)−λǫJ,l,k(t), andPΘ̂J,l,k
is

again a suitable projection operator

PΘ̂J,l,k
(ϑ̂J,l,k) ,







ϑ̂J,l,k if |ϑ̂J,l,k| ≤MΘ̂J,l,k
MΘ̂J,l,k

|ϑ̂J,l,k|
ϑ̂J,l,k if |ϑ̂J,l,k| > MΘ̂J,l,k

.

The learning rateγJ,l,k(t) is computed at each step as
γJ,l,k(t) , µJ,l,k/(εJ,l,k + ‖H⊤

J,l,k(t)‖
2) , with εJ,l,k >

0, 0 < µJ,l,k < 2 . The corresponding estimation error
dynamic equation is

ǫ
(sI)
I,l (t+ 1) = λ {ǫ

(sI)
I,l (t) +

∑

J∈Os

W (I,J)
s [ǫ

(sJ )
J,l (t)− ǫ

(sI )
I,l (t)

+ ξ
(sI)
I (t)− ξ

(sJ )
J (t)]}+

∑

J∈Os

W (I,J)
s [∆f

(sJ )
J (T )+∆g

(sJ )
J (t)

+ (1− b−(t−T0))φ(s)(t)− φ̂
(sJ )
J,l (t)] + ξ

(sI )
I (t+ 1) ,

which implies

ǫ
(sI)
I,l (t+ 1) =

∑

J∈Os

W (I,J)
s [λǫ

(sJ )
J,l (t) + χ

(sJ )
J (t)

+ (1− b−(t−T0))φ(s)(t)− φ̂
(sJ )
J,l (t)] + λξ

(sI )
I (t)

+ ξ
(sI )
I (t+ 1) .

Now, considering a matched fault (that is,φ(s)(t) = φ
(sJ )
J,l ,

∀ J ∈ Os), the error equation can be written as

ǫ
(sI)
I,l (t+ 1) =

∑

J∈Os

W (I,J)
s [λǫ

(sJ )
J,l (t) + χ

(sJ )
J (t)

+ (1− b−(t−T0))(HJ,l,sJ (t)
⊤ϑJ,l,sJ +∆H⊤

J,l,sJ
ϑJ,l,sJ )

−HJ,l,sJ (t)
⊤ϑ̂J,l,sJ ] + λξ

(sI )
I (t) + ξ

(sI )
I (t+ 1) ,

where ∆H⊤
J,l,sJ

(t) , HJ,l,sJ (xJ (t), zJ(t), uJ (t)) −
HJ,l,sJ (yJ(t), vJ (t), uJ(t)) . By introducing the parameter
estimation errors̃ϑJ,l,sJ , ϑJ,l,sJ−ϑ̂J,l,sJ , the FIE estimation

error equation for a matched fault becomes

ǫ
(sI)
I,l (t+ 1) =

∑

J∈Os

W (I,J)
s [λǫ

(sJ )
J,l (t) + χ

(sJ )
J (t)

+ (1− b−(t−T0))HJ,l,sJ (t)
⊤ϑ̃J,l,sJ

+ (1 − b−(t−T0))∆HJ,l,sJ (t)
⊤ϑJ,l,sJ

− b−(t−T0)HJ,l,sJ (t)
⊤ϑ̂J,l,sJ ] + λξ

(sI )
I (t) + ξ

(sI)
I (t+ 1) ,

so that its absolute value can be bounded by a threshold that
is solution of the following equation

ǭ
(sI)
I,l (t+ 1) =

∑

J∈Os

W (I,J)
s [λǭ

(sJ )
J,l (t)

+ χ̄
(sJ )
J (t) + ‖HJ,l,sJ (t)‖κJ,l,sJ (ϑ̂J,l,sJ )

+ ∆̄HJ,l,sJ (t)ϑ̄J,l,sJ − b̄−(t−Td)‖HJ,l,sJ (t)‖ ‖ϑ̂J,l,sJ‖]

+ λξ̄
(sI )
I (t) + ξ̄

(sI)
I (t+ 1) .

As in Subsection IV-A, the error and threshold solutions canbe
conveniently expressed in vector formǫs,l(t) , col(ǫ(sI )I,l , I ∈

Os) , ǭs,l(t) , col(ǭ(sI )I,l , I ∈ Os) , so that it holds

ǫs,l(t+ 1) = Ws

× [λǫs,l(t) + χs(t) + col((1− b−(t−T0))HI,l,sI (t)
⊤ϑ̃I,l,sI

+ (1− b−(t−T0))∆HI,l,sI (t)
⊤ϑI,l,sI

− b−(t−T0)HI,l,sI (t)
⊤ϑ̂I,l,sI )] + λξs(t) + ξs(t+ 1) ,

ǫs,l(t) =

t−1
∑

h=Td

(λWs)
t−1−hWs

× [χs(h) + col((1 − b−(h−T0))HI,l,sI (h)
⊤ϑ̃I,l,sI

+ (1 − b−(h−T0))∆HI,l,sI (h)
⊤ϑI,l,sI

− b−(h−T0)HI,l,sI (h)
⊤ϑ̂I,l,sI )]

+

t−1
∑

h=Td

[(λWs)
t−1−h(λξs(h)+ξs(h+1))]+(λWs)

t−Tdǫs,l(Td) .
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Componentwise, the estimation error is given by

ǫ
(sI)
I,l (t) = ws,I

t−1
∑

h=Td

(λWs)
t−1−h

× [χs(h) + col((1− b−(h−T0))HI,l,sI (h)
⊤ϑ̃I,l,sI

+ (1− b−(h−T0))∆HI,l,sI (h)
⊤ϑI,l,sI

− b−(h−T0)HI,l,sI (h)
⊤ϑ̂I,l,sI )]

+ λws,I

t−2
∑

h=Td

[(λWs)
t−2−h(λξs(h) + ξs(h+ 1))]

+ λξ
(sI )
I (t− 1) + ξ

(sI)
I (t) + λws,I(λWs)

t−1−Tdǫs,l(Td) ,

and, analogously, the threshold solution is given by

ǭ
(sI)
I,l (t) = ws,I

t−1
∑

h=Td

(λWs)
t−1−h

× [χ̄s(t)+col(‖HI,l,sI (t)‖κI,l,sI (ϑ̂I,l,sI )+∆̄HI,l,sI (t)ϑ̄I,l,sI

− b̄−(t−Td)‖HI,l,sI (t)‖ ‖ϑ̂I,l,sI‖)]

+ λws,I

t−2
∑

h=Td

[(λWs)
t−2−h(λξ̄s(t) + ξ̄s(t+ 1))]

+ λξ̄
(sI )
I (t− 1) + ξ̄

(sI)
I (t) + λws,I(λWs)

t−1−Td ǭs,l(Td) .

This threshold guarantees by definition that no matched fault is
excluded because of uncertainties or the effect of the parameter
estimation error̃ϑI,l,sI .

In the case of a non–matched fault (that is,
φ
(sI )
I (xI(t), zI(t), uI(t)) = φ

(sI )
I,p (xI(t), zI(t), uI(t), ϑI,p)

for some I ∈ Os and with p 6= l), the dynamics of the
sI–component of the estimation error of thel–th FIE of the
I–th LFD can be written as

ǫ
(sI)
I,l (t+ 1) =

∑

J∈Os

W (I,J)
s [λǫ

(sJ )
J,l (t) + χ

(sJ )
J (t)

+ (1− b−(t−T0))φ
(sI )
I,p (xI(t), zI(t), uI(t), ϑI,p)

− φ̂
(sJ )
J,l (yJ(t), vJ (t), uJ (t), ϑ̂J,l)]+λξ

(sI )
I (t)+ξ

(sI )
I (t+1) .

As shown before, a convenient way to study the behavior of
the estimation error of the LFDs sharing the variablex(s) is
to consider the vectorǫs,l, given by the dynamic equation

ǫs,l(t+ 1) = Ws [λǫs,l(t) + χs(t) + ∆s,lφs,p(t)] +

λξs(t) + ξs(t+ 1) ,

where the followingmismatch vectorwas introduced

∆s,lφs,p(t) , col((1 − b−(t−T0))φ
(sI )
I,p (t), I ∈ Os)− φ̂s,l(t) .

The solution can then be written as

ǫs,l(t) =

t−1
∑

h=Td

(λWs)
t−1−hWs [χs(h) + ∆s,lφs,p(h)]

+

t−1
∑

h=Td

[(λWs)
t−1−h(λξs(h)+ξs(h+1))]+(λWs)

t−Tdǫs,l(Td) ,

and componentwise is described by

ǫ
(sI)
I,l (t) = ws,I

t−1
∑

h=Td

(λWs)
t−1−h[χs(h) + ∆s,lφs,p(h)]

+ λws,I

t−2
∑

h=Td

[(λWs)
t−2−h(λξs(h) + ξs(h+ 1))]

+ λξ
(sI )
I (t− 1) + ξ

(sI )
I (t) + λws,I(λWs)

t−1−Tdǫs,l(Td) .

Now, owing to the introduction of the above fault mismatch
vector, the following important sufficient condition forfault
isolability can be proved.

Theorem 2 (Local Fault Isolability):Given a faultφI,p ∈
FI , if for each l ∈ {1, . . . , NFI

} \ {p} there exists some
discrete-time instantTl > Td and somesI ∈ {1, . . . , nI}
such that

|ws,I

Tl−1
∑

h=Td

(λWs)
Tl−1−h∆s,lφs,p(h)| >

ws,I

Tl−1
∑

h=Td

(λWs)
Tl−1−h[χ̄s(h)+col(‖HI,l,sI (Tl)‖κI,l,sI (ϑ̂I,l,sI )

+ ∆̄HI,l,sI (Tl)ϑ̄I,l,sI − b̄−(Tl−Td)‖HI,l,sI (Tl)‖ ‖ϑ̂I,l,sI‖,

I ∈ Os)]+2 {λws,I

Tl−2
∑

h=Td

[(λWs)
Tl−2−h(λξ̄s(Tl)+ξ̄s(Tl+1))]

+λξ̄
(sI )
I (Tl−1)+ξ̄

(sI)
I (Tl)+λws,I(λWs)

Tl−1−Td ǭs,l(Td)} ,

then, thep–th fault is isolated. Furthermore, the local isolation
time is upper-bounded by max

l∈{1,...,NFI
}\{p}

Tl .

Proof: By using the triangle inequality, the absolute value
of the sI–th component of thel–th FIE of the I–th LFD
estimation error is lower-bounded fort > Td by

|ǫ
(sI)
I,l (t)| ≥ |ws,I

t−1
∑

h=Td

(λWs)
t−1−h∆s,lφs,p(h)|

− |ws,I

t−1
∑

h=Td

(λWs)
t−1−hχs(h)|

− |λws,I

t−2
∑

h=Td

[(λWs)
t−2−h(λξs(h) + ξs(h+ 1))]|

− |λξ(I)s (t− 1)|− |ξ(I)s (t)|− |λws,I(λWs)
t−1−Tdǫs,l(Td)| .

Using the known bounds onγs and ξs and the fact that the
l–th fault cannot already be excluded at timeTd because of
the way its threshold has been defined, we have

|ǫ
(sI)
I,l (t)| ≥ |ws,I

t−1
∑

h=Td

(λWs)
t−1−h∆s,lφs,p(h)|

− ws,I

t−1
∑

h=Td

(λWs)
t−1−hχ̄s(h)

− λws,I

t−2
∑

h=Td

[(λWs)
t−2−h(λξ̄s(h) + ξ̄s(h+ 1))]

− λξ̄(I)s (t− 1)| − ξ̄(I)s (t)− λws,I(λWs)
t−1−Td ǭs,l(Td) .
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In order for thel–th fault to be excluded, the inequality
|ǫ
(sI)
I,l (t)| > ǭ

(sI )
I,l (t) must be satisfied. This translates to the

following further inequality

|ws,I

t−1
∑

h=Td

(λWs)
t−1−h∆s,lφs,p(h)| ≥

ǭI,l(t) + ws,I

t−1
∑

h=Td

(λWs)
t−1−hχ̄s(h)

+ λws,I

t−2
∑

h=Td

[(λWs)
t−2−h(λξ̄s(h) + ξ̄s(h+ 1))]

+ λξ̄(I)s (t− 1)|+ ξ̄(I)s (t) + λws,I(λWs)
t−1−Td ǭs,l(Td) ,

which is implied by the inequality in the hypothesis of the
present theorem. Should the inequality hold for every fault
function ofFI but thep–th, then this fault is locally isolated
in the sense of Definition 18.

D. Global fault isolation logic
As discussed earlier, in the proposed DFDI setting a distinc-

tion should be drawn on the way local and distributed faults
are isolated. If a fault is local, then having the corresponding
LFD exclude every but that fault is sufficient for declaring it
isolated. However, for distributed faults, the isolation needs
that all the LFDs, in the influence set of that fault11, exclude
all other faults. The following formalizes the conditions for a
fault, local or distributed, to be globally isolated:

Definition 19: A fault φl ∈ F is globally isolatedif for
eachJ-th LFD in the fault influence setUl, the corresponding
local functions φJ,lJ have been isolated, withJ ∈ Ul.
FurthermoreTisol,l , max{Tlocisol,J,lJ , J ∈ Ul} is theglobal
fault isolation time.

In practice, the global isolation task is carried out by the
GFD, by using the fault influence sets of all the global faultsin
F , and the LFDs local fault decisions. The GFD isolation logic
is detailed in Algorithm 1. In the algorithm,global isolation
is a boolean variable that is true only when a fault has
been successfully globally isolated, whileisolated fault is
the global index of the isolated fault. It is assumed that each
LFD sends a fault decision message to the GFD both when
it excludes and when it isolates a fault, so that two kinds of
message are possible:excludedandisolated. Clearly, in case of
a fault not belonging to the a-priori known fault set, a locally
isolated fault may still be excluded at a later discrete-time
instant by its LFD.

VI. SIMULATION RESULTS

Re-consider the monolithic system depicted in Fig. 1a (the
square labels refer to the pipes number) and decomposed into
three overlapping subsystems, according to the decomposition
D = {S1,S2,S3}, with index setsI1 = [1 2 3 4 5]⊤,
I2 = [4 5 6 7]⊤ and I3 = [5 8 9 10 11]⊤. The tank
states number 4 and 5 are shared, and the corresponding
overlap index sets areO4 = {1, 2} andO5 = {2, 3}. Three
pumps are present, feeding the first, seventh and eleventh tank
with the following flows: u1 = 1.25 + 0.25 · sin (0.05 · t),
u2 = 1.9−1 · sin (0.005 · t) andu3 = 1.3+0.6 ·cos (0.03 · t).
The nominal tank sections are set according to the following
vectorA = [ 1 0.5 1 1 2 2 1 1 0.5 0.5 0.5 ] m2, while the in-
terconnecting pipe cross-sections are nominally equal toAp =
[ 0.2 0.22 0.38 0.2 0.16 0.18 0.24 0.2 0.18 0.14 0.42 0.2 ] m2.

11The fault influence set was introduced in Def. 15.

Algorithm 1 Global fault isolation logic

while S = ∅ do
wait for a detection message

end while
notify every LFD to stop learning
notify every LFD to start isolation
global isolation← false
isolated fault← NULL
loop

wait for a local isolation message
p← global fault index corresponding to the fault locally
isolated or excluded
k ← kind of message
if k = excluded AND p = isolated fault then
global isolation← false
isolated fault← NULL

else
if φJ,pJ

locally isolated for eachJ such thatJ ∈ Up
then
global isolation← true
isolated fault← p

end if
end if

end loop

Furthermore, to each tank are connected drain pipes whose
nominal cross-section areAd = [ 0.025 0.0125 0.0225 0.0275
0.075 0.0375 0.025 0.03 0.01 0.0125 0.015 ] m2 . All the
pipes outflow coefficients are unitary. When building the local
modelsfI of each LFD, the actual cross-sections used are
affected by random uncertainties no larger than 5% and 8%
of the nominal values, respectively for the tanks and for the
pipes. The outflow coefficients are off by no more than 10%.
Furthermore the tank levels measurementsyI are affected
by measuring uncertaintiesξI whose components are upper
bounded byξ̄1 = [ 0.05 0.05 0.05 0.05 0.05 ] m, ξ̄2 =
[ 0.06 0.06 0.06 0.06 ] m, andξ̄3 = [ 0.04 0.04 0.04 0.04 0.04 ]
m.

In order to learn the interconnection functions of each
subsystem, that in this example account for the flows through
pipes crossing a subsystem boundary, each LFD is provided
with adaptive approximatorŝgI , implemented by RBF neural
networks having 3 neurons along the range of each input
dimension. The parameter domainsΘI were chosen to be
hyperspheres with radii equal to[ 2 3 2 ] · Ts, with Ts =
0.1 s being the sampling period. The learning rate auxiliary
coefficients for the interconnection adaptive approximators
were set toµ1,0 = 10−4, ε1,0 = 10−3, µ2,0 = 0.5 · 10−4,
ε2,0 = 10−3, µ3,0 = 0.5 · 10−4, ε3,0 = 10−3, while the filter
constants were all set toλ = 0.9, and the total uncertainties
were bounded bȳχ1 = [ 0.36 0.42 0.42 0.6 0.6 ] ·
Ts, χ̄2 = [ 0.36 0.48 0.42 0.3 ] · Ts, χ̄3 =
[ 0.6 0.6 0.42 0.72 0.54 ] ·Ts. The weighting matrices
for shared variables were

W4 =

[

0.8 0.2
0.2 0.8

]

, W5 =

[

0.6 0.2 0.2
0.2 0.6 0.2
0.2 0.2 0.6

]

.

This can be interpreted, for instance in the case of tank 5, as
each of the sharing LFD trusting its own estimate and model
three times more than the estimates of every other LFD in the
overlap set. Three faults were modelled:

1) Actuator fault in pump 1, 2 and 3: partial or full
shutdown of all the pumps modelled asu(i)

f = u(i)(1−

a(i)), whereuf represents the pumps flow in the faulty
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case and0 ≤ a(i) ≤ 1, i ∈ {1, 2, 3}.
2) Leakage in tank 4, 5 and 6:circular hole of unknown

radius0 ≤ ρ(i) ≤ A(i) in the tank bottom, so that the
outflow due to the leak isq(i)f = π(ρ(i))2

√

2gx(i)(t),
i ∈ {4, 5, 6}.

3) Breakdown of pipes 3 (tanks 3↔4) and 5 (tanks 4↔6):
partial or complete breakdown of those pipes, so that a
relative quota0 ≤ a

(i)
p ≤ 1, i ∈ {3, 5} of the water in

the pipes is drained out of the tanks instead of flowing
between them. This is equivalent to substituting the two
pipes with four additional drain pipes, one connected
to tank 3, two to tank 4 and one to tank 6.

All these cases represent distributed faults, the fault influence
sets beingU1 = U2 = {1, 2, 3}, U3 = {1, 2}. As can be easily
seen, the local fault diagnosers may experience the following
local signatures:

• LFD no. 1 can see as local only the breakdown of pump
1, or the leakage in tanks 4 and 5, or the effect on tanks
3 and 4 of the breakdown of pipe 3;

• LFD no. 2 can see as local only the breakdown of pump
2, or the leakage in tanks 4, 5 and 6, or the effect on
tanks 4 and 6 of the breakdown of pipe 5;

• LFD no. 3 can see as local only the breakdown of pump
3, or the leakage in tank 5.

The resulting fault setsFI are then:

F1 =
{

[col(ϑ1,1,1H1,1,1(t), 0, 0, 0, 0)]
⊤,

[col(0, 0, 0, ϑ1,2,4H1,2,4(t), ϑ1,2,5H1,2,5(t))]
⊤,

[col(0, 0, ϑ1,3,3H1,3,3(t), ϑ1,3,4H1,3,4(t), 0)]
⊤
}

,

where ϑ1,1,1 = a(1), H1,1,1(t) = − Ts

A(1) u
(1)
1 (t), ϑ1,2,4 =

π(ρ(4)), H1,2,4(t) = − Ts

A(4)

√

2gx
(4)
1 (t) , ϑ1,2,5 =

π(ρ(5)), H1,2,5(t) = − Ts

A(5)

√

2gx
(5)
1 (t) , ϑ1,3,3 = a

(3)
p ,

H1,3,3(t) = − Ts

A(3) a
(3)
p c

(3)
p A

(3)
p · (sign(x(4)

1 (t) − x
(3)
1 (t)) ·

√

2g|x
(4)
1 (t)− x

(3)
1 (t)| +

√

2gx
(3)
1 (t), ϑ1,3,4 = a

(3)
p ,

H1,3,4(t) = − Ts

A(4) a
(3)
p c

(3)
p A

(3)
p · (sign(x(3)

1 (t) − x
(4)
1 (t)) ·

√

2g|x
(3)
1 (t)− x

(4)
1 (t)|+

√

2gx
(4)
1 (t);

F2 =
{

[col(0, 0, 0, ϑ2,1,4H2,1,4(t))]
⊤,

[col(ϑ2,2,1H2,2,1(t), ϑ2,2,2H2,2,2(t), ϑ2,2,3H2,2,3(t), 0)]
⊤,

[col(ϑ2,3,1H2,3,1(t), 0, ϑ2,3,3H2,3,3(t), 0)]
⊤
}

,

where ϑ2,1,4 = a(2), H2,1,4(t) = − Ts

A(7) u
(1)
2 (t),

ϑ2,2,1 = π(ρ(4)), H2,2,1(t) = − Ts

A(4)

√

2gx
(1)
2 (t) ,

ϑ2,2,2 = π(ρ(5)), H2,2,2(t) = − Ts

A(5)

√

2gx
(2)
2 (t), ϑ2,2,3 =

π(ρ(6)), H2,2,3(t) = − Ts

A(6)

√

2gx
(3)
2 (t), ϑ2,3,1 = a

(5)
p ,

H2,3,1(t) = − Ts

A(4) a
(5)
p c

(5)
p A

(5)
p · (sign(x(3)

2 (t) − x
(1)
2 (t)) ·

√

2g|x
(3)
2 (t)− x

(1)
2 (t)| +

√

2gx
(1)
2 (t), ϑ2,3,3 = a

(5)
p ,

H2,3,3(t) = − Ts

A(6) a
(5)
p c

(5)
p A

(5)
p · (sign(x(1)

2 (t) − x
(3)
2 (t)) ·

√

2g|x
(1)
2 (t)− x

(3)
2 (t)|+

√

2gx
(3)
2 (t);

F3 =
{

[col(0, 0, 0, 0, ϑ3,1,5H3,1,5(t))]
⊤,

[col(ϑ3,2,1H3,2,1(t), 0, 0, 0, 0)]
⊤
}

,

where ϑ3,1,5 = a(3), H3,1,5(t) = − Ts

A(11) u
(1)
3 (t), ϑ3,2,1 =

π(ρ(5)), H3,2,1(t) = −
Ts

A(5)

√

2gx
(1)
3 (t).

Figs. 4–5 show the results of a simulation where atT0 =
750 s an incipient fault of the first kind begins to affect the
three pumps, reducing their efficiency by an amount equal,
respectively, to 25%, 35% and 20%, with a time constant
b = 1.05. For each LFD, the detection and isolation residuals
components of the three tanks that are directly fed by the
pumps, are plotted: tank 1 corresponds to the first local
component of subsystem 1, tank 7 to the fourth of subsystem 2,
and tank 11 to the fifth of subsystem 3. The sequence of events
leading from fault occurrence to fault detection and finallyto
fault isolation, is summarized in Table VI. A few seconds after
the fault occurrence time, the fault is detected by the FDAE
of the second LFD, as shown in Fig. 6(a). This results in the
second LFD sending a fault detection message to the GFD, that
thus computes a non-empty fundamental detection signature.
In response to this event, the GFD forces the remaining two
LFDs to stop the detection mode, and start the isolation mode
of operating. For this reason even if at later times the detection
residuals of LFDs number 1 and 3 are able to cross their
relative thresholds, these events do not correspond to a fault
detection, as the fault was already detected earlier by LFD no.
2. During the isolation mode, all the LFDs are eventually able
to reject the fault hypotheses no. 2 and 3, but never the fault
hypothesis no. 1, that is thus locally isolated. As the GFD
receives the local fault isolation messages from the LFDs, it
constantly checks whether for a given fault all the LFDs in
its fault influence set have locally isolated it. In the example
presented here, fault no. 1 is locally isolated by the third LFD
at time 824 s, thus prompting the GFD to globally isolate fault
1 at that same time.

VII. C ONCLUSIONS

In this paper, a problem formulation and a distributed
fault diagnosis architecture for large-scale dynamical systems
was presented. The proposed scheme relies on overlapping
decompositions of the system into sets of interconnected
simpler subsystems, in order to overcome the scalability
issues of a centralized architecture thanks to adivide et
impera paradigm. Each subsystem is monitored by a local
fault diagnosis unit, which is able to detect the presence
of faults for the corresponding subsystem based on its own
measurements and information from neighboring subsystems.
An adaptive approximation scheme is developed in order to
learn the functional uncertainty in the interconnection between
neighboring subsystems, before any fault is detected. As
overlapping decompositions lead to some state components
being shared between two or more subsystems, a specially
designed consensus-based estimation scheme was devised in
order to allow the distributed diagnosis scheme to reach
a common decision about faults affecting such variables.
Distributed detectability and isolability results were proved
in order to show the potential improvements attainable by
this consensus scheme w.r.t. a consensus-less one, and in
order to provide a way to check the expected sensitivity
of the FDI scheme to faults. To the best of the authors
knowledge, this is the first work addressing a distributed fault
isolation scheme for nonlinear, uncertain large-scale discrete
time systems. Simulation results were provided as well to
illustrate the effectiveness of the proposed scheme.

Future research effort will be devoted to address several
interesting open issues, namely: i) inclusion of time-delays
in the dynamic model of the distributed system and in the
communication links between the local FDI modules; ii) state
variables not available for measurement; iii) validation on
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Table I
T IME SEQUENCE OF FAULT OCCURRENCE, DETECTION AND ISOLATION EVENTS.

Time Event Detection/Isolation logic results Figure
750 s Fault 1 occurs / /
752 s LFD n.2 local detection S2,0 = {4} 6(a)
752 s Global detection GFD verifies thatS0 = {2} /

752.5 s LFD n.2 local isolation S2,1 = ∅, S2,2 = {4}, S2,3 = {4} 6(c,d)
760.5 s LFD n.1 local isolation S1,1 = ∅, S1,2 = {1}, S1,3 = {1} 5(c,d)
825 s LFD n.3 local isolation S3,1 = ∅, S3,2 = {5} 4(c)
825 s Global isolation GFD verifies thatSI,2 6= ∅, SI,3 6= ∅ andSI,1 = ∅, ∀ I ∈ U1 /
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Figure 4. Time–behaviors of simulated signals related to tanks no. 11 when
a leakage is introduced at time 750 s. The fault hypothesis no. 2 is locally
rejected at time 825 s.

practically-relevant distributed use-cases, both in simulation
and in actual experiments. This latter point will require quite
significant efforts in order to address implementation issues of
the learning algorithms due to the presence of disturbancesand
variables with different scales. In this connection, it is worth
noting that early experiments on a lab-scale experimental setup

have shown promising results.

REFERENCES

[1] J. Gertler,Fault Detection and Diagnosis in Engineering Systems. New
York: Marcel Dekker, 1998.

[2] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki,Diagnosis and
Fault Tolerant Control. Berlin: Springer, 2003.

[3] R. Isermann,Fault-Diagnosis Systems: An Introduction from Fault
Detection to Fault Tolerance. Berlin: Springer, 2006.

[4] C. Langbort, R. Chandra, and R. D’Andrea, “Distributed control design
for systems interconnected over an arbitrary graph,”IEEE Trans. Autom.
Control, vol. 49, no. 9, pp. 1502–1519, 2004.

[5] N. Sandell, P. Varaiya, M. Athans, and M. Safonov, “Survey of decen-
tralized control methods for large scale systems,”IEEE Trans. Autom.
Control, vol. 23, no. 2, pp. 108–128, 1978.

[6] P. Baroni, G. Lamperti, P. Pogliano, and M. Zanella, “Diagnosis of large
active systems,”Artif. Intell., vol. 110, no. 1, pp. 135–189, 1999.

[7] M. Staroswiecki, G. Hoblos, and A. Aitouche, “Sensor network design
for fault tolerant estimation,”Int. J. of Adaptive Control and Signal
Processing, vol. 18, no. 1, pp. 55–72, 2004.

[8] R. J. Patton, C. Kambhampati, A. Casavola, P. Zhang, S. Ding, and
D. Sauter, “A generic strategy for fault-tolerance in control systems
distributed over a network,”Eur. J. Control, vol. 13, no. 2–3, pp. 280–
296, 2007.

[9] S. Klinkhieo and R. J. Patton, “A two-level approach to fault-tolerant
control of distributed systems based on the sliding mode,” in Preprints
of the 7th IFAC Symposium on Fault Detection, Supervision and Safety
of Technical Processes, Barcelona, Spain, 2009, pp. 1043–1048.

[10] X. G. Yan and C. Edwards, “Robust decentralized actuator fault detection
and estimation for large-scale systems using a sliding modeobserver,”
Internat. J. Control, vol. 81, no. 4, pp. 591–606, 2008.

[11] W. Li, W. Gui, Y. Xie, and S. Ding, “Decentralized fault detection
system design for large-scale interconnected systems,” inPreprints of
the 7th IFAC Symposium on Fault Detection, Supervision and Safety of
Technical Processes. Barcelona, Spain, 2009, pp. 816–821.

[12] X. Zhang, M. M. Polycarpou, and T. Parisini, “Decentralized fault
detection in a class of large-scale nonlinear uncertain system,” in Proc.
Joint 48th IEEE Conference on Decision and Control and 28th Chinese
Control Conference, Shanghai, China, 2009, pp. 6988–6993.

[13] N. Meskin, K. Khorasani, and C. A. Rabbath, “Fault consensus in a
network of unmanned vehicles,” inPreprints of the 7th IFAC Symposium
on Fault Detection, Supervision and Safety of Technical Processes,
Barcelona, Spain, 2009, pp. 1001–1006.

[14] R. M. G. Ferrari, T. Parisini, and M. M. Polycarpou, “A fault detection
scheme for distributed nonlinear uncertain systems,” inProc. IEEE
International Symposium on Intelligent Control, Munich, Germany,
2006, pp. 2742–2747.

[15] ——, “Distributed fault diagnosis with overlapping decompositions and
consensus filters,” inProc. American Control Conference, New York,
USA, 2007, pp. 693–698.

[16] ——, “Distributed fault diagnosis with overlapping decompositions: an
adaptive approximation approach,”IEEE Trans. Autom. Control, vol. 54,
no. 4, pp. 794–799, 2009.

[17] D. Šiljak, Large-Scale Dynamic Systems: Stability and Structure. New
York: North Holland, 1978.

[18] R. M. G. Ferrari, T. Parisini, and M. M. Polycarpou, “Distributed fault
diagnosis of large-scale discrete-time nonlinear systems: New results
on the isolation problem,” inProc. 49th IEEE Conf. on Decision and
Control, Atlanta, USA, 2010, pp. 1619–1626.

[19] M. M. Polycarpou and A. Helmicki, “Automated fault detection and
accommodation: a learning systems approach,”IEEE Trans. on Systems,
Man and Cybernetics, vol. 25, no. 11, pp. 1447–1458, 1995.

[20] M. M. Polycarpou and A. Trunov, “Learning approach to nonlinear fault
diagnosis: detectability analysis,”IEEE Trans. Autom. Control, vol. 45,
no. 4, pp. 806–812, 2000.

[21] X. Zhang, M. M. Polycarpou, and T. Parisini, “A robust detection and
isolation scheme for abrupt and incipient faults in nonlinear systems,”
IEEE Trans. Autom. Control, vol. 47, no. 4, pp. 576–593, 2002.

[22] G. Chartrand and O. Oellermann,Applied and Algorithmic Graph
Theory. Singapore: McGraw-Hill International Editions, 1993.

[23] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for
partitioning irregular graphs,”SIAM J. on Scientific Computing, vol. 20,
no. 1, pp. 359–392, 1999.



15

[24] X. Cai and Y. Saad, “Overlapping domain decomposition algorithms for
general sparse matrices,”Numerical Linear Algebra with Applications,
vol. 3, no. 3, pp. 221–237, 1996.

[25] B. F. Smith, P. Bjorstad, and W. Gropp,Domain decomposition: parallel
multilevel methods for elliptic partial differential equations. Cambridge,
UK: Cambridge University Press, 2004.

[26] J. Lagnese and G. Leugering,Domain Decomposition Methods in
Optimal Control of Partial Differential Equations. Basel: Birkhäuser,
2004.

[27] H. D. Simon, “Partitioning of unstructured problems for parallel process-
ing,” Computing Systems in Engineering, vol. 2, no. 2–3, pp. 135–148,
1991.

[28] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905, 2000.

[29] D. Johnson, C. Aragon, L. McGeoch, and C. Schevon, “Optimization
by simulated annealing: an experimental evaluation. Part I: graph parti-
tioning,” Operations Research, vol. 37, no. 6, pp. 865–892, 1989.

[30] M. Vidyasagar, “Decomposition techniques for large-scale systems with
nonadditive interactions: Stability and stabilizability,” IEEE Trans. Au-
tom. Control, vol. AC-25, no. 4, pp. 773–779, 1980.

[31] S. Stankovǐc, M. S. Stankovǐc, and D. M. Stipanovič, “Consensus
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Figure 5. Time–behaviors of simulated signals related to tanks no. 1 when
a leakage is introduced at time 750 s. The faults hypotheses no. 2 and 3 are
locally rejected shortly after fault detection.
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Figure 6. Time–behaviors of simulated signals related to tanks no. 7 when
a leakage is introduced at time 750 s. The faults hypotheses no. 2 and 3 are
locally rejected shortly after fault detection.


