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Notation

In this chapter the main abbreviations and the mathematical symbols used
in the remainder of the thesis will be summarized. When indexes are needed,
we will make use of the symbols i, I, and j, J , and k, K. Lower–case indexes
are used to denote vector components, while an upper–case subindex will
always denote that a quantity belongs to a given subsystem or agent.

Graph theory specific definitions can be found in Chapter 3, while other
seldom-used symbols are defined throughout the text as needed.

ARR Analytical Redundancy Relation

DFDI Distributed Fault Detection and Isolation (and Iden-
tification)

DOS Dedicated Observer Scheme

FDAE Fault Detection and Approximation Estimator

FDI Fault Detection and Isolation (and Identification)

FIE Fault Isolation Estimator

GOS Generalized Observer Scheme

LFD Local Fault Diagnoser

LTI Linear Time Invariant

MFAE Minimum Functional Approximation Error

RBF Radial Basis Function, a kind of activation function
for neural networks

| · | absolute value, taken component–wise if the argu-
ment is not a scalar, or cardinality if the argument
is a set

‖ · ‖ Euclidean vector norm

‖ · ‖F Frobenius matrix norm

xiii
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R, R+ set of real numbers and of non–negative real num-
bers

N, N+ set of natural numbers and of non–negative natural
numbers

Z, Z+ set of integer numbers and of non–negative integer
numbers

Rn, Nn, Zn n–dimensional space with real, natural and integer,
respectively, coordinates

S a generic monolithic system

A , {a1, . . . , aN} a non–ordered set or multiset

A , (a1, . . . , aN ) an ordered set or multiset

a a vector is denoted with a lower–case symbol

a(i) i–th component of a vector

a , col(a(1), . . . , a(N)) a vector built by using the col operator

ā a bound, usually an upper bound, on the norm of a
vector (or the absolute value of a scalar)

â an estimate of a

ã , a − â estimation error on a

x(t), u(t) value at time t of the state and input vectors of the
monolithic system S

f(·) nominal dynamics of the monolithic system S

η(·) uncertainty in the dynamics of the monolithic sys-
tem S

φ(·) fault function affecting the dynamics of the mono-
lithic system S

β(·) time evolution of the fault magnitude

T0 fault event instant

b parameter describing the time evolution of an in-
cipient fault

F fault class for the monolithic system S



xv Notation

φj(·) j–th element of the fault class F

Hj fault hypothesis associated to φj

Hj,i(·) i–th structural function of φj

ϑj,i i–th parameter vector of φj

Θj,i domain to which ϑj,i belongs

MΘj,i
radius of the hyper-sphere that contains Θj,i

R , Rx ×Ru stability regions for the monolithic system S

x̂0 state estimation provided by the FDAE

λ FDAE and FIE filter pole

ǫ0 , x − x̂0 state estimation error of the FDAE

ǭ0 detection threshold on ǫ0

Td fault detection instant

φ̂0(·) on–line adaptive approximator for φ0

ν0 MFAE of φ̂0

PA(·) a projection operator on the domain A

x̂j state estimation provided by the j–th FIE

ǫj , x − x̂j state estimation error of the j–th FIE

ǭj detection threshold on ǫj

∆k,jφ(·) mismatch function between the k–th and the j–th
fault function

D decomposition of the monolithic system S

SI I–th subsystem contained in D

II index set used in defining SI

JI neighbors index set of subsystem SI

LI I–th LFD

Os overlap index sets of variable x(s)

Ws weighted adjacency matrix of the consensus proto-
col on x(s)



xvi

xI , uI , zI local state, local input and interconnection vectors
of SI

fI(·), gI(·) nominal and interconnection functions of SI

ĝI(·) on–line adaptive approximator for gI

νI MFAE for ĝI

ξI measurement uncertainty on xI

ζI measurement uncertainty on zI

χI total uncertainty on xI

x̂I,0, ǫI,0, . . . all the other quantities pertaining to the I–th sub-
system SI are denoted as the ones pertaining to S ,
but with an added leading subindex I

S global fault signature associated to the monolithic
system S

SI local fault signature associated to the subsystem SI



Chapter 1

Introduction

How do we perceive the usefulness of technology? The most straightforward
answer, is that we perceive it through all the things that technology can
do for us: things that we are unable to do ourselves, either because we
are physically unable to, or because we are unwilling to. For instance, a
transportation system can bring us, and also a wealthy amount of goods, to
destinations further away, and in a much shorter time than what we can do
by relying on our limited physical strength alone. Furthermore, a personal
computer can do more computations and store more informations, and do
it faster than our mind. And yet, a washing machine or other household
appliances can execute tasks that we consider too menial to be worth our
time. These are fairly simple examples of technologies that we deem useful,
because they enable us to accomplish things we would have been unable to,
or simply because they give us more free time to engage in more creative
activities.

If we consider more deeply our concept of usefulness, anyway, we would
realize that what we have said constitutes just half of the answer. In fact a
technology is not useful only because of the amount of things it can do for
us, but only if it can also do those things exactly when we need, and as long
as we need them. For instance, an automobile whose engine will suddenly
stop and refuse to start again, leaving us in the middle of our journey,
will not be useful. Moreover, a computer that will suddenly crash without
having given us any prior notice, so that we could back-up our informations,
will not be useful either. These are examples of technology that fails in
providing the services we expect from it, thus causing some damage to us.
But it must be understood that, depending on the situation, the amount of
damage due to technical equipment failing may be unbearable. Should the
engine of a plane, instead of that of a car, suddenly shut off this may lead
to a very dangerous situation, that can even culminate in an air disaster,
killing human beings. Should a computer system governing the functions of
a complex and expensive industrial plant fail, this may result in extensive
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damage and losses, and again may cause death or impairments to people.
The natural conclusion of this short semantic investigation, is that tech-

nology is useful only as long as it can provide a service to us in a reliable way,
otherwise it is not only disadvantageous, but it may be dangerous as well.
We stressed the word reliable, as in fact reliability is one of the key concerns
in the design of modern dependable and safe technical systems. Reliability
can be defined as the ability of a system to perform its intended function
over a given period of time [1]. The inability to perform the intended func-
tion is called a failure, and it can be due to the effects of a fault. A fault is
a change in the behavior of a system, or part of it, from the behavior that
was set at design time. Logic then dictates that everything that cannot be
accounted for the effects of a fault, should be blamed as wrong design, and
though this appears to be a too common cause of failures, in this work we
will concentrate only on faults.

A wrong conclusion that may be drawn from the definitions of failure
and faults, is that in order to avoid failures a system must be designed
so that faults will never happen, as faults will lead to failures. Luckily
enough this is not true, otherwise no reliable system will ever be built, as
the task of designing physical systems that do not undergo faults has been
proven to be impossible. In fact experience tells us that not every fault
will lead to a failure, as usually systems are robust enough so that they
can withstand some faults while still providing their service, or at least a
somewhat degraded version of their service. Such a system is called fault
tolerant . With a proper design, fault tolerance may be an intrinsic property
of some redundant systems, thus requiring no further effort. For instance,
in a suspended bridge with a great number of tendons, if one tendon looses
its ability to support its part of the load, that is if it experiences a fault,
the other tendons will simply distribute between themselves the resulting
extra load, thus avoiding the collapse of the bridge. Of course this kind of
intrinsic fault tolerance works only for limited faults, and for some categories
of systems.

The concept of redundancy is central to the development of fault toler-
ant systems. In the example about the bridge, the thing that makes the
system fault tolerant is the presence of physical redundancy , that is the fact
that critical components of the system, the tendons, are present in a greater
number than in what is strictly necessary. And the key point in avoiding
the failure, is the fact that after the fault occurrence in a component, that
is after a tendon breaks or looses its ability to support its load, the system
automatically “switches” to other healthy components. In the bridge exam-
ple this switch does not require any actual action, thus making the process
transparent and hiding its details. So we will briefly analyze an example
where the robustness to faults is not an intrinsic property, but requires a
well defined sequence of actions. Let us consider again an airplane, where
for safety reasons all the critical components, that are flight control com-
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Fault event Fault event

Fault detection

Fault Isolation 
and Identification

Fault Accomodation 
or Reconfiguration

Safe operating 
conditions

No action taken

FAILURE

Figure 1.1: The possible effects of a fault event in the case of a fault tolerant
system (left) and a non–fault tolerant system (right).

puters, actuators and sensors, present a threefold redundancy. If a critical
component fails, the existence of a fault is detected by comparing the output
of multiple redundant sensors, the component is isolated and taken off–line,
and a spare, healthy copy of it is assigned to its task. This description un-
covers the basic sequence of actions needed to implement a fault tolerant
system: detection of a fault, isolation and identification of the fault and fault
accommodation or reconfiguration of the system [1, 2] (Fig. 1.1).

The physical redundancy solution is highly expensive and can be justified
only for critical, potentially life–threatening systems. A more affordable
solution consists in the use of analytic redundancy , where the redundancy
does not lay in having multiple physical copies of critical components, but
in having a mathematical model of the healthy system. The mathematical
model is used to detect and isolate faults, by comparing actual measurements
to the prediction of the model, thanks to so–called Analytical Redundancy
Relations (ARR) [3, 1]. After a successful fault diagnosis, it is not the
system to be physically reconfigured to counter the effect of the fault, but
it is the controller of the system that must change in order to accommodate
the fault. The fault accommodation is possible if the system model, as well
as a model of the fault, are available. A simple example may help in making
this point clear. When driving a car, the car is the physical system that can
fail, while the driver is its controller, that we assume here is not going to
be affected by faults him- or herself. Of course an experienced driver has a
mental model of the way the car behaves normally, so that by handling it
he or she can tell whether something is not working properly. For instance,
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if a tire is punctured and starts to go flat, a good driver will notice it and,
having also a mental model of the effect of an almost flat tire, will change its
way of driving in order to guarantee safety. Depending on the fault gravity,
to a certain extent he or she will manage to have the car continue to provide
its service, although degraded because probably the car will have to run
on a much lower speed. As it should be clear, in this situation no physical
redundancy did come to help, as an ordinary car does not have spare tires on
each axle and waiting to be automatically deployed, but the mental model
of the car and of that fault in the driver mind was used to detect and isolate
the fault, and to devise a way of driving the car while facing the emergency.

In the present work the first two steps taken by a fault tolerant system,
that is fault detection and isolation, will be dealt with. Specifically, a prob-
lem of Fault Detection and Isolation (FDI) with mathematical models, that
is called model–based fault diagnosis, will be solved in a distributed way. The
need for a distributed architecture is justified by the drawbacks of existing
centralized fault diagnosis architectures when addressing actual large–scale
and distributed systems. Now the fundamentals of the existing fault diag-
nosis methods will be summarized, and the motivations that lead to the
interest in distributed architectures will be explained. Then the content of
the following chapters will be anticipated.

1.1 Model–based Fault Diagnosis

Model–based fault diagnosis methods are a relatively recent accomplish-
ment. Historically, the first methods for fault diagnosis of engineering sys-
tems did not rely on a full-mathematical model of the process to be mon-
itored. The first known approach is the limit checking , that can be dated
back as early as the development of the instrumentation for machines in the
19th century [2], and relies only on a knowledge of the range in which each
measured variable is allowed to vary. The event of a variable getting out
of its bounds will be considered as due to a fault, and by analyzing which
variables did cross their bounds an elementary fault isolation may be at-
tained. Of course the success of this method is dependent upon the process
working around a constant, well known set–point: in fact the event of a
measured quantity getting out of its allowed range may be simply due to a
human operator, or the control system, changing the operating conditions
of the system. A more elaborate fault diagnosis approach was enabled by
the availability of paper–drawn oscillograph, of band–pass filters and later
of oscilloscopes during the first half of the 20th century, so that the behav-
ior of the measured variables could be precisely analyzed in the time and
frequency domain. These devices lead to the development of signal–based
techniques, where known features of signals, such as spectral components or
peculiar transients, were compared to nominal ones [2, 4]. As these methods
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Figure 1.2: Three stages of model–based fault diagnosis, according to [14].

require some knowledge of previous behavior of the system during healthy
operation, they belong to the wider class of process history fault diagnosis
approaches [5]. An application of spectral analysis still common today is
for the diagnosis of rotating machinery, where the appearance of unusual
spectral components can be traced back to the impelling mechanical failure
of components such as bearings or shafts [6, 7].

The model–based approach was finally made possible by the widespread
use of process computers in engineering applications during the 1970s. Its
foundations were set in the seminal works of Beard, Jones and Clark [8, 9,
10], among others (see the survey papers [11, 4, 12, 13]). The model–based
approach is built on a mathematical model of the healthy behavior of the
process that must be monitored. The fundamental idea is that by using
the model some estimations of the measured variables can be computed, so
that by comparing the estimations to the actual measurements a deviation
due to a fault can be detected. The output of the comparison procedure is
a number of signals called residuals, which ideally should be zero when no
fault is present. The residuals are then compared to suitable thresholds by
detection and isolation logics in order to provide a fault decision regarding
the health of the system (Fig. 1.2).

One of the first applications of model–based FDI was in the chemical
industry, were parity relations were used to compare theoretical mass and
flow balance with actual measurements, in order to detect leakages in pipes
[13, 2]. Parity relations are basically rearranged input–output models, by
which residuals can be generated by comparison with the outputs from the
actual process. Ideally, during healthy operating conditions the residual
should be exactly zero, but model uncertainties and physical disturbances
usually make residuals to be different from zero even when no fault is present,
so that greater than zero thresholds must be used. To overcome this prob-
lem, much effort has been devoted to develop robust residuals, for instance
by devising disturbance decoupling methods that can be applied to linear
systems [15, 3], with [16] being a notable exception.

Another approach to model–based FDI is through the use of diagnostic
observers, whose original idea can be traced back to the already cited works
of Beard, Jones and Clark [8, 9, 10], and was later established by Frank and
coworkers [17, 12]. Unlike parity relations approaches, in the observer–based
approach a state–space model of the system to be monitored is used, so that
state and output estimations can be computed. The estimation errors are
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System

Model

+
–

u x

u
x̂

x

≥

ǫ

ǭ
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Figure 1.3: Basic scheme for model–based fault detection. Given a system
with input u and measurable state x, a state estimate x̂ is computed. The
estimation error ǫ , x − x̂ is used as a detection residual and is compared
against the threshold ǭ.

then used as residuals and compared to suitable thresholds for detection and
isolation purposes (Fig. 1.3). The use of thresholds is needed, as in parity
approaches, to avoid false–positive alarms due to the presence of modeling
uncertainties and disturbances. The same robust disturbance decoupling
techniques can be used with linear systems, and in fact the equivalence of
parity relations and observer approaches has been proved [18]. For nonlin-
ear systems, two approaches are possible when dealing with uncertainties
and disturbances: the assumption that the latter are structured , and the
use of adaptive thresholds. FDI problems for nonlinear systems with struc-
tured uncertainties were studied in [19, 20, 21, 22], for decoupling faults
from unknown inputs. Unfortunately the assumption of structured uncer-
tainties and disturbances is quite restrictive, and adaptive thresholds are
the most promising solution for guaranteeing robustness without relying on
very conservative fixed thresholds [23, 24, 25, 26], though the knowledge of a
bound on the uncertainties and disturbances is needed. Another important
approach that has been extensively used to represent modeling uncertainties
in FDI schemes is the formulation of the problem in a stochastic framework
[27].

An obvious problem in the practical implementation of model–based FDI
schemes is that deriving a good mathematical model of an actual engineer-
ing system may prove to be a tantalizing task. A line of research tried
to overcome this problem by using qualitative models, where only qualita-
tive informations, such as sign and trend of measured variables, are used
[28]. A more successful approach, anyway, is based on the use of adap-
tive on–line approximators, such as neural networks for instance, to learn
on–line the unknown or uncertain parts of the system dynamical model,
or the fault model if the fault accommodation problem is considered too
[29, 30, 31, 32, 33, 34, 25, 35, 36, 37]. This learning approach enables the
implementation of robust FDI schemes for nonlinear uncertain systems.
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Finally, another way of solving the model–based FDI problem is by
means of the so–called parameter estimation approach, where a paramet-
ric model of the system is used (see the surveys in [12, 2, 13]). During the
monitoring, an on–line learning technique is used to adapt the model pa-
rameters to the observed measurements. If the parameters exit from their
allowed nominal region that corresponds to the healthy system behavior, a
fault is detected.

In this work the adaptive model–based approach will be used to develop
a distributed Fault Detection, Isolation and Identification architecture for
nonlinear and uncertain large–scale systems. Fault Identification is an extra
step that is carried on after isolation, in order to quantify the extent to
which a fault is present. For instance in the case of leakages in pipes or
tanks, isolating the component where the leakage is present is not enough
in order to eventually accommodate it, but the size of the leakage must be
estimated too. Before describing the motivations that lead to addressing
a distributed FDI architecture for large–scale systems, a definition of the
FDI problem that we will solve, and an outline of the Generalized Observer
Scheme (GOS) that we will use, will be given.

1.1.1 The FDI problem and the GOS solution

In a model–based FDI approach, basically two problems must be solved: the
Fault Detection and the Fault Isolation problems [1, 12]. Now a definition
of these two problem that will be followed in this work will be introduced.

Problem 1.1.1 (Fault Detection problem): Given

• A mathematical model of the system S to be monitored

• a sequence of measured system inputs and outputs

Test whether the following hypothesis is true or false

H0 : "The system S is healthy" .

Problem 1.1.2 (Fault Isolation problem): Given

• A mathematical model of the system S to be monitored

• a mathematical model of N possible faults that can occur to S

• a sequence of measured system inputs and outputs

For all of the N following hypotheses, test whether they are true or false

Hl : "The system S is affected by the l–th fault" , l ∈ {1, . . . , N} .
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In the model–based FDI literature, two schemes were devised in order
to solve these problems: the Dedicated Observer Scheme (DOS) developed
by Clark [10], and the Generalized Observer Scheme (GOS) developed by
Frank (see [12] and the references by the same author therein). In both
schemes for the isolation task as many residuals as the number of possible
faults are generated. The difference is that in the DOS scheme each residual
is sensitive to only a single fault, while in the GOS each residual is sensitive
to every but one fault. The DOS scheme is appealing as it can isolate also
concurrent faults, but it cannot always be designed. Instead the GOS can
be always applied, but can isolate only non–concurrent faults.

In this work, a GOS scheme will be used, and the residuals and their
thresholds will be designed so that false–positive alarms will be prevented.
The scheme will make use of a detection observer called Fault Detection and
Approximation Estimator (FDAE) that will provide an estimation error ǫ0,
and of N isolation observers called Fault Isolation Estimators (FIE) that
will provide N estimation errors ǫl, l ∈ {1, . . . , N}. Initially only the FDAE
will be active in order to detect faults, by using the estimation error ǫ0 as
a residual. After a successful fault detection, the bank of N FIEs will be
turned on and will use the estimation errors ǫl as residuals for solving the
isolation problem (see Fig. 1.4). Because of the way residuals are designed
in GOS schemes, a successful isolation decision will be reached if every but
one hypothesis is falsified.

In the present work, it will be assumed that the full state x of the system
is available as a measured output. It may seem quite a restrictive hypothesis,
anyway, as noted in [36], many nonlinear control techniques need full state
measurements, so demanding it for the FDI task is not a real limitation. In
Chapter 4 this requirement will be slightly relaxed, while examples of FDI
formulations for special classes of non-linear systems with only input-output
measurements are presented in [35, 38].

1.2 Our motivation: large–scale and distributed

systems

The GOS scheme presented in the last section was shown to possess in-
teresting analytical properties [36], and theoretically can be applied to any
system. Practical issues, anyway, must be solved when applying the scheme
to systems of considerable size. In fact an acceptable solution to the FDI
problem must be such that the fault decision can be provided in real–time,
so that the larger possible amount of time is left to the fault accommodation
phase before the fault event may lead to a failure. Actual FDI implemen-
tations are based on a centralized architecture, where a single computation
node, that is a computer, is in charge of receiving all the necessary measure-
ments and doing all the computations. In the case of systems large enough,
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Figure 1.4: The GOS scheme on which the proposed FDI architecture will
be based.
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centralized decentralized distributed

Figure 1.5: Pictorial representation of a centralized, a decentralized and a
distributed system.

the task of computing in real–time all the estimations needed by the GOS
scheme may be limited by the amount of computation power available at
the computation node. Furthermore, if the measurements from the actual
system are not taken from sensors directly wired to the computation node,
but are carried through a communication network, the available bandwidth
of the latter may be the bottleneck as well.

In order to understand these points, the concepts of large–scale and of
distributed systems must be introduced. The first term applies to systems
with a large number of state components, so that no feasible centralized
architecture could be devised to solve estimation or control problems on
it. The infeasibility, as suggested before, is due to the impossibility to
find a computation and communication infrastructure fast enough to do
all the computations and to receive all the measurements at a single site.
Anyway the unfeasibility may be due to another feature of the system, that
is the characteristic of being distributed. This term describes systems whose
structure can be analyzed as being constituted by multiple subsystems that
interact with neighboring subsystems. This is in contrast with the term
decentralized , that applies to systems whose structure results to be made
of multiple subsystems that do not interact with each other, and of course
with the term centralized, where a subdivision in distinct subsystems is not
possible, as every part of the system interacts with every other one. The
difference between the concepts of centralized, decentralized and distributed
systems can be easily understood by looking at Fig. 1.5, where a pictorial
representation is given.

It must be stressed that the terms centralized, decentralized and dis-
tributed can be used both when referring to physical systems and when
referring to architectures. In this work, by the expression system or physical
system we will denote the object that is being monitored against the pres-
ence of faults, while by architecture we will mean a combination of hardware
and software used to implement and execute the fault diagnosis task.

The reason why a centralized architecture may prove to be infeasible for
solving problems on a distributed system, may be made clear by considering
the simple example in Fig. 1.6. The centralized architecture needs to convey



11 Chapter 1. Introduction

all the measurements from the various parts of the distributed system to a
single location. This may be infeasible because of the considerations already
brought up, should the distributed system be large–scale too. But another
issue must be considered now: in many distributed systems of interest, the
subsystems correspond to part of the system that are distributed in space,
so that conveying all the measurements to a single geographical location
would prove inconvenient. But most importantly, relying on a centralized
architecture in many situations may be undesirable as it would lead to a
safety threat. For instance, should the three physical blocks in Fig. 1.6 rep-
resent three airplanes, or more generically vehicles, moving in a formation
[39, 40, 41], a centralized diagnosis architecture would result in an imple-
mentation on board of one of the three vehicles, or fixed at some ground
station. Both these implementations would of course be highly unreliable
and dangerous, as any single failure of the architecture itself will lead to
the interruption of the diagnosis service for all the vehicles. The easiest
way to overcome these drawbacks, is by the use of a decentralized archi-
tecture. In a decentralized architecture, as many local computing nodes
as the number of subsystems are employed. Each node needs to receive
the measurements from its corresponding subsystem, and will execute only
the computations needed to solve the part of the problem pertaining to its
subsystem. It is intuitive that this approach will reduce the computation
power and the communication capacity needed by each node, with respect
to a centralized architecture where only one node is present. But in a de-
centralized implementation an important weakness is hidden: in fact, as
neighboring nodes are not supposed to communicate with each other, they
will inevitably be unable to take into account in their solution the interac-
tions between neighboring subsystems. In some engineering problems the
coupling between subsystems is so weak that it can be ignored or consid-
ered as just a disturbance, but of course this does apply to only a subset
of the cases of interest. The only consistently feasible architecture, then,
is a distributed one, where, as in the decentralized case, as many comput-
ing nodes as the number of physical subsystems are present. But now, the
nodes are allowed to interact with each other in a pattern that exactly mim-
ics the pattern of physical interactions between subsystems. In this way, the
nodes can exchange useful informations and measurements for implementing
in their models the effect of the physical interconnections. Of course this
exchange will lead to the need for a higher communication capacity than
in the decentralized, or the centralized case, but this drawback is balanced
by the decrease of the needed computation power and the increase in the
architecture reliability and applicability.

Practical engineering examples of large–scale and/or distributed systems
are abundant, and consists for example in large–scale communication or
distribution networks, or multi–vehicle or multi–robots formations (see Fig.
1.7). These two classes of examples are useful to understand the nature
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centralized decentralized distributed

Figure 1.6: Pictorial representation of a centralized (red), a decentralized
(yellow) and a distributed (green) architecture applied to a distributed sys-
tem (white). Physical interaction between subsystems is represented by
black arrows, while white thick arrows represent communication and mea-
suring channels.

of the possible interactions between physical subsystems. In the first class
the interactions are indeed physical or functional, as ultimately the system
is monolithic and the boundaries between subsystems arise only because of
the way we look at it. In the second class, the interaction is due to the
various subsystems pursuing a common goal, that may consists in keeping
a well–defined formation or performing a rendez–vous. This interaction of
course is not physical, but nevertheless is a constitutive part of the way the
resulting system works, and must therefore be diagnosed itself.

Of course the study of control, cooperation and estimation problems
for distributed and large–scale systems is not a completely new field, and
recently there has been significant research activity in this direction (see,
among many others, [42, 43, 44, 45, 41, 46, 47, 48, 49, 50] and the refer-
ences cited therein). As far as the first class of interactions, that is the
physical or functional one, is concerned, notable examples consists in large
distribution and communication networks, such as drinking water distribu-
tion networks [51] and data [52] networks, and in coupled nonlinear systems
synchronization [53]. The second class of interactions, that we may refer
to as the “common goal” kind, includes the important topics of formation
keeping and rendez-vous of Unmanned Aerial Vehicles (UAV) [39, 54], satel-
lites [55, 56, 57], vehicles [58], and robots [59, 46, 60, 61]. Other notable
examples occur when novel developments in transportation systems are con-
sidered, as in airplane formation and air traffic management [41, 40], and in
Automatic Highway Systems (AHS) [62]. A most promising field of research
has been enabled by the ground-breaking works of Reynolds and Vicsek on
collective behavior [63, 64, 65, 66], that has lead to a number of powerful
analyses and syntheses of particular distributed systems called swarms (see
Fig. 1.7–(b)). Swarms occur when a large number of relatively unsophisti-
cated individuals are provided with simple rules for interacting with other
peers, and gathered together. The global effect of their interaction can lead
to collective behaviours that are far more elaborate than what any single
individual would be capable by acting alone. The most known example
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(a)

(b)

Figure 1.7: Two examples of actual engineering system from the two classes
of “physical interacting” and “common goal” distributed systems: (a) the
European high voltage electrical distribution system, and (b) a robotic
swarm.
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of swarms in nature is given by the ants [67], whose colonies are able to
execute remarkable tasks that are far away from the reach of a single in-
sect. Popular swarms are made up of either social [68, 69, 70, 71], biological
[63, 67, 65, 66, 70], robotic [72, 48, 73] or software individuals as in peer–to–
peer networks [74], and their main advantage is that each individual is simple
enough so that the overall deployment cost of a swarm is far lower than the
one of a comparable centralized architecture, not to mention its higher re-
liability and robustness to failures and attacks. A closely related field of
research comprises sensor networks [75, 43, 76]), and consensus problems
[77, 78, 79, 80, 81, 82, 83, 84, 85, 86]. In sensor networks, the existence of
many and possibly inexpensive sensing nodes is postulated, such that many
measurements of the same group of variables, for instance the temperature
distribution in a given environment, are available. The collective function
of the sensor network is enabled by the fact that each node can communi-
cate to neighboring nodes its measurements, so that each node can compute
some form of average of its data and of the data of other nodes. The details
of how the “average” is computed depends upon the peculiar consensus or
gossip [87, 82] protocol that is employed. The big advantage earned by the
use of sensor networks is that, under some hypotheses about the model of
the sensing noise of each node, it can be proved that collectively the network
can estimate the actual value of the measured variables in a way far more
accurate than what a single node may do alone. Here a redundancy higher
than what would be necessary in ideal conditions is tolerated, in order to
counter the effects of measuring noise and uncertainties.

The fil rouge connecting all these examples is of course that they are
distributed and/or large scale systems, with usually very complex global
dynamics. The preferred method for dealing with them, as was suggested
in the previous discussions, is through a divide et impera paradigm, where
an excessively difficult problem is decomposed into smaller subproblems sim-
pler enough to be solved with the existing computation and communication
infrastructures. This approach is not new, as one could imagine. As far
back as in the 1970s, researchers sought to develop so called ”decentral-
ized control” methods, described in the seminal paper [88], the well known
book by Šiljak [89] and in the survey work of Sandell [90]. Since then there
have been many enhancements in the design and analysis of decentralized
and, later, distributed control and estimation schemes. On the other hand,
one area where there has been much less research activity is in the design
of fault diagnosis schemes specifically for distributed and large–scale sys-
tems. The fault diagnosis problem is a crucial problem in the safe operation
of distributed systems, but the number of works that addressed it is still
small. It is true that a considerable effort was aimed at developing dis-
tributed fault diagnosis algorithms suited to discrete event systems (see, for
instance, [91, 92, 93, 94, 95, 96]), especially in the Computer Science litera-
ture where the problem of fault diagnosis for multi–processor systems is of
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great importance [97, 98, 99, 100, 94, 101]. A notable contribution in the
field of decentralized hybrid systems fault diagnosis is [102], although the
fault detection scheme implemented does take into account only the jump
part of the model, and not the continuous flow. An interesting scheme for the
nonlinear fault detection of spacecraft formations, though it is neither dis-
tributed nor decentralized, was presented in [103]. But, as far as distributed
discrete–time or continuous–time systems are concerned, only qualitative
fault diagnosis schemes were attempted very recently [104, 105, 106, 107], or
quantitative methods that were formulated for linear systems only [108, 109].

1.3 Objectives and outlines of the present work

Taking as a starting point the great interest and need for distributed fault
diagnosis architectures, and the lack of suitable ones for systems described by
continuous and discrete–time systems, this thesis will propose a distributed
FDI for large–scale systems described by such models. The formulation
will be taken from the works [110, 111, 112] by the same author, but will
be greatly extended, and will use an adaptive approximation approach in
order to address nonlinear uncertain systems. The FDI distributed problem
will be solved by the application of a divide et impera paradigm, where the
detection, isolation and identification tasks will be broken down and assigned
to a network of agents, that we will call Local Fault Diagnosers (LFD). The
LFDs will be allowed to communicate with each other, and also collaborate
on the diagnosis of system components that may be shared between different
diagnosers. Such diagnosers, each of which will have a different view on the
system, will implement consensus techniques for reaching a common fault
decision. The resulting architecture will be general enough to be applicable
to nonlinear and uncertain systems of arbitrary size, without scalability
issues.

Chapter 2 will summarize the results of [113], where a centralized and
adaptive approximation approach for the FDI of nonlinear uncertain discrete–
time systems is presented, that will serve as a basis for the development of
a distributed FDI architecture. An illustrative example comprising both
experimental and simulation data will be given. The central points in the
move from a centralized to a distributed architecture will be addressed in
Chapter 3, that will deal with the structural analysis of large–scale systems
and the system and model decomposition problem. This will lead to the de-
velopment of a distributed FDI scheme for discrete–time systems in Chapter
4. Finally, in Chapter 5 a simplified distributed FDI scheme for continuous–
time systems is described, and concluding remarks are then drawn.
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Chapter 2

Centralised Model-based

Fault Diagnosis

The Distributed Fault Diagnosis and Identification (DFDI) architecture that
will be developed in the present work, although will present an innovative
design, will anyway be based on a well established scheme. This will be the
Generalized Observer Scheme that was briefly presented in the introduction.
This choice is motivated by the existence of an important amount of sound
theoretical results in the literature about the application of this scheme to
centralized nonlinear systems, such as [17, 12, 36, 37, 35], and by the inherent
benefits offered by the scheme.

Now an outline of an Analytical Redundancy Relation based GOS scheme,
along with some other useful definitions, will be given for the case of the FDI
problem of a centralized system. This scheme and definitions will later be
shown to be the basis of the DFDI architecture that will be built. This chap-
ter will assume a discrete time uncertain and nonlinear model for the system
under monitoring, and will concisely summarize results already present in
the literature [113], in a way consistent with the other parts of this work.

2.1 Background and assumptions

It will be assumed that the nonlinear uncertain discrete-time dynamic sys-
tem S under monitoring is described by the following equation

x(t + 1) = f(x(t), u(t)) + η(x(t), u(t), t) + β(t − T0)φ(x(t), u(t)) (2.1)

where t is the discrete time instant, and we will assume that the sampling
time is Ts ∈ R+. The terms x ∈ Rn and u ∈ Rm denote, respectively, the
state and input vectors, while f : Rn × Rm 7→ Rn represents the nominal
healthy dynamics and η : Rn × Rm × N 7→ Rn the uncertainty in the model

17
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which may be caused by several factors such as, for instance, unmodeled
dynamics, external disturbances, the possible discretization error and so on.

The term β(t − T0)φ(x(t), u(t)) denotes the changes in the system dy-
namics due to the occurrence of a fault. More specifically, the vector
φ(x(t), u(t)) represents the functional structure of the deviation in the state
equation due to the fault and the function β(t− T0) characterizes the time
profile of the fault, where T0 is the unknown fault occurrence time. In this
work, we shall consider either abrupt faults characterized by a “step-like”
time-profile

β(t − T0) =

{

0 if t < T0

1 if t ≥ T0

, (2.2)

or incipient faults characterized by an “exponential-like” time-profile

β(t − T0) =

{

0 if t < T0

1 − b−(t−T0) if t ≥ T0

. (2.3)

where b > 1 is the unknown fault-evolution rate.
It is important to notice that the actual healthy part in model (2.1) is as

general as possible. Neither a special structure is assumed for the nominal
function f , neither the additive decomposition of the actual dynamics in
the sum f + η is a limitation. In fact, should any kind of uncertainty
(additive, multiplicative, parametric, etc.) modify the nominal function f
in an actual one f ′, then it would simply suffice to define the uncertainty
term as η(x(t), u(t), t) , f ′(x(t), u(t)) − f(x(t), u(t)). This last remark on
the generality of the additive decomposition holds, of course, for the effect
of the fault function too.

For isolation purposes, we assume that there are NF types of possible
nonlinear fault functions; specifically, φ(x, u) belongs to a finite set of func-
tions given by the following fault class

F , {φ1(x, u), . . . , φNF
(x, u)} .

Each fault function in F is assumed to be in the form

φl(x(t), u(t)) = [(ϑl,1)
⊤Hl,1(x(t), u(t)), . . . , (ϑl,n)⊤Hl,n(x(t), u(t))]⊤ ,

where, for i ∈ {1, . . . , n}, l ∈ {1, . . . , NF}, the the “structure” of the fault
is provided by known functions Hl,i(x(t), u(t)) : Rn × Rm 7→ Rql,i , and the
unknown parameter vectors ϑl,i ∈ Θl,i ⊂ Rql,i provide its “magnitude”1. For
the sake of simplicity and without much loss of generality, the parameter do-
mains Θl,i are assumed to be origin–centered hyper–spheres. The following
useful assumptions are needed.

1Which is referred to as the failure mode in the literature [12].
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Assumption 2.1.1: At time t = 0 no faults act on the system. More-
over, the state variables x(t) and control variables u(t) remain bounded
before and after the occurrence of a fault, i.e., there exist some stability
regions R , Rx ×Ru ⊂ Rn × Rm, such that (x(t), u(t)) ∈ Rx ×Ru, ∀ t.

Assumption 2.1.2: The modeling uncertainty represented by the vec-
tor η in (2.1) is unstructured and possibly an unknown nonlinear function
of x, u, and t, but it is bounded by some known functional η̄, i.e.,

|η(i)(x(t), u(t), t)| ≤ η̄(i)(x(t), u(t), t), ∀(x, u) ∈ R, ∀t ,

where, for each i = 1, . . . , n , the bounding function η̄(i)(x, u, t) > 0 is
known and bounded for all (x, u) ∈ R .

Assumption 2.1.3: The time profile parameter b is unknown but it is
lower bounded by a known constant b̄.

As this work considers only the fault diagnosis problem and not the fault
accommodation one, Ass. 2.1.1 is required for well–posedness. Ass. 2.1.2 and
2.1.3 make the problem analytically tractable, but are not a limitation in
practical situations where some prior knowledge on the system operation is
available.

2.2 Fault Detection and Isolation Architecture

In this section the proposed discrete–time Fault Detection and Isolation
(FDI), to some extent analogous to the continuous one described in [36],
will be described. The first service that the architecture must provide is the
ability to detect faults. To this end, a nonlinear adaptive estimator named
Fault Detection and Approximation Estimator (FDAE) will be started at
time t = 0. This estimator is based on a model of the healthy system,
and is able to provide an estimate x̂0(t) of the system state. By using
this estimate, the FDAE computes a residual and a threshold vector that
guarantee the absence of false–positive alarms, that is no alarm will be fired
before the actual fault occurrence time. Furthermore, as its name suggests
the FDAE has another function. After the detection of a fault, in fact, an
online adaptive approximator is turned on in order to learn the possibly
unknown fault function φ.

The second service provided by the architecture is the ability to isolate
and identify the occurred and detected fault. To solve this problem, the
existence of a fault class F was assumed, that incorporates the existing
knowledge about the peculiar ways of failing of the system being monitored.
The ways of failing are described by a dynamical model of that faulty be-
havior, and this is accomplished through NF parameterized fault functions
contained in the class. The goal of the isolation service is to find which
fault function does better represent the actual behavior of the system after
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a fault has been detected, and to estimate the parameters vector of the fault
function. The role of this vector is to assess the magnitude, or the gravity of
the occurred fault. In order to implement the isolation service, a bank of NF

nonlinear adaptive estimators is employed, that are termed Fault Isolation
Estimators (FIE). Each one is activated after a fault has been detected, and
is tuned to a specific element of the fault class F . It yields a state estimate
x̂j ∈ Rn , j ∈ {1, . . . , NF}, where NF is the number of nonlinear faults of the
fault class F . Each FIE computes its own residual and threshold vectors,
and they are built so that a Generalized Observer Scheme is implemented.

Now the FDAE will be described, first during healthy operating condi-
tions and then in faulty ones. After having provided an analytic result about
fault detectability in Theorem (2.4.1), the isolability issue will be described
in section (2.5) and the Isolability Theorem (2.6.1) will be proved.

2.3 Healthy behavior and Fault Detection and Ap-

proximation Estimator

At the time instant t = 0 the FDI architecture is started and, by Assumption
2.1.1, the system S is healthy. Until a fault is detected, the FDAE estimator
is the only one to be enabled and provides a state estimate x̂0 of the state
x. The difference between the estimate x̂0 and the actual measured state x
will yield the following estimation error

ǫ0 , x − x̂0 ,

which will be used as a residual and compared, component by component,
to a suitable detection threshold ǭ0 ∈ Rn

+. The following condition

|ǫ
(k)
0 (t)| ≤ ǭ

(k)
0 (t) ∀ k = 1, . . . , n (2.4)

will be associated to the fault hypothesis

H0 : "The system S is healthy" .

Should condition (2.4) be unmet at some time instant t, the hypothesis H0

will be falsified and what will be called a fault signature will be noticed,
leading to fault detection. In qualitative fault diagnosis schemes, such as
[104], the fault signature is defined as a symbolic vector, that qualitatively
describes the behavior of residuals and their derivatives after the occurrence
of a fault. Instead, in quantitative schemes, such as [4, 12, 1], the fault
signature represents the pattern of residuals that exhibit abnormal behavior
after the occurrence of a fault. We will adhere to this last meaning, and we
will introduce the following definition
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Definition 2.3.1: The fault signature shown by the system S at time
t > 0 is the index set S , {k : ∃ t1, t ≥ t1 > 0, |ǫ

(k)
0 (t1)| > ǭ

(k)
0 (t1)} of the

state components for which the hypothesis (2.4) did not hold for at least
one time instant.

Fault Detection Logic The fault detection logic can then be simply
stated in terms of the signature S: a fault affecting the system S will be
detected at the first time instant such that S becomes non-empty. This time
instant will be called the fault detection time Td.

Definition 2.3.2: The fault detection time Td is defined as Td , min{t :

∃ k, k ∈ {1, . . . , n} : |ǫ
(k)
0 (t)| > ǭ

(k)
0 (t)}.

Now the way the state estimate x̂0 is produced by means of the FDAE
will be discussed. The FDAE is a nonlinear adaptive estimator based on the
system model (2.1), and before the detection of a fault, for 0 ≤ t < Td, its
dynamics are selected as

x̂0(t + 1) = λ(x̂0(t) − x(t)) + f(x(t), u(t)), (2.5)

where 0 ≤ λ < 1 is a design parameter that fix the estimator poles. The state
estimation error dynamics is described by the following difference equation

ǫ0(t + 1) = λǫ0(t) + η(x(t), u(t), t) + β(t − T0)φ(x(t), u(t)) .

By choosing x̂0(0) = x(0), before the occurrence of a fault, for 0 ≤ t ≤ T0,
the solution to the above equation is simply2

ǫ0(t) =

t−1
∑

h=0

λt−1−hη(h) .

Recalling Assumption 2.1.2, it is straightforward to define the following
threshold on the FDAE estimation error:

ǭ
(i)
0 (t) ,

t−1
∑

h=0

λt−1−hη̄(i)(h) ≥ |ǫ
(i)
0 (t)|, ∀t ≤ T0, i = 1, . . . , n . (2.6)

that guarantees no false–positives alarms will be issued prior to the fault
occurrence time T0, according to the fault detection logic described in this
section.

2In the following, when there is no risk of ambiguity and for the sake of simplicity, a
compact notation like, for instance, η(t) ≡ η(x(t), u(t), t), will be used.
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2.4 Faulty behavior and Fault Detectability

Threshold (2.6) guarantees that no false–positive alarms will be issued before
T0 because of the model uncertainty η. This of course, comes at the cost of
the impossibility of detecting faults whose amplitude is “comparable” with
the bound η̄. This is formalized by the following

Theorem 2.4.1 (Fault Detectability): If there exist two time indexes
t2 > t1 ≥ T0 such that the fault φ fulfills the following inequality for at least
one component i ∈ {1, . . . , n}

|
t2−1
∑

h=t1

λt2−1−h(1 − b−(h−T0))φ(i)(h)| > 2ǭ
(i)
0 (t2)

then it will be detected at t2, that is |ǫ
(i)
0 (t2)| > ǭ

(i)
0 (t2).

Proof: At the time instant t2 > t1 ≥ T0 the i–th component of the
state estimation error is

ǫ
(i)
0 (t2) = λt2−t1ǫ

(i)
0 (t1) +

t2−1
∑

h=t1

λt2−1−hη(i)(h)+

t2−1
∑

h=t1

λt2−1−h(1 − b−(h−T0))φ(i)(h))

By the triangle inequality and |ǫ
(i)
0 (t1)| ≤ ǭ

(i)
0 (t1), it follows that

|ǫ
(i)
0 (t2)| ≥ −λt2−t1 ǭ

(i)
0 (t1) − |

t2−1
∑

h=t1

λt2−1−hη(i)(h)|+

|
t2−1
∑

h=t1

λt2−1−h(1 − b−(h−T0))φ(i)(h))| .

By recalling Assumption 2.1.2 and (2.6), it follows that

|ǫ
(i)
0 (t2)| ≥ −λt2−t1

t1−1
∑

h=0

λt1−1−hη̄(i)(h)−

t2−1
∑

h=t1

λt2−1−hη̄(i)(h) + |
t2−1
∑

h=t1

λt2−1−h(1 − b−(h−T0))φ(i)(h)|

and hence

|ǫ
(i)
0 (t2)| ≥ −ǭ

(i)
0 (t2) + |

t2−1
∑

h=t1

λt2−1−h(1 − b−(h−t0))φ(i)(h)| .
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If φ(i) is such that the inequality in the hypothesis holds, then |ǫ
(i)
0 (t2)| >

ǭ
(i)
0 (t2) and a fault will be detected.

Remark 2.4.1: Theorem 2.4.1 does not provide a closed-form expres-
sion for characterizing analytically the class of detectable faults. Anyway,
suitable offline numerical tests can be carried on to check the theorem con-
dition for different fault functions and different system operating conditions,
in order to build an approximate class of detectable faults.

After the detection of a fault at time t = Td, the FDAE approximator is
turned on and the dynamics (2.5) become

x̂0(t + 1) = λ(x̂0(t) − x(t)) + f(x(t), u(t))+

φ̂0(x(t), u(t), ϑ̂0(t)) , (2.7)

where φ̂0 is an adaptive approximator and ϑ̂0(t) ∈ Θ̂0 ⊂ Rq0 denotes its
parameters vector. The term adaptive approximator [114] may represent any
nonlinear multivariable approximation model with adjustable parameters,
such as neural networks, fuzzy logic networks, polynomials, spline functions,
wavelet networks, etc. Again, for the sake of simplicity, Θ̂0 is assumed to
be an origin–centered hyper–sphere, with radius MΘ̂0

.
In order for φ̂0 to learn the fault function φ, its parameters vector is

updated according to the following learning law:

ϑ̂0(t + 1) = PΘ̂0
(ϑ̂0(t) + γ0(t)H

⊤
0 (t)r0(t + 1)) ,

where H0(t) , ∂φ̂0(x(t), u(t), ϑ̂0(t))/∂ϑ̂0 ∈ Rn×q0 is the gradient matrix of
the on–line approximator with respect to its adjustable parameters, r0(t+1)
is the signal

r0(t + 1) = ǫ0(t + 1) − λǫ0(t) ,

and PΘ̂0
is a projection operator [115]

PΘ̂0
(ϑ̂0) ,







ϑ̂0 if |ϑ̂0| ≤ MΘ̂0
M

Θ̂0

|ϑ̂0|
ϑ̂0 if |ϑ̂0| > MΘ̂0

,

The projection operator is one of the possible modifications to an adap-
tive approximator learning law, apart from the ǫ, σ and dead–zone mod-
ifications [114]. These modifications are needed to counter the effects of
measuring or modeling uncertainties that make the approximation error be
non–zero even when the parameter estimation error is zero or close to zero,
and cause the phenomenon called parameter drift . It works by projecting
at each time the updated parameter vector inside its allowable domain (fig.
2.1), thus assuring also the stability of the approximation scheme. It does
not, anyway, sacrifice the convergence speed or the parameter estimation
accuracy as the other kinds of modification.
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ϑ̂0(0)

Θ̂0

ϑ̂0(t)

ϑ̂0(t) + ∆

P
Θ̂0

(ϑ̂0(t) + ∆)

Figure 2.1: The projection operator PΘ̂0
: let us assume for the parameter

ϑ̂0 an admissible domain Θ̂0, which center is the black dot. If at time t
the learning law should predict a new value ϑ̂0 + ∆ that is outside Θ̂0, the
operator PΘ̂0

will project it back on the domain boundary.

The learning rate γ0(t) is computed at each step as

γ0(t) ,
µ0

ε0 + ‖H0(t)‖2
F

, ε0 > 0, 0 < µ0 < 2

where ‖ · ‖F is the Frobenius norm and ε0, µ0 are design constants that
guarantee the stability of the learning law [115, 116, 117, 118, 119].

2.5 Fault isolation logic

After a fault has been detected at time t = Td , the NF FIEs are activated
in parallel to implement a kind of Generalized Observer Scheme [17, 36].
This scheme relies on each FIE being matched to a specific fault function
belonging to the fault class F that represents the a priori knowledge about
the possible way of failing of the system S . A parallel with differential
diagnostics procedures in medicine may be drawn in order to clarify the
rationale behind this kind of scheme and the relative fault isolation logic.
After fault detection, by considering only the signature3 S the FDI scheme
may conclude that the system is affected by either one of the known faults

3That would be called syndrome in medical language. Interestingly enough, the term
syndrome is widely used in the Computer Science literature about fault diagnosis. For the
specific problem of fault diagnosis of distributed computer systems, see the seminal paper
of Preparata et al. [97].
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in F or by an unknown fault. Which fault is the root cause cannot be
discerned, as in general a signature would be such that more than a diagnosis
can explain it. That is, more than one fault function in F may be such that
it influences the variables referenced by the signature. Furthermore, even if
the fault candidates would present in theory unique signatures, there is no
guarantee that at detection time all the analytic symptoms4 distinctive of a
fault would be present.

It is at this point evident that no reliable diagnosis scheme could depend
only on the analysis of the fault signature at detection time. To make a
robust and correct fault decision, the FDI scheme then needs to conduct
further tests that may lead to fault isolation, by mutually excluding the
available fault candidates. This is related to physicians carrying on further
tests in order to single out which of a number of diseases explain the actual
medical syndrome. In the present problem, this is achieved by enabling the
NF FIEs to test in parallel the NF fault hypotheses

Hl : "The system S is affected by the l–th fault" ,

l ∈ {1, . . . , NF}. To this end, analogously to the FDAE, the l–th FIE will
provide its own state estimate x̂l of the state x. The difference between
the estimate x̂l and the measured state x will yield the following estimation
error

ǫl , x − x̂l ,

which will play the role of a residual and will be compared, component
by component, to a suitable isolation threshold ǭl ∈ Rn

+. The following
condition

|ǫ
(k)
l (t)| ≤ ǭ

(k)
l (t) ∀ k = 1, . . . , n (2.8)

will be associated to the l–th fault hypothesis Hl. Should this condition
be unmet at some time instant t, the hypothesis will be falsified and the
corresponding fault will be excluded as a possible cause of the fault signature,
at the exclusion time Te,l.

Definition 2.5.1: The l–th fault exclusion time Te,l is defined as Te,l ,

min{t : ∃ k, k ∈ {1, . . . , n}, |ǫ
(k)
l (t)| > ǭ

(k)
l (t)}.

Fault isolation logic The goal of the isolation logic is to exclude every
but one of the faults belonging to the fault class F , which will be said to be
isolated.

Definition 2.5.2: A fault φp ∈ F is isolated at time t iff ∀l, l ∈ {1, . . . , NF}\
p , Te,l ≤ t and ∄ Te,p. Furthermore Tis,p , min{Te,l, l ∈ {1, . . . , NF} \ p} is
the fault isolation time.

4This term is defined in [2], and would correspond to the term sign in medical language.
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Remark 2.5.1: It is worth noting that, if a fault has been isolated, we
can conclude that it actually occurred if we assume a priori that only faults
belonging to the class F may occur. Otherwise, it can only be said that
it is not impossible that it occurred. If every fault in F is excluded, then
it will be said that the proposed FDI architecture has isolated an unknown
fault. In order to possibly add this fault to the class F of known fault, the
FDAE on–line approximator is designed in order to be capable of learning
any fault that can reasonably occur, and is started at Td.

2.6 FIE Estimators and Isolation Scheme

After a fault has been detected at time t = Td, the bank of NF FIEs is
activated in order to isolate it. The dynamics of the state estimation of the
l–th FIE, l ∈ {1, . . . , NF}, is

x̂l(t + 1) = λ(x̂l(t) − x(t)) + f(x(t), u(t))+

φ̂l(x(t), u(t), ϑ̂l(t)) , l ∈ {1, . . . , NF} , (2.9)

where φ̂l(x(t), u(t), ϑ̂l(t)) is a linearly-parameterized function whose i–th
component φ̂

(i)
l (x(t), u(t), ϑ̂l(t)) , (ϑ̂l,i)

⊤Hl,i(x(t), u(t)) matches the struc-
ture of φ

(i)
l , with ϑ̂l,i ∈ Θl,i and ϑ̂l , col(ϑ̂l,i, i = 1, . . . , n).

The learning law for ϑ̂l,i is analogous to the FDAE one:

ϑ̂l,i(t + 1) = PΘl,i
(ϑ̂l,i(t) + γl,i(t)Hl,i(t)r

(i)
l (t + 1)) ,

where r
(i)
l (t + 1) is given by

r
(i)
l (t + 1) = ǫ

(i)
l (t + 1) − λǫ

(i)
l (t) .

PΘl,i
is the projection operator on Θl,i and the learning rate γl,i(t) is com-

puted as
γl,i(t) ,

µl,i

εl,i + ‖Hl,i(t)‖2
, εl,i > 0, 0 < µl,i < 2 .

Remark 2.6.1: It is important to notice that, in spite of their similarity,
the FDAE is built upon an on–line approximator that must be complex
enough to be able to approximate any reasonable unknown fault, while the
FIEs are designed to match a single fault function in F . Anyway, although it
is possible for a FIE to exactly match a fault function φl if ϑ̂l,i(t) = ϑl,i, ∀i ∈

{1, . . . , n}, there is no guarantee that ϑ̂l,i(t) will converge to the true value
ϑl,i, as persistence of excitation is not assumed in this work.

Assuming a matched fault, that is φ = φl, and with the initial condition
x̂l(Td) = x(Td), the solution to the i–th component of the estimation error
dynamics equation is
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ǫ
(i)
l (t) =

t−1
∑

h=Td

λt−1−h(η(i)(h) + (1 − b−(h−T0))(ϑ̃l,i)
⊤Hl,i(h)

− b−(h−T0)(ϑ̂l,i)
⊤Hl,i(h)) ,

where ϑ̃l,i(t) , ϑl,i(t) − ϑ̂l,i(t) is the parameter estimation error. Owing to
Ass. 2.1.2, the estimation error absolute value in the case of a matched fault
can be upper bounded as

|ǫ
(i)
l (t)| ≤

t−1
∑

h=Td

λt−1−h(η̄(i)(h) + (1 − b−(h−T0))‖ϑ̃l,i‖‖Hl,i(h)‖

+ b−(h−T0)‖ϑ̂l,i‖‖Hl,i(h)‖) .

The right hand side cannot be used as a threshold because b and ϑ̃l,i are
unknown. Anyway, the term b−(t−T0) can be upper bounded by b̄−(t−Td)

thanks to Ass. 2.1.3, while ‖ϑ̃l,i‖ can be upper bounded by the function

κl,i , ‖ϑ̂l,i‖ + MΘl,i
.

Hence, we define the following threshold:

ǭ
(i)
l (t) ,

t−1
∑

h=Td

λt−1−h(η̄(i)(h) + κl,i‖Hl,i(h)‖

+ b̄−(h−Td)‖ϑ̂l,i‖‖Hl,i(h)‖) ≥ |ǫ
(i)
l (t)| , (2.10)

that guarantees that if the fault φl ∈ F occurs it will not be rejected by the
corresponding FIE. Unfortunately, because of the model uncertainty η and
of the parameter estimation error, there is no assurance that others FIEs
will reject the fault φl so that it may be isolated. The following theorem
gives a sufficient condition for a successful isolation decision.

Theorem 2.6.1 (Fault Isolability): Given a fault φp ∈ F , if for each
l ∈ {1, . . . , NF} \ p there exists some time instant tl > Td and some il ∈
{1, . . . , n} such that

tl−1
∑

h=Td

λtl−1−h|∆p,lφ
(il)(h)| >

tl−1
∑

h=Td

λtl−1−h(2η̄(il)(h) + (κl,il(h)

+ b̄−(h−Td)‖ϑ̂l,il‖)‖Hl,il(h)‖) ,

where

∆p,lφ
(il)(t) , (1 − b−(t−T0))(ϑp,il)

⊤Hp,il(t) − (ϑ̂l,il)
⊤Hl,il(t),

∀l, p ∈ {1, . . . , NF}, l 6= p
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is the il–th component of the fault mismatch function between the p–th and
the l–th faults, then the p–th fault will be isolated at time max

l∈{1,...,NF}\p
(tl).

Proof: Supposing that the p–th fault has occurred, the dynamics of
the il–th component of the estimation error of the l–th FIE are described
by

ǫ
(il)
l (t + 1) = λǫ

(il)
l (t) + η(il)(t) + ∆φ

(il)
p,l (t) ,

so that for t > Td the solution to the above equation is

ǫ
(il)
l (t) =

t−1
∑

h=Td

λt−1−h(η(il)(h) + ∆p,lφ
(il)(h)).

By using the triangular inequality we have

|ǫ
(il)
l (t)| ≥

t−1
∑

h=Td

λt−1−h|∆p,lφ
(il)(h)| −

t−1
∑

h=Td

λt−1−h|η(il)(h)| ,

so that a sufficient condition for the l–th fault to be excluded is

t−1
∑

h=Td

λt−1−h|∆p,lφ
(il)(h)| −

t−1
∑

h=Td

λt−1−h|η(il)(h)| ≥ ǭ
(il)
l (t) ,

that is

t−1
∑

h=Td

λt−1−h|∆p,lφ
(il)(h)| ≥

t−1
∑

h=Td

λt−1−h|η(il)(h)|

+
t−1
∑

h=Td

λt−1−h(η̄(il)(h) + κl,il‖Hl,il(h)‖ + b̄−(h−Td)‖ϑ̂l,il‖‖Hl,il(h)‖) ,

which is implied by the inequality in the thesis. Requiring that this happens
for each l 6= p assures that each fault hypothesis but Hp is excluded, thus
proving the theorem.

2.7 Illustrative example

A simple example is presented to illustrate the effectiveness of the proposed
FDI scheme, based on the well-known three–tank problem (see Fig. 2.2).
Both simulated and experimental data will be presented.

The experimental test bed consists of an AMIRA DTS200 three-tank
system, connected to a DSpace acquisition and control card hosted by a
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Siemens computer (see Fig. 2.3). All the tanks are cylinders with a cross-
section A(i) = 0.156 m2, whilst every pipe has a cross-section A

(i)
p = 5 ·

10−5 m2 with outflow coefficient tuned to match the actual systems, i ∈
{1, 2, 3}. The tank levels are denoted by x(i), with i ∈ {1, 2, 3}, and are
limited between 0 and 60 cm. The scalars 0 ≤ u(i) ≤ 100 ml/s, i ∈ {1, 2},
correspond to the inflows supplied by two pumps.

1 3 2

A AA

u1 u2

x
1

x
3

x
2

Figure 2.2: Structure of the three–tanks system under consideration.

Figure 2.3: The experimental three-tank system.

The tank discrete-time model will be obtained from the continuous-time
version [36] by employing a simple forward Euler discretization with Ts =
0.1 s:
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x(1)(t + 1) = x(1)(t) + Ts

A(1) (c
(1)
p A

(1)
p sign(x(3)(t) − x(1)(t))×

√

2g|x(3)(t) − x(1)(t)| + u(1)(t))

x(2)(t + 1) = x(2)(t) + Ts

A(2) (c
(2)
p A

(2)
p sign(x(3)(t) − x(2)(t))×

√

2g|x(3)(t) − x(2)(t)| − c
(3)
p A

(3)
p

√

2gx(2)(t) + u(2)(t))

x(3)(t + 1) = x(3)(t) + Ts

A(3) (c
(1)
p A

(1)
p sign(x(1)(t) − x(3)(t))×

√

2g|x(1)(t) − x(3)(t)| − c
(2)
p A

(2)
p sign(x(3)(t) − x(2)(t))×

√

2g|x(3)(t) − x(2)(t)|)

The FDAE on–line approximator φ̂0 will consists of a 5–input, 3–output
Radial Basis Function (RBF) neural network with one hidden layer of 35

fixed neurons equally spaced in the hyper–rectangle [0, 10]3 × [0, 1]2 ⊂ R5.
ϑ̂0 will be a vector with 3·35 components containing the weights by which the
hidden layer outputs are linearly combined in order to compute the network
output.

Three FIEs will be employed, in order to match the following faults:

1. Actuator fault in pump 1: partial or full shutdown of the pump
modeled as u

(1)
f = u(1)(1 − a(1)), where uf represents the pumps flow

in the faulty case and 0 ≤ a(i) ≤ 1, i ∈ {1, 2}.

2. Leakage in tank 3: circular hole of unknown radius 0 ≤ ρ(3) ≤ 1

in the tank bottom, so that the outflow due to the leak is q
(3)
f =

π(ρ(3))2
√

2gx(3)(t)

3. Actuator fault in pump 2: same as 1 but related to pump number
2.

The resulting fault class F is

F =











ϑ1,1H1,1(t)
0
0



 ,





0
0

ϑ2,3H2,3(t)



 ,





0
ϑ3,2H3,2(t)

0











,

where ϑ1,1 = a(1), H1,1(t) = − Ts

A(1) u
(1)(t), ϑ2,3 = π(ρ(3)), H2,3(t) = − Ts

A(3) ·
√

2gx(3)(t), ϑ3,2 = a(2), H3,2(t) = − Ts

A(2) u
(2)(t).

For both the FDAE and the FIEs all the auxiliary learning coefficients
are equal to µ = 0.04 and ε = 0.001, and the filter constant is λ = 0.9. The
fault modeled is a leak with section Al = 2.612 · 10−5 m2 introduced in the
third tank at time T0 = 45 s. In the experimental case the leak is obtained
by manually opening a drain valve, and the opening time is approximately
equal to one second.
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2.7.1 Simulated data

When building the actual model for simulating the three-tanks system, a
random uncertainty no larger than 5%, 10% and 15% has been added, respec-
tively, to the tanks cross section, the pipes cross section and the pipes outflow
coefficient. After suitable offline simulations all the parameter domains were
chosen to be hyper–spheres with unitary radius. The bound on the uncer-
tainty function was set to the constant value η̄(i) = Ts · 0.002, i ∈ {1, 2, 3},
while the bound on the time profile parameter was set to b̄ = 1.01.

Fig. 2.4 shows the results of a simulation where at T0 = 45 s an incipient
leak was introduced in tank 3, with a time profile described by b = 1.05.
In Fig. 2.4(b) it can be seen that the fault is detected about 2 s later, and
then is almost immediately isolated (Fig. 2.4(c)-(e)). The behavior of the
estimation errors ǫ

(1)
2 and ǫ

(2)
2 is not reported, but anyway it is clear that they

do not cross their corresponding thresholds as the fault function considered
does not affect the dynamics of x(1) and x(2). In Fig. 2.4(f) the behavior of
the third FIE parameter ϑ̂2,3 is plotted: it can be seen that it approaches the
value ϑ2,3 = 2.612 · 10−5 m2 corresponding to a complete pump shutdown.
The offset is due to the fact that the FIE approximator is actually learning
the fault function φ1 plus the uncertainty η, rather than the fault alone.

2.7.2 Experimental data

In this case the nominal parameters have been used in building the model
used by the FDI scheme. Anyway the uncertainty term η cannot be ig-
nored, as in the experimental situation it accounts for the measurement
errors introduced by the real level sensors. Because of the relatively high
measurement errors, the uncertainty bounds have been set to the constant
value η̄(i) = Ts · 0.004, i ∈ {1, 2, 3}.

Fig. 2.5 shows the results of the application of the proposed FDI scheme
to actual data recorded from the AMIRA test bench. As in the simulation
case the fault is detected about 3 s later than T0 and is isolated shortly
thereafter. The parameter ϑ̂2,3 shows an offset, too, that is due to the fact
that the FIE approximator is trying to learn the effect of both the functions
φ2 and η. It is interesting to note, too, that the behavior of the FDAE error
peak after the detection time is qualitatively the same in the simulated
and experimental case, but only if its amplitude is considered relative to
the threshold value. In fact, the peak value reached in the simulated case
(about 2.4 mm) is different than the one reached in the experimental one
(about 4.2 mm). This is due to the way the FDAE works: after detection,
its on–line adaptive approximator is turned on and its effect is to decrease
the estimation error. So, even if probably in both cases the estimation error
should have grown to the same (larger) value, the presence of the FDAE
approximator causes the error to drop shortly after the detection time Td.
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2.8 Concluding remarks

In this chapter a centralized FDI architecture for non–linear uncertain discrete–
time systems, based on sound and proven techniques, was presented. The
detection logic guarantees the absence of false–positive alarms, although this
result comes at the cost of a reduced sensitivity to faults. In order to quan-
tify this sensitivity, a fault detectability theorem was proved that can be
used to characterize numerically the class of detectable faults. The same
false–positive alarms guarantee is assured by the fault isolation logic, and
similarly an isolability theorem was developed that characterizes isolable
faults in terms of the magnitude of the difference, or mismatch, between
them.

While the architecture presented so far is perfectly suited to solve the
problem of FDI for “small” and centralized systems, this does not hold
for large enough or distributed systems. The basis for a transition from
a centralized to a distributed architecture will be given in the following
chapter.
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Figure 2.4: Time-behaviours of simulated signals related to tank no. 3 when
an incipient leakage is introduced at time 45 s.
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Figure 2.5: Time-behaviours of experimental signals related to tank no. 3
when an incipient leakage is introduced at time 45 s.



Chapter 3

From Centralized to

Distributed Fault Diagnosis

The FDI architecture presented in Chapter 2 does represent an acceptable
solution to the problem of fault diagnosis for discrete-time nonlinear systems.
Uncertainties were accounted for in a robust way and the performance of
the detection and isolation logics were analytically characterized. Similar
results can easily be obtained for discrete-time nonlinear input-output sys-
tems [113], as well as for continuous one: in this last case see for instance
[36, 35], where also theoretical results about fault detection time are given.

Anyway the solution proposed does stand on a fundamental, unstated
assumption. This assumption is hidden in the FDAE and FIE estimator
equations (2.5) and (2.9).

Assumption 3.0.1 (Unstated assumption about FDI schemes):
Any useful solution to the FDI problem must be such that the fault decision
dFD

I can be provided in real–time.

This should sound quite reasonable, as a late fault decision may come at
a time when it is too late to steer a system away from a failure. Although
the expression real–time does allow for some flexibility on the exact time
when the fault decision about the health of the system at time t can be
given, equations (2.5) and (2.9) do anyway imply that in the span of the
sampling time Ts all the measurements and all the computations needed
to evaluate the NF + 1 estimates of the next system state must be carried
on. Furthermore, as it is usually understood in the literature, the equa-
tions assume that all the needed measurements are conveyed to a single
location where the computations are done in a centralized way. While such
a centralized implementation may work for reasonably small and slow sys-
tems, this may not hold for larger and faster systems because of the limited
available computation power. With the term “large” we do not mean only
systems with a large number of state variables, that would therefore need
more computation power to provide the state estimation in time; we mean

35
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also systems that are physically larger, so that the very task of conveying all
the needed measurements in time to a single location where they can be pro-
cessed may pose difficulties. Furthermore, the centralized approach would
not be feasible also in all the situations where a centralized FDI architecture
simply cannot be built, such as in sensor networks or in UAV formations.
In these situations the choice of a central node for the task of diagnosing
all the other nodes and itself would be arbitrary and not necessarily always
optimal. Should that single node be prone to failures it would constitute a
robustness issue too, in a situation where the robustness with respect to the
failure of a single node is of fundamental importance.

It is then of paramount importance, for the successful application of
model–based FDI schemes to real world large–scale systems, to reformulate
the proposed architecture in a non-centralized way. This is the motivation
that led to the present work. As with many problems in large–scale systems
and in Computer Science, the solution will be based on the divide et impera
paradigm. As a single “computation node” cannot be able to solve the FDI
problem for a large-scale system, the solution will be to find an implemen-
tation involving multiple “computation nodes”. These nodes will be called
agents, and this term will denote here a hardware/software combination
capable of:

• directly measuring physical variables;

• processing locally available information;

• communicating with other agents.

The task of subdividing the FDI problem in order to let more than one
agent solve it will be called the decomposition problem. These agents will
have only a limited view on the system, so that each agent will need to solve
a computationally easier task than the one of monitoring the whole system.
But having a limited view of the system does not bring only beneficial effects,
but also detrimental ones. For properly solve its task, an agent will have
to exchange informations between neighboring agents about parts of the
system that it does not see, although these parts have a role in the dynamic
behavior of the part assigned to it. So, actual solutions to the decomposition
problem will always be a compromise, where less computation power needed
by each agent is traded in for more communication capacity between them.

In this chapter we will first introduce a definition of what it is meant
by centralized, decentralized, distributed and large–scale. Then a solution
to the DFDI problem will be proposed, and a new FDI architecture will be
finally introduced.
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3.1 Large–scale, centralized, decentralized and dis-

tributed concepts

Before trying to develop a distributed architecture for FDI, we will first de-
fine some fundamental concepts that were informally introduced in Chapter
1. The most important thing to bear in mind is that a physical system
is not inherently centralized, nor decentralized, nor distributed, nor large–
scale. These adjectives make sense only when we have to solve a control
or estimation problem about that system, so that we may find more conve-
nient to look at the system in a way or in another. That is, our solution
dictates in which kind of category the system would fall, and the concepts
of being centralized, decentralized or distributed do apply to the control or
estimation architecture in first place. Furthermore, even when a system may
look obviously distributed itself because it consists of a number of intercon-
nected subsystems, again this depends on the way we have chosen to draw
the boundaries between subsystems.

As a consequence of these considerations, we will give the following def-
initions that apply both to physical systems and to control and estimation
schemes, and that were inspired by [89, 39]

Definition 3.1.1: A system or architecture is decentralized if it can be
considered as being constituted by a number of subsystems, so that the
behavior of any single subsystem is influenced only by variables belonging
to it, without any interaction with other subsystems.

Definition 3.1.2: A system or architecture is distributed if it can be
considered as being constituted by a number of subsystems, so that the
behavior of any single subsystem is influenced by variables belonging to it,
and by the influence of a proper subset of all the other subsystems.

Definition 3.1.3: A system or architecture is centralized if it is neither
decentralized nor distributed.

Furthermore the following definition will be used to characterize large–
scale systems:

Definition 3.1.4: A system is large–scale if no feasible centralized ar-
chitecture can be devised to solve a problem on it.

3.2 Structural analysis of large–scale systems

What will allow us to classify a system as large–scale and study how estima-
tion and control problems on it can be solved, is its structure. The structure
of the system is a way to represent how the different parts of the system
interact with each other, although the structure does not provide the same
level of details on the system as its dynamical model. The structure does
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Figure 3.1: A simple graph showing the airline routes between Trieste, Paris,
London, Münich and New York. One passenger wishing to fly from Trieste
to New York can take a two legs flight through any of the airports of London,
Paris and Münich. A passenger could also take three or even four legs flights
between Trieste and New York without passing by the same airport more
than once. Here the relation showed by the graph is “being connected by a
direct flight”. It is important to note that there is no need for any relation
between the graph layout and the actual positions and distances of the cities,
as the only information conveyed by the graph is the existence of relations
between nodes. In fact, we chose to draw the graph this very way not to
represent the actual geography, but to avoid edges crossing each other. A
graph that can be drawn in such a way is called planar.

not tell us how a given state component influences another one, but tells us
only that it does influence that variable.

Structural analysis does invariably involve the use of graphs [120], that
are an intuitive and powerful pictorial representation of the relations between
objects. Objects are represented as nodes, while the existence of a relation
between two objects is represented by an edge between the corresponding
nodes (Fig. 3.1). A kind of graph that provides the deepest insight into
the system structure is the bipartite graph [1] (Fig. 3.2), where nodes are
classified into two categories: states and input components on one side, and
model equations on the other. An edge exists between one state or input
component and one equation if and only if that component appears into that
equation. No edges are allowed between nodes of the same category.

Although bipartite graphs offer a great deal of information, a simpler
structural graph representation is preferred in most cases, as the present
ones. This kind of graph is the directed graph or digraph [89], and is con-
stituted by as many nodes as the state and input components: an oriented
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Figure 3.2: A simple bipartite graph where one category of nodes is consti-
tuted by parents, the other by sons, and the relationship of course is “being
parent and son”.

a

b

c = a + b

Figure 3.3: A simple directed graph that illustrates the sum operation be-
tween two inputs in order to get an output.

edge exists between a node a and a node b if a appears in the dynamic
equation of b. The fact that the edge is oriented preserves the information
about the causality (Fig. 3.3). In the following sections digraphs and their
use in structural analysis are covered.

3.2.1 Some fundamental concepts on graphs

Before talking about digraphs, we will start with the more general case of a
graph [120]

Definition 3.2.1: A graph G , (N , E) is an ordered pair constituted
by a non–empty set N of objects called nodes and by a possibly empty set
E of two-elements subsets of elements of N , called edges. N is called the
node set of G and E is its edge set.

According to Definition (3.2.1) edges do not have an orientation, and
such a graph is called an undirected graph. Undirected graphs are useful
when describing symmetric relations, such as the ones connecting two com-
municating nodes in a communication or a sensor networks.

Other important concepts are the subgraph and the induced subgraph,
that will be used extensively when discussing the decomposition problem.

Definition 3.2.2: A graph H , (NH, EH) is a subgraph of the graph
G , (NG , EG) iff NH ⊆ NG and EH ⊆ EG .
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Definition 3.2.3: The subgraph H , (NH, EH) induced on the graph
G , (NG , EG) by the node subset K ⊆ NG is the maximal subgraph of G
having node set NH = K, that is its edge set is EH = {{v1, v2} : {v1, v2} ∈
EG , v1 ∈ K, v2 ∈ K}.

Apart from the edge set, there is another convenient way to describe
how the nodes of a graph are connected by edges, by means of the adjacency
matrix :

Definition 3.2.4: The adjacency matrix AG of the graph G , (NG , EG)
is the N × N matrix

A
(i,j)
G ,

{

1 if {vi, vj} ∈ EG

0 else
,

where N , |NG | is the number of nodes in the graph.

Of course, the adjacency matrix of an undirected graph is symmetric.
The adjacency matrix can be generalized so that it does not contains only
zeros and ones. If we associate a weight, that is a non-negative real number,
to each edge, we can relax the last definition so that A

(i,j)
G represents the

weight of the edge connecting nodes v1 and v2:

A
(i,j)
G ,

{

≥ 0 if {vi, vj} ∈ EG

0 else
.

A measure of how much a given node is connected to other nodes is
called the node degree

Definition 3.2.5: The degree di of a node vi ∈ NG of the graph G is
the number of edges insisting on that node, that is di , |{{vi, vj} : vj ∈
NG , {vi, vj} ∈ EG}|.

An interesting property of a graph is whether it is connected or not:

Definition 3.2.6: A graph G , (NG , EG) is connected iff for each v1 ∈
NG and for each v2 ∈ NG there exists a sequence of edges1 belonging to EG
that starts in v1 and ends in v2.

This means that in a connected graph it is possible to reach any node
from any other node, by traversing edges belonging to the graph.

3.2.2 Directed graphs

A directed graph can be defined similarly to graphs, but requesting that the
edges be endowed with an orientation. To distinguish between non–oriented
and oriented edges, the latter will be called arcs.

1This sequence is called a walk. If it is such that no edges or nodes are repeated, it is
called a path [120].
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Definition 3.2.7: A directed graph G , (N , E) is an ordered pair con-
stituted by a non–empty set N of objects called nodes and by a possibly
empty set E of ordered pairs of elements of N , called arcs. N is called the
node set of G and E is its arc set.

As the arcs are ordered, we will use the notation (vi, vj) for the arc that
leaves from node vi and ends in node vj .

The definitions of the subgraph, induced subgraph and adjacency ma-
trix easily extend to directed graphs. A further distinction can be made
regarding the property of being connected. A digraph is said to be strongly
connected iff any two nodes can be connected by a sequence of arcs tra-
versed in the direction of their orientation. A less stringent property is the
one of being weakly connected, that holds when the underlying graph, that
is obtained from the digraph by ignoring the arcs orientation, is connected.

The concept of a node degree is further specified by considering the
number of arcs leaving from a node, called out degree, and the number of
those ending in that node, called in degree.

Definition 3.2.8: The out degree odi of a node vi ∈ NG of the digraph
G is the number of arcs leaving from that node, that is odi , |{(vi, vj) : vj ∈
NG, (vi, vj) ∈ EG}|.

Definition 3.2.9: The in degree idi of a node vi ∈ NG of the digraph
G is the number of arcs ending in that node, that is odi , |{(vj , vi) : vj ∈
NG, (vj , vi) ∈ EG}|.

3.2.3 Structural graph of a system

Now we will show how the structure of a dynamical system can be repre-
sented through a directed graph. First of all we will give a rather broad and
intuitive definition of what we mean by the structure of a dynamical system

Definition 3.2.10: The structure of a dynamical system S having a
state vector x ∈ Rn and an input vector u ∈ Rm is the set of ordered pairs
ΣS , {(x(i), x(j)) : i, j ∈ {1, . . . , n}, "x(i) acts on x(j)"} ∪ {(u(i), x(j)) : i ∈
{1, . . . ,m}, j ∈ {1, . . . , n}, "u(i) acts on x(j)"}.

The very general relation “acts on” has been used in Definition 3.2.10 in
order not to bound it to a specific choice of system model. Anyway, as in
this work we are considering dynamical systems described by differential or
difference equations, the relation “acts on” will be equivalent to “appears in
the state equation of”.

As we have defined the structure as a set of ordered pairs of related state
or input components, a natural choice for representing it is by the use of a
directed graph, that will be called the structural graph [89].

Definition 3.2.11: The structural graph of a dynamical system S , hav-
ing a state vector x ∈ Rn and an input vector u ∈ Rm, is the directed graph
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G , {NG , EG} having the node set NG , {x(i) : i ∈ {1, . . . , n}} ∪ {u(i) : i ∈
{1, . . . ,m}} and the system structure ΣS as the arc set, that is EG = ΣS .

The structural graph has of course many advantages in the analysis of
a large–scale system: in our case, among others, it will clearly show which
measurements are needed to compute an estimate of a given variable. This
will be useful, as explained later, in determining the amount of communica-
tion needed to compute the estimation of a subsystem state.

3.3 Divide et Impera: decomposition of large–scale

systems

As stated previously, the task of solving the FDI problem for a large–scale
systems in a centralized way, may be nor feasible, nor desirable. For this
reason a natural solution, that will be followed in this work, is to decom-
pose the original difficult problem into many subproblems that are easier to
solve. As the model–based FDI problem involves at its fundamental level
one or more estimators of the state vector x, the main step will consists
in decomposing the estimation task. This will lead, for example, to having
more than one fault detection estimator instead of a single one, each one
estimating only a subset of the state vector. It is rather intuitive that by
carefully choosing these subsets the number of states to be estimated and
the number of measurements needed to compute them can be made smaller
than any level should be deemed as acceptable, thus overcoming the lim-
itations pointed out in the beginning of this chapter. How these subsets
will be chosen constitutes the so–called decomposition problem. Distributed
control and estimation problems in the literature are naturally based on a
decomposition of the original large–scale system [90, 61]. When considered
as a whole, the original system S will be called here the monolithic system.

Of course the decomposition should yield a set of FDI problems that
are each one sufficiently simpler than the original centralized problem. This
remark points to the need for a definition of the term “simpler” in the present
contest. Although the solution to the decomposition problem itself is not
the main subject of this work, anyway from what have been said so far each
resulting subproblem should fulfill the following loosely defined constraints:

Computation constraint: the computation power needed to execute the
estimation task of each subproblem should not exceed the computation
power affordable by any single agent to which the subproblem may be
assigned.

Communication constraint: the communication capacity needed to con-
vey the measurements needed for the estimation task of each subprob-
lem should not exceed the communication capacity affordable by any
single agent to which the subproblem may be assigned.
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While the reason for the second constraint may appear not completely clear
now, it will at the end of Section 3.4, after the proposed distributed FDI
architecture would have been laid down.

The outcome of the decomposition of a large–scale system S will be a
description of its dynamic behavior in terms of the dynamics of a multiset2

of N subsystems3 SI , I ∈ {1, . . . , N}. The first step in the decomposition
will be to decompose the structure of S , in order to select the components
of the state and input vectors of S that will be assigned to each subsystem.
The second step will be the decomposition of the dynamic model of S , so
that the dynamic equation of each subsystem can be derived. At the end of
this process, the decomposition of the FDI problem between multiple agents,
each one devoted to monitoring a a single subsystem, will be described.

3.3.1 System and structural graph decomposition

The idea of graph decomposition has been used in many fields [122] in order
to apply the divide et impera paradigm. For instance in numerical methods
involving the solution to partial differential equations (PDEs) [123, 124, 125,
126], in image processing [127], in operation research [128], and of course in
large–scale system decomposition [89, 129].

To decompose a monolithic system S having a state vector x ∈ Rn, an
input vector u ∈ Rm and a structural graph G = (NG , EG), it is necessary
to find a multiset of N ≥ 1 subsystems SI , with I ∈ {1, . . . , N}, each one
having a local state vector xI ∈ RnI and a local input vector uI ∈ RmI . These
local vectors will be constructed by taking components of the monolithic
system vectors x and u, thanks to ordered sets II , (I

(1)
I , . . . ,I

(nI )
I ) of

indices4, called extraction index set [111, 130, 112]:

Definition 3.3.1: The local state xI ∈ RnI of a dynamical subsystem
SI , arising from the decomposition of a monolithic system S , is the vector
xI , col(x(j) : j ∈ II), where II is the subsystem extraction index set.

Definition 3.3.2: The local input uI ∈ RmI of a dynamical subsystem
SI , arising from the decomposition of a monolithic system S , is the vector
uI , col(u(k) : (u(k), x(j)) ∈ EG, j ∈ II , k = 1, . . . ,m), where II is the
subsystem extraction index set.

It must be understood that when performing the “col” operation in the
two previous definitions, the elements of the index set II are taken in the
order they appear. Definition 3.3.2 was chosen so that the local input con-
tains all the input components that affects at least one component of the
local state vector. At this point, the structural graph of the I–th subsystem

2A multiset is a set that allows for repeated elements [121].
3In the subsequent analysis, a capital-case index will denote the specific subsystem

under concern.
4By the term index we mean an element of N+.
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can be easily defined as the subgraph GI induced on G by the subset made
of all the components of xI together with those of uI .

In order to be useful for our goal, the set of subsystems SI , that is the
decomposition, cannot be arbitrary, but should respect a set of rules, stated
in the following

Definition 3.3.3: A decomposition of dimension N of the large-scale
system S is a multiset D , {S1, ...,SN} made of N subsystems, de-
fined through a multiset {I1, . . . ,IN} of index sets, such that for each
I ∈ {1, . . . , N} the following holds:

1. II 6= ∅;

2. I
(j)
I ≤ n, for each j ∈ {1, . . . , nI};

3. the subdigraph of G induced by II must be weakly connected, that
is, each component of xI must act on or must be acted on by at least
another component of xI ;

4.
N
⋃

I=1

II = {1, ..., n} .

Point 1 prevents the definition of trivial empty subsystems, point 2
is necessary for well-posedness, point 3 avoids that resulting subsystems
have isolated state components, while the most interesting is point 4. The
last point requires that the decomposition covers the whole original mono-
lithic system, but anyway does not require that for any two subsystems
II ∩ IJ = ∅, I, J ∈ {1, . . . , N}. This will allow for a state component of
S to be assigned to one or more subsystems, thus being “shared”. Such a
decomposition is called overlapping decomposition. Overlapping decompo-
sitions [131] were found to be rather a useful tool when addressing large–
scale systems. In particular, problems of stability, control and estimation
[132], and fault diagnosis [133] for large–scale linear system were successfully
solved by using overlapping decompositions. The advantages of overlapping
decompositions in the present setting will be discussed in Section 3.4.

As a result of overlaps, some components of x will be assigned to more
than a subsystem thus giving rise to the concepts of shared state variable
and overlap index set .

Definition 3.3.4: A shared state variable x(s) is a component of x such
that s ∈ II ∩IJ , for some I, J ∈ {1, ... N}, I 6= J and a given decomposition
D of dimension N .

Definition 3.3.5: The overlap index set of subsystems sharing a vari-
able x(s) is the set Os , {I : s ∈ II}, whose dimension is Ns , |Os|.

In the following, the notation x
(sI)
I , with x

(sI)
I ≡ x(s), will be used to

denote the fact that the s–th state component of the original large–scale
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system, after the decomposition became the sI–th of the I–th subsystem,
I ∈ Os.

Now some more definitions are needed to characterize a structural de-
composition. This is related to the fact that, generally, no subsystem will
constitute an “island” that is completely independent from other subsys-
tems5. Instead, some local state component will be “acted on” by variables
belonging to other subsystems. The external variables influencing the dy-
namics of local state components of subsystem SI will make up the vector
of interconnection variables zI

Definition 3.3.6: The interconnection variables vector zI ∈ RpI , (pI ≤
n−nI) of the subsystem SI is the vector zI , col(x(k) : (x(k), x(j)) ∈ EG, j ∈
II , k = 1, . . . , n).

The set of subsystems acting on a given subsystem SI through the in-
terconnection vector zI is the neighbors index set JI

Definition 3.3.7: The neighbors index set of a subsystem SI is the set
JI , {K : ∃ (x(k), x(j)) ∈ EG , k ∈ IK , j ∈ II}.

To gain some more insight into the afore-described decomposition ap-
proach, consider the simple example depicted in Fig. 3.4, where a specific
decomposition of a system S into two overlapping subsystems S1 and S2

is considered.

u
(1)

u
(2)

x
(1)

x
(2)

x
(3)

x
(4)

x
(5)

S1

S2

x
(6)

Figure 3.4: Example of decomposition of a large–scale system S into two
overlapping subsystems S1 and S2 such that: x1 = [x(1) x(2) x(3)]⊤ and
x2 = [x(3) x(4) x(5) x(6)]⊤ are the local states, u1 = u(1) and u2 = u(2) the
local inputs, z1 = [x(4) x(5)]⊤ and z2 = x(2) the interconnection variables,
and x(3) ≡ x

(3)
1 ≡ x

(1)
2 is a shared variable with O3 = {1, 2}.

3.3.2 Model decomposition

The next step, after the structural decomposition, is to derive from the
model of the monolithic system S the equations that describe the dynamic
behavior of a given subsystem SI . These equations will be used by an agent
monitoring SI in order to provide the estimation tasks needed to solve the
corresponding FDI problem.

5This is equivalent to say that generally the monolithic system S is not decentralized.
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The main idea in model decomposition is to rewrite the model equations
in order to separate the effect of the local variables from that of the intercon-
nection variables, for instance by writing the dynamic equation right–hand
side as the sum of two terms, one of which depends only on local variables
and the other only on interconnection variables. The rationale for this is the
assumption that for an agent monitoring the subsystem it does “cost” less to
measure local variables than to get the non–local variables constituting the
interconnection vector. This is the reason why in decentralized control or
estimation schemes the problem of evaluating the effect of the “expensive”
interconnection term is ignored altogether.

For linear systems, powerful model decomposition techniques and de-
scriptions exist (see for instance the works published in recent years by
D’Andrea et al. [134, 47]), that can be applied to systems showing either a
regular or arbitrary structure. Of course these approaches take advantage of
the linearity for separating the effects of local and interconnection variables.
For non-linear systems, in general an additive decomposition into purely lo-
cal and purely interconnection terms is not possible. Now this point will be
clarified.

Starting from a simple and generic non–linear model for a discrete–time
monolithic system S

x(t + 1) = f(x(t), u(t))

the simplest way to write the dynamics of the sI–th component of the
I–th subsystem is

x
(sI)
I (t + 1) = f (s)(x(t), u(t)) ,

where it is understood that the s–th component of the monolithic state x
corresponds to the sI–th component of the local state xI after the decom-
position. Of course an agent that would use such a model for the estimation
task will experience a reduced computational complexity with respect to a
centralized implementation, as nI ≤ n, but will still need to directly get
or to receive by other agents the measurements of all the components of
the monolithic vectors x and u. This means that probably the computation
constraint can be met, but not the communication constraint.

In order to limit the number of measurements needed by any agent,
the structure of the system may come to an help. In fact, thanks to the
structural analysis and the structural decomposition outlined before, it is
clear that the dynamics of the local state xI do not depend on the whole
vectors x and u, but only on the local state xI itself, the local input uI and
the interconnection vector zI . For this reason, following [89], the dynamics
of xI can be split in the following way

xI(t + 1) = fI(xI(t), uI(t)) + gI(xI(t), zI(t), uI(t)) , (3.1)

where fI : RnI × RmI 7→ RnI is the local nominal function and gI : RnI ×
RpI × RmI 7→ RnI is the interconnection function. Equation (3.1) is as
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general as possible, although it looks similar to the additive decompositions
of linear systems. It simply highlights, by the use of the function f , the
linearly separable part of the local influence, while the function gI accounts
for all the non–linearly separable parts. Should the local dynamics be not
linearly separable at all, it will simply means that f is always null.

Why, anyway, did we decompose the local dynamics into two parts, one
of which depends solely on local variables? There is more than one reason.
The first one, is that generally there are many components in a subsystem
where does make sense to highlight the influence of the local variables alone,
as this is the only influence. These are variables that in the structural
graph are not the ending nodes of any arc coming from variables assigned
to other subsystems. For this reason, these variables will be called internal
variables, while the remaining will be called input boundary variables. The
variables belonging to neighboring subsystems that influence at least an
input boundary variable will be called output boundary variables (see Fig.
3.5).
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Figure 3.5: In this simple example, x
(2)
1 and x

(3)
2 are input boundary vari-

ables, x
(4)
1 and x

(3)
2 are output boundary variables, while the remaining ones

are internal variables.

The second one does apply when we consider large–scale systems that
are actually built by interconnecting a large number of subsystems. For in-
stance, it may be a chemical plant built by interconnecting a large number
of simple components such as pipes, pumps, valves and tanks. In this situa-
tion, it makes sense to choose a decomposition such that each subsystem SI

corresponds to an actual physical component: this kind of decomposition is
called a physical decomposition, as opposed to a mathematical decomposition
[89]. In a physical decomposition the local part of the model will account
for the behavior of the component independently of the other components
to which it is connected, whether the function gI describes the effects of the
interconnection. We will see in Section 3.4 why this may be important.

Now that the decomposition problem has been described, we will intro-
duce a distributed FDI architecture that takes one of the possible decompo-
sition solutions as the starting point to solve the FDI problem.
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Figure 3.6: A scheme of the proposed DFDI architecture. In this example
two subsystems S1 and S2 are represented as two ovals, a yellow and a
blue one. Their green intersection represent their overlap, that is the part
of the original system that they share. The subsystems inputs, as well as
the interconnection variables are symbolized by black arrows. The two red
cubes represent the two LFDs L1 and L2, that can take local measurements
through the thick white arrows, and can communicate between each other
thanks to the thinner white arrow.

3.4 The proposed distributed FDI architecture

“One subsystem, one diagnostic agent”: this in short is the main idea about
the distributed FDI architecture we are going to propose. The starting
assumption is that a large–scale system, for which a centralized solution to
the FDI problem is nor feasible nor desirable, has been decomposed into a
multiset D , {S1, ...,SN} of N subsystems. The proposed Distributed Fault
Detection and Isolation (DFDI) architecture will consists of a network of N
agents called Local Fault Diagnosers (LFD), denoted by LI and dedicated
to monitor each of the subsystems SI and provide a fault decision dFD

I

regarding their health.
Each LFD will possess a local and interconnection model of its subsys-

tem, such as the simple one in equation (3.1). In order to use it for the
task of computing an estimate of the local state, each LFD will be able to
directly measure the local state xI and the local input uI . To populate the
interconnection vector zI , LFDs will communicate with their neighbors, ex-
changing the requested local measurements6. This scheme is exemplified in
Fig. 3.6 for the case of only two subsystems.

Analogously to the centralized GOS implementation discussed in Chap-
ter 2, the generic I–th LFD will provide a local detection service through a
local FDAE estimator, that will be used to compute a local state estimate

6It will be assumed that the communication is fast enough so that the needed mea-
surements can be exchanged in real time.



49 Chapter 3. Toward Distributed FDI

x̂I,0, a corresponding state estimation error ǫI,0 , xI − x̂I,0 to be used as
a residual, and a threshold ǭI,0. By assuming the existence of a local fault
class FI , whose NFI

fault functions represent the LFD knowledge about the
peculiar way of failing of its own subsystem, a local isolation service will be
provided. The isolation will be carried on thanks to NFI

FIE estimators that
will compute NFI

further local state estimates x̂I,l, l ∈ {1, . . . , NFI
}, along

with as many state estimation errors ǫI,l , xI − x̂I,l and thresholds ǭI,l. Of
course the single–diagnoser fault detection and isolation logic presented in
Chapter 2 will need to be refined in order to work in a multi–diagnoser set-
ting, and this issue will be dealt with in Section 3.4.1. First some innovative
traits of the proposed DFDI scheme will be presented.

The distributed solution to the FDI problem will present some innovative
features with respect to the centralized one. The first one depends upon the
fact that the interconnection function gI will be assumed to be uncertain.
This assumption makes the formulation more general, and it is especially
useful in situations where the starting point is a physical decomposition. In
such a situation each subsystem corresponds to a physical component, to
which an LFD is logically attached. An LFD for a physical component can
of course possess a nominal local model of its behavior when the component
is operated in some known configuration, that is, for example, when it is
operated in a test configuration defined by the component maker. But the
effect of interconnecting the component to other pieces in a complex system
cannot be completely modeled a priori. For this reason, the FDAE and FIE
estimator will use an on–line adaptive approximator ĝ in lieu of the uncer-
tain interconnection function g. This on–line adaptive approximator will be
implemented by the FDAE, that instead of using its adaptive capabilities
for approximating a possibly unknown fault after detection, will approxi-
mate the interconnection before detection. The learning will be stopped as
soon as a fault is detected in order to avoid the approximator learning the
fault function as if it were part of the interconnection function. This will be
addressed in details in Chapter 4, and covered again in Chapter 5.

The second difference between the distributed and centralized FDI scheme
is that in the proposed DFDI architecture we allowed overlapping decom-
positions. This means that shared variables, belonging to more than one
subsystem, will be monitored by more than one LFD too. This fact leads to
the rather intuitive consideration that if something is monitored by “more
eyes”, or by “more than one point of view”, better estimations and then
better diagnoses can be obtained. In order to take advantage of this pos-
sibility, all the LFDs in the overlap set Os of a shared variable x(s) will
collaborate on the task of estimating it, and detecting and isolating faults
by which it may be affected. This will be achieved by employing consensus
techniques. Consensus and agreement problems pertains to the convergence
of multiple estimates to a common value [79], and were extensively treated
in the Computer Science literature concerning distributed fault diagnosis
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of synchronous and asynchronous systems [99, 100]. In the control systems
community, consensus filters have recently been the subject of significant re-
search efforts, for instance in the framework of average–consensus on static
and dynamic quantities by sensor networks [135, 82, 76, 87, 136]. In sensor
networks [137, 43, 49] a high number of noisy measurements of the same
variables are available, and the network itself is described by a graph where
each node represents a sensor and each edge represents a communication
channel linking two sensors. Each node of the network computes its own
estimate of the measured variable by means of a linear or non–linear com-
bination of its last measurement, its last estimate and the last estimates of
neighboring nodes. By properly choosing the combination, that is described
by both the graph and a consensus protocol, convergence to some desired
function of the true variables value can be attained. The net result is to
overcome the negative effect of the measurement noise on a single node,
by letting all the nodes collaborate according to the graph describing the
network. The simplest example of consensus corresponds to the case of a
sensors, or agents, network where every node makes an initial noisy mea-
surement of a single variable. The goal is to make the estimate of every node
converge to a given function of the initial measurements, usually the average
[138, 77]. Extensions to the basic scheme consider switching topology of the
communication graph between nodes, variable communication time delays
[78, 139], lossy communication channels [140], asynchronous communication
[81], logical consensus [84], gossip algorithms [87] and nonlinear consensus
protocols [78]. An interesting extension that addresses the performance of
the consensus protocol [141, 136], consists in the use of a weighted adjacency
matrix in order to optimize the convergence speed or the estimation error
variance [138, 140, 136].

In the DFDI framework being developed, consensus techniques will be
applied so that LFDs with lower uncertainties may help other LFDs in their
overlap set to achieve the detectability, or isolability, condition. As the
uncertainty, and its bound, is generally time–varying, one LFD cannot ex-
pect to have uncertainties low enough to always respect the detectability or
isolability conditions by itself, so that the collaboration due to the consensus
will generally prove beneficial to all the participating LFDs. How consensus
techniques will be embedded in the estimation task of the proposed FDI
architecture will be explained in Chapter 4 and, again, in Chapter 5.

3.4.1 Fault detection and isolation logic for multiple diag-

nosers

Now we will establish the way by which all the N LFDs will coordinate
among themselves in order to detect and isolate faults affecting the system
S . First of all, it should be clear that if every LFD would be supposed
to apply the FDI logic of Chapter 2 alone, without exchanging detection
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and isolation decisions with other LFDs, this would not prevent them to
correctly detect faults occurring to their subsystem. In fact, if we imagine
to adapt the developments of Sections 2.3 and 2.4 to the generic I–th LFD,
we can easily see that a properly defined local detection threshold ǭI,0 can
be crossed by the local residual ǫI,0 only if the fault is influencing some
local variable. Immediately after detection the fault decision dFD

I would be
correct, even if the I–th LFD did not communicate it to the other LFDs.
But not communicating it would anyway pose a risk, and now we will explain
why.

Let us assume that the generic I–th LFD is the first to detect a fault,
though in this hypothetical setting it does not know that it is the first. It
can rightfully conclude that a fault did affect some components of its local
state thus causing a non–empty signature. But, nothing can be deduced
by the I–th LFD about what the fault is doing to other subsystems. We
could simply hope that if a fault is itself distributed and is affecting other
subsystems, other LFDs that are affected by the fault will detect it, even
if the I–th LFD did not warn them. But of course this is not a good idea,
as there will be situations in which the effect of the fault are widespread,
but do not fulfill the detectability condition on other LFDs so that the fault
goes unnoticed by them. These other LFDs will continue to work as their
subsystems were healthy, posing a safety threat and unnecessarily learning
the fault function with their FDAE approximator as if it were part of the
interconnection function.

An isolation logic where the LFDs did not exchange their fault decisions
would be even more problematic. Let us assume that the I–th LFD detects
a fault influencing its subsystem, and accordingly starts trying to isolate
it. All the hypothesis corresponding to the members of its local fault class
FI are simultaneously put to test thanks to its FIEs. Let us assume that
at some time only one fault hypothesis remains unchallenged, so that the
corresponding fault is isolated. Well, can it be said for sure that the actual
fault is the one that has been isolated, or only that it is one that locally
does exactly look as the isolated one? The answer is that without further
information by other LFDs we cannot choose one or the other explanation.

This two examples shows the urgency for a DFDI logic where the LFDs
exchange their fault decision. First of all, we will define again the concept
of fault signature, but in the specific setting of distributed systems. Before
detection the generic I–th LFD FDAE does test the following condition

|ǫ
(k)
I,0(t)| ≤ ǭ

(k)
I,0(t) ∀ k = 1, . . . , nI , (3.2)

that corresponds to the fault hypothesis.

HI,0 : "The system SI is healthy" .
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Definition 3.4.1: The local signature shown by the subsystem SI , I ∈
{1, . . . , N} at time t > 0 is the index set SI , {k : ∃ t1, t ≥ t1 >

0, |ǫ
(k)
I,0(t1)| > ǭ

(k)
I,0(t1)} of the local state components for which the condition

3.2 did not hold for at least one time instant.

Then, a global signature can be defined, too

Definition 3.4.2: The global signature shown by the system S at time
t > 0 is the index set S , {k : ∃ t1, t ≥ t1 > 0, ∃ I ∈ {1, . . . , N}, |ǫ

(j)
I,0(t1)| >

ǭ
(j)
I,0(t1), k is the j–th element of II} of the state components for which the

hypothesis 3.2 did not hold for at least one time instant and for at least one
LFD.

The detection logic for a single LFD can then be simply stated in the
same way as in Chapter 2, with two differences:

• as soon as a LFD does detect a fault it will communicate this to all
the other N − 1 LFDs7

• as soon as a LFD detects a fault or is informed about that, its FDAE
approximator is stopped and its bank of FIEs is turned on.

Fault Detection Logic A fault affecting the subsystem SI will be de-
tected at the first time instant such that SI becomes non-empty. This time
instant will be called the fault detection time Td.

As soon as a fault is detected in any of the N subsystems, the whole
system will be declared as faulty and all the LFDs will start trying to isolate
the fault. This behavior may be seen as paranoid and inefficient, as usually
a fault sign in a subsystem will not mean that the whole system is influenced
by the fault. But this is the only truly safe behavior: in fact “usually” is not
enough when the goal is to provide safety against even a major but subtle
failure. As it is always possible that a slowly developing but eventually
catastrophic fault does show up in some limited parts of the system with
only a local signature, the DFDI architecture should always act as this were
the case.

Fault Isolation Logic We will now characterize faults with respect to
their signature being distributed or not, as this will help explaining how the
fault isolation logic for our DFDI scheme works. We will use an example,
whose structural graph is depicted in Fig. 3.7 and shows an initially healthy
system decomposed into three subsystems with some overlap.

7This is not a real threat to the communication constraint, as this one–to–all commu-
nication does happen only once and involves a simple binary information.
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S1

S2

S3

Figure 3.7: Healthy system decomposed into three subsystems.

Now the first and simplest of the possible fault scenarios will be analyzed.

Local Fault : The simplest situation is exemplified in Fig. 3.8. The
structure of the fault is highlighted in green: green links represent part of
the healthy dynamics changed by the fault, and green filled nodes represent
variables affected by the fault. As can be seen, only the local signature
S1 may become non-empty as this very fault affects only variables internal
to subsystem S1, and that are not shared with any other subsystem. For
this reason faults such this one will be termed local faults and their main
feature, as far as regards our goal, is that the local and global signatures
are the same and thus can be isolated by the corresponding LFD alone. An
LFD, in fact, to isolate a local fault needs only to implement a fault isolation
scheme as the one proposed in [113] and in Chapter 2, thus realizing a local
GOS isolation scheme without further communication between neighboring
LFDs except for the exchange of interconnection variables measurements.

S1

S2

S3

Figure 3.8: A local fault.

Distributed fault, non-overlapping signature: A more general situation
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arises when links and variables in more than one subsystem are affected by
the same single fault, so that the resulting global signature is distributed.
Anyway it is assumed that shared variables are not affected, so that there
can not be overlaps between signatures of neighboring subsystems8 (Fig.
3.9).

It is clear that no single LFD alone can isolate such a fault, as any
fault model belonging to its fault class may only explain the local signature,
and not the global one. In order for this kind of fault to be isolated, the
proposed DFDI isolation scheme will assume that every LFD concerned will
have in its fault class a local fault function that is able to explain its local
signature. Every LFD will then implement a GOS fault isolation scheme
in a way similar to the previous case, but with the subtle difference that
isolating the local part of a distributed fault will not be sufficient for a proper
diagnosis. Only when all the LFDs involved will be able to isolate at some
time their local part of the fault, then by communicating their successful
diagnosis to each other they will collectively make a correct fault decision.
It should be noted that, in general, this communication may not be limited
to neighboring LFDs, as the global signature may be due to local signatures
in subsystems located anywhere, but does anyway involve the exchange of
only the information about the local diagnosis of a given distributed fault
being locally isolated or not.

Although the scheme proposed will need the same local implementation
in terms of FIEs as the previous one, that is the same as in the centralized
case described in [113] and in Chapter 2, its important advantage is that it
preserves scalability of the proposed DFDI scheme, and scalability is one of
the important issues that motivated the present work. The scalability prop-
erty holds as every LFD does need to know only local nominal models and
local fault models related to its subsystem, and needs only to communicate
limited information to other LFDs.

8This means, also, that there can be only a one-to-one relation between the global and
all the non-empty local signatures.
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S1

S2

S3

Figure 3.9: Distributed fault with non-overlapping signature.

Distributed fault, overlapping signature: In the most general situation,
the signature of a distributed fault will generally include shared variables
too (Fig. 3.10). As in the previous scenario, any single LFD will only be
able to isolate the local part of the fault, and a correct fault decision can be
made only collectively. But the fact that some variables interested by the
signature are shared means that more than one LFD possesses a local model
of the fault influence on those variables. This will enable the use of consensus
techniques between LFDs sharing the same variable and possessing the same
fault in their local class. As in the previous case, the distributed fault will
be isolated only if all the LFDs will isolate their local part of the fault.

S1

S2

S3

Figure 3.10: Distributed fault with overlapping signature.

The formal definitions regarding the fault detection and isolation logic
for the proposed DFDI architecture will be given in Chapter 4.
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3.5 Concluding remarks

In this chapter the motivations that justified the move from a centralized
FDI architecture to a distributed one had been given. The way for achieving
this move has been chosen to be through the divide et impera paradigm, and
to this end the problem of structural analysis, and structure and model de-
composition has been defined. A distributed FDI architecture, that is based
on an overlapping decomposition that solves the decomposition problem,
has then been proposed. Now, before presenting in details the architec-
ture through two implementations of the DFDI scheme, in discrete and in
continuous–time, an analysis of the consequences of the use of overlapping
decomposition will be given.

Let us consider again the previous example, to which initially a central-
ized FDI scheme has now been applied (Fig. 3.11). The implementation of
a DFDI scheme implies, as a starting point, a solution to the decomposition
problem. How this solution may be found is not the subject of the present
work, but anyway the effect of different kind of decomposition solutions
on the fulfillment of the computation and communication constraints is of
interest.

S

Figure 3.11: A trivial decomposition, equivalent to a monolithic system.

A limit situation is depicted in Fig. 3.12, and corresponds to a non–
overlapping decomposition where each subsystem SI contains exactly one
variable. This solution will almost surely guarantees the fulfillment of the
computation constraint, but on the other hand will probably not meet the
communication constraint. In fact this solution requires a great communi-
cation effort because of the many arcs connecting different subsystems, that
represents interconnection terms for which the measurement of interconnec-
tion variables from other subsystems is needed.
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S1 S2 S3 S4

S5

S6 S7

S8S9 S10

S11

Figure 3.12: A limit decomposition in as may subsystems as the original
system dimension.

A balanced situation is instead illustrated in Fig. 3.13, where the system
S has been decomposed into subsystems of almost constant size, chosen so
that the number of inbound arcs from neighboring subsystems is minimized.
This is a non–overlapping decomposition and each variable is estimated ex-
actly once, so that probably the computation constraint will be met, together
with the communication one because of the low number of inbound arcs from
neighbors.

S1

S2

S3

Figure 3.13: A supposedly “good” decomposition, without overlap.

A similar situation is the one of Fig. 3.14, that is obtained from the
previous one by letting some overlap. The presence of overlap will call for
a slightly greater combined computation power, but probably it still fulfills
the computation constraint. Also some more communication is needed for
the exchange of estimates and local model evaluations between the LFDs in
each overlap set. The added value of overlap is that it can be arranged so
that variables affected by greater model or measurement uncertainties are
shared, thus possibly easing the requirements for the fault detectability or
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isolability, as the next chapters will show.

S1

S2

S3

Figure 3.14: A supposedly “good” decomposition, with overlap.

The final, and again limit situation is presented in Fig. 3.15. Here
all the subsystems correspond to the whole original system, thus leading
to every variable being overlapped between all the diagnosers. The corre-
sponding decomposition D contains N copies of the original system S , and
the necessity to account for this limit situation explains why we did use the
concept of multiset earlier. Obviously this solution, for a large enough orig-
inal system, will not meet the computation constraint: what should be this
solution useful for, then? The answer is that such a solution does represent
a well–studied case we talked about, that is one of a sensor or agents net-
work where each node of the network, that is each LFD, monitors the same
variables. This is important because, apart from the possibility in future
developments to apply many of the analytical results in this field to DFDI
problems, also shows how a DFDI functionality could be added to existing
sensors networks architecture.

S1 S2

S3

Figure 3.15: A limit decomposition where every subsystem is the original
monolithic system.



Chapter 4

Distributed FDI for

discrete-time systems

In this chapter an implementation of the DFDI architecture outlined in
Chapter 3 will be developed for discrete–time systems. It will present some
innovative features with respect to the centralized one of Chapter 2, namely
the ability to approximate uncertain parts of the healthy model and the use
of consensus techniques for improving the diagnosis capabilities on parts
of the system shared by more than one diagnoser. Main analytical results
regarding the robustness to uncertainties, the detectability and the isola-
bility conditions, will be given. Finally, an illustrative simulation example
consisting of an eleven tank system will be demonstrated.

4.1 Background and assumptions

Let us consider a nonlinear dynamic system S described by the following
discrete–time model

S : x(t + 1) = f(x(t), u(t)) + η(t) + β(t − T0)φ(x(t), u(t)) , (4.1)

where t ∈ N is the discrete time instant, x ∈ Rn and u ∈ Rm denote the
state and input vectors, respectively, and f : Rn × Rm 7→ Rn represents
the nominal healthy dynamics. Moreover, the function η : N 7→ Rn stands
for the uncertainty in the state equation and includes external disturbances
as well as modeling errors and possibly the discretization error. As to the
faults affecting the nominal system modes, from a qualitative viewpoint, the
term β(t−T0)φ(x(t), u(t)) represents the deviation in the system dynamics
due to a fault. The term β(t − T0) characterizes the time profile of a fault
that occurs at some unknown discrete-time instant T0, and φ(x, u) denotes
the nonlinear fault function.

This characterization allows both additive and multiplicative faults (since
φ is a function of x and u), and even more general nonlinear faults. We let

59
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the fault time profile β(t − T0) model either abrupt faults characterized by
a “step-like” time–profile

β(t − T0) =

{

0 if t < T0

1 if t ≥ T0

, (4.2)

or incipient faults characterized by an “exponential-like” time-profile

β(t − T0) =

{

0 if t < T0

1 − b−(t−T0) if t ≥ T0

. (4.3)

where b > 1 denotes the unknown fault-evolution rate. Note that the fault
time profile given by (4.3) only reflects the developing speed of the fault,
while all its other basic features are captured by the function φ(x, u) de-
scribed below.

Model in (4.1) may be impractical for fault detection and isolation (FDI),
either because of its dimension, or because the system it represents is phys-
ically distributed, so that a centralized FDI architecture is neither possi-
ble nor desirable. This problem can be overcome by implementing a Dis-
tributed Fault Detection and Identification (DFDI) architecture as described
in Chapter 3. To this end we will consider S as decomposed into N subsys-
tems SI , I = 1, . . . , N , each characterized by a local state vector xI ∈ RnI ,
so that a separate monitoring system could be considered for each SI . To
this end, the state equation of SI can be modeled as

SI : xI(t + 1) = f∗
I (x(t), u(t)) + ηI(t) + β(t − T0)φI(x(t), u(t)) , (4.4)

where the functions f∗
I , ηI and φI are built upon the components of f , η

and φ that account for the dynamics of subsystem SI . The function f∗
I can

then be conveniently split into two parts as follows:

SI : xI(t+1) = fI(xI(t), uI(t))+gI(xI(t), zI (t), uI(t))+β(t−T0)φI(x(t), u(t)) ,
(4.5)

where it has been supposed that the uncertainty term ηI affects only the
interconnection part of the model and for this reason has been included in the
function gI . Specifically, fI : RnI ×RmI 7→ RnI is the local nominal function
and gI : RnI × RpI × RmI 7→ RnI represents the interconnection function;
uI ∈ RmI , (mI ≤ m) is the local input, and zI ∈ RpI , (pI ≤ n − nI) is
the vector of interconnection state variables, that is constituted of variables
through which other subsystems influence SI .

As in Chapter 2, for isolation purposes we assume that there are NFI

known types of possible nonlinear fault functions describing the faults that
may act on the I–th subsystem. As the known faults are assumed to retain
the same structure of the healthy subsystem, their fault functions can be
written in the form φI(xI , zI , uI) , and belong to a finite set given by

FI , {φI,1(xI , zI , uI), . . . , φI,NFI
(xI , zI , uI)} ,
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where, for the sake of simplicity, it will be assumed that the local fault
functions from different LFDs that will try to isolate the same distributed
fault will be given the same index1. This will make easier to formally define
the isolation logic for distributed faults, that has been outlined in section
3.4.1.

Each fault function in FI is assumed to be in the form

φI,l(xI(t), zI (t), uI(t)) = [(ϑI,l,1)
⊤HI,l,1(xI(t), zI(t), uI(t)), . . . ,

(ϑI,l,nI
)⊤HI,l,nI

(xI(t), zI(t), uI(t))]
⊤ , (4.6)

where, for k ∈ {1, . . . , nI}, l ∈ {1, . . . , NFI
}, the known functions HI,l,k :

RnI × RpI × RmI 7→ RqI,l,k provide the “structure” of the fault, and the
unknown parameter vectors ϑI,l,k ∈ ΘI,l,k ⊂ RqI,l,k provide its “magnitude”.
For the sake of simplicity and without much loss of generality, the parameter
domains ΘI,l,k are assumed to be origin–centered hyper–spheres with radius
MΘI,l,k

. The following assumptions are now needed.

Assumption 4.1.1: At time t = 0 no faults act on the system S .
Furthermore, for each SI , I = 1, . . . , N , the state variables xI(t) and control
variables uI(t) remain bounded before and after the occurrence of a fault,
i.e., there exist some stability regions RI = Rx

I × Ru
I ⊂ RnI × RmI , such

that (xI(t), uI(t)) ∈ Rx
I ×Ru

I , ∀ I = 1, . . . , N,∀ t ≥ 0.

Clearly, as a consequence of Assumption 4.1.1, for each subsystem SI , I =
1, . . . , N , it is possible to define some stability regions Rz

I for the intercon-
necting variable zI . The reason for introducing such a boundedness assump-
tion is just a formal one. Since no fault accommodation is considered in this
work, the feedback controller acting on the system S must be such that the
measurable signals x(t) and u(t) remain bounded for all t ≥ 0. However,
it is important to state in advance that the design of the distributed FDI
methodology will not depend on the specific structure of the controller that,
accordingly, will not be detailed.

With reference to (4.5), it is worth noting that the interconnection func-
tion gI includes the uncertainty represented by the term ηI . Therefore, in
the sequel the following assumption will be needed.

Assumption 4.1.2: The interconnection function gI is an unstructured
and uncertain nonlinear function, but for each k = 1, . . . , nI , the k–th com-

1For example, let us assume the existence of three LFDs, and of four faults, where three
of them are local faults and one is a distributed one influencing all the subsystems. Then
the fault classes can be denoted as F1 = {φ1,1, φ1,4}, F2 = {φ2,2, φ2,4}, F3 = {φ3,3, φ3,4},
where φ1,1, φ2,2, φ3,3 are the local faults and φI,4 with I ∈ {1, 2, 3} are the three local
models of the distributed fault. Of course, actual situations will need a more elaborate
naming convention for faults, but this example should suffice to the present theoretical
needs.
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ponent of gI is bounded by some known function2, i.e.,

|g
(k)
I (t)| ≤ ḡ

(k)
I (t) , ∀xI ∈ Rx

I , ∀ zI ∈ Rz
I ,∀uI ∈ Ru

I , (4.7)

where the bounding function ḡ
(k)
I (t) ≥ 0 is known and bounded for all t ≥ 0,

for all I = 1, . . . , N .
Assumption 4.1.3: The time profile parameter b is unknown but it is

lower bounded by a known constant b̄.
Assumptions 4.1.2 and 4.1.3 make the problem analytically tractable,

but are not a limitation in practical situations where some prior knowledge
on the system operation is available.

4.2 Distributed Fault Detection and Identification

Architecture

In this section, we will describe in details the proposed DFDI scheme out-
lined in Section 3.4. In general, the DFDI architecture is made of N commu-
nicating Local Fault Diagnosers (LFDs) LI , which are devoted to monitor
each of the N subsystems a global system S has been decomposed into, by
using a Model based Analytical Redundancy Relation approach [3, 1]. Each
LFD LI will provide a fault decision dFD

I regarding the health of the corre-
sponding subsystem SI , by relying on NFI

+1 nonlinear adaptive estimators
of the local state xI , with I ∈ {1, . . . , N}. The first estimator, called Fault
Detection Approximation Estimator (FDAE), will be based on the nominal
healthy model (4.5) and will provide the detection capability. The remain-
ing NFI

estimators, called Fault Isolation Estimators (FIE) and meant to
provide the isolation capability, will be based on models matched to each
one of the NFI

elements of the fault class FI .
Under normal operating conditions, that is from the instant the DFDI

architecture is started at time t = 0 until a fault is detected, the FDAE is
the only estimator that each LFD employs. After a fault is detected by any
of the N LFDs, the FIEs of all the LFDs will be activated and will try to
collectively isolate the occurred fault, by employing a kind of Generalized
Observer Scheme [12, 17, 36].

Each LFD is allowed to take only local measurements of xI and uI , and
to communicate with neighboring LFDs in JI in order to populate the inter-
connection vector zI . But, although an LFD will be able to measure exactly
the input vector uI , in order to slightly relax the full–state measurement
assumption it will be assumed that it cannot directly measure xI . Instead
it will sense the following noisy version of xI

yI(t) , xI(t) + ξI(t) ,

2Again, when there is no risk of ambiguity and for the sake of simplicity, a compact
notation like gI(t) ≡ gI(xI(t), zI(t), uI(t)) will be used.
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where ξI is an unknown function that represents the uncertainty associated
to the process of measuring xI by each LFD. From this fact, it follows also
that instead of receiving the actual interconnection vector zI , a LFD will
receive from its neighbors the vector

vI(t) , zI(t) + ζI(t),

where ζI(t) is made with the components of ξJ , J ∈ JI that affects the
relevant components of the measurements yJ , J ∈ JI . The following further
assumption is then needed

Assumption 4.2.1: The measuring uncertainties represented by the
vectors ξI and ζI are unstructured and unknown, but for each k = 1, . . . , nI ,
the k–th component of ξI and of ζI are bounded by some known quantity,
i.e.,

|ξ
(k)
I (t)| ≤ ξ̄

(k)
I , |ζ

(k)
I (t)| ≤ ζ̄

(k)
I , (4.8)

so that it is possible to define two compact region of interests such that
ξI(t) ∈ Rξ

I and ζI(t) ∈ Rζ
I .

Under the assumptions made so far, a shared variable x(s) will be mea-
sured by distinct LFDs in the overlap set Os with distinct uncertainties.
Furthermore, because of Assumption 4.1.2, the interconnection part of the
local model (4.5) will be affected by distinct uncertainties. Because of these
considerations, it will be convenient for LFDs in the overlap set Os to employ
consensus techniques when implementing their FDAE and FIE estimators,
as will be shown in Sections 4.3 and 4.6. In facts it may happen that a LFD
might at some time experience uncertainties much higher than the ones of
other LFDs in the overlap set, thus being disadvantaged in the detection
and isolation task. By allowing LFDs to collaborate through consensus the
effect of the unfavorable conditions can be reduced, thus providing on aver-
age an advantage to all the LFDs in the overlap sets. This rather intuitive
point will be made clear in theorems 4.4.1 and 4.6.1.

In the next subsections, the design of the LFDs will be addressed accord-
ing to the fault detection and identification methodology presented Chapters
2 and 3. First, we will present the detection task by considering the system
under nominal (healthy) mode of behavior. Subsequently, the behavior of
the system under faulty conditions will be analyzed, and the fault isolation
mechanism will be described.

4.3 Healthy behavior and Fault Detection Estima-

tor

At the time instant t = 0 the DFDI architecture is started and, by assump-
tion, the system S is healthy. After each LFD is turned on, only its FDAE
estimator is enabled and monitors the subsystem SI , providing a local state
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estimate x̂I,0 of the local state xI . The difference between the estimate x̂I,0

and the measurements yI will yield the following estimation error

ǫI,0 , yI − x̂I,0 ,

which will play the role of a residual and will be compared, component by
component, to a suitable detection threshold ǭI,0 ∈ RnI

+ . As explained in
Chapter 3, the following condition

|ǫ
(k)
I,0(t)| ≤ ǭ

(k)
I,0(t) ∀ k = 1, . . . , nI (4.9)

will be associated to the fault hypothesis

HI,0 : "The system SI is healthy" .

Should this condition be unmet at some time instant t, the hypothesis will
be falsified and the subsystem will present a local fault signature SI . The
fault detection logic for the I–th LFD can then be simply stated in terms of
the local signature SI : a fault affecting the I–th subsystem will be detected
by its LFD at the first time instant such that SI becomes non-empty. This
time instant will be called the fault detection time Td

Definition 4.3.1: The fault detection time Td is defined as Td , min{t :

∃ I, I ∈ {1, . . . , N}, ∃ k, k ∈ {1, . . . , nI} : |ǫ
(k)
I (t)| > ǭ

(k)
I (t)}.

This definition captures the fact that as soon as the fault is locally de-
tected by one LFD, all the remaining LFDs are warned and the fault is
globally detected. After a detection, all the LFDs switch to the faulty mode
of behavior, as already explained in Chapter 3.

Now the way the state estimate x̂I is produced by means of the FDAE
will be discussed. The FDAE is a nonlinear adaptive estimator based on the
subsystem model (4.5), and will be described now for the more general case
of a shared variable x(s). As anticipated, when a variable is shared all the
LFDs in its overlap set will employ consensus techniques in order to reach
an agreement on its estimate, by exchanging their local estimates and their
local models. In order to make the analysis as general as possible, it will be
assumed that the consensus–related interactions between the LFDs in Os

depends on a communication graph Gs , (Ns, Es). This will be useful for
considering limit situations as the last one described in Section 3.5.

The estimator dynamics for the component x̂
(sI)
I,0 computed by the I–th

LFD, I ∈ Os, before the detection of a fault, that is for t < Td, takes the
form

x̂
(sI)
I,0 (t + 1) = λ

{

x̂
(sI)
I,0 (t) − y

(sI )
I (t) +

∑

J∈Os

W (I,J)
s

[

x̂
(sJ )
J,0 (t) − x̂

(sI)
I,0 (t)

]

}

+
∑

J∈Os

W (I,J)
s [f

(sJ)
J (yJ(t), uJ(t)) + ĝ

(sJ )
J (yJ(t), vJ (t), uJ (t), ϑ̂J,0)] (4.10)
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where 0 < λ < 1, and Ws = [W
(I,J)
s ] is a weighted adjacency matrix needed

for implementing a linear consensus protocol on xs. The adjacency matrix
Ws will be compatible with the consensus communication graph Gs asso-
ciated to the LFDs in Os. In this work only doubly-stochastic adjacency
matrices Ws ∈ RNs×Ns will be considered, for instance the Metropolis adja-
cency matrices [140, 138] defined as

W (I,J)
s =















0 (I, J) /∈ Es

1

1+max{d
(I)
s ,d

(J)
s }

(I, J) ∈ Es, I 6= J

1 −
∑

K 6=I W
(I,K)
s I = J

, (4.11)

where d
(I)
s is the degree of the I–th node in the communication graph Gs.

The term ĝ
(sJ )
J is the sJ–th output of an adaptive approximator meant

to learn the interconnection function gJ , and ϑ̂J ∈ Θ̂J ⊂ RqJ denotes its
adjustable parameters vector. For the sake of simplicity, Θ̂J is assumed to
be an origin–centered hyper–sphere, with radius MΘ̂J

.
In order for ĝJ to learn the interconnection function gJ , its parameters

vector is updated according to the following learning law:

ϑ̂J,0(t + 1) = PΘ̂J,0
(ϑ̂J,0(t) + γJ,0(t)H

⊤
J,0(t)rJ,0(t + 1)) ,

where HJ,0(t) , ∂ĝJ (t)/∂ϑ̂J,0 ∈ RnJ×qJ is the gradient matrix of the on–line
approximator with respect to its adjustable parameters, rJ,0(t + 1) is the
signal

rJ,0(t + 1) = ǫJ,0(k + 1) − λǫJ,0(t),

and PΘ̂J,0
is a projection operator [115]

PΘ̂J,0
(ϑ̂J,0) ,







ϑ̂J,0 if |ϑ̂J,0| ≤ MΘ̂J,0
M

Θ̂J,0

|ϑ̂J,0|
ϑ̂J,0 if |ϑ̂J,0| > MΘ̂J,0

,

The learning rate γJ,0(t) is computed at each step as

γJ,0(t) ,
µJ,0

εJ,0 + ‖H⊤
J,0(t)‖

2
F

, εJ,0 > 0, 0 < µJ,0 < 2 ,

where ‖ · ‖F is the Frobenius norm and εJ,0, µJ,0 are design constants that
guarantee the stability of the learning law [115, 116, 117, 118, 119].

It is worth noting that, in order to implement (4.10), the LFD LI does
not need the information about the expressions of f

(sJ)
J and of g

(sJ )
J ; in-

stead, it suffices that LJ , J ∈ Os, computes the term f
(sJ )
J + g

(sJ )
J and

communicates it to other LFDs in Os alongside its actual state estimate
x̂

(sJ)
J,0 .



4.3. Healthy behavior and Fault Detection Estimator 66

Before the occurrence of a fault, for t < T0 < Td, the dynamics of the
LFD estimation error component ǫ

(sI)
I,0 can be written as

ǫ
(sI)
I,0 (t+1) = λ

{

ǫ
(sI )
I,0 (t) +

∑

J∈Os

W (I,J)
s

[

ǫ
(sJ )
J,0 (t) − ǫ

(sI)
I,0 (t) + ξ

(sI )
I (t) − ξ

(sJ )
J (t)

]

}

+
∑

J∈Os

W (I,J)
s

[

f
(sJ )
J (xJ(t), uJ (t)) − f

(sJ )
J (yJ(t), uJ (t))

+ g
(sJ )
J (t) − ĝ

(sJ )
J (t)

]

+ ξ
(sI)
I (t + 1) ,

and, by remembering that
∑

I 6=J W
(I,J)
s = 1 − W

(I,I)
s by assumption, it

holds

ǫ
(sI)
I,0 (t + 1) =

∑

J∈Os

W (I,J)
s

{

λ[ǫ
(sJ )
J,0 (t) − ξ

(sJ )
J (t)] + ∆f

(sJ)
J (t) + ∆g

(sJ )
J (t)

}

+ λξ
(sI)
I (t) + ξ

(sI)
I (t + 1) ,

where by definition it is

∆fI(t) , fI(xI(t), uI(t)) − fI(yI(t), uI(t))

∆gI(t) , gI(xI(t), zI(t), uI(t)) − ĝI(yI(t), vI(t), uI(t), ϑ̂I,0) .

The function ∆fI will generally assume a non–zero value because of the
measurement uncertainty ξI , while there are many reasons for ∆gI doing the
same: the local measurement uncertainty ξI , the measurement uncertainty
of neighboring LFDs, and the uncertainty in the interconnection function gI

itself due to the fact that by definition it includes the original uncertainty
term ηI . Although the aim of the adaptive approximator ĝI is to learn the
uncertain function gI , generally it cannot be expected to match the actual
term gI . This may be formalized by introducing an optimal weight vector
ϑ̂∗

I,0 [33]

ϑ̂∗
I,0 , arg min

ϑ̂I,0∈ΘI,0

sup
RI

‖gI(xI(t), zI(t), uI(t)) − ĝI(xI(t), zI (t), uI(t), ϑ̂I,0)‖ ,

where RI , Rx
I × Rz

I × Ru
I , and by introducing a minimum functional

approximation error (MFAE)

νI(t) , gI(xI(t), zI(t), uI(t)) − ĝI(xI(t), zI(t), uI(t), ϑ̂
∗
I,0) .

By defining the parameter estimation error ϑ̃I,0 , ϑ̂∗
I,0 − ϑ̂I,0 and the fol-

lowing function

∆ĝI(t) , ĝI(xI(t), zI(t), uI(t), ϑ̂I,0) − ĝI(yI(t), vI(t), uI(t), ϑ̂I,0) ,



67 Chapter 4. Distributed discrete–time FDI

it can be written

∆gI(t) = HI,0ϑ̃I,0 + νI(t) + ∆ĝI(t) .

Thanks to (4.10), the dynamics of the LFD estimation error component
ǫ
(sI)
I,0 before the occurrence of a fault, for t < T0 < Td, can be written as

ǫ
(sI )
I,0 (t + 1) =

∑

J∈Os

W (I,J)
s

[

λǫ
(sJ)
J,0 (t) + χ

(sJ)
J (t)

]

+ λξ
(sI)
I (t) + ξ

(sI)
I (t + 1) ,

(4.12)
where we introduced the following total uncertainty term

χ
(sI)
I (t) , ∆f

(sI)
I (t) − λξ

(sJ )
I (t) + ∆g

(sI)
I (t) .

In order to study the behavior of ǫ
(sI)
I,0 (t) and define the threshold ǭ

(sI)
I,0 (t),

it is convenient to introduce the following vectors related to the detection
estimator of all the LFDs sharing the variable x(s)

ǫs,0(t) , col(ǫ(sI )
I,0 , I ∈ Os), χs(t) , col(χ(sI )

I , I ∈ Os), ξs(t) , col(ξ(sI)
I , I ∈ Os) .

The FDAE estimation error dynamics of all the LFDs in Os can then be
written in a more useful and compact form

ǫs,0(t + 1) = Ws [λǫs,0(t) + χs(t)] + λξs(t) + ξs(t + 1) . (4.13)

As Ws is a doubly stochastic matrix by assumption, all its eigenvalues be-
longs to the unitary circle [142]. Then it follows that (4.13) represents the
dynamics of a stable Linear Time Invariant (LTI) discrete–time systems
with all the eigenvalues inside a circle of radius λ < 1. The solution to
(4.13) is

ǫs,0(t) =
t−1
∑

h=0

(λWs)
t−1−h [Wsχs(h) + λξs(h) + ξs(h + 1)] + λtW t

sǫs,0

= Ws

{

λ

[

t−2
∑

h=0

(λWs)
t−2−h (Wsχs(h) + λξs(h) + ξs(h + 1))

+λt−1W t−1
s ǫs,0(0)

]

+ χs(t − 1)
}

+ λξs(t − 1) + ξs(t) , (4.14)

so that component-wise it reads

ǫ
(sI)
I,0 (t) ≡ ǫ

(I)
s,0(t) = w⊤

s,I

{

λ

[

t−2
∑

h=0

(λWs)
t−2−h (Wsχs(h) + λξs(h) + ξs(h + 1))

+λt−1W t−1
s ǫs,0

]

+ χs(t − 1)
}

+ λξs(t − 1) + ξ(I)
s (t) ,
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where w⊤
s,I is a vector containing the I–th row of matrix Ws.

Now a threshold on the estimation error that guarantees no false–positive
fault detections for t < T0 will be derived. The absolute value of the esti-
mation error for t < T0 can be upper bounded by relying on the triangular
inequality

|ǫ
(sI )
I,0 (t+1)| ≤

∑

J∈Os

|W (I,J)
s

[

λǫ
(sJ )
J,0 (t) + χ

(sJ )
J (t)

]

|+ |λξ
(sI)
I (t)|+ |ξ

(sI)
I (t+1)| ,

|ǫ
(sI )
I,0 (t+1)| ≤

∑

J∈Os

W (I,J)
s

[

λ|ǫ
(sJ )
J,0 (t)| + |χ

(sJ )
J (t)|

]

+λ|ξ
(sI )
I (t)|+|ξ

(sI )
I (t+1)| ,

|ǫ
(sI )
I,0 (t + 1)| ≤

∑

J∈Os

W (I,J)
s

[

λ|ǫ
(sJ )
J,0 (t)| + χ̄

(sJ)
J (t)

]

+ λξ̄
(sI)
I (t) + ξ̄

(sI )
I (t + 1) ,

(4.15)
where the upper bound on the total uncertainty term was defined as3

χ̄
(sJ )
J (t) , max

ξJ

|∆f
(sJ)
J (t)| + ‖HJ,0‖κJ,0(ϑ̂J,0) + ν̄J(t) + λξ̄

(sJ )
J (t)

+ max
ξJ

max
ζJ

|∆ĝJ (t)| ,

with the function κJ,0 being such4 κJ,0(ϑ̂J,0) ≥ ‖ϑ̃J,0‖.
The inequalities (4.15), by applying the absolute value component-wise

so that |ǫs,0| ≡ col(|ǫ(sI )
I,0 | : I ∈ Os), can be written as

|ǫs,0(t + 1)| ≤ Ws [λ|ǫs,0(t)| + χ̄s(t)] + λξ̄s(t) + ξ̄s(t + 1) .

By using the Comparison Lemma [143], then, the absolute value of each
component of ǫs can be bounded by the corresponding component of ǭs,
defined as the solution of the following equation

ǭs(t + 1) = Ws [λǭs(t) + χ̄s(t)] + λξ̄s(t) + ξ̄s(t + 1) , (4.16)

with initial conditions

ǭs(0) , col(ξ̄(sI )
I (0) : I ∈ Os) .

It is worth noting that the adaptive threshold defined in (4.13) can be
easily computed by any LFD in Os by means of linear filtering techniques
[36]. As in Chapter 2, the main property of the threshold is its robustness
with respect to all the modeling and measuring uncertainties, so that the
absence of false–positive fault detections is guaranteed.

3Notations such as maxξJ
are short for max

ξJ∈R
ξJ .

4As ΘJ,0 is a compact the function κJ,0 can always be defined, as it was done in Chapter
2.
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For a non–shared component x
(j)
I,0 the estimator equation (4.10) and the

error equation (4.13) simply become

x̂
(j)
I,0(t + 1) = λ

[

x̂
(j)
I (t) − y

(j)
I (t)

]

+ f
(j)
I (yI(t), uI(t)) + ĝ

(j)
I (t) ,

ǫ
(j)
I,0(t + 1) =

[

λǫ
(j)
I,0(t) + χ

(j)
I (t)

]

+ λξ
(j)
I (t) + ξ

(j)
I (t + 1) ,

and the threshold equation can be written as

ǭ
(j)
I,0(0) , ξ̄

(j)
I (0), ǭ

(j)
I,0(t + 1) , λǭ

(j)
I,0(t) + χ̄

(j)
I (t) + λξ̄

(j)
I (t) + ξ̄

(j)
I (t + 1) .

4.4 Faulty behavior and Fault Detectability

Now the behavior of the proposed DFDI architecture under faulty condition
and its detection capabilities will be investigated. After the occurrence of a
fault, for t ≥ T0, the error dynamics equation (4.13) for a shared component
becomes

ǫs,0(t + 1) = Ws [λǫs,0(t) + χs(t)] + (1 − b−(t−T0))φs(t) + λξs(t) + ξs(t + 1) ,
(4.17)

where φs(t) ∈ RNs is a vector whose components are all equal to φ(s). The
following theorem gives a sufficient condition for the estimation error to
cross its threshold, thus allowing the fault to be detected

Theorem 4.4.1 (Fault Detectability): If there exist a time index t1 >
T0 and a subsystem SI such that the fault φI fulfills the following inequality
for at least one component sI ∈ {1, . . . , nI}

∣

∣

∣

∣

∣

∣

t1−1
∑

h=T0

λt1−1−h(1 − b−(h−T0))φ(s)(h)

∣

∣

∣

∣

∣

∣

> 2ǭ
(sI )
I,0 (t1) ,

then it will be detected at t1, that is |ǫ
(sI )
I,0 (t1)| > ǭ

(sI)
I,0 (t1).

Proof: At the time index t1 > T0 the sI–th component of the estimation
error ǫI is equal to5

ǫ
(sI)
I,0 (t1) = w⊤

s,I

{

λ

[

t1−2
∑

h=0

(λWs)
t1−2−h (Wsχs(h) + λξs(h) + ξs(h + 1))

+λt1−1W t1−1
s ǫs,0(0)

]

+ χs(t1 − 1)
}

+ λξ(I)
s (t1 − 1) + ξ(I)

s (t1)

+

t1−1
∑

h=T0

λt1−1−h(1 − b−(h−T0))φ(s)(h) ,

5As Ws is doubly stochastic and all the components of φs are equal to φ(s), it holds
(Ws)

kφs = φs for all k.
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so that, by using the triangle inequality, it holds

|ǫ
(sI )
I,0 (t1)| ≥ −|w⊤

s,Iλ

t1−2
∑

h=0

(λW )t1−2−h
s (Wsχs(h) + λξs(h) + ξs(h + 1))|

− |λt1w⊤
s,IW

t1−1
s ǫs,0(0)| − |w⊤

s,Iχs(t1 − 1)| − |λξs(t1)| − |ξs(t1)|

+ |
t1−1
∑

h=T0

λt1−1−h(1 − b−(h−T0))φ(s)(h)| .

The threshold can be written as

ǭ
(sI)
I,0 (t1) = w⊤

s,I

{

λ

[

t1−2
∑

h=0

(λWs)
t1−2−h

(

Wsχ̄s(h) + λξ̄s(h) + ξ̄s(h + 1)
)

+λt1−1W t1−1
s ǭs,0(0)

]

+ χ̄s(t1 − 1)
}

+ λξ̄(I)
s (t1 − 1) + ξ̄(I)

s (t1) ,

By remembering how the threshold ǭ
(sI)
I,0 was defined, it is easy to see

that the last inequality is implied by the following

|ǫ
(sI )
I,0 (t1)| ≥ −ǭ

(sI)
I,0 (t1) + |

t1−1
∑

h=T0

λt1−1−h(1 − b−(h−T0))φ(s)(h)| ,

so that the fault detection condition |ǫ
(sI)
I,0 (t1)| ≥ ǭ

(sI)
I,0 (t1) is implied by the

theorem hypothesis.

Remark 4.4.1: Theorem 4.4.1, that easily translates to the case of non–
shared variables, provides a way to check whether a fault will be detectable,
that is whether at least one subsystem will show a non-empty signature.
Anyway the fact that a fault function affects some state variables in a sub-
system does not assure that a signature will include that variables: because
of the way the fault detection logic was defined, the signature will be due
only to the state variables for which the fault function fulfills the hypothesis
of Theorem 4.4.1. On the other side, the scheme defined so far guarantees
that a signature will never involve variables not influenced by the fault func-
tion φI . Thanks to the present choice of detection thresholds, the proposed
DFDI scheme will not show the effect called fault propagation [1], where a
fault determines the issuing of alarms on variables not directly affected by
the fault6.

6A more evocative name for this effect is the Christmas Tree syndrome, that can happen
with FDI schemes based on simple limit checking. After a fault triggers a first alarm, it
may happen that the changes in the operating point due to the fault will trigger almost
every remaining alarms in a short time.
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4.5 Fault isolation logic

After a fault has been detected at time Td, the learning of the FDAE in-
terconnection adaptive approximator ĝI(t) of every LFD is stopped, that is
ϑ̂I,0(t) = ϑ̂I,0(Td) , ∀ t ≥ Td, to prevent the interconnection approximator to
learn part of the fault function φI too7. At the same time, each LFD will
enable a bank of NFI

, I = 1, . . . , N , Fault Isolation Estimators (FIEs) in
order to implement a kind of Generalized Observer Scheme for the task of
fault isolation, such as the one described in [36] and Chapter 2. This scheme
relies on each FIE being matched to a specific fault function belonging to
the fault class FI .

This is carried on by enabling the NFI
FIEs that allow to test in parallel

the NFI
fault hypotheses

HI,l : "The subsystem SI is affected by the l–th fault" ,

with l = 1, . . . , NFI
. To this end, analogously to the FDAE, the l–th FIE will

provide its own local state estimate x̂I,l of the local state xI . The difference
between the estimate x̂I,l and the measurements yI will yield the following
estimation error

ǫI,l , yI − x̂I,l ,

which again will be used as a residual and compared, component by compo-
nent, to a suitable detection threshold ǭI,l ∈ RnI

+ . The following condition

|ǫ
(k)
I,l (t)| ≤ ǭ

(k)
I,l (t) ∀ k = 1, . . . , nI (4.18)

will be associated to the l–th fault hypothesis. Should this condition be
unmet at some time instant t, the hypothesis will be falsified and the corre-
sponding fault will be excluded as a possible cause of the signature, at the
exclusion time Te,I,l.

Definition 4.5.1: The l–th fault exclusion time Te,I,l is defined as Te,I,l ,

min{t : ∃ k, k ∈ {1, . . . , nI}, |ǫ
(k)
I,l (t)| > ǭ

(k)
I,l (t)}.

Ideally, the goal of the isolation logic is to exclude every but one fault,
which may be said to be isolated. In fact in the proposed DFDI setting
a distinction should be drawn on the way local and distributed faults are
isolated, according to the discussion in Section 3.4.1. If a fault is local, then
having the corresponding LFD exclude every but that fault is sufficient for
declaring it isolated. But, for distributed faults the isolation needs that all
the LFDs having a local part of it in their fault classes did exclude all their
other faults. To express this in a formal way, the Definition 2.5.2 that was
used for centralized FDI schemes will be split as

7As stressed in Section 3.4.1, the learning of every LFD should be stopped, and not
just the one of LFDs showing a non-empty signature. The fault may affect subsystems
with empty signatures too and still be undetected there, because there it does not meet
the detectability condition.
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Definition 4.5.2: A fault φI,p ∈ FI is locally isolated at time t iff ∀l, l ∈
{1, . . . , NFI

}\p , Te,I,l ≤ t and ∄ Te,I,p. Furthermore Tlis,I,p , min{Te,I,l, l ∈
{1, . . . , NFI

} \ p} is the local fault isolation time.

Definition 4.5.3: A fault φI,p ∈ FI is isolated if for each LFD the
corresponding local functions φJ,p either has been isolated or do not exists,
J ∈ {1, . . . , N}. Furthermore Tis,I,p , min{Tlis,J,p, J ∈ {1, . . . , N}} is the
fault isolation time.

Remark 4.5.1: Again we should note that, if a fault has been isolated,
we can conclude that it actually occurred if we assume a priori that only
faults belonging to the class FI may occur. Otherwise, it can only be said
that it is not impossible that it occurred. If every fault in FI is excluded,
the following explanations may be given:

• an unknown fault, either local or distributed, has been isolated;

• the fault detection was triggered by a local or distributed fault of
another subsystem.

4.6 Fault isolation and Fault Isolation Estimators

Now the Fault Isolation Estimators will be finally described. After the fault
φ(t) has occurred, the state equation of the sI–th component of the I–th
subsystem becomes

x
(sI)
I (t + 1) = f

(sI)
I (xI(t), uI(t)) + g

(sI )
I (t), uI(t)) + β(t − T0)φ

(s)(x(t), u(t))

The l–th FIE estimator dynamic equation for the most general case of a
distributed fault, for a shared variable, will be defined as

x̂
(sI)
I,l (t + 1) = λ

{

x̂
(sI)
I,l (t) − y

(sI )
I (t) +

∑

J∈Os

W (I,J)
s

[

x̂
(sJ )
J,l (t) − x̂

(sI)
I,l (t)

]

}

+
∑

J∈Os

W (I,J)
s

[

f
(sJ )
J (yJ(t), uJ (t)) + ĝ

(sJ )
J (t)

+φ̂
(sJ )
J,l (yJ(t), vJ (t), uJ (t), ϑ̂J,l)

]

, (4.19)

where

φ̂
(sJ )
J,l (yJ(t), vJ (t), uJ (t), ϑ̂J,l) , (ϑJ,l,sJ

)⊤HJ,l,sJ
(yJ(t), vJ (t), uJ (t))

is the sJ–th component of a linearly-parameterized function that matches
the structure of the l–th fault function φJ,l, and the vector ϑ̂J,l , col(ϑJ,l,k, k ∈
{1, . . . , nI}) has been introduced.
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Analogously to the FDAE case, the parameters vectors are updated ac-
cording to the following learning law:

ϑ̂J,l,k(t + 1) = PΘ̂J,l,k
(ϑ̂J,l,k(t) + γJ,l,k(t)H

⊤
J,l,k(t)rJ,l,k(t + 1)) ,

where rJ,l,k(t + 1) is the signal

rJ,l,k(t + 1) = ǫJ,l,k(k + 1) − λǫJ,l,k(t),

and PΘ̂J,l,k
is a projection operator [115]

PΘ̂J,l,k
(ϑ̂J,l,k) ,







ϑ̂J,l,k if |ϑ̂J,l,k| ≤ MΘ̂J,l,k
M

Θ̂J,l,k

|ϑ̂J,l,k|
ϑ̂J,l,k if |ϑ̂J,l,k| > MΘ̂J,l,k

,

The learning rate γJ,l,k(t) is computed at each step as

γJ,l,k(t) ,
µJ,l,k

εJ,l,k + ‖H⊤
J,l,k(t)‖

2
, εJ,l,k > 0, 0 < µJ,l,k < 2 .

The corresponding estimation error dynamic equation is

ǫ
(sI)
I,l (t + 1) = λ

{

ǫ
(sI )
I,l (t) +

∑

J∈Os

W (I,J)
s

[

ǫ
(sJ)
J,l (t) − ǫ

(sI)
I,l (t)

+ξ
(sI)
I (t) − ξ

(sJ )
J (t)

]}

+
∑

J∈Os

W (I,J)
s

[

∆f
(sJ)
J (T ) + ∆g

(sJ )
J (t)

+(1 − b−(t−T0))φ(s)(t) − φ̂
(sJ )
J,l (t)

]

+ ξ
(sI)
I (t + 1) ,

that is

ǫ
(sI)
I,l (t+1) =

∑

J∈Os

W (I,J)
s

[

λǫ
(sJ )
J,l (t) + χ

(sJ )
J (t) + (1 − b−(t−T0))φ(s)(t) − φ̂

(sJ )
J,l (t)

]

+ λξ
(sI )
I (t) + ξ

(sI)
I (t + 1) .

Now, supposing a matched fault, that is φ(s)(t) = φ
(sJ )
J,l (xJ(t), zJ (t), uJ (t), ϑJ,l),

∀ J ∈ Os, the error equation can be written as

ǫ
(sI)
I,l (t + 1) =

∑

J∈Os

W (I,J)
s

[

λǫ
(sJ )
J,l (t) + χ

(sJ )
J (t)

+(1 − b−(t−T0))(HJ,l,sJ
(t)⊤ϑJ,l,sJ

+ ∆H⊤
J,l,sJ

ϑJ,l,sJ
) − HJ,l,sJ

(t)⊤ϑ̂J,l,sJ

]

+ λξ
(sI )
I (t) + ξ

(sI)
I (t + 1) ,

where it was introduced

∆H⊤
J,l,sJ

(t) , HJ,l,sJ
(xJ(t), zJ (t), uJ (t)) − HJ,l,sJ

(yJ(t), vJ (t), uJ (t)) .
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By introducing the parameter estimation errors ϑ̃J,l,sJ
, ϑJ,l,sJ

− ϑ̂J,l,sJ
,

the FIE estimation error equation for a matched fault becomes

ǫ
(sI)
I,l (t+1) =

∑

J∈Os

W (I,J)
s

[

λǫ
(sJ )
J,l (t) + χ

(sJ )
J (t) + (1 − b−(t−T0))HJ,l,sJ

(t)⊤ϑ̃J,l,sJ

+(1 − b−(t−T0))∆HJ,l,sJ
(t)⊤ϑJ,l,sJ

− b−(t−T0)HJ,l,sJ
(t)⊤ϑ̂J,l,sJ

]

+ λξ
(sI)
I (t) + ξ

(sI)
I (t + 1) ,

so that its absolute value can be bounded by a threshold that is solution of
the following

ǭ
(sI)
I,l (t + 1) =

∑

J∈Os

W (I,J)
s

[

λǭ
(sJ )
J,l (t) + χ̄

(sJ )
J (t) + ‖HJ,l,sJ

(t)‖κJ,l,sJ
(ϑ̂J,l,sJ

)

+∆̄HJ,l,sJ
(t)ϑ̄J,l,sJ

− b̄−(t−Td)‖HJ,l,sJ
(t)‖ ‖ϑ̂J,l,sJ

‖
]

+ λξ̄
(sI)
I (t) + ξ̄

(sI)
I (t + 1) .

The error and threshold solutions can be conveniently written by intro-
ducing the vectors

ǫs,l(t) , col(ǫ(sI )
I,l , I ∈ Os), χs(t) , col(χ(sI)

I , I ∈ Os), ǭs,l(t) , col(ǭ(sI )
I,l , I ∈ Os) ,

so that it holds

ǫs,l(t + 1) = Ws

[

λǫs,l(t) + χs(t) + col((1 − b−(t−T0))HI,l,sI
(t)⊤ϑ̃I,l,sI

+(1 − b−(t−T0))∆HI,l,sI
(t)⊤ϑI,l,sI

− b−(t−T0)HI,l,sI
(t)⊤ϑ̂I,l,sI

, I ∈ Os)
]

+ λξs(t) + ξs(t + 1) ,

ǫs,l(t) =
t−1
∑

h=Td

(λWs)
t−1−hWs

[

χs(h) + col((1 − b−(h−T0))HI,l,sI
(h)⊤ϑ̃I,l,sI

+(1 − b−(h−T0))∆HI,l,sI
(h)⊤ϑI,l,sI

− b−(h−T0)HI,l,sI
(h)⊤ϑ̂I,l,sI

, I ∈ Os)
]

+

t−1
∑

h=Td

[(λWs)
t−1−h(λξs(h) + ξs(h + 1))] + (λWs)

t−Tdǫs,l(Td) ,
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and component-wise it is

ǫ
(sI)
I,l (t) = ws,I

t−1
∑

h=Td

(λWs)
t−1−h

[

χs(h) + col((1 − b−(h−T0))HI,l,sI
(h)⊤ϑ̃I,l,sI

+(1 − b−(h−T0))∆HI,l,sI
(h)⊤ϑI,l,sI

− b−(h−T0)HI,l,sI
(h)⊤ϑ̂I,l,sI

, I ∈ Os)
]

+ λws,I

t−2
∑

h=Td

[(λWs)
t−2−h(λξs(h) + ξs(h + 1))] + λξ

(sI)
I (t − 1) + ξ

(sI)
I (t)

+ λws,I(λWs)
t−1−Tdǫs,l(Td) ,

for the error solution and, analogously, it holds

ǭ
(sI)
I,l (t) = ws,I

t−1
∑

h=Td

(λWs)
t−1−h

[

χ̄s(t) + col(‖HI,l,sI
(t)‖κI,l,sI

(ϑ̂I,l,sI
)

+∆̄HI,l,sI
(t)ϑ̄I,l,sI

− b̄−(t−Td)‖HI,l,sI
(t)‖ ‖ϑ̂I,l,sI

‖, I ∈ Os)
]

+ λws,I

t−2
∑

h=Td

[(λWs)
t−2−h(λξ̄s(t) + ξ̄s(t + 1))] + λξ̄

(sI )
I (t − 1) + ξ̄

(sI)
I (t)

+ λws,I(λWs)
t−1−Td ǭs,l(Td) ,

for the threshold solution. This threshold guarantees by definition that no
matched fault will be excluded because of uncertainties or the effect of the
parameter estimation error ϑ̃I,l,sI

.
Supposing a non matched fault instead, that is φ

(sI )
I (xI(t), zI(t), uI(t)) =

φ
(sI)
I,p (xI(t), zI(t), uI(t), ϑI,p) for some I ∈ Os and with p 6= l, the dynamics

of the sI–component of the estimation error of the l–th FIE of the I–th LFD
can be written as

ǫ
(sI)
I,l (t + 1) =

∑

J∈Os

W (I,J)
s

[

λǫ
(sJ )
J,l (t) + χ

(sJ )
J (t)

+(1 − b−(t−T0))φ
(sI )
I,p (xI(t), zI(t), uI(t), ϑI,p) − φ̂

(sJ )
J,l (yJ(t), vJ (t), uJ (t), ϑ̂J,l)

]

+ λξ
(sI )
I (t) + ξ

(sI)
I (t + 1) .

As shown before, a convenient way to study the behavior of the estimation
error of the LFDs sharing the variable x(s) is to consider the vector ǫs,l,
whose dynamics are

ǫs,l(t + 1) = Ws [λǫs,l(t) + χs(t) + ∆s,lφI,p(t)] + λξs(t) + ξs(t + 1) ,

where the following mismatch vector was introduced

∆s,lφI,p(t) , col((1 − b−(t−T0))φ
(sI )
I,p (t), I ∈ Os) − φ̂s,l(t)
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and I is any index in the overlap set Os. The solution can then be written
as

ǫs,l(t) =
t−1
∑

h=Td

(λWs)
t−1−hWs [χs(h) + ∆s,lφI,p(h)]

+

t−1
∑

h=Td

[(λWs)
t−1−h(λξs(h) + ξs(h + 1))] + (λWs)

t−Tdǫs,l(Td) ,

and component-wise it is

ǫ
(sI)
I,l (t) = ws,I

t−1
∑

h=Td

(λWs)
t−1−h [χs(h) + ∆s,lφI,p(h)]

+ λws,I

t−2
∑

h=Td

[(λWs)
t−2−h(λξs(h) + ξs(h + 1))] + λξ

(sI )
I (t − 1) + ξ

(sI)
I (t)

+ λws,I(λWs)
t−1−Tdǫs,l(Td) .

Theorem 4.6.1 (Fault Isolability): Given a fault φI,p ∈ FI , if for
each l ∈ {1, . . . , NFI

} \ p there exists some time instant Tl > Td and some
sI ∈ {1, . . . , nI} such that the following inequality holds

|ws,I

Tl−1
∑

h=Td

(λWs)
t−1−h∆s,lφI,p(h)| > ws,I

Tl−1
∑

h=Td

(λWs)
t−1−h [χ̄s(h)

+ col(‖HI,l,sI
(t)‖κI,l,sI

(ϑ̂I,l,sI
) + ∆̄HI,l,sI

(t)ϑ̄I,l,sI

−b̄−(t−Td)‖HI,l,sI
(t)‖ ‖ϑ̂I,l,sI

‖, I ∈ Os)
]

+ 2







λws,I

t−2
∑

h=Td

[(λWs)
t−2−h(λξ̄s(t)

+ξ̄s(t + 1))] + λξ̄
(sI)
I (t − 1) + ξ̄

(sI)
I (t) + λws,I(λWs)

t−1−Td ǭs,l(Td)
}

,

then the p–th fault will be isolated. Furthermore, the local isolation time is
upper-bounded by maxl∈{1,...,NFI

}\p(Tl).
Proof: By using the triangular inequality, the absolute value of the

sI–th component of the l–th FIE of the I–th LFD estimation error can be
bounded for t > Td as

|ǫ
(sI )
I,l (t)| ≥ |ws,I

t−1
∑

h=Td

(λWs)
t−1−h∆s,lφI,p(h)|

− |ws,I

t−1
∑

h=Td

(λWs)
t−1−hχs(h)|− |λws,I

t−2
∑

h=Td

[(λWs)
t−2−h(λξs(h)+ ξs(h+1))]|

− |λξ(I)
s (t − 1)| − |ξ(I)

s (t)| − |λws,I(λWs)
t−1−Tdǫs,l(Td)| ,
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and by using the known bounds on γs and ξs and the fact that the l–th fault
cannot already be excluded at time Td because of the way its threshold has
been defined

|ǫ
(sI)
I,l (t)| ≥ |ws,I

t−1
∑

h=Td

(λWs)
t−1−h∆s,lφI,p(h)|

− ws,I

t−1
∑

h=Td

(λWs)
t−1−hχ̄s(h) − λws,I

t−2
∑

h=Td

[(λWs)
t−2−h(λξ̄s(h) + ξ̄s(h + 1))]

− λξ̄(I)
s (t − 1)| − ξ̄(I)

s (t) − λws,I(λWs)
t−1−Td ǭs,l(Td) .

In order for the l–th fault to be excluded it must hold |ǫ
(sI)
I,l (t)| > ǭ

(sI)
I,l (t),

and this translates to the following

|ws,I

t−1
∑

h=Td

(λWs)
t−1−h∆s,lφI,p(h)| ≥ ǭI,l(t) + ws,I

t−1
∑

h=Td

(λWs)
t−1−hχ̄s(h)

+ λws,I

t−2
∑

h=Td

[(λWs)
t−2−h(λξ̄s(h) + ξ̄s(h + 1))]

+ λξ̄(I)
s (t − 1)| + ξ̄(I)

s (t) + λws,I(λWs)
t−1−Td ǭs,l(Td) ,

which is implied by the inequality in the theorem hypothesis. Should the
inequality hold for every fault function of FI but the p–th, then this fault
will be isolated in the sense of Definition 4.5.2.

4.7 Illustrative example

In this example, depicted in Fig. 4.1, an eleven-tank system is monitored by
three LFDs, according to the decomposition D = {S1,S2,S3}, with index
sets I1 = [1 2 3 4 5]⊤, I2 = [4 5 6 7]⊤ and I3 = [5 8 9 10 11]⊤. Three
pumps are present, feeding the first, seventh and eleventh tank with the
following flows: u1 = 1.25 + 0.25 · sin (0.05 · t), u2 = 1.9 − 1 · sin (0.005 · t)
and u3 = 1.3 + 0.6 · cos (0.03 · t). The nominal tank sections are set ac-
cording to the following vector A = [ 1 0.5 1 1 2 2 1 1 0.5 0.5 0.5 ] m2,
while the interconnecting pipe cross-sections are nominally equal to Ap =
[ 0.2 0.22 0.38 0.2 0.16 0.18 0.24 0.2 0.18 0.14 0.42 0.2 ] m2. Furthermore, to
each tank are connected drain pipes whose nominal cross-section are Ad =
[ 0.025 0.0125 0.0225 0.0275 0.075 0.0375 0.025 0.03 0.01 0.0125 0.015 ] m2.
All the pipes outflow coefficients are unitary. When building the local mod-
els fI of each LFD, anyway, the actual cross-sections used are affected by
random uncertainties no larger than 5% and 8% of the nominal values, re-
spectively for the tanks and for the pipes. The outflow coefficients are off
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by no more than 10%. Furthermore the tank levels measurements yI are af-
fected by measuring uncertainties ξI whose components are upper bounded
by ξ̄1 = [ 0.05 0.05 0.05 0.05 0.05 ] m, ξ̄2 = [ 0.06 0.06 0.06 0.06 ] m, and
ξ̄3 = [ 0.04 0.04 0.04 0.04 0.04 ] m.
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Figure 4.1: Structure of the eleven–tanks system under consideration. The
square labels refer to the pipes number.

The adaptive approximators ĝI of each LFD are implemented by RBF
neural networks having 3 neurons along the range of each input dimension.
The parameter domains ΘI were chosen to be hyper-spheres with radii equal
to

[

2 3 2
]

· Ts, Ts = 0.1 s being the sampling period. The learning rate
auxiliary coefficients for the interconnection adaptive approximators were set
to µ1,0 = 10−4, ε1,0 = 10−3, µ2,0 = 0.5 · 10−4, ε2,0 = 10−3, µ3,0 = 0.5 · 10−4,
ε3,0 = 10−3, while the filter constants were all set to λ = 0.9, and the
total uncertainties were bounded by χ̄1 =

[

0.36 0.42 0.42 0.6 0.6
]

·Ts,
χ̄2 =

[

0.36 0.48 0.42 0.3
]

·Ts, χ̄3 =
[

0.6 0.6 0.42 0.72 0.54
]

·Ts.

The weighting matrices for shared variables were W4 =

[

0.8 0.2
0.2 0.8

]

and

W5 =





0.6 0.2 0.2
0.2 0.6 0.2
0.2 0.2 0.6



.

Three faults were modeled:

1. Actuator fault in pump 1, 2 and 3: partial or full shutdown of
all the pumps modeled as u

(i)
f = u(i)(1−a(i)), where uf represents the

pumps flow in the faulty case and 0 ≤ a(i) ≤ 1, i ∈ {1, 2, 3}.
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2. Leakage in tank 4, 5 and 6: circular hole of unknown radius 0 ≤
ρ(i) ≤ A(i) in the tank bottom, so that the outflow due to the leak is
q
(i)
f = π(ρ(i))2

√

2gx(i)(t), i ∈ {4, 5, 6}.

3. Breakdown of pipes 3 (tanks 3↔4) and 5 (tanks 4↔6): partial
or complete breakdown of those pipes, so that a relative quota 0 ≤

a
(i)
p ≤ 1, i ∈ {3, 5} of the water in the pipes is drained out of the tanks

instead of flowing between them. This is equivalent to substituting
the two pipes with four additional drain pipes, one connected to tank
3, two to tank 4 and one to tank 6.

All these cases represent distributed faults with distributed signatures, and
the second and third ones feature overlapping signatures too. As can be eas-
ily seen, the local fault diagnosers experience the following local signatures:

• LFD no. 1 sees as local only the breakdown of pump 1, or the leakage
in tanks 4 and 5, or the effect on tanks 3 and 4 of the breakdown of
pipe 3;

• LFD no. 2 sees as local only the breakdown of pump 2, or the leakage
in tanks 4, 5 and 6, or the effect on tanks 4 and 6 of the breakdown
of pipe 5;

• LFD no. 3 sees as local only the breakdown of pump 3, or the leakage
in tank 5.

The resulting fault classes FI are then:

F1 =



































ϑ1,1,1H1,1,1(t)
0
0
0
0













,













0
0
0

ϑ1,2,4H1,2,4(t)
ϑ1,2,5H1,2,5(t)













,













0
0

ϑ1,3,3H1,3,3(t)
ϑ1,3,4H1,3,4(t)

0



































,

where ϑ1,1,1 = a(1), H1,1,1(t) = − Ts

A(1) u
(1)
1 (t), ϑ1,2,4 = π(ρ(4)), H1,2,4(t) =

− Ts

A(4)

√

2gx
(4)
1 (t) , ϑ1,2,5 = π(ρ(5)), H1,2,5(t) = − Ts

A(5)

√

2gx
(5)
1 (t) , ϑ1,3,3 =

a
(3)
p , H1,3,3(t) = − Ts

A(3) a
(3)
p c

(3)
p A

(3)
p ·(sign(x

(4)
1 (t)−x

(3)
1 (t))·

√

2g|x
(4)
1 (t) − x

(3)
1 (t)|+

√

2gx
(3)
1 (t), ϑ1,3,4 = a

(3)
p , H1,3,4(t) = − Ts

A(4) a
(3)
p c

(3)
p A

(3)
p ·(sign(x

(3)
1 (t)−x

(4)
1 (t))·

√

2g|x
(3)
1 (t) − x

(4)
1 (t)| +

√

2gx
(4)
1 (t);

F2 =























0
0
0

ϑ2,1,4H2,1,4(t)









,









ϑ2,2,1H2,2,1(t)
ϑ2,2,2H2,2,2(t)
ϑ2,2,3H2,2,3(t)

0









,









ϑ2,3,1H2,3,1(t)
0

ϑ2,3,3H2,3,3(t)
0























,
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where ϑ2,1,4 = a(2), H2,1,4(t) = − Ts

A(7) u
(1)
2 (t), ϑ2,2,1 = π(ρ(4)), H2,2,1(t) =

− Ts

A(4)

√

2gx
(1)
2 (t) , ϑ2,2,2 = π(ρ(5)), H2,2,2(t) = − Ts

A(5)

√

2gx
(2)
2 (t), ϑ2,2,3 =

π(ρ(6)), H2,2,3(t) = − Ts

A(6)

√

2gx
(3)
2 (t), ϑ2,3,1 = a

(5)
p , H2,3,1(t) = − Ts

A(4) a
(5)
p c

(5)
p A

(5)
p ·

(sign(x
(3)
2 (t) − x

(1)
2 (t)) ·

√

2g|x
(3)
2 (t) − x

(1)
2 (t)| +

√

2gx
(1)
2 (t), ϑ2,3,3 = a

(5)
p ,

H2,3,3(t) = − Ts

A(6) a
(5)
p c

(5)
p A

(5)
p · (sign(x

(1)
2 (t)−x

(3)
2 (t)) ·

√

2g|x
(1)
2 (t) − x

(3)
2 (t)|+

√

2gx
(3)
2 (t);

F3 =



































0
0
0
0

ϑ3,1,5H3,1,5(t)













,













ϑ3,2,1H3,2,1(t)
0
0
0
0



































,

where ϑ3,1,5 = a(3), H3,1,5(t) = − Ts

A(11) u
(1)
3 (t), ϑ3,2,1 = π(ρ(5)), H3,2,1(t) =

− Ts

A(5)

√

2gx
(1)
3 (t) .

In the present example a fault of the first kind, that is a pumps failure,
will be modeled. At T0 = 750 s an incipient fault with time constant b = 1.05
will start to affect the three pumps, reducing their effectiveness, respectively,
by 25%, 35% and 20%. It must be stressed that this is considered as a single
fault event leading to a distributed fault signature, and not as three local
fault events happening at the same time. As the fault is distributed, the
three LFDs will need to exchange their fault decisions in order to reach a
correct diagnosis.

Figs. 4.2–4.4 shows the simulated behavior of the residuals and thresholds
computed by the proposed DFDI architecture. As can be seen, the fault is
detected at Td = 751 s by the second LFD, that at Tlis,2,1 = 752 s locally
isolates the first fault. Later, at Tlis,1,1 = 758 s the first LFD isolates the
same fault, that is finally globally isolated at Tis,1 = 824 s thanks to the third
LFD. By looking at Figs. 4.2(e), 4.3(e) and 4.4(d) the good performances
of the DFDI scheme in estimating the fault parameters can be appreciated:
both the first and the second LFDs are very close to the true values of
ϑ1,1,1 = 0.25 and ϑ2,1,4 = 0.35, while the third one is off by almost 20%
with respect to ϑ3,1,5 = 0.20. Anyway it must be acknowledged, similarly
to what was pointed out in Chapter 2, that the FIEs approximators are
actually learning the effect of the fault functions, of the uncertainties and
of the interconnection approximator MFAE, rather than that of the fault
function alone.
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4.8 Concluding remarks

In this chapter, a novel distributed architecture for the FDI of nonlinear
and uncertain discrete–time systems has been proposed. The architecture
is based on an overlapping decomposition of an original monolithic system,
and each resulting subsystem is assigned to a single Local Fault Diagnoser
that monitors its health.

This contribution fills a gap in the present literature, where mainly
schemes for discrete–event systems, for linear discrete–time or continuous
time, or for systems described by qualitative non–linear models, were con-
sidered. Two notable features have been embedded in the proposed architec-
ture: the capability of learning on–line the model uncertainties by the use of
adaptive approximators, and the use of consensus techniques for computing
possibly better estimates of the parts of the model shared by more than one
Local Fault Diagnoser.

In order to characterize the performance of the DFDI architecture, clas-
sical analytical results for centralized FDI schemes were derived for the
present case, namely the robustness of adaptive thresholds to model uncer-
tainties, the fault detectability condition and the fault isolability conditions.
Finally, a simulation example has been provided to show the effectiveness of
the DFDI scheme.
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Figure 4.2: Time–behaviors of simulated signals related to tanks no. 1 when
a leakage is introduced at time 750 s. Data for the estimated fault parameter
have been decimated.
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Figure 4.3: Time–behaviors of simulated signals related to tanks no. 7 when
a leakage is introduced at time 750 s. Data for the estimated fault parameter
have been decimated.
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Figure 4.4: Time–behaviors of simulated signals related to tanks no. 11
when a leakage is introduced at time 750 s. Data for the estimated fault
parameter have been decimated.



Chapter 5

Distributed FDI,

specialization for continuous

time systems

In this chapter it will be showed how the DFDI architecture developed in
Chapter 4 for discrete-time systems, can be specialized for the continuous–
time ones. In order to streamline the investigation, the following simplifica-
tions will be assumed: only the fault detection service will be provided, and
only abrupt faults will be considered. Furthermore the consensus protocol
on shared variable estimates will weigh equally the contributions from all
the LFDs in the overlap set.

5.1 Background and assumptions

Let us consider a generic large–scale nonlinear system S described as (see
[30])

S : ẋ = f(x, u) + β(t − T0)φ(x, u) , (5.1)

where x ∈ Rn and u ∈ Rm denote the state and input vectors, respec-
tively, and f : Rn × Rm 7→ Rn represents the nominal healthy dynamics.
As in Chapter 2, the term β(t − T0)φ(x, u) denotes the changes in the sys-
tem dynamics due to the occurrence of a fault. More specifically, the vec-
tor φ(x, u) represents the functional structure of the deviation in the state
equation due to the fault and the function β(t− T0) characterizes the time
profile of the fault, where T0 is the unknown fault occurrence time. In this
chapter, for the sake of simplicity we only consider the case of abrupt (sud-
den) faults and, accordingly, β(·) takes on the form of a step function, i.e.,
β(t − T0) = 0, if t < T0 and β(t − T0) = 1, if t ≥ T0 .

As discussed in Chapter 3, the model in (5.1) may be impractical for
fault detection (FD), either because of its size, or because the system it

85
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represents is physically distributed, so that a centralized FDI architecture is
neither possible nor desirable. This problem will be overcome by considering
S as decomposed into N subsystems SI , each characterized by a local state
vector xI ∈ RnI , so that each SI will be separately monitored. To this end,
the dynamics of SI can be modeled as

SI : ẋI = f∗
I (x, u) + β(t − T0)φiI(x, u) ,

where the vectors f∗
I and φI are built upon the components of f and φ that

account for the dynamics of subsystem SI . Again, following the decompo-
sition procedures introduced in Chapter 3, f∗

I will be conveniently split into
two parts:

SI : ẋI = fI(xI , uI) + gI(xI , zI , uI) + β(t − T0)φI(x, u) (5.2)

with fI : RnI × RmI 7→ RnI being the local nominal function, gI : RnI ×
Rn̄I × RmI 7→ RnI the interconnection function, uI ∈ RmI , (mI ≤ m), the
local input, and zI ∈ RpI , (pI ≤ n − nI), the vector of interconnection state
variables. The decomposition D , {S1, ...,SN} will satisfy Definition 3.3.3
and will allow for overlaps between subsystems.
The following further assumptions are now needed, analogously to what has
been assumed in Chapter 2.

Assumption 5.1.1: For each SI , I = 1, . . . , N , the state variables xI(t)
and control variables uI(t) remain bounded before and after the occurrence
of a fault, i.e., there exist some stability regions RI = Rx

I ×Ru
I ⊂ RnI ×RmI ,

such that (xI(t), uI(t)) ∈ Rx
I ×Ru

I , ∀ I = 1, . . . , N,∀ t ≥ 0.
Clearly, as a consequence of Assumption 5.1.1, for each subsystem SI , I =

1, . . . , N , it is possible to define some stability regions Rz
I for the intercon-

necting variables zI . The first reason for introducing such a boundedness
assumption is a formal one in order to make the problem of detecting faults
well-posed. Moreover, from an application point of view, Assumption 5.1.1
does not turn out to be very restrictive as the difficult issue generally is
the early detection of faults characterized by a relatively small magnitude.
Indeed, since no fault accommodation is considered in this work, the feed-
back controller acting on the system S must be such that the measurable
signals x(t) and u(t) remain bounded for all t ≥ 0. However, it is impor-
tant to note that the proposed Distributed Fault Detection and Identification
(DFDI) design is not dependent on the structure of the controller.

Assumption 5.1.2: The decomposition D is given a priori and is such
that, for each SI , the local nominal function fI is perfectly known, whereas
the interconnection term gI is an uncertain function of xI , zI and uI . For
each k = 1, . . . , nI , the k–th component of gI is bounded by some known
functional, i.e.,

|g
(k)
I (xI , zI , uI)| ≤ ḡ

(k)
I (xI , zI , uI) , ∀ (xI , zI , uI) ∈ Rx

I ×Rz
I ×Ru

I ,
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where the bounding function ḡ
(k)
I (xI , zI , uI) ≥ 0 is known, integrable, and

bounded for all (xI , zI , uI) in some compact region of interest R̄ ⊇ Rx
I ×

Rz
I ×Ru

I .
As explained in the previous chapters, Assumption 5.1.2 captures situa-

tions where each SI corresponds to a known physical subsystem or a com-
ponent, interacting through uncertain physical links as part of a complex
large–scale system or to attain a higher goal (several application contexts
can be found where such modeling approach turns out to be useful – see, for
example, [51]). This uncertainty will be overcome in the following sections
by employing an adaptive approximator ĝI in lieu of gI .

Remark 5.1.1: It is worth noting that the task of determining non-
conservative bounding functions ḡ

(k)
I (xI , zI , uI) ≥ 0 may turn out to be

rather difficult in practice, and has to be carried out by exploiting prior
knowledge by plant technicians and extensive off-line simulation trials.

5.2 Fault Detection Architecture

The simplified DFDI architecture will be based on the template portrayed
in Section 3.4. It will be based on N agents called Local Fault Diagnosers
(LFD), each monitoring a subsystem SI originating from the decomposition
D of the monolithic system S . Each LFD will implement an estimator
called Fault Detection and Approximation Estimator (FDAE) for providing
the detection service. The FDAE will be based on a nonlinear adaptive
estimator, and will compute an estimate of the local state xI by directly
measuring local variables and by exchanging with other LFDs the values of
the interconnection and of the shared variables. The details of this estimator
will now be given.

5.3 Healthy behavior and Fault Detection Estima-

tor

The local fault detection algorithm is based on a nonlinear adaptive estima-
tor built on the subsystem model (5.2), and for the I–th LFD it takes on
the form

˙̂x
(sI)
I = −λ

[

∑

J∈Os

(x̂
(sI)
I − x̂

(sJ )
J ) + ds(x̂

(sI )
I − x

(sI )
I )

]

+
1

ds

∑

J∈Os

[f
(sJ )
J (xJ , uJ) + ĝ

(sJ )
J (xJ , zJ , uJ , ϑ̂J)] (5.3)

for each sI = 1, . . . , nI , where

• x̂
(sI)
I denotes the estimate of the local state component x

(sI)
I
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• x
(sI )
I corresponds to the s–th component of the global state vector,

that is x
(sI)
I ≡ x(s)

• Os is the index set of the ds LFDs sharing the variable x(s)

• ĝJ (·) is an adaptive approximator to be described later

• ϑ̂J is the vector of the adaptive approximator parameters

• −λ < 0 represents the value of the estimator poles.

As the entire state xI is assumed to be measurable, it must be stressed
that the estimate x̂

(sI)
I is not used for estimation, but will be employed in

the fault detection process for residual error generation and for adaptive
approximation. A consensus mechanism is embedded in the estimator for
shared components of the local state of SI , allowing LFDs in Os to share
their knowledge about the local and the approximated interconnection part
of the model. In particular the consensus is attained by the summations
over Os, where the estimates and the models of each LFD are weighted by
a constant value.

It is worth noting that, in order to implement (5.3), the LFD LI does not
need the information about the expressions of f

(sJ)
J and of ĝ

(sJ )
J . Instead, it

suffices that LJ , J ∈ Os, computes the term f
(sJ)
J + ĝ

(sJ )
J and communicates

it to other LFDs in Os alongside its actual state estimate x̂
(sJ )
J . Furthermore,

each LJ , with J ∈ JI , must communicate to LI its values of the local state
components needed to populate the interconnection state vector zI .

Clearly, for non–shared state components the overlap index set is a sin-
gleton and (5.3) simplifies to an estimator without consensus as follows:

˙̂x
(k)
I = −λ(x̂

(k)
I − x

(k)
I ) + f

(k)
I (xI , uI) + ĝ

(k)
I (xI , zI , uI , ϑ̂I) .

Since it is assumed that, for each SI , the interconnection function gI is
uncertain (or unknown), a key point in the proposed scheme is that each LFD
will adaptively learn the uncertain function gI using a linearly parameterized
adaptive approximator ĝI(xI , zI , uI , ϑ̂I) : RnI ×RpI ×RmI ×RqI 7→ RnI of
the form

ĝ
(k)
I (xI , zI , uI , ϑ̂I) =

rI
∑

l=1

c
(l)
I,kϕI,l(xI , zI , uI) ,

where ϕI,l(·) are given parameterized basis functions, cI,k ∈ RrI are the
parameters to be determined, i.e., ϑ̂I ∈ RqI , ϑ̂I , col (cI,k : k = 1, . . . , nI).
Here the term adaptive approximator [114] may represent any linear–in–the–
parameters, but otherwise nonlinear multi-variable approximation model,
such as neural networks, fuzzy logic networks, polynomials, spline func-
tions, wavelet networks, etc. By introducing the gradient matrix HI ,
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∂ĝI(xI , zI , uI , ϑ̂I)/∂ϑ̂I with respect to the adjustable parameter vector [33],
the approximator output can be written as ĝI(xI , zI , uI , ϑ̂I) = HI ϑ̂I .

Using adaptive parameter estimation techniques, the learning law for the
parameter vector takes on the form:

˙̂
ϑI , P

(

ΓIH
⊤
I ǫI

)

,

where P is a projection operator [30] that restricts ϑ̂I to a pre–defined com-
pact and convex set ΘI ⊂ RqI , ΓI ∈ RqI×qI is a symmetric and positive
definite learning rate matrix and ǫI(t) , xI(t) − x̂I(t) is the estimation er-
ror, which plays a double role: it provides a measure of the residual error
for fault detection purposes and it also provides the error measure used for
adaptively learning the unknown interconnection term gI .

In general, the approximated interconnection term ĝI cannot be expected
to perfectly match the true term gI . This can be formalized by introducing
an optimal weight vector ϑ̂∗

I within the compact convex set ΘI [33]:

ϑ̂∗
I , arg min

ϑ̂I∈ΘI

max
R̄

‖gI(xI , zI , uI) − ĝI(xI , zI , uI , ϑ̂I)‖ (5.4)

and the corresponding minimum functional approximation error (MFAE)

νI(t) , gI(xI(t), zI(t), uI(t)) − ĝI(xI(t), zI(t), uI(t), ϑ̂
∗
I) . (5.5)

By introducing the parameter estimation error ϑ̃I , ϑ̂I − ϑ̂∗
I , the dynamics

of the generic estimation error component for t < T0 can be written as:

ǫ̇
(sI)
I =

1

ds

∑

J∈Os

(−h⊤
J,sJ

ϑ̃J + ν
(sJ)
J ) − λ

[

∑

J∈Os

(ǫ
(sI )
I − ǫ

(sJ )
J ) + dsǫ

(sI)
I

]

,

where the notation h⊤
J,sJ

stands for the sJ–th row of the gradient matrix
HJ . The solution of the above equation can be written as

ǫ
(sI)
I (t) =

1

ds

[� t

0
e−λds(t−τ)

∑

J∈Os

(−h⊤
J,sJ

ϑ̃J + ν
(sJ )
J )dτ

+ e−2λdst
∑

J∈Os

(eλdst − 1 + dsδIJ)ǫ
(sJ )
J (0)

]

,

where δIJ is the Kronecker delta function defined as δIJ = 1 if I = J and
δIJ = 0 otherwise. Again, this expression can be simplified in the case of a
non–shared state component as follows:

ǫ
(k)
I (t) =

� t

0
e−λ(t−τ)(−h⊤

I,kϑ̃k + ν
(k)
I )dτ + e−λtǫ

(k)
I (0) .
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This solution shows that, because of the parameter estimation error ϑ̃I and
of the MFAE, the estimation error will be nonzero even in the absence of a
fault. By applying the triangle inequality, it can be shown that the absolute
value of ǫI can be upper-bounded as follows:

|ǫ
(sI )
I (t)| ≤ ǭ

(sI )
I (t) ,

1

ds

[� t

0
e−λds(t−τ)

∑

J∈Os

(κJ (τ)‖h⊤
J,sJ

‖

+ν̄
(sJ)
J )dτ + e−2λdst

∑

J∈Os

(eλdst − 1 + dsδIJ)|ǫ
(sJ )
J (0)|

]

, (5.6)

where κI(t) ≥ ‖ϑ̃I‖ depends on the geometric properties of the set ΘI . For
instance, letting the parameter set ΘI be a hyper-sphere centered in the
origin and with radius equal to MI , we have κI(t) , MI + ‖ϑ̂I‖. Moreover

|ν
(k)
I (t)| ≤ ν̄

(k)
I (t) ,

where

ν̄
(k)
I (t) , ḡ

(k)
I (xI(t), zI(t), uI(t)) + Kĝ‖col (xI(t), zI(t), uI(t)) ‖ ,

and Kĝ denotes the Lipschitz constant of the adaptive approximator on the
compact set R̄ introduced in Assumption 5.1.2. The bound described by
(5.6) represents an adaptive threshold on the state estimation error that
can be easily implemented by linear filtering techniques [36]. The bound
ǭI(t) will be exploited in the next section in the fault detection context.

The fault detection logic for the generic LFD is exactly equivalent to the
centralized one presented in section 2.3. The following condition

|ǫ
(k)
I (t)| ≤ ǭ

(k)
I (t) ∀ k = 1, . . . , n (5.7)

will be associated to the fault hypothesis

HI : "The subsystem SI is healthy" .

Should condition (2.4) be unmet at some time instant t, the hypothesis HI

will be falsified and a local fault signature will be noticed on subsystem SI

Definition 5.3.1: The local fault signature shown by the subsystem SI

at time t > 0 is the index set SI , {k : ∃ t1, t ≥ t1 > 0, |ǫ
(k)
I (t1)| > ǭ

(k)
I (t1)}

of the state components for which the hypothesis (5.7) did not hold for at
least one time instant.

Fault Detection Logic The fault detection logic can again be simply
stated in terms of the signature SI : a fault affecting the subsystem SI will
be detected at the first time instant such that SI becomes non-empty. The
difference with the centralized case is that the fault detection time Td will
be defined as the first time instant at which at least one subsystem has been
detected to be faulty.
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Definition 5.3.2: The fault detection time Td is defined as Td , min{t :

∃ I, I ∈ {1, . . . , N}, ∃ k, k ∈ {1, . . . , nI} :, |ǫ
(k)
I (t)| > ǭ

(k)
I (t)}.

5.4 Faulty behavior and Fault Detectability

It must be acknowledged that the adaptive threshold ǭI(t) defined by (5.6)
is designed to avoid false positives, since a certain level of estimation error
is always present due to the uncertainty in the learning process. Of course,
this may lead to certain faults being undetectable if they cause an estimation
error small enough to be indistinguishable from the estimation error due to
the uncertainty. This intuitive point will be formalized in Theorem 5.4.1.
First, analogously to (5.4) and (5.5), the following quantities are defined

ϑ̂∗f
I , arg min

ϑ̂I∈ΘI

max
R̄

‖gI (xI , zI , uI) + φI (x, u) − ĝI(xI , zI , uI , ϑ̂I)‖

νf
I (t) , gI (xI , zI , uI) + φI (x, u) − ĝI(xI , zI , uI , ϑ̂

∗f
I )

as well as the mismatch function

∆φ
(k)
I (t) , h⊤

I,k

(

ϑ̂∗f
I − ϑ̂∗

I

)(k)
+ ν

f(k)
I − ν

(k)
I .

Now, we can state the following result
Theorem 5.4.1 (Fault Detectability): Given a variable x(s) with an

overlap set Os, suppose that for some time–interval [t1, t2] the corresponding
components of the mismatch functions ∆φJ(t), J ∈ Os, fulfill the following
inequality for at least the I–th LFD, I ∈ Os :� t2

t1

e−λds(t−τ)
∑

J∈Os

|∆φ
(sJ )
J |dτ ≥ 2

� t2

0
e−λds(t−τ)

×
∑

J∈Os

(κJ(τ)‖h⊤
J,sJ

‖ + ν̄
(sJ)
J )dτ

+ 2 dse
−2λdst

∑

J∈Os

(eλdst − 1 + dsδIJ)|ǫ
(sJ )
J (0)|.

Then, a fault will be detected at time–instant t = t2 by the I–th LFD,
that is |ǫ

(sI)
I (t2)| > ǭ

(sI)
I (t2). Moreover, t1 is an upper bound on the fault

occurrence time T0.
Proof: Following the proof of Theorem 3.2 in [110], the error dynamics

at the generic time instant t can be written as follows:

ǫ̇
(sI)
I =



























−λ
(

∑

J∈Os
(ǫ

(sI )
I − ǫ

(sJ)
J ) + dsǫ

(sI)
I

)

+ 1
ds

∑

J∈Os
(−h⊤

J,sJ
ϑ̃J + ν

(sJ)
J (t)) if t < T0

−λ
(

∑

J∈Os
(ǫ

(sI )
I − ǫ

(sJ)
J ) + dsǫ

(sI)
I

)

+ 1
ds

∑

J∈Os
(−h⊤

J,sJ
ϑ̃f

J + ν
f(sJ )
J (t)) if t ≥ T0

,
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where ϑ̃f
J , ϑ̂J − ϑ̂∗f

I . By using the mismatch function, the solution to the
error dynamics is

ǫ
(sI)
I (t) =

1

ds

� t

0
e−λds(t−τ)

∑

J∈Os

(−h⊤
J,sJ

ϑ̃J + ν
(sJ)
J )dτ

+
1

ds

� t

T0

e−λds(t−τ)
∑

J∈Os

∆φ
(sJ )
J dτ

+
1

ds
e−2λdst

∑

J∈Os

(eλdst − 1 + dsδIJ)ǫ
(sJ )
J (0)

so that the application of the triangle inequality leads to:

|ǫ
(sI )
I (t)| ≥

1

ds

∣

∣

∣

∣

∣

∣

� t

T0

e−λds(t−τ)
∑

j∈Os

ξ
(sJ)
J dτ

∣

∣

∣

∣

∣

∣

−
1

ds

� t

0
e−λds(t−τ)

∑

j∈Os

| − z⊤j,sJ
ϑ̃J + ν

(sJ)
J |dτ

−
1

ds
e−2λdst

∑

j∈Os

(eλdst − 1 + dsδij)|ǫ
(sJ )
J (0)| .

A sufficient condition for the previous inequality to hold is

|ǫ
(sI )
I (t)| ≥

1

ds

� t

T0

e−λds(t−τ)
∑

J∈Os

|∆φ
(sJ )
J |dτ

−
1

ds

� t

0
e−λds(t−τ)

∑

J∈Os

| − h⊤
J,sJ

ϑ̃J + ν
(sJ )
J |dτ

−
1

ds

e−2λdst
∑

J∈Os

(eλdst − 1 + dsδIJ)|ǫ
(sJ )
J (0)| ,

and, if |ǫ(sI )
I (t2)| > ǭ

(sI)
I (t2) for some t2 > T0, then a fault is detected. This

translates into the following inequality� t2

T0

e−λds(t−τ)
∑

J∈Os

|∆φ
(sJ )
J |dτ ≥

� t2

0
e−λds(t−τ)

×
∑

J∈Os

(κJ (τ)‖h⊤
J,sJ

‖ + ν̄
(sJ )
J )dτ

+

� t2

0
e−λds(t−τ)

∑

J∈Os

| − h⊤
J,sJ

ϑ̃J + ν
(sJ )
J |dτ

+ 2 dse
−2λdst

∑

J∈Os

(eλdst − 1 + dsδIJ)|ǫ
(sJ )
J (0)| ,

which implies the thesis when t1 ≥ T0, thus proving the theorem.
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Figure 5.1: Structure of the five-tanks system under consideration.

Remark 5.4.1: It is worth noting that in a distributed fault-diagnosis
system without overlap where there are no shared variables, a detection de-
cision may be difficult to reach in presence of a low mismatch ∆φ

(sJ)
J and/or

high uncertainties κJ (τ)‖h⊤
J,sJ

‖ + ν̄
(sJ)
J . On the other hand, we expect a

consensus mechanism like the one proposed in this chapter to be of benefit
in such a scenario. However, due to the generality of the framework con-
sidered here (we do not make any assumption on the structural/geometric
properties of the faults with respect to the structure of the distributed plant,
and we do not assume persistence of excitation) proving that the proposed
consensus-based methodology in general performs better than a consensus–
less one turns out to be difficult and is beyond the scope of the present work.

5.5 Illustrative example

Now, a simple example to illustrate the effectiveness of the proposed DFDI
scheme will be presented. It is based on the well-known three-tank problem,
extended to encompass a five-tank string and two LFDs (see Fig. 5.5). The
two LFDs monitor three tanks each, while sharing the third tank. Clearly,
here the local nominal functions f1 and f2 describe the flows through the
pipes linking tanks assigned to the same LFD, while the interconnection
terms g1 and g2 are due to the flow between tanks 3 and 4 and between tanks
2 and 3 (for details about the dynamical equations of a multi-tank system
the reader is referred for example to [36]). All the tanks are cylinders with
a cross-section A = 1 m2, whilst every pipe has a cross-section Ap = 0.1 m2

and unitary outflow coefficient. The tank levels are denoted by x
(i)
1 and

x
(i)
2 , with i = 1, 2, 3, and are limited between 0 and 10 m. The scalars

0 ≤ uI ≤ 1 m3/s, i = 1, 2, correspond to the inflows supplied by two pumps.
The interconnection variables being z1 = x

(2)
2 and z2 = x

(2)
1 , g1 (x1, z1, u1)

and g2 (x2, z2, u2) should be 5-inputs, 3-outputs functions. Because of the
topology of this specific example, both g1 and g2 have only one non-zero
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output component and depend only on (x
(2)
1 , x

(1)
2 ) and (x

(2)
2 , x

(3)
1 ) respec-

tively. Therefore, the adaptive approximators ĝ1 and ĝ2 were realized with
two 2-inputs, 1-output radial basis neural networks. The network ĝ1 is im-
plemented with 49 basis functions, while the network ĝ2 is made of 4 basis
functions only. In both cases the basis functions are equally spaced over
the square [0, 10]2; the learning rate matrices are ΓI = diag(0.75) and the
estimator constants are λI = 1.5. After suitable offline simulations the
parameter Θ1 and Θ2 domains are chosen to be hyper-spheres with radii
equal to 0.75 and 1.5, respectively. The non-zero bounds on the approxi-
mation error are set to ν̄

(3)
1 = 0.025 and ν̄

(1)
2 = 0.2. Finally, the inflows are

u1 = 0.2 · cos (0.3t) + 0.3 and u2 = 0.25 · cos (0.5t) + 0.3; the nominal tank
initial levels were 8, 6.5, 5, 3.5 and 3 m, while the estimated ones are 15%
higher and 15% lower, respectively for the first and the second LFD.

Fig. 5.5 shows the results of a simulation where at T0 = 20 s an abrupt
leakage with cross-section Al = 0.15m2 was introduced in tank 3, first when
a consensus–filter is employed and then when it is not. In this respect, it can
be observed that the LFD based on the network with fewer neurons (hence
with more limited approximation capabilities) does not reach a detection
decision in the absence of the consensus mechanism whereas a decision is
reached in the presence of consensus using the information provided by the
other LFD based on a networks with a much larger number of basis functions.
The much better performance when the consensus mechanism is used is also
due to the fact that the consensus equation dampens the difference between
the estimates and the true values and also the difference among the two
estimates. This can be seen very clearly by comparing the initial transient
behaviors in Figs. 5.5–(a) and 5.5–(b).

5.6 Concluding remarks

In this final chapter a DFDI architecture for continuous–time systems has
been described. It featured some simplifications with respect to full-fledged
architecture: it was able to only detect faults as it lacked isolation capa-
bilities, considered only abrupt faults and the consensus protocol it applied
for shared variables employed constant weights. Anyway the fundamental
analytical results were provided, namely: the robustness of detection thresh-
old with respect to uncertainties and the detectability condition. Finally,
simulation results were provided to shows the usefulness of the consensus
techniques when detecting faults influencing shared variables.
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Figure 5.2: Time-behaviors of signals related to tanks no. 3 when a leakage
is introduced at time 20 s, with (a, c, e) and without (b, d, f) consensus.
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Chapter 6

Concluding Remarks

In this thesis work a general distributed architecture for the Fault Diagnosis
of uncertain, nonlinear large–scale systems was developed. The diagnosis
logic was inspired a centralized Generalized Observer Scheme, developed in
[113] and reviewed in Chapter 2, that solves the Fault Detection and Iso-
lation (FDI) problem for nonlinear uncertain discrete–time systems. The
typical drawback of centralized schemes, that is the lack of scalability, was
overcome by the application of a divide et impera paradigm. In this way,
an infeasible FDI problem for a large–scale and monolithic system is decom-
posed into a number of subproblems, each one simple enough to be solved
by available computation and communication infrastructures. Furthermore,
the decomposition approach is useful in all the situations were a centralized
architecture is simply undesirable, for instance in distributed systems such
as sensor networks or multi–vehicle formations. In these kinds of systems,
a central node, that would implement the FDI service for the whole net-
work or formation, simply cannot be chosen, and its very existence would
nevertheless pose a safety threat.

The starting point in the application of this paradigm, is the availability
of a solution to the so–called decomposition problem, where the structure and
the mathematical model of a monolithic large–scale system S are decom-
posed so that a number of subsystems SI are obtained. The FDI problem
for each subsystem SI is then assigned to a single agent, called Local Fault
Diagnoser (LFD) and denoted by LI . Each subsystem SI represents a part
of the original system S , without the parts being required to be mutually
disjoint, thus allowing for overlapping decompositions. The overlaps in the
decomposition lead to portions of S being shared among different subsys-
tems, so that more than one LFD will monitor it. This redundancy is the
key for trying to ease the fault detectability and isolability conditions on
shared variables, thanks to the use of consensus techniques between all the
involved LFDs.

A distinctive trait of the proposed scheme is that it featured an adaptive

97
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approximation strategy for dealing with the modeling uncertainties. In fact
it was assumed that the parts of the original system dynamics that, after
the decomposition, account for the interconnection between different sub-
systems, were uncertain. This assumption is particularly suited to situations
were the decomposition is physical [89], so that each subsystem corresponds
to an actual physical component whose connection to other subsystems can-
not be completely known a priori. The uncertain interconnection part of
each subsystem dynamics is learned on–line, before a fault is detected, by
using an adaptive approximator, such as a neural network.

The performance of the proposed scheme for both discrete and continuous–
time large–scale systems were investigated by deriving the Detectability
Theorems 4.4.1 and 5.4.1, and the Isolability Theorem 4.6.1, that respec-
tively pose the conditions for a fault being detected, and then being isolated
amongst a class of known faults defined a priori. Furthermore, the ab-
sence of false positive alarms due to modeling uncertainties is guaranteed
by the use of adaptive thresholds, and is proved for both discrete–time and
continuous–time systems.

6.1 Main original contributions

The main original contributions of the present work can be summarized in
the following points.

Development of a distributed architecture for quantitative model–
based FDI of nonlinear systems This is the most important contribu-
tion of this work, as to the best of the author knowledge this is the first
formulation of this kind. In fact, while many distributed schemes have been
devised for linear discrete–time or continuous time systems, and many qual-
itative schemes for nonlinear systems, no distributed quantitative scheme
has been previously proposed for nonlinear systems. The proposed scheme
does not pose any restriction on the form of the nonlinear model assumed
for the system, nor does require the subsystems to be connected in a par-
ticular way. Furthermore uncertainties are allowed in the model, and not
only special care is taken to make the detection and isolation procedures
robust to them, but also an adaptive approximator is provided for learning
them. And apart from the fault detection and isolation, fault identification
has been dealt with as well.

These features are the most important, as they make the proposed
scheme completely general, and applicable to engineering systems of ar-
bitrary size without scalability issues1.

1The only kind of system where the proposed architecture would not be conveniently
applicable, would be a large–scale and centralized system. That is, a system with a large
number of state variables whose dynamics depend upon all the system variables: for
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Use of consensus techniques for distributed FDI Another original
feature is the use of consensus in the distributed FDI of discrete–time or
continuous–time systems. While in discrete–event systems fault diagnosis,
especially in the Computer Science community, consensus techniques are
quite common, for other kinds of systems they are rather novel, and have
been previously used for instance in [144] for the distributed diagnosis of
linear discrete–time systems. In this work consensus is implemented in an
innovative way in order to tackle the distributed estimation of general non–
linear systems. The effects on the performance of the proposed scheme of
the use of consensus, furthermore, is analytically studied and the results are
included in the Detectability Theorems 4.4.1 and 5.4.1, and in the Isolability
Theorem 4.6.1.

6.1.1 Published results

The main contributions presented in this work have been already published
in the scientific literature, or are in the process of being submitted. In order
of relevance, the publications by the present author on this subject are

• Riccardo M.G Ferrari, Thomas Parisini, Marios M Polycarpou, “Dis-
tributed Fault Detection and Isolation: an Adaptive Approximation
Approach,” IEEE Transactions on Automatic Control, (to be submit-
ted).

• Riccardo M.G Ferrari, Thomas Parisini, Marios M Polycarpou, “Dis-
tributed Fault Diagnosis with Overlapping Decompositions: an Adap-
tive Approximation Approach,” IEEE Transactions on Automatic Con-
trol, vol. 54, no. 4, 2009.

• Riccardo M.G. Ferrari, Thomas Parisini, and Marios M. Polycarpou,
“A Robust Fault Detection and Isolation Scheme for a Class of Un-
certain Input-output Discrete-time Nonlinear Systems,” in Proc. of
American Control Conference 2008 (ACC ’08), Seattle, June 11-13,
2008.

• Riccardo M.G. Ferrari, Thomas Parisini, and Marios M. Polycarpou,
“A Fault Detection and Isolation Scheme for Nonlinear Uncertain
Discrete-Time Systems,” in Proc. of Conference on Decision and Con-
trol 2007 (CDC ’07), New Orleans, December 12-14, 2007.

• Riccardo M.G. Ferrari, Thomas Parisini, and Marios M. Polycarpou,
“Distributed fault diagnosis with overlapping decompositions and con-

instance it may be a system representing a large number of particles interacting with each
other through the gravitational attraction. Anyway, this is a limit case never encountered
in actual large–scale engineering systems, whose structure is never completely centralized.
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sensus filters,” in Proc. of American Control Conference 2007 (ACC
’07), New York, July 11-13, 2007.

• Riccardo M.G. Ferrari, Thomas Parisini, and Marios M. Polycarpou,
“A Fault Detection Scheme for Distributed Nonlinear Uncertain Sys-
tems,” in Proc. of Joint CCA, ISIC and CACSD Conference 2006,
Munich, October 4-11, 2006.

6.2 Future developments

The use of discrete–time models in Chapter 4 opens the door to a lot of pos-
sible extensions, in order to take into account many practical issues of actual
distributed systems, such as sensor networks and multi–vehicle formations.
As briefly discussed in Chapter 3, the proposed distributed FDI formulation
is already suited to deal with such systems, although it was always assumed
that no delays are present either in the model of the system being moni-
tored, or in the communication channels linking the local fault diagnosers.
But the very use of discrete–time models make the inclusion of delays much
easier than in the case of continuous–time ones, and indeed for distributed
control problems this has already be done successfully, for instance in [54].

Another aspect where the present formulation should be improved is
related to the adaptive approximation of interconnection uncertainties. In
fact, in the scheme developed so far the allowed domains for the parameters
to be learned were assumed to be origin–centered hyper-spheres, and this
can lead to high detection threshold because of the parametric uncertainty
added by the adaptive approximator itself. Furthermore, not only more
general domains should be considered, but some mechanism for stopping
the learning should be devised. Unfortunately no persistence of excitation
was assumed, so there is no guarantee that the learned parameters will tend
to the optimal one, making the approximation error tend to zero. For this
reason, a learning–stopping mechanism should be included so that the actual
decrease in uncertainty due to the learning up to the present time may be
evaluated, and a decision whether to stop the learning be taken. Then,
the residual amount of uncertainty may be estimated, thus leading to lower
detection and isolation thresholds.

An extension much needed is related to the use of input–output models,
so that the requirement of full state measurements may no longer be needed.
Similar extensions were already published for centralized continuous and
discrete–time systems [35, 38].

Finally a very interesting issue that should be addressed, is how to op-
timally solve the decomposition problem. In fact in this work we assumed
that a solution was already given, and we implicitly assumed that it was a
“good” solution, that is a solution that met the computation and commu-
nication constraints introduced in Chapter 3. Anyway, in a real–life design
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L1

S

Figure 6.1: An example where the large scale system S structure is repre-
sented by the black graph, and the sensing radius of the only node L1 of a
sensor network is represented by color shades.

of a DFDI system this assumption should not be taken for granted, and
almost surely the designer would face the task of decomposing an existing
large–scale system for diagnosis purposes. The problem of optimal decom-
position was already extensively treated in the literature, for instance in
parallel computation problems when simulating large–scale PDEs systems
[123, 124, 125, 126]. Anyway, the decomposition problem can be made more
interesting by adding some features typical of sensor networks, a kind of
infrastructure where DFDI applications are particularly appealing. In fact,
a characteristic feature of the nodes of a sensor network, is that the sensing
radius of each node is limited. For instance, in Fig. 6.1 it can be seen that a
sensor network made by a single node will never be able to cover the large–
scale system S , whose structural graph is drawn so that the position of
each node corresponds to the physical position of the variable it represents.
For this reason, probably a sensor network with at least three nodes should
be employed, as shown in Fig. 6.2. The sensing radius boundedness may
be represented by a measuring uncertainty that depends on the distance
between the measuring node, and the physical location of the variable mea-
sured, in some realistic way. Such an interpretation may be valuable when
the large–scale system to be monitored for faults is constituted by a large
area, such as a marine environment where a fault may consists in an increas-
ing pollutants concentration, or a wood area that may be subject to fires,
or a mountainous region where avalanches are probable. In all these exam-
ples, a sensor network made by remote–sensing units with communication
capabilities may be an ideal solution.
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L1

L2

L3

S

Figure 6.2: The same example of fig. 6.1, but now the sensor network is
constituted by three nodes that guarantee a complete cover on S .
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