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Distributed Fault Detection and Isolation Resilient

to Network Model Uncertainties
André Teixeira, Iman Shames, Henrik Sandberg, Karl H. Johansson

Abstract—The ability to maintain state awareness in the face
of unexpected and unmodeled errors and threats is a defining
feature of a resilient control system. Therefore, in this paper we
study the problem of distributed fault detection and isolation
(FDI) in large networked systems with uncertain system models.
The linear networked system is composed of interconnected
subsystems and may be represented as a graph. The subsystems
are represented by nodes, while the edges correspond to the
interconnections between subsystems. Considering faults that
may occur on the interconnections and subsystems, as our
first contribution we propose a distributed scheme to jointly
detect and isolate faults occurring in nodes and edges of the
system. As our second contribution, we analyze the behavior of
the proposed scheme under model uncertainties caused by the
addition or removal of edges. Additionally, we propose a novel
distributed FDI scheme based on local models and measurements
that is resilient to changes outside of the local subsystem and
achieves both fault detection and isolation. Our third contribution
addresses the complexity reduction of the distributed FDI method
by characterizing the minimum amount of model information
and measurements needed to achieve FDI and by reducing the
number of monitoring nodes. The proposed methods can be fused
to design a scalable and resilient distributed FDI architecture that
achieves local FDI despite unknown changes outside the local
subsystem. The proposed approach is illustrated by numerical
experiments on the IEEE 118-bus power network benchmark.

I. INTRODUCTION

Critical infrastructures such as power grids, water distri-

bution networks, and transport systems are examples of net-

worked systems that consist of large-scale physical processes

monitored and controlled over a heterogeneous set of commu-

nication networks and computers. Although the use of such

powerful software systems typically adds efficiency, flexibility,

and scalability, it also increases the vulnerability to mistakes

from human operators, failures in equipment, and cyber attacks

against the IT infrastructure [1]–[3]. Several major incidents

have been reported in the past few years. For example, the

extent of the US Eastern blackout in 2003 has been blamed

on malfunctioning monitoring systems [4]. Other examples

include cyber security breaches recently announced [5], [6].

For these reasons the area of resilient control systems has

emerged [3]. A major feature of a resilient control system is an

ability to maintain state awareness and acceptable performance
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under unexpected faults and malicious attacks. It is in the light

of these developments that this paper introduces new methods

to localize faulty and misbehaving components in large-scale

control systems.

A holistic approach to security and resilience of networked

control systems is important because of the complex coupling

between the physical process and the distributed software

system. Unfortunately a theory for such system security is

lacking. Increasing the cyber security by adding encryption

and authentication schemes helps to prevent some attacks by

making them harder to succeed but it would be a mistake to

rely solely on such methods, as it is well-known that the over-

all system is not secured because some of its components are.

One way to enhance resiliency of networked control systems

is to design control algorithms that are robust to the effects

of certain categories of faults and attacks [7]–[10]. Another

way is to develop monitoring schemes to detect anomalies

in the system caused by attacks and faults [11]. The latter

approach in general allows faster and more effective responses

to anomalies as opposed to the former, since properties of

the fault such as location and fault signal can be obtained.

Moreover, monitoring schemes can also improve the state-

awareness of the system [12].

This paper focuses on the design of resilient systems using

fault detection and isolation (FDI) for distributed monitoring of

a network of interconnected systems. In large-scale networked

systems, even benign disturbances such as model changes or

unmeasured signals may hinder the detection of faults. Addi-

tionally, a global model of the system may not be available,

or the large size of the system may lead to computationally

intractable monitoring schemes. Hence in order to meet the

demands of resilient control system components, monitoring

schemes need to be architectured and designed to provide

scalable solutions suitable for large-scale highly uncertain

networked systems. Therefore our proposed distributed FDI

scheme is resilient to model changes and external faults, not

requiring the exact global model of the network to be known

to the nodes.

A. Related work

There are various ways to detect and isolate a fault in

a dynamical system [13]–[16]. A recent survey of different

techniques can be found in [17]. One approach is to use the

system model to design a set of parity equations. In the case

of dynamical systems, such parity equations can be obtained

by exploiting the temporal correlation among state, input, and

output variables for a given time-horizon. This approach was
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Fig. 1. The networked system with faults, where nodes correspond to
dynamical subsystems and undirected edges represent coupled dynamics
between nodes. In distributed FDI schemes, node i aims at detecting and
isolating faults on the solid white nodes and edges incident to them. Scenario
(a) depicts the case where node i has access to measurements from its
neighbors, represented by directed edges, and knows the entire network model.
In scenario (b), node i only knows a local model of the network, where the
dashed nodes and edges are unknown to node i. Moreover, node i receives
measurements from the solid white and gray nodes.

used in [18] to design a centralized FDI scheme insensitive

to certain model changes and disturbances. Our approach is

similar, but relies on an observer-based approach and results

in a distributed FDI scheme.

Observer-based FDI approaches have been well studied

and some of these methods have been proposed for power

systems [19], [20]. However, distributed FDI for systems

comprised of a network of autonomous nodes is still in its

infancy. Recently a distributed FDI scheme for a network of

interconnected first-order systems was proposed [21]. The au-

thors analyzed limitations on fault detectability and isolability

in a system theoretic perspective. A similar distributed FDI

scheme for interconnected second-order systems was proposed

in [22]. In both contributions, the exact model of the system is

assumed to be known. Distributed FDI schemes using uncer-

tain models were proposed in [23]. However, these schemes

require bounded interconnections between the subsystems and

knowledge of these bounds. A similar approach was followed

by [24] and applied to nonlinear power system models, but

in addition to bounded model uncertainty they required also

communication between neighboring FDI filters.

B. Contributions

This paper tackles the problem of distributed FDI for large-

scale interconnected systems with respect to different fault

models. The networked system with different fault types are

illustrated in Fig. 1. The networked system is composed of

interconnected individual subsystems, represented by nodes.

Each node has access to local measurements from nodes in

its vicinity, represented by directed edges. As an example,

the measurements available to node i are depicted in Fig. 1.

The interconnections between subsystems are represented by

undirected edges between nodes and model either physical

couplings, as in the case of power networks, or distributed

control laws computed based on the local measurements,

which are present, for instance, in mobile multi-agent systems.

Faults may affect the network through the nodes, undirected

edges, and directed edges. Given the system model and local

measurements, distributed FDI aims at having each node of

the network detecting and isolating faults in its vicinity, as

illustrated in Fig. 1.

First we tackle the problem of distributed FDI with respect

to faulty nodes and faulty edges. The proposed schemes extend

the work in [22], which addressed the distributed FDI problem

for faulty nodes. In particular, we consider schemes based

on Unknown Input Observers (UIO) and, given the local

measurements and system model as depicted in Fig. 1(a), we

derive results on the existence of UIOs at each node for the

different fault models.

As our second contribution, we consider the case where

the UIOs are designed based on uncertain network models.

More precisely, the model uncertainty is caused by the removal

of edges or nodes with respect to the nominal model. The

proposed distributed FDI scheme is shown to be somewhat

resilient to network changes that are external to a node’s

local subsystem, i.e. that occur on the dashed nodes or edges

in Fig. 1(b). Additionally, we propose a novel distributed

FDI scheme based on local models and an augmented set

of measurements from the local subsystem, as illustrated in

Fig. 1(b). As opposed to approaches similar to [23], [24],

bounding the subsystems’ interactions is not required. Instead,

by using the additional measurements, the local FDI filter

can be decoupled from faults and model changes in the

external subsystems and it can detect and isolate faults in the

neighboring nodes.

Our third contribution is to address the complexity reduction

of the distributed FDI scheme. More precisely, leveraging on

our second contribution, we outline the minimum amount of

model information and measurements that are sufficient for a

node to achieve FDI using only its local measurements and

models. In particular, our results show that using the local

model from a node’s 2-hop neighborhood and the correspond-

ing measurements may not be optimal. The proposed scheme

has reduced computational complexity and required model

knowledge compared to the schemes such as [10], [21], [22],

which use the global system’s model. Moreover, we propose

a method to reduce the number of monitoring nodes while

ensuring that all nodes are being monitored. Importantly, we

do not assume that the monitoring nodes exchange information

with each other.

C. Outline

The outline of the paper is as follows. In Section II we

describe the system and fault models and define the problem of

distributed FDI. The distributed FDI scheme for faulty nodes

and edges is detailed in Section III. In Section IV we show

how to distributedly detect faults when the network model

is uncertain using two different methods. The first method

adapts the detection thresholds of the original distributed FDI,

while the second consists of a novel distributed FDI method

based on local models that not only requires less computation

than the one presented in Section III, but also is capable of

handling uncertain network models. In Section V we propose

methods to reduce the computational burden of the methods
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described in Sections III. Some numerical examples are given

in Section VI. Concluding remarks are presented in the last

section.

II. NETWORKED CONTROL SYSTEM

Consider a network of N interconnected dynamical systems

and let G(V , E) be the underlying graph of this network, where

V = {i}Ni=1 is the vertex set and E ⊆ V × V is the edge set

of the graph. Denote A ∈ RN×N as the weighted adjacency

matrix with nonnegative entries. The undirected edge {i, j}
is incident to vertices i and j if nodes i and j share a

communication link, in which case the corresponding entry

in the adjacency matrix [A]ij is positive. The degree of node

i is deg (i) = A1N =
∑

j∈Ni
[A]ij , where the entries of

1N ∈ RN are equal to 1, Ni = {j ∈ V : {i, j} ∈ E} is the

neighborhood set of i with Ni , |Ni|, and the degree matrix

of G is ∆ , diag(deg(1), . . . , deg(N)). The Laplacian of G
is defined as L(G) = ∆−A. Consider a subset of the vertex

set Ṽ ⊆ V and a subset of the edge set Ẽ ⊆ E . The subgraph

of G induced by Ṽ and Ẽ is denoted as G̃(Ṽ , Ẽ). Moreover,

assume that the state of each node is given by xi(t) ∈ R2.

We call the set N ℓ
i ⊂ V the ℓ-hop neighbor set of node i

where v ∈ N ℓ
i if there is a path of length at most ℓ between

i and v. Defining Vℓ
i = {i} ∪ N ℓ

i , we call the subgraph

Gℓ
i

(
Vℓ
i , E

ℓ
i

)
⊆ G(V , E) the ℓ-hop neighborhood graph of node

i where {v, u} ∈ Eℓ
i if {v, u} ∈ E and u, v ∈ N ℓ

i . For the

case where ℓ = 1, we drop the superscript for the ease of

notation. We call the graph Pi(VPi
, EPi

) ⊆ G(V , E), where

VPi
= {i}∪Ni ∪N i, and EPi

= Ei ∪E i, the proximity graph

of node i where {v, u} ∈ Ei if {v, u} ∈ E and u, v ∈ Ni.

Moreover, N i is the set of all the nodes in the network that

are not in Ni but share a link with at least one of the nodes

in Ni, and E i is the set of all edges incident to at least one of

the nodes in Ni that are not in Ei. Examples for the notation

above are given in Fig. 2.

In this paper we consider linear time-invariant networked

systems described by

ẋ(t) = Ax(t) +Bv(t) + Ef(t),

yi(t) = Cix(t) +Dif(t), ∀ i ∈ V ,
(1)

where x(t) ∈ Rn is the global state vector containing all the

agents’ states, v(t) ∈ RN is a known input vector, yi(t) ∈ Rmi

is the set of measurements available at node i, and f(t) ∈ R
p

is an unknown vector of faults affecting the system. We are

interested in the problem of distributed fault detection and

isolation, as described below.

Definition 1 (Distributed fault detection and isolation). Con-

sider the system (1) and suppose each node i has a model of

the system and a local set of measurements yi(t) to design

a FDI scheme. A fault f(t) 6≡ 0 is said to be detected if at

least one node i ∈ V decides that there exists an active fault

in the network. Furthermore, a fault is said to be isolated if

there exists a set of nodes that detect the fault and identify the

faulty components, i.e. identify the non-zero elements of f(t).

The main aim of this work is to leverage the structural prop-

erties of the networked system (1) to characterize under what

1

2 5

3

4

6

7

8

9

10

11

12

(a)

1

2 5

3

4

6

7

8

9

10

11

12

(b)

1

2 5

3

4

6

7

8

9

10

11

12

(c)

1

2 5

3

4

6

7

8

9

10

11

12

(d)

Fig. 2. (a) A network with 12 nodes. (b) The set of one-hop neighbors of
node 1, N1, are nodes {2, 3, 4} and are coloured darker. (c) The one-hop
neighborhood graph of node 1, G1, is the set of dark nodes connected by
solid lines. (d) The graph represented by dark nodes that are connected to
each other by solid lines is the proximity graph of node 1, i.e., P1.

conditions the problem of distributed fault detection and iso-

lation can be solved. In particular, we focus on the networked

second-order systems, while similar results for networked first-

order systems can be obtained, see for instance [21], [25]. For

this case the state of each node, xi(t) = [ξi(t) ζi(t)]
⊤, ξi(t),

and ζi(t) ∈ R, is governed by

ξ̇i(t) = ζi(t) (2a)

ζ̇i(t) = ui(t) + vi(t) + fi(t), (2b)

where ξi(t) and ζi(t) are the scalar states, vi(t) is the i-th entry

of the external reference input v(t), ui(t) is a scalar distributed

control input capturing the interactions between neighboring

nodes, and fi(t) is an unknown fault affecting node i. Addi-

tionally, each agent i has access to its own states and receives

measurements of its neighbors’ states, possibly corrupted.

Denoting x(t) = [ξ1(t) . . . ξN (t) ζ1(t) . . . ζN (t)]⊤ as the

global system state, the measurement vector with corrupted

measurements is described as

yi(t) = Cix(t) + Ci

∑

j∈Ni

(

ljf
ξ
ij(t) + lN+jf

ζ
ij(t)

)

, (3)

where jk ∈ Ni for all k = 1, . . . , Ni, li ∈ R2N is the i-th
column of I2N , and Ci = [C̄⊤

i C̄⊤
i ]⊤, with C̄i ∈ R|V1

i
|×N

being a full row rank matrix where each of the rows have

all zero entries except for one entry at the j-th position that

corresponds to those nodes that are in V1
i = {i} ∪ Ni. The
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variables f ξ
ij(t) and f ζ

ij(t) for j ∈ Ni denote measurement

corruptions on ξj and ζj , respectively.

The distributed control input ui(t) is given by the linear

control law on yi(t):

ui(t) =
∑

j∈Ni

(wij + fw
ij (t))

[

(ξj(t) + f ξ
ij(t)− ξi(t))

+ µ(ζj(t) + f ζ
ij(t)− ζi(t))

]

− κiζi(t),

(4)

where wij = wji ∈ R>0 are the edge weights, κi, µ ∈ R≥0

for i, j = 1, . . . , N , and fw
ij (t) = fw

ji(t) is an unknown fault

affecting the weight of the edge {i, j}.

The overall dynamics of the networked system under the

control law (4) are described by (1) with

A =

[
0N IN
−L −µL −K

]

, B =

[
0N
IN

]

. (5)

The matrix L is the weighted Laplacian matrix associated with

the network where wij is the weight of edge {i, j}, and K =
diag(κ1, . . . , κN ).

Given the global system model (1), the node dynamics (2),

the local measurements (3), and the distributed control law (4),

we define faulty nodes and faulty edges as follows.

Definition 2. A node i ∈ V is faulty if fi(t) 6≡ 0. The system

affected by the fault f(t) = fi(t) is modeled by (1) with E =
bi and Di = 0, where bi is the i-th column of B.

Definition 3. An edge {i, j} ∈ E is faulty if any of the

signals fw
ij (t), f

w
ji(t), f

ξ
ij(t), f

ξ
ji(t), f

ζ
ij(t), and f ζ

ji(t) are not

identically zero. Moreover, we classify edge faults as either

sensing faults or parameter faults.

1) A fault on edge {i, j} is a sensing fault from j to i if any

of the signals f ξ
ij(t) and f ζ

ij(t) are not identically zero

and fw
ij (t) ≡ 0. The system affected by the fault f(t) =

[f ξ
ij(t) f

ζ
ij(t)]

⊤ is modeled by (1) with E = bi[wij µwij ]
and Di = Ci[lj bj ], where lj is the j-th column of I2N .

2) A fault on edge {i, j} is a parameter fault if the signals

f ξ
ij(t), f

ζ
ij(t), f

ξ
ji(t), and f ζ

ji(t) are identically zero

and fw
ij (t) = fw

ji(t) 6≡ 0 . The system affected by the

fault f(t) = δij(t)f
w
ij (t) with δij(t) = ξj(t) − ξi(t) +

µ(ζj(t)− ζi(t)) is modeled by (1) with E = bi− bj and

Di = 0.

The control law described by (4) with f(t) ≡ 0 is a

generalized form of the two following well-known control

laws:

u1i (t) = −κiζi(t) +
∑

j∈Ni

wij(ξj(t)− ξi(t)), (6)

u2i (t) =
∑

j∈Ni

wij [(ξj(t)− ξi(t)) + µ(ζj(t)− ζi(t))] .(7)

Analysis of these control laws and design rules for κi, wij ,

and µ may be found in [26], [27].

Remark 1. Under both these control laws with f(t) ≡ 0,

for all i, j ∈ V we have |ξi − ξj | → 0 and |ζi − ζj | →
0 exponentially fast [26], [27]. Furthermore, we denote the

consensus equilibria as x̄ = [ξ̄ ζ̄]⊤⊗1N with ξ̄ = lim
t→+∞

ξi(t)

and ζ̄ = lim
t→+∞

ζi(t), where ⊗ denotes the Kronecker product.

The introduced networked system can represent many prac-

tical systems, which may lead to different edge fault models.

In this paper we consider two application examples, namely

mobile multi-agent systems and electric power networks. For

a mobile multi-agent system [26], each node i represents a

vehicle where the variables ξi and ζi can be interpreted as

the corresponding position and velocity, respectively, while

the edges map to communication or sensing links between the

vehicles. For this system, each node implements the control

law by obtaining state measurements from the neighbors,

where faults in the measurements appear as sensing faults on

edges, as discussed in Definition 3.1.

In the context of synchronous power systems [28], each

node i is a generator or motor with ξi and ζi being the

corresponding phase and frequency, respectively, and the edges

represent physical transmission lines between electrical de-

vices. In this case the control law corresponds to the model of

the physical coupling between the nodes, thus being part of the

physical system itself. Moreover, faults on the edges represent

are actually faults on the transmission lines. In this paper, we

consider that such faults correspond to changes in the trans-

mission line parameters, namely the edge weights wij = wji

are affected by a fault and become wij+f
w
ij (t) = wji+f

w
ji(t),

corresponding to parameter faults as per Definition 3.2.

III. DISTRIBUTED FAULT DETECTION AND ISOLATION

In this section we address the problem of distributed fault

detection and isolation of faulty nodes and faulty edges. First

we revisit some of the results on distributed FDI for faulty

nodes derived in [22], which is later extended to the case of

faulty edges.

A. Distributed FDI for Faulty Nodes

Recall the problem of distributed FDI as per Definition 1,

where each node i monitors its neighborhood to detect and iso-

late faulty components. In the present subsection, we address

the previous problem in the case of faulty nodes.

Given the control input (4) and local measurements from

its neighbors (3), node i cannot compute each neighbor’s

input. Therefore, FDI based solely on individual models (2) is

infeasible, as the neighbors trajectories cannot be estimated.

However, the control inputs and corresponding trajectories can

be estimated by using the global model of the networked

system (1), as described next.

For each node i = 1, . . . , N , consider a model of the form:

ẋ(t) = Ax(t) +Bv(t) +
∑

k∈Ni

Ekfk(t),

yi(t) = Cix(t) +
∑

k∈Ni

Di,kfk(t),
(8)

where, recalling Definition 2, a faulty node k is modeled by

Ek = bk and Di,k = 0. For the ease of notation, in this paper

we assume that there is at most one faulty node1.

1This assumption is not essential and can be relaxed. In particular,
one may take any combination of simultaneous faults and consider it as
a higher-dimensional fault signal. For instance, a simultaneous fault on
nodes j and k could be modeled using (8) by replacing Ekfk(t) with
[Ek Ej ][fk(t) fj(t)]

⊤ .
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To achieve distributed FDI, we consider a scheme where

each node i ∈ V constructs a bank of Ni observers. In

particular, for each k ∈ Ni, an observer decoupled from

Ek and Di,k is implemented, as described next. Given the

model (8), let x̂ik(t) denote the state estimate decoupled from a

faulty node k and calculated by node i using the state observer

żik(t) = F i
kz

i
k(t) + T i

kBv(t) +Ki
kyi(t)

x̂ik(t) = zik(t) +Hi
kyi(t),

(9)

where zik(t) ∈ R2N is the observer’s state. An unknown input

observer (UIO) decoupled from a faulty node k is defined as

follows [16].

Definition 4. Consider the dynamical system (8) and the

observer (9). The observer is a UIO decoupled from a faulty

node k if limt→+∞ ‖x(t)− x̂ik(t)‖ = 0 for any fault fk(t).

For the observer (9) to be a UIO, the observer matrices

should be designed to achieve decoupling from the faulty node

k and should ensure the stability of the observer. By choosing

the matrices F i
k, T

i
k,K

i
k, H

i
k to satisfy the conditions

F i
k = (A−Hi

kCiA−K ′i
kC), T i

k = (I −Hi
kCi)

Ki
k = K ′i

k +K ′′i
k , K ′′i

k = F i
kH

i
k, (Hi

kCi − I)Ek = 0,
(10)

where F i
k is Hurwitz and recalling the model (8), we have the

estimation error dynamics

ėik(t) = F i
ke

i
k(t)− T i

k

∑

m∈Ni\{k}

Emfm(t) (11)

with eik(t) = x(t) − x̂ik(t). Clearly, the error dynamics (11)

do not depend on fk(t) and are stable, thus complying with

Definition 4. In general, the UIO existence condition are as

follows [14].

Proposition 1. For the system (8), there exists a UIO decou-

pled from a faulty node k in the sense of Definition 4 if and

only if the following conditions hold

rank(CiEk) = rank(Ek)

rank

[
sI −A Ek

Ci 0

]

= n+ rank(Ek),
(12)

for all s ∈ C with non-negative real parts.

Remark 2. The UIO existence conditions (12) correspond to

the necessary and sufficient conditions for asymptotic estima-

tion of the unknown input fk(t). Consider the fault signal

estimate f̂ i
k(t) = V (ẏi(t) − CAx̂ik(t)) with V = (CiEk)

†

as the pseudo-inverse of CiEk. From [16, Theorem 14.4],

when y(t) and ẏ(t) are available, the necessary and sufficient

conditions for limt→+∞ |fk(t) − f̂ i
k(t)| = 0 are the same as

the UIO existence conditions in Proposition 1.

The UIO error dynamics (11) are driven by the j-th fault,

for some j 6= k, if T i
kEj 6= 0. In fact, having T i

kEj 6= 0 for

all j ∈ Ni\{k}, for all k ∈ Ni, plays an important role in the

detection and isolation logic later described. This condition can

be incorporated in the UIO design, as stated by the following

results.

Proposition 2. Given the system (8), suppose the UIO exis-

tence conditions (12) hold for a given k ∈ Ni. There exists a

UIO decoupled from a faulty node k with T i
kEj 6= 0 for all

j ∈ Ni\{k} if rank(Ci[Ek Ej ]) = rank([Ek Ej ]) > rank(Ek),
for all j ∈ Ni\{k}.

Proof. The desired UIO must satisfy (10) and T i
kEj 6= 0

for all j ∈ Ni\{k}. Recalling that T i
k = (I − Hi

kCi), we

then have that T i
kEk = 0 and T i

kEj 6= 0 must hold. The

rank condition in the proposition’s statement ensures that

Hi
k = Ek

(
(CiEk)

⊤CiEk

)−1
(CiEk)

⊤ satisfies T i
kEk = 0

and T i
kEj 6= 0 for all j ∈ Ni\{k}, since Ek and Ej are

orthogonal. The rest of the proof follows directly from the

UIO design method detailed in [14], which constructs a UIO

satisfying (10) with Hi
k as chosen above.

Given the conditions in Proposition 1, we observe that the

rank condition in Proposition 2 holds when there exist UIOs

for all k ∈ Ni and every pair of fault directions Ek and Ej

with j 6= k is linearly independent. Since the latter holds for

both node and edge faults, in the remainder of the paper we

focus only on the UIO existence conditions from Proposition 1.

In particular, we derive results of existence and nonexistence

of UIOs for the interconnected system (1) under different fault

models by using the conditions of Proposition 1.

For the moment, suppose that there exists a bank of UIOs

at node i, where each UIO is decoupled from a faulty node

k ∈ Ni. The bank of UIOs computes a set of state estimates

x̂ij(t) for j ∈ Ni given the model of the system (8), which

is assumed to be accurate. Intuitively, recalling that noise is

neglected, a mismatch between the estimated and actual state

trajectory of the system would indicate the presence of faults

in the system. In fact, node i can detect faults by analyzing

the difference between the estimated outputs ŷij(t) = Cix̂
i
j(t)

for all j ∈ Ni and the actual measurements yi(t), which are

denoted as residual signals.

Definition 5. The signal rij(t) , yi(t) − Cix̂
i
j(t) = Cie

i
j(t)

is a residual if ‖rij(t)‖ = 0 is equivalent to ‖fk(t)‖ = 0 for

all k 6= j ∈ Ni.

Note that the residual dynamics of rik(t) are driven by the

j-th fault if T i
kEj 6= 0, which can be ensured for j ∈ Ni\{k}

through Proposition 2. Therefore, according to Definition 5,

having ‖rik(t)‖ > 0 indicates that there exists a fault in the

network other than fk(t). Additionally, since rij(t) is computed

by a UIO decoupled from fj(t), if the only active fault is fj(t)
we have ‖rij(t)‖ = 0 and ‖rik(t)‖ > 0 for all k 6= j. Motivated

by this reasoning, we consider the following detection and

isolation logic for fault fj(t) monitored by node i:
∥
∥rij(t)

∥
∥ < Θi

j
∥
∥rik(t)

∥
∥ ≥ Θi

k , ∀k 6= j,
(13)

where Θi
j > 0 are isolation thresholds. These thresholds

should be chosen according to trade-offs between sensitiv-

ity to faults, robustness to unmodeled dynamics and noise,

misdetection rate, and false alarm rate, among others. Since

choosing these thresholds is not within the scope of this paper,

the reader is referred to [16] for further discussions.
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Using Algorithm 1 a faulty node j can be detected and

isolated by all the nodes in Nj . However, all the other nodes

in the network i 6∈ Nj can only detect the existence of a faulty

node in the network, which occurs when
∥
∥rik(t)

∥
∥ ≥ Θi

k ∀k ∈
Ni, while the identity of the faulty node is unknown to them.

For the ease of notation we drop the superscript i from the

variable names for the rest of this paper.

Algorithm 1 Distributed FDI of Faulty Nodes at Node i

for k ∈ Ni do

Generate rik(t).
end for

if ∃j :
∥
∥rij(t)

∥
∥ < Θi

j ∧
∥
∥rik(t)

∥
∥ ≥ Θi

k ∀k ∈ Ni 6= j then

Node j is faulty.

else if
∥
∥rik(t)

∥
∥ ≥ Θi

k ∀k ∈ Ni then

There exists a faulty node ℓ ∈ V \ Ni.

else if
∥
∥rik(t)

∥
∥ < Θi

k ∀k ∈ Ni then

There is no faulty node in the network.

end if

To solve the distributed FDI problem for faulty nodes using

Algorithm 1, there needs to exist a bank of UIOs for each node

i ∈ V satisfying the isolability condition in Proposition 2. For

the case of faulty nodes, the problem of distributed FDI using

UIOs can be stated as follows.

Problem 1. Consider the networked system (1) and faulty

nodes as in Definition 2. The answer to the following question

is sought:

1) Consider the node j to be faulty, and let node i be a

neighbor of j. Does there exist a UIO for node i that is

decoupled from the faulty node j?

The answer to Problem 1 has been provided in [22], where

the authors prove the existence of matrices F i
k, T

i
k,K

i
k, H

i
k

satisfying (10) for the system (8) with node faults and local

measurements (3) for all i ∈ V . In particular, the existence

conditions of Proposition 1 reduce to having the graph G
connected and k ∈ Ni. Therefore we have the following

assumption:

Assumption 1. The network graph G is connected.

B. Distributed FDI for Faulty Edges

In this section we extend the distributed FDI scheme to

the case of faulty edges as in Definition 3. Similarly to the

detection and isolation scheme outlined for node faults in Sec-

tion III-A, faults on edges may also be detected and isolated

using banks of UIOs. This section analyzes the existence of

suitable UIOs that may be used to detects faulty edges. In

particular, the following problem is addressed in this section.

Problem 2. Consider the networked system (1) and faulty

edges as in Definition 3. The answers to the following two

questions are sought:

1) Consider the edge between nodes j and k to be faulty,

and let node i be a neighbor of both j and k. Does there

exist a UIO for node i that is decoupled from the faulty

edge {j, k}?

2) Does there exist a UIO for node i that is decoupled from

a faulty edge incident to node i?

First we consider the problem of distributed detection and

isolation of those faults that appear as corruptions in the

communication or sensing links between pairs of neighbors

characterized by Definition 3.1. Later the detection and iso-

lation of edge parameter faults described in Definition 3.2 is

tackled.

To address the problem of distributed detection and isolation

of faulty edges, in addition to the bank of observers monitoring

the fault in the neighbor nodes of a given node i to detect

misbehaving nodes, we construct a bank of observers for those

pairs of nodes neighboring to i that share the same edge.

Hence at each node i, in addition to the observers for system

models described by (8), observers for the following systems

are constructed for all {j, k} ∈ Ei:

ẋ(t) = Ax(t) + Bv(t) + Ejkfjk(t) + Ekjfkj(t)

yi(t) = Cix(t) +Di,jkfjk(t) +Di,kjfkj(t)
(14)

where fjk(t) = [f ξ
jk(t) f ζ

jk(t)]
⊤, Ejk = bj[wjk µwjk],

Di,ij = Ci[lj bj ], and Di,jk = 0 for j 6= i. Similarly as

before, let x̂jk(t) denote the estimate of the states for this

system model and define the UIO decoupled from a faulty

edge {j, k} and the respective residual signal as follows.

Definition 6. Consider the dynamical system (14) and the

observer (9). The observer is a UIO decoupled from a faulty

edge {j, k} if limt→+∞ ‖x(t) − x̂ijk(t)‖ = 0 for any fault

signals fjk(t) and fkj(t).

Definition 7. The signal rjk(t) , yi(t)−Cix̂jk(t) is a resid-

ual if ‖rjk(t)‖ = 0 is equivalent to ‖fj̄k̄(t)‖ = ‖fk̄j̄(t)‖ = 0
for all {j̄, k̄} 6= {j, k} ∈ Ei.

As seen in (14), the corrupted data sent along the faulty

edge affects the dynamics of the node at the receiving end.

In fact, comparing with the formulation in [21], [22], [25],

such false data appears in the dynamics as two concurrent

faulty nodes. However, note that the measurements yi(t) may

also be affected by the edge fault. The following proposition

establishes the existence of such observers for the system

described above and addresses the first question posed in

Problem 2.

Theorem 1. Consider the networked system (14) with a

sensing fault at the edge {j, k} and j, k 6= i. In the sense

of Definition 6, there exists a UIO decoupled from the faulty

edge {j, k} for node i if the graph G is connected and node

i is a neighbor of both j and k.

Proof. For node i ∈ Nj ∩ Nk, the system dynamics and

measurement equations are given by (14) with Ejk =
bj[wjk µwjk] and Di,jk = 0. Observing that the measurements

at node i are not corrupted and defining fe
jk(t) = wjkf

ξ
jk(t)+

µwjkf
ζ
jk(t), the model can be rewritten as two simultaneous
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node faults:

ẋ(t) = Ax(t) + E{j,k}[f
e
jk(t) f

e
kj(t)]

⊤

yi(t) = Cix(t),

with E{j,k} = [bj bk]. Next we show that the UIO existence

conditions in Proposition 1 are satisfied. It follows that the

first rank condition in Proposition 1 holds because

rank(CiE{j,k}) = rank(E⊤
{j,k}E{j,k}) = rank(E{j,k}),

where rank(CiE{j,k}) = rank(E⊤
{j,k}E{j,k}) follows from the

fact node i measures the states of nodes j and k that are

affected by the fault.

As for the second rank condition in (12), it is the same as

the case where two concurrent faults occur in the system, so

the proof is similar to that of Theorem 1 in [22]. Consider the

1-hop neighborhood graph of node i, Gi, with Vi = {i} ∪ Ni

and Vi = |Vi|. Denote G̃i as the subgraph induced by the vertex

set Ṽi = V\Vi, with Ṽi = |Ṽi|. Without loss of generality, the

nodes may be rearranged so that the Laplacian of G and E{j,k}

can be written as

L =

[
Li ℓi
ℓ⊤i L̃i

]

, E{j,k} =





0N×2

ljk
0Ṽi×2





where ℓi ∈ RVi×Ṽi and the columns of ljk ∈ RVi×2 are the

columns of IVi
corresponding to nodes j and k. The second

rank condition in (12) becomes

rank











sIVi
0Vi×Ṽi

−IVi
0Vi×Ṽi

0Vi×2

0Ṽi×Vi
sIṼi

0Ṽi×Vi
−IṼi

0Ṽi×2

Li ℓi α1(s) µℓi ljk
ℓ⊤i L̃i µℓ⊤i α2(s) 0Ṽi×2

IVi
0Vi×Ṽi

0Vi×Vi
0Vi×Ṽi

0Vi×2

0Vi×Vi
0Vi×Ṽi

IVi
0Vi×Ṽi

0Vi×2











︸ ︷︷ ︸

P

= 2N+2,

where α1(s) = sIVi
+µLi+K̄i and α2(s) = sIṼi

+µL̃i+K̃i.

Observing that the first and third column blocks are linearly

independent of the rest and applying some row and column

operations we have

rank(P ) = rank





− 1

µ
IṼi

−(1 + µs)IṼi
0Ṽi×2

ℓi 0Vi×Ṽi
ljk

0Ṽi×Ṽi
−α(s) 0Ṽi×2



+ 2Vi,

with α(s) = µs2IṼi
+µs(L̃i+ K̃i)+ L̃i. It follows from [29]

that L̃i is positive definite if G is connected. Since µ > 0 and

K̃i are positive definite, we conclude that α(s) is invertible

for s ∈ C with non-negative real part. Therefore the first and

second column blocks are independent of each other and the

third column block, which concludes the proof.

Moreover we have the following result stating that, for any

node i, an observer decoupled from a faulty edge incident to i
cannot be constructed. It addresses the second question posed

in Problem 2.

Proposition 3. Consider the networked system (14) with a

sensing fault at the edge {i, j}. In the sense of Definition 6,

there does not exist a UIO decoupled from the faulty edge

{i, j} for node i.

Proof. Consider a faulty edge {i, j} incident to node i with

a sensing fault. Recalling (14), the system dynamics and

measurement equations can be rewritten as

ẋ(t) = Ax(t) +Bv(t) + E{i,j}f{i,j}(t)

yi(t) = Cix(t) +Di,{i,j}f{i,j}(t)

where f{i,j}(t) = [f⊤
ij (t) f

⊤
ji (t)]

⊤, E{i,j} = [Eij Eji] and

Di,{i,j} = [Di,ij 0]. From [16] we recall that the following

rank condition should hold for the existence of UIOs:

rank

[
Di,{i,j} CiE{i,j}

0 Di,{i,j}

]

= rank(Di,{i,j})+ rank

[
E{i,j}

Di,{i,j}

]

,

where the second term equals 5. Given CiE{i,j} and Di,{i,j},

the first term of the latter rank condition can be written as

rank

[
Cilj Cibj Cibiwij Cibiµwij

0 0 Cilj Cibj

]

≤ 4,

since each column-block is a column vector. Since the rank

condition is not fulfilled, there does not exist a UIO for this

system.

Although in the case of bidirectional sensing faults in edges

there is no UIO for the nodes to which the faulty edge is

incident to, the following result shows that this is not the case

for unidirectional faults, i.e., for the case where either fij(t)
or fji(t) is identically zero. We formalize this case in what

follows.

Proposition 4. Consider the networked system (14) with a

sensing fault at the edge {i, j}. In the sense of Definition 6,

if the graph G is connected, for node i there exist a UIO

decoupled from

1) The sensing fault from node j to node i, fij(t), when

fji(t) ≡ 0.

2) The sensing fault from node i to node j, fji(t), when

fij(t) ≡ 0.

Proof. In the first case, the dynamical system with respect to

node i and the faulty edge {i, j} is described by (14) with

Eij = bi[wij µwij ], Eji = 0, Dij = Ci[lj bj ], and Dji = 0.

Now consider that the measurements corresponding to node j
have been removed, yielding the following system

ẋ(t) = Ax(t) +Bv(t) + Eijfij(t),

ỹi(t) = C̃ix(t),

which corresponds to the model of a single node fault at node

i and measurements from V1
i \{j}. From [22], it then follows

that a UIO exists for this system.

In the second case, the dynamical system with respect to

node i is described by

ẋ(t) = Ax(t) +Bv(t) + Ejifji(t)

yi(t) = Cix(t)

which also corresponds to a single node fault at node j and,

similarly to the previous case, the corresponding UIO exists.
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In the following we consider faulty edges with parameter

faults, as described in Definition 3.2. For detecting and isolat-

ing these faults at each node i, in addition to the observers for

system models described by (8), observers for the following

systems are constructed at each node i for all {j, k} ∈ Ei:

ẋ(t) = Ax(t) +Bv(t) + Ejkfjk(t)

yi(t) = Cix(t)
(15)

where Ejk = bj−bk and fjk(t) = δjk(t)f
w
jk(t). The existence

of UIO’s for (15) is a consequence of the results establishing

the existence of UIO’s for faulty nodes and will not be stated

here for brevity.

Under the assumption that a single fault occurs at any given

time, the following algorithm may be implemented at each

node to simultaneously detect and isolate faulty nodes and

edges.

Algorithm 2 Distributed FDI of Faulty Nodes and Edges at

Node i
for j ∈ Ni do

Generate rj(t).
end for

for {j, k} ∈ Ei do

Generate rjk(t).
end for

if ∃k : ‖rk(t)‖ < Θk and ‖rj(t)‖ ≥ Θj , ∀j ∈ Ni 6= k
then

Node k is faulty.

end if

if ∃{j̄, k̄} :
∥
∥rj̄k̄(t)

∥
∥ < Θ{j̄,k̄} and ‖rj(t)‖ ≥ Θj , ∀j ∈

Ni 6= k and ‖rjk(t)‖ ≥ Θ{j,k}, ∀{j, k} ∈ Ei 6= {j̄, k̄}
then

Edge {j̄, k̄} is faulty.

end if

if ‖rj(t)‖ ≥ Θj ∀j ∈ Ni and ‖rjk(t)‖ ≥ Θ{j,k} ∀{j, k} ∈
Ei then

There exists a faulty node or edge in G\Gi.

end if

if ‖rj(t)‖ < Θj ∀j ∈ Ni and ‖rjk(t)‖ < Θ{j,k} ∀{j, k} ∈
Ei then

There is no faulty node or edge in the network.

end if

IV. DISTRIBUTED FDI IN THE PRESENCE OF IMPRECISE

NETWORK MODEL

As described earlier, to construct a bank of observers achiev-

ing distributed FDI given the local measurements (3), the

knowledge of the system matrix A is needed. In this section we

study the case where, after having designed observers under a

known network model and interconnection graph, some edges

and nodes are removed. The edge and node removal may

correspond to either unexpected changes in the system, or the

removal of faulty edges and nodes. In both scenarios, it is

desirable to maintain the detection and isolation capabilities of

the distributed FDI scheme despite the model changes. Later

in this section we show that a distributed FDI scheme does

not require the full knowledge of the network. Now we are

ready to pose the following problem.

Problem 3. Consider a network and a bank of observers as

described in Section III. Suppose the network loses l edges.

What are the necessary and sufficient conditions ensuring that

node i can detect faults in the network using the bank of

observers and Algorithm 2?

Note that removing a node corresponds to removing all the

edges incident to it, thus the case of node removal is covered

by the previous problem.

A. Distributed FDI with global model

We first address Problem 3 when the global model (8) is

used to design the UIOs. Consider the case where we design

a bank of UIO’s to estimate the states of the neighbors of

node i and recall that we have the following observer error

and residual dynamics

ėk(t) = Fkek(t)− Tk
∑

m∈Ni\{k}

Emfm(t)

rk(t) = Ciek(t).

(16)

Introduce Eloss ⊆ E as the subset of edges removed from

the network. Recalling the system dynamics (8), under edge

removal the new system and output matrices Aℓ and Ciℓ,

respectively, are given by

Aℓ = A+∆A,

Ciℓ = Ci +∆Ci.
(17)

The matrices ∆A and ∆Ci are perturbation matrices cor-

responding to the lost edges. More precisely, ∆A =[
0N 0N
Lloss µLloss

]

, where Lloss is the Laplacian matrix cor-

responding to the graph Gloss(V , Eloss). Moreover, all the

entries of ∆Ci are zero except those entries that correspond

to a neighbor of i whose shared edge with i is in Eloss, which

are all equal to −1. We have the following assumption.

Assumption 2. The network remains connected after losing

the edges Eloss.

Using the existing parameters of the UIO (computed under

the assumption of no edge loss), the error dynamics are

characterized by

ėk(t) =Fkek(t) + ∆Ax(t) +HkCi∆Ax(t) +Hk∆Ci∆Ax(t)

−Kk∆Cix(t) − Tk
∑

m∈Ni\{k}

Emfm(t).

(18)

If the removed links had not been connecting i to any of

its neighbors, we have ∆Ci = 0. It is easy to check that then

the error dynamics become

ėk(t) =Fkek(t) + (I +HkCi)∆Ax(t) − Tk
∑

m∈Ni\{k}

Emfm(t).

(19)
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The error dynamics described by (19), in the presence of no

faults for m ∈ V \ {k}, fm(t) ≡ 0, are

ėk(t) =Fkek(t) + (I +HkCi)∆Ax(t). (20)

Assume for the moment that the known input v(t) is zero.

Recall from Remark 1 that, if the network is connected, x(t)
converges exponentially to [ξ̄ ζ̄]⊤ ⊗ 12N when there is no

fault. Given the structure of ∆A and recalling that L1N = 0
for any Laplacian matrix L ∈ RN×N , it follows that ∆Ax(t)
goes exponentially fast to zero when there is no fault in the

network. Therefore, since Fk is Hurwitz, the error dynamics

described by (20) are stable. Consequently rk(t) = Ciek(t)
goes to zero when there is no fault in the system, although the

UIO parameters are designed for a different interconnection

network. However, if v(t) 6= 0 does not drive the system to

consensus, i.e. ‖xi(t)− xj(t)‖ does not go to zero as t goes

to infinity, then ∆Ax(t) does not generically converge to zero

when there is no fault, and neither does the residual rk(t).
On the other hand, if any of the removed edges had been

connecting i to one of its neighbors, the error dynamics may

not even converge to zero when there is no fault. In particular,

suppose there are no faults and that the system has reached an

equilibrium so that ∆Ax(t) = 0, yielding the error dynamics

ėk(t) =Fkek(t)−Kk∆Cix(t). (21)

Since in general Kk∆Cix(t) is not identically zero at the

equilibrium, we conclude that the error does not converge to

zero and thus rk(t) is not a suitable residual, as it violates Def-

inition 5. Hence, the bank of observers should be redesigned

taking into account the updated network model. Formally, we

have the following result that addresses Problem 3.

Theorem 2. Consider a monitoring node i in an arbitrary

connected network described by (1) and a bank of UIO’s

for this network. Using Algorithm 1 and the existing bank of

observers, node i can detect the presence of a faulty node after

the loss of ℓ edges if and only if all the following conditions

are satisfied: (1) the network remains connected, (2) v(t) is

such that ‖xi(t) − xj(t)‖ → 0 as t → ∞, i.e. it drives the

system to consensus, and (3) Ni is the same as in the original

network.

Proof. Consider the original graph G(V , E) and let k ∈ Ni.

Suppose ℓ edges in set Ẽ are lost and the corresponding

subgraph to these edges is denoted by G̃(V , Ẽ). Since i cannot

detect faults in network components it is not connected to, a

necessary condition is that the subgraph G̃ remains connected.

Another necessary condition is that v(t) drives the system to

consensus, thus ensuring that ∆Ax(t) does converge to zero.

Additionally, having ∆Ci = 0, or equivalently k ∈ Ñi for all

k ∈ Ni, is also a necessary condition. Otherwise, in general

the residuals do not converge to zero.

Now suppose all the necessary conditions hold. When there

is no fault in the network, ek(t) goes to zero and as a result

‖rk(t)‖ goes to zero as well. For the faulty case, ‖rk(t)‖ will

generically not converge to zero for k ∈ Ni. Hence, using

Algorithm 1 one can detect if there is a fault in the network

or not.

Note that the faulty node cannot be isolated using the

condition given by (13) when the network model is imprecise.

Moreover, detection is also not feasible when the system is

not driven to consensus by v(t).
These limitations follow from the fact that ∆Ax(t) does not

go to zero because, in general, x(t) does not reach consensus

under the fault fk(t). Thus, the error of the UIO monitoring

the neighbor node k converges to a ball around zero with a

nonzero radius. Hence, none of the residuals goes to zero so

(13) cannot be used to isolate the faulty node.

A possible way to overcome such limitations is to use addi-

tional measurements from outside each node’s neighborhood

and design the bank of UIOs using local models of the system

that are not not affected by changes in other parts of the

network. In particular, we consider the following problem.

Problem 4. For a given node i, consider a subgraph of the

network G̃i containing the 1-hop neighborhood graph Gi. Let

any state measurement within G̃i be available to node i. The

following questions are considered:

• For which subgraphs can node i design a bank of UIOs

and implement Algorithm 1 to detect and isolate faults in

any of its neighbors?

• Given the set of subgraphs for which a UIO-based FDI

scheme exists, which subgraph G̃i minimizes the number

of edges in G̃i and required state measurements?

In what follows we propose a method to address the problem

of isolating the faulty nodes and edges in the network, and

tackle Problem 4.

B. Distributed FDI with local models

Consider a fault-free network G(V , E) with the system

dynamics ẋ(t) = Ax(t) + Bv(t). Define Ĝi as a subgraph

containing the proximity subgraph of node i, Pi ⊆ Ĝi ⊆
G(V , E). Let B(V̂i) ⊆ V̂i be the boundary vertex set such

that ℓ ∈ B(V̂i), if {ℓ, ℓ̄} ∈ E and ℓ̄ /∈ V̂i.

The dynamics of the subsystem associated with Ĝi are

φ̇i(t) = Ai

Ĝ
φi(t) + ψi(t) +Bi

Ĝ
vi
Ĝ
(t), (22)

where φi = [ξi ξi1 . . . ξi|V̂i |
ζi ζi1 . . . ζi|V̂i|

], im ∈ V̂i.

Particularly i1 to i|Ni| are associated with the nodes in Ni.

Moreover, Ai

Ĝ
is the matrix associated with the network with

Ĝi as its graph, ψi(t) is an unknown vector with zero entries

except for the entries corresponding to nodes j ∈ B(V̂i) that

represents the interaction of the rest of the network with

the subnetwork of interest. Additionally, vi
Ĝ
(t) is an input

vector in this subnetwork known to i, and Bi

Ĝ
is the input

matrix associated with these inputs. We have the following

straightforward result for ψi(t).

Proposition 5. In the network induced by the proximity graph

of node i as described by (22), ψi(t) goes to zero exponentially

fast for v(t) ≡ 0.

Proof. The proof is a direct consequence of the exponential

stability of (1) to the consensus equilibrium and the distributed

control law (4).
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The bank of UIOs at i can be designed for the subnetwork

with Ĝi as its graph and dynamics described by (22). An

example of such a subnetwork for the network of Fig. 2 when

Ĝi = Pi is given in Fig. 3 (b).

In the case where there is no fault in the network and

v(t) ≡ 0, the unknown parts of the real network enter

the equation dynamics as exponentially decaying signals. As

before, in this case the detection of a fault can be determined

using the bank of UIOs for Ĝi. Moreover, isolation can be

achieved by choosing an appropriate threshold value.

However, the selection of the threshold might be cumber-

some, and it requires a knowledge of the magnitude of the

fault. In what comes next we propose a method to achieve

distributed FDI using only the full knowledge of the subgraph

graph Ĝi, without resorting to complicated ways of choosing

the threshold value and allowing v(t) 6≡ 0. Given Ĝi, let

Si(V̂i) ⊆ V̂i be the set of the nodes for which node i measures

states. We make the following assumption that will be valid

until the end of this section.

Assumption 3. For each node i ∈ V and the corresponding

subgraph Ĝi(V̂i, Êi) ⊆ G(V , E) containing the proximity graph

Pi, the state measurements of nodes in Si(V̂i) = {i} ∪ Ni ∪
B(V̂i) are available to node i.

An example for the measurement graph of node i is given in

Fig. 3(a). As before, to achieve the fault detection and isolation

1
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Fig. 3. (a) An example of a measurement graph of node i in the network of
Fig. 2 under Assumption 3. (b) The subnetwork used for designing a bank of
UIO’s at node 1 of the network depicted in Fig. 2.

task each node i considers |Ni| models of the form:

φ̇i(t) = Ai

Ĝ
φi(t) + ψi(t) +Bi

Ĝ
vi
Ĝ
(t) + Ei

kfk(t) (23)

where Ei
k is a vector of zeros except for the entry correspond-

ing to node k ∈ Ni, which is equal to one. We rewrite (23)

as

φ̇i(t) = Ai

Ĝ
φi(t) +Bi

Ĝ
vi
Ĝ
(t) +

[
Ei Ei

k

]
[
ψi(t)
fk(t)

]

, (24)

with Ei = [Ei
m1

. . . Ei
m|B(V̂i)|

], where Ei
ml

, ml ∈ B(V̂i),

is a vector of zeros except for the entry corresponding to

node ml ∈ B(V̂i) that is equal to one. For each of these

models, a UIO that is decoupled from the unknown input
[
Ei Ei

k

]
[
ψi(t)
fk(t)

]

is designed.

Lemma 1. Consider the distributed control system with a fault

in node j ∈ Ni given by (22) and measurements satisfying

Assumption 3. In the sense of Definition 4, there exists a UIO

for node i that is decoupled from the faulty node j and the

subgraph V\V̂i.

Proof. Recall the UIO existence condition in Proposition 1.

From Assumption 3, node i measures its own states, as well

as the states of nodes j ∈ B(V̂i) and j ∈ Ni, which are

the ones affected by the unknown input ψi(t) and the fault

fj(t), respectively. Therefore it follows that rank(CiE
i) =

rank(Ei⊤Ei) and rank(CiE
i
k) = rank(Ei⊤

k Ei
k), thus the first

rank condition holds.

As for the second rank condition in (12), consider the

subgraph G̃i induced by the vertex set Ṽi = B(V̂i) with

Ṽi = |Ṽi|. Denote Ḡi as the subgraph induced by the vertex set

V̄i = V̂i\Ṽi, with V̄i = |V̄i| and note that V̂i , |V̂i| = Ṽi+ V̄i.
Without loss of generality, the nodes may be rearranged so

that the Laplacian of Ĝi, E
i
k, Ei, and Ci can be written as

L̂ =

[
L̄i ℓ̄i
ℓ̄⊤i L̃i

]

, Ei
k =





0
V̂i×1

lk
0Ṽi×1



 , Ei =





0
V̂i×Ṽi

0V̄i×Ṽi

IṼi



 ,

Ci =







C̄i 0Vi×Ṽi
0Vi×V̄i

0Vi×Ṽi

0Ṽi×V̄i
IṼi

0V̄i×V̄i
0V̄i×Ṽi

0Vi×V̄i
0Vi×Ṽi

C̄i 0Vi×Ṽi

0Ṽi×V̄i
0Ṽi×Ṽi

0Ṽi×V̄i
IṼi






,

where ℓ̄i ∈ RV̄i×Ṽi , lk ∈ RV̄i×1, and C̄i ∈ R|V1
i
|×V̄i being

a full row rank matrix where each of the rows have all

zero entries except for one entry at the j-th position that

corresponds to those nodes that are in V1
i = Ni ∪ {i}.

Following a similar reasoning as in Theorem 1, one can verify

that the second rank condition in (12) also holds.

Such UIO scheme can clearly be implemented for any

subgraph Ĝi containing the proximity graph Pi. Applying

Algorithm 1 or Algorithm 2 for the residuals obtained from

these UIOs, with G replaced with Ĝi, addresses the first part

of Problem 4. Hence, node i can detect and isolate a fault in

node j ∈ Ni using only local models and measurements, as

stated in the following result.

Theorem 3. Consider a monitoring node i in a connected net-

work satisfying Assumption 2 and a bank of UIO’s calculated

for the local subsystem (24). Using Algorithm 1 and the bank

of observers, node i can detect and isolate a faulty node in

its neighborhood.

Proof. The proof follows from Lemma 1 and Theorem 2.

V. COMPLEXITY REDUCTION OF DISTRIBUTED FDI

So far we have proposed the solutions to both Problems 3

and 4. In Section IV we first showed that it is possible to detect

the presence of a faulty node in the network distributedly,

i.e., address Problem 3, at each node i, if i knows the exact
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model of its one-hop neighborhood and measuring the states

of its neighbors. Then we introduced a method to address the

first part of Problem 4 that not only eliminates the need to

have an exact network model beyond a subgraph containing

the proximity graph of a given node for that node to detect

and isolate faults in its one-hop neighborhood, but it also

reduces the size of the observers. However, such result is

derived under the assumption that the node has access to all

the measurements of the states of its two-hop neighbors. In

this section we show that the knowledge of the proximity

graph is in fact the least amount of knowledge required to

achieve distributed FDI when equal costs are associated with

each necessary state measurement and network component

that needs to be known, thus addressing the second part of

Problem 4. Later, the complexity of the overall distributed FDI

scheme is minimized by reducing the number of monitoring

nodes while still ensuring that every node in the network is

monitored.

A. Local models and additional measurements

Suppose node i has the local model (24) for a given

subgraph Ĝi(V̂i, Êi). Consider the case where equal costs are

associated with each node ℓ in B(V̂i), and with each of the

edges that are known exactly, i.e., each {j, k} ∈ Êi. In other

words, a cost is associated with any piece of information

available to a node i; be it extra measurements or information

about the existence of an edge between two nodes. This cost

is minimized by solving the following optimization problem:

min
Pi⊆Ĝi⊆G

|Si(V̂i)|+ |Êi|. (25)

We conclude this section by introducing the following result

that shows that knowing Pi exactly is optimal, in the sense

that it minimizes (25).

Theorem 4. Consider a monitoring node i in an arbitrary

connected network and a bank of UIO’s calculated for the

local subsystem Ĝi. Setting Ĝi = Pi simultaneously minimizes

the number of state measurements |Si| and the number of

known network connections |Êi| needed to design the bank

of UIO’s.

Proof. Recall from Assumption 3 that Si(V̂i) = {i} ∪ Ni ∪
B(V̂i). From Lemma 1 we know that any Ĝi should be such

that Pi ⊆ Ĝi. To obtain a contradiction, assume that there is a

G⋆
i (V

⋆
i , E

⋆
i ) such that Pi is a strict subset of G⋆

i (V
⋆
i , E

⋆
i ) that

results in a smaller value for the objective function in (25).

We can obtain it by adding vertices that are in V⋆
i \ VPi

one

by one to Pi. If we introduce a single vertex ℓ1 to Pi, then it

is necessary that all the η̄ edges {ℓ1, j} such that j ∈ VPi
are

exactly known, in addition to all the η edges incident to the

vertices in N 2
i . Call this new graph obtained from the addition

of ℓ1 and the aforementioned edges G+ℓ1
i (V+ℓ1

i , E+ℓ1
i ). Then

we have

|B(V+ℓ1
i )|+ |E+ℓ1

i | = |B(VPi
)| − η + 1 + |EPi

|+ η + η̄

= |B(VPi
)|+ 1 + |EPi

|+ η̄.
(26)

Even for the case where there are no edges in the network

connecting the nodes in N 2
i , i.e., η̄ = 0, the cost function is

increased by at least one. Repeating this argument for addition

of any other vertex ℓj ∈ V⋆
i \ VPi

, one can deduce that the

cost function does not decrease. Hence, there exists no G⋆
i ,

such that Pi 6⊆ G⋆
i , that minimizes the cost function given in

(25).

Theorem 4 provides the optimal subgraph Ĝi that minimizes

the amount of model knowledge and number of measurements

where they are equally valued. However, if the cost of having

measurements from a node is equal to cm ≥ 0 and the cost

of knowing the existence of an edge is equal to ce ≥ 0, and

cm 6= ce, (25) becomes

min
Pi⊆Ĝi⊆G

cm|Si(V̂i)|+ ce|Êi|. (27)

One can construct simple examples with cm 6= ce where taking

Ĝi = Pi does not necessarily minimize the cost function

proposed in (27).

B. Reducing the number of monitoring nodes

It is not necessary for all the nodes in a network to monitor

their neighbors and it is possible to decrease the number of

monitoring nodes in the network while guaranteeing that each

node in the network is being monitored by at least another

node and calculating UIO’s for only these nodes.

Assuming that each node monitors only its neighbors, we

say that a FDI system in node i covers the set of nodes Ni.

Therefore, the objective is to select a minimum number of

observer nodes that cover all the nodes in the network, i.e.,

min
So⊆V

|So|

s.t.
⋃

i∈So

Ni = V , (28)

where So is the set of observer nodes.

As it can be seen, this is actually a set cover problem where

we wish to determine a minimum total dominating set, i.e., a

set with minimum cardinality such that all nodes in the graph

have at least one neighbor in that set. This is a well studied

problem, having been classified as an NP-hard problem and

two algorithms to solve this problem can be found in [30].

Although the number of observers obtained by using Ni

as the set of nodes covered by node i is not minimum, this

method has one interesting property: all nodes in So are

monitored by at least one neighbor. This means that even if

an observer node is attacked, there is another observer node

in the network that can detect it. Obviously, this decreases the

vulnerability to faults in the monitoring nodes.

Other interesting properties may also be imposed by mod-

ifying the constraints in (28), such as having So to be con-

nected, which is related to the minimum connected dominating

set problem.

Another way of minimizing the computational burden of

the proposed method is to find a set of nodes that monitors

all the nodes in the network with the minimum number of

measurements, i.e., solving (28) with the cost function |So|
replaced with

∑

i∈So

deg(i). This problem can be solved first by
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finding all the dominating sets in the network and choosing

the set that minimizes the cost function.

VI. NUMERICAL EXAMPLES

In this section we illustrate the solution proposed in the

paper on a power network example. The simulations were

carried out using the IEEE 118 bus network example available

with the MATPOWER toolbox [31]. A diagram of the power

network is depicted in Fig. 4.

Fig. 4. Diagram of the IEEE 118 bus power network. The monitoring node 19
is encircled with a red dotted line, while its 2-hop neighborhood is delimited
by the blue dashed line.

We considered the classical linearized synchronous machine

model [28] for each node of the power network, leading to the

global network dynamics as in (1) with

A =

[
0N IN

−M̄L −M̄D̄

]

, B =
[
0N M̄

]⊤
,

M̄ = diag

(
1

m1

, · · · ,
1

mN

)

, D̄ = diag (d1, · · · , dN ) ,

where mi > 0 and di > 0 are the inertia and damping

coefficients of node i, respectively, and N = 118 is the number

of buses. Since these coefficients were not available in the

example data files, they were randomly generated so that the

load buses had considerably lower values than the generator

buses, namely mg ≈ 103ml and dg ≈ 103dl.

A. Faulty node detection using local model

In this example, node 19 is monitoring its neighbors for

faulty behaviours using the method proposed in Section IV.

Thus the network model knowledge needed is its 2−hop

neighborhood, which consists of 26 states, as opposed to the

236 states of the global network. Using this smaller model, a

bank of UIO’s was generated according to Section III-A and

Section IV.

In the simulations, node 15 exhibits a faulty behaviour after

t = 20 s, which is successfully detected by node 19 as seen in

t(s)
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Fig. 5. Residuals generated by the UIO bank at node 19 to detect node faults
in N19. A sinusoidal fault is injected by node 15 after t = 20 s. The fault in
node 15 is successfully detected and isolated.

Fig. 5. Furthermore, all the residuals corresponding to other

neighboring nodes become large while the one for node 15
remains at zero. Following Algorithm 1, node 15 is then

detected and identified as the faulty node.

B. Faulty edge detection

Here we consider the case where node 15 monitors all

its edges as proposed in Section III-B. Note that in power

networks the edges represent physical couplings and thus

edge faults correspond to parameter faults described in Def-

inition 3.2. We consider the scenario where the system is

at equilibrium when the transmission line between nodes

15 and 33 is removed at t = 5 s, which is modeled as

fw
15,33(t) = −w15,33. This perturbation drives the system to

another equilibrium point, enabling us to monitor the state

trajectories and locate the faulty edge.

The residuals generated by the observers at node 15 are

presented in Fig. 6. As one can see, all the residuals diverge

from zero except the one corresponding to the edge between

nodes 15 and 33, hence the fault is successfully detected and

isolated.

VII. CONCLUSIONS AND FUTURE WORK

The distributed FDI scheme proposed in [22] was extended

for detecting and isolating faults in edges of a network.

Additionally, the distributed FDI scheme designed using a

given initial network model was shown to be robust to the

addition or removal of edges. Namely, fault detection can be

achieved using this scheme by choosing suitable thresholds,

provided that the proximity graph of the monitoring nodes re-

mains constant. Later we establish the minimum measurements

required to be able to not only detect but also isolate the faulty

nodes by each agent where the only model information they

have is a local network model. Then a solution to reduce the

computational complexity of the distributed FDI scheme was
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Fig. 6. Residuals generated by the UIO bank at node 15 to detect edge faults.
The edge between nodes 15 and 33 is removed at t = 5 s. The edge fault is
successfully detected and isolated.

proposed, where the solution lowers the number of monitoring

nodes. Numerical result demonstrating the effectiveness of the

proposed solutions were presented, taking the IEEE 118 bus

power network as an example. As motivated by the example,

the proposed methods can be fused to design a scalable and

resilient distributed FDI architecture that achieves local fault

detection and isolation despite unknown perturbations outside

the local subsystem.

Future work includes the design and analysis of the pro-

posed FDI scheme under practical scenarios. In particular,

the observer design must account for noise in the system

dynamics and measurements. Moreover, it should be devised

to ensure good performance of the FDI scheme with respect to

relevant metrics such as the detection delay, false alarm rate,

and probability of misdetection. In addition to the observer

design, the particular choice of thresholds greatly impacts the

resulting performance and should also be addressed in future

work.
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