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Abstract—This technical note deals with the problem of designing a dis-
tributed fault detection methodology for distributed (and possibly large-
scale) nonlinear dynamical systems that are modelled as the interconnec-
tion of several subsystems. The subsystems are allowed to overlap, thus
sharing some state components. For each subsystem, a Local Fault Detector
is designed, based on the measured local state of the subsystem as well as
the transmitted variables of neighboring states that define the subsystem
interconnections. The local detection decision is made on the basis of the
knowledge of the local subsystem dynamic model and of an adaptive ap-
proximation of the interconnection with neighboring subsystems. The use
of a specially-designed consensus-based estimator is proposed in order to
improve the detectability of faults affecting variables shared among dif-
ferent subsystems. Simulation results provide an evidence of the effective-
ness of the proposed distributed fault detection scheme.

Index Terms—Adaptive estimation, distributed detection, fault diag-
nosis, large-scale systems, nonlinear systems.

I. INTRODUCTION

The problem of automated fault diagnosis and accommodation is
motivated by the need to develop more autonomous and intelligent sys-
tems that operate reliably in the presence of faults. In dynamical sys-
tems, faults are characterized by critical and unpredictable changes in
the system dynamics, thus requiring the design of suitable fault diag-
nosis schemes [1]. Moreover, with current technological trends, sev-
eral systems of practical interest are large-scale and/or physically dis-
tributed and thus the decomposition and spatial distribution of highly
demanding computational tasks is of critical importance.

Recently there has been significant research activity in modeling,
control and cooperation methodologies for distributed systems (see,
for example, [2], and the references cited therein). This activity is mo-
tivated by several applications, especially in complex large-scale sys-
tems, such as traffic networks, environmental systems, communication
networks, power grid networks, water distribution networks, etc. Such
systems, although their dynamics and control objectives may appear to
be completely different, have some important common characteristics:
their dynamics are complex and spatially distributed, and, as a result,
it is typically more convenient to decompose the system into smaller
subsystems which can be controlled locally (or regionally). The study
of controlling spatially distributed systems is not a new problem. As
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far back as in the 1970s, researchers sought to develop so called “de-
centralized control” methods [3]. Since then, there have been many en-
hancements in the design and analysis of distributed control schemes.
On the other hand, one area where there has been much less research
activity is the problem of designing fault diagnosis schemes specifi-
cally for distributed systems.

Due to the complexity of the problem, in practice it is difficult to
achieve robust fault diagnosis in large-scale distributed systems within
a centralized architecture. As far as the literature is concerned, con-
siderable efforts were aimed at developing distributed fault diagnosis
methodologies in the context of discrete event systems (see, for in-
stance, [4]–[8] and the references cited therein). On the other hand,
very few works are available for discrete or continuous-time systems
(for example, concerning large-scale networked control systems, see
[9]).

In a previous work [10], the authors developed some preliminary
results on a quantitative distributed fault detection scheme where a
large-scale system was decomposed into a set of disjoint subsystems,
and the physical interaction between neighboring subsystems was de-
scribed by uncertain nonlinear functions. A network of Local Fault De-
tectors (LFD) was developed so that each LFD monitored a single sub-
system by making use of the measurement of local variables, as well as
the value of some interconnection variables communicated by neigh-
boring LFDs. But apart from this exchange of measurements, the neigh-
boring LFDs were not involved in the process of deciding whether a
fault happened to a subsystem. In this note, based on the results recently
presented in [11], the above distributed detection scheme is extended
to allow cooperation between neighboring LFDs by using overlapping
decompositions [12] of the initial large-scale system. In this way, more
than one LFD may be monitoring a single shared variable and col-
lectively decide on the presence of faults influencing it. This will be
implemented by means of a specially designed consensus-based esti-
mation scheme that may improve the detection capability of the LFDs
with respect to the consensus-less, non overlapping case.

The note is organized as follows: in Section II, a problem formula-
tion is developed for fault diagnosis of distributed dynamical systems.
The design and analysis of a distributed fault detection architecture is
presented in Section III, while simulation results for illustrating the
methodology are given in Section IV. Finally, Section V provides some
concluding remarks.

II. PROBLEM FORMULATION

Let us consider a generic nonlinear system � (possibly large-scale)
described as (see [13])

� � �� � ���� �� � ���� ������� �� (1)

where � � � and � � � denote the state and input vectors, respec-
tively, and � � � � � �� � represents the nominal healthy dy-
namics. The term ���� ������� �� denotes the changes in the system
dynamics due to the occurrence of a fault. More specifically, the vector
���� �� represents the functional structure of the deviation in the state
equation due to the fault and the function ���� ��� characterizes the
time profile of the fault, where �� is the unknown fault occurrence time.
In this note, we only consider the case of abrupt (sudden) faults and, ac-
cordingly, ���� takes on the form of a step function, i.e., ������� � �,
if � 	 �� and ��� � ��� � �, if � � ��.

The model in (1) may be impractical for fault detection (FD), either
because of its size, or because the system it represents is physically
distributed, so that a centralized FD architecture is neither possible nor
desirable. This problem can be overcome by considering � as decom-
posed into 
 subsystems ��, each characterized by a local state vector

0018-9286/$25.00 © 2009 IEEE

Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on May 21, 2009 at 08:22 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 4, APRIL 2009 795

�� �
� , so that each �� will be separately monitored. To this end,

the dynamics of �� can be modeled as

�� � ��� � ������ �� � ���� �������� ��

where the vectors ��� and �� are built upon the components of � and �
that account for the dynamics of subsystem ��. Generally, due to the
distributed nature of the system, the nominal dynamics are unlikely to
depend on the entire global vectors � and �, so that, as in [12], ��� will
be conveniently split into two parts

�� � ��� � ������ ��� � 	����� ���� ��� � ���� �������� �� (2)

with �� � � � � �� � being the local nominal function, 	� �
� � �� � � �� � the interconnection function, �� � � ,

�
� � 
�, the local input, and ��� �
�� , ���� � � � ���, the vector

of interconnection state variables.
The vectors ��, �� and ��� may be conveniently defined by relying on

graph theory. The structure of � will be described via a digraph �
�
�

	
 � ��, where 

�
� 	����� � � �� 	 	 	 � �� 
 	����� 
 � �� 	 	 	 �
� is

the set of nodes and �
�
� 	���� ��� � �� 
��
 �� �� � ��� �� � 
� is the

set of edges [12]. Here and in the following the notation ���� denotes
the �th component of the generic vector �, while �� denotes a generic
node of the graph. The expression “acts on” is equivalent to “appears
in the state equation of”. Given �� vectors ��� 	 	 	 � �� , we define the
vector � � ������� 	 	 	 � �� �

�
� ���� � 	 	 	 � �

�

� ��. Each subsystem ��
will be defined by introducing an extraction index set �� �

�
� so that

��
�
� �������� � 
 � ���, ��

�
� �������� � ������ ����� � � � 
 �

��� � � �� 	 	 	 �
� and ���
�
� �������� � ������ ����� � � � 
 � ��� � �

�� 	 	 	 � ��. For every � � �� 	 	 	 � � , �� should fulfill the following con-
ditions:

1) �� �� �;
2) ������� � �, that is �� � � ;
3) the subdigraph of � induced by �� must be weakly connected, that

is, each component of �� must act on or must be acted on by at
least another component of ��.

The set of subsystems acting on �� through ��� will be defined by means
of the neighbors index set ��

�
� 	� � ������� ����� � � � � � ��� 
 �

���. The structure of �� is described by the subdigraph ��
�
� �
�� ���

induced on � by the node set 
�
�
� 	�

���
� � 
 � �� 	 	 	 � ���
	�

���
� � � �

�� 	 	 	 �
��. Now, we have the following.
Definition 2.1: A decomposition of dimension � of the large-scale

system � is a set �
�
� 	��� 	 	 	 ���� made of � subsystems, such

that:
1) 
������ � 	�� 	 	 	 � ��;
2) �� �� �� , �� �� 
.

Point 1) in Definition 2.1 implies that the decomposition “covers”
the whole original state vector � whereas Point 2) avoids “duplicate”
subsystem definitions. It is worth noting that we do not require that
�� ��� � �, �� �� 
. Hence, overlapping decompositions are allowed,
where the state vectors of any two subsystems may have common com-
ponents. Overlapping decompositions [14] were found to be rather a
useful tool when addressing large-scale systems. In particular, prob-
lems of stability, control and estimation [15], and fault diagnosis [16]
for large-scale linear system were successfully solved by using over-
lapping decompositions.

As a result of overlaps, some components of the global state vector
� will be assigned to more than a subsystem thus giving rise to the
concepts of shared state variable and overlap index set.

Definition 2.2: A shared state variable ��	� is a component of �
such that � � �� � �� , for some �� 
 � 	�� 	 	 	��, � �� 
 and a given
decomposition � of dimension � .

Fig. 1. Example of decomposition of a large-scale system � into two over-
lapping subsystems � and � such that: � � �� � � � and � �
�� � � � � are the local states, � � � and � � � the local
inputs, �� � �� � � and �� � � the interconnection variables, and
� � � � � is a shared variable with � � ��� ��.

Definition 2.3: The overlap index set of subsystems sharing a vari-
able ��	� is the set �	

�
� 	� � � � ���, whose dimension is �	

�
�

�����	�.
In the following, the notation��	 �

� , with��	 �
� � ��	�, will be used to

denote that the �th state component of the original large-scale system
has been shared and became the ��th of the �th subsystem, � � �	.
To gain some more insight into the afore-described decomposition ap-
proach, consider the simple example depicted in Fig. 1, where a specific
decomposition of a system � into two overlapping subsystems �� and
�� is considered.

The following assumptions are now needed.
Assumption 1: For each ��, � � �� 	 	 	 � � , the state variables �����

and control variables ����� remain bounded before and after the occur-
rence of a fault, i.e., there exist some stability regions �� � �


� �
��
� � � � � , such that ������� ������ � �


� � ��
� , �� �

�� 	 	 	 � �� �� � �.
Clearly, as a consequence of Assumption 1, for each subsystem ��,

� � �� 	 	 	 � � , it is possible to define some stability regions ��

� for

the interconnecting variables ���. The first reason for introducing such
a boundedness assumption is a formal one in order to make the problem
of detecting faults well-posed. Moreover, from an application point of
view, Assumption 1 does not turn out to be very restrictive as the dif-
ficult issue generally is the early detection of faults characterized by
a relatively small magnitude. Indeed, since no fault accommodation is
considered in this note, the feedback controller acting on the system �
must be such that the measurable signals ���� and ���� remain bounded
for all � � �. However, it is important to note that the proposed Dis-
tributed Fault Detection (DFD) design is not dependent on the structure
of the controller.

Assumption 2: The decomposition � is given a priori and is such
that, for each ��, the local nominal function �� is perfectly known,
whereas the interconnection term 	� is an uncertain function of ��, ���
and ��. For each � � �� 	 	 	 � ��, the �th component of 	� is bounded
by some known functional, i.e.,

	
���
� ���� ���� ��� � �	

���
� ���� ���� ��������� ���� ��� � �



� ��

�

� ��

�
�

where the bounding function �	
���
� ���� ���� ��� � � is known, integrable,

and bounded for all ���� ���� ��� in some compact region of interest
�� � �


� ��
�

� ��

�
� .

Assumption 2 captures situations where each �� corresponds to a
known physical subsystem or a component, interacting through uncer-
tain physical links as part of a complex large-scale system or to attain
a higher goal (several application contexts can be found where such
modeling approach turns out to be useful—see, for example, [17]). This
uncertainty will be overcome in the following sections by employing
an adaptive approximator �	� in lieu of 	�.
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Remark 2.1: It is worth noting that the determination of non-con-
servative bounding functions ��

���
� ���� ���� ��� � � may turn out to

be rather difficult in practice and has to be carried out by exploiting
prior knowledge by plant technicians and extensive off-line simulation
trials.

III. DISTRIBUTED FAULT DETECTION ARCHITECTURE

In this section, the proposed DFD scheme will be described. In gen-
eral, the DFD architecture is made of � communicating Local Fault
Detectors (LFDs) ��, which are devoted to monitor the global system
� , described by an overlapping decomposition into � subsystems. In
the next subsections, the design of the LFDs will be addressed ac-
cording to the fault detection methodology presented in [1]. First, we
consider the system under nominal (healthy) mode of behavior and,
subsequently, under faulty conditions.

A. Normal (Healthy) Operating Conditions

The local fault detection algorithm is based on a nonlinear adaptive
estimator based on the subsystem model (2) and for the �th LFD it takes
on the form

���
�� �

� � ��
���

��
�� �
� � ��

�� �

� � �� ��
�� �
� � �

�� �
�

�
	

��
���

	
�� �

� ��� � ��� � ��
�� �

� ��� � ��� � �� � �
�� (3)

for each �� � 	� 
 
 
 � ��, where
• ��

�� �
� denotes the estimate of the local state component ��� �

� ;
• �

�� �
� corresponds to the �th component of the global state vector,

that is ��� �
� � ����;

• �� is the index set of the �� LFDs sharing the variable ����, as
specified in definition 2.3;

• ������ is an adaptive approximator to be described later;
• �
� is the vector of the adaptive approximator parameters;
• �� 
 � represents the value of the estimator poles.

As the entire state �� is assumed to be measurable, it must be stressed
that the estimate ��

�� �
� is not used for estimation, but will be employed

in the fault detection process for residual error generation and for adap-
tive approximation. A consensus mechanism is embedded in the esti-
mator for shared components of the local state of ��, allowing LFDs
in �� to share their knowledge about the local and the approximated
interconnection part of the model. Consensus and agreement problems
were extensively treated in the computer science literature concerning
distributed fault diagnosis of synchronous and asynchronous systems
[18], and recently in the framework of average-consensus on static and
dynamic quantities by sensor networks [19].

It is worth noting that, in order to implement (3), the LFD �� does
not need the information about the expressions of 	

�� �

� and of ��
�� �

� ;

instead, it suffices that �� , � � ��, computes the term 	
�� �

� � ��
�� �

�

and communicates it to other LFDs in �� alongside its actual state
estimate ��

�� �

� . Furthermore, each �� , with � � 	�, must communicate
to �� its values of the local state components needed to populate the
interconnection state vector ���.

Clearly, for non-shared state components the overlap index set is a
singleton and (3) simplifies to an estimator without consensus as fol-
lows:

���
���

� � �� ��
���
� � �

���
� � 	

���
� ���� ��� � ��

���
� ���� ���� ��� �
���

Since it is assumed that, for each ��, the interconnection function �� is
uncertain (or unknown), a key point in the proposed scheme is that each
LFD will adaptively learn the uncertain function �� using a linearly

parameterized adaptive approximator ������� ���� ��� �
�� � � 
 �� 

� 
 � �� � of the form

��
���
� ���� ���� ��� �
�� �

�

	��

�	� �	
����� ���� ���

where �	
���� are given parameterized basis functions, �	� � are the

parameters to be determined, i.e., �
� �
� � �
�

�
� �
���	� � � �

	� 
 
 
 � ��� � � 	� 
 
 
 � ���. Here the term adaptive approximator [20]
may represent any linear-in-the-parameters, but otherwise nonlinear
multivariable approximation model, such as neural networks, fuzzy
logic networks, polynomials, spline functions, wavelet networks, etc.
By introducing the gradient matrix��

�
� �������� ���� ��� �
���� �
� w.r.t.

the adjustable parameter vector [21], the approximator output can be
written as ������� ���� ��� �
�� � ��

�
�.
Using adaptive parameter estimation techniques, the learning law for

the parameter vector takes on the form

��
�
�
� 
 ���

�
� ��

where 
 is a projection operator [13] that restricts �
� to a pre-defined
compact and convex set �� �

� , �� �
� �� is a symmetric and

positive definite learning rate matrix and �����
�
� ������ ������ is the

estimation error, which plays a double role: it provides a measure of
the residual error for fault detection purposes and it also provides the
error measure used for adaptively learning the unknown interconnec-
tion term ��.

In general, the approximated interconnection term ��� cannot be ex-
pected to perfectly match the true term ��. This can be formalized by
introducing an optimal weight vector �
�� within the compact convex set
�� [21]

�
��
�
� ��� ���

�
 ��
���
��

������ ���� ���� ������� ���� ��� �
�� (4)

and the corresponding minimum functional approximation error
(MFAE)

�����
�
� �� ������� ������� ������� ��� ������ ������� ������ �


�
� � (5)

By introducing the parameter estimation error �
�
�
� �
� � �
�� , the

dynamics of the generic estimation error component for � 
 �	 can
be written as

��
�� �
� �

	

��
���

������ �
� � �
�� �

�

��
���

�
�� �
� � �

�� �

� � ���
�� �
�

where the notation ����� stands for the �� th row of the gradient matrix
�� . The solution of the above equation can be written as

�
�� �
� ��� �

	

��

�

	

��
� �����

���

������ �
� � �
�� �

� ��

���

� �

���

��
� �
� 	 � �������

�� �

� ���

where ��� is the Kronecker delta function defined as ��� � 	 if � � �
and ��� � � otherwise. Again, this expression can be simplified in the
case of a non-shared state component as follows:

�
���
� ��� �

�

	

��
����� ������ �
� � �
���
� �� � ��
��

���
� ����
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Fig. 2. Structure of the five-tanks system under consideration.

This solution shows that, because of the parameter estimation error ���
and of the MFAE, the estimation error will be nonzero even in the ab-
sence of a fault. By applying the triangle inequality, it can be shown
that the absolute value of �� can be upper-bounded as follows:

�
�� �
� ��� � ��

�� �
� ���

�
�

�

��

�

�

���� �����

���

���� � �
�
��� � ��

�� �

� 	�

� ����� �

���

���� � � � � ��	��� �
�� �

� �
� (6)

where ����� � ����� depends on the geometric properties of the set �� .
For instance, letting the parameter set �� be a hyper-sphere centered in
the origin and with radius equal to 
�, we have �����

�
� 
� � �����.

Moreover

�
�	�
� ��� � ��

�	�
� ���

where

��
�	�
� ���

�
� ��

�	�
� ������
 ������
 ������ ���
 �
�� ������
 ������
 �������

and ��
 denotes the Lipschitz constant of the adaptive approximator on
the compact set �� introduced in Assumption 2. The bound described
by (6) represents an adaptive threshold on the state estimation error that
can be easily implemented by linear filtering techniques [1]. The bound
������ will be exploited in the next section in the fault detection context.

B. Faulty Operating Condition

Now, a methodology for detection of faults by the DFD scheme pro-
posed in this note, will be described. The occurrence at time �� of a
fault affecting the state of a subsystem �� will result in an additional
term in the dynamics of the estimation error

��
�� �
� � ��

���

�
�� �
� � �

�� �

� � ���
�� �
�

�
�

��
���

������ ��� � �
�� �

� � �
�� �
� ��
 ���

Due to the fault function �
�� �
� ��
 ��, the inequality (6) may no longer

hold and the fault may be detected at a finite-time �� � �� by the �th
LFD, according to the the following decision logic.

Definition 3.1: A fault occurring at time �� is detectable in
finite-time if there exists a �� � � and a � � 	�
 � � � 
 ��
 such
that ���	�� � �� �� � ��

�	�
� � �� �. The fault detection time �� is defined as

��
�
� ��� ��

	��	� � �� � ��
�	�
� ���� � ��

�	�
� ���
.

It must be acknowledged that the adaptive threshold ������ defined
by (6) is designed to avoid false positives, since a certain level of es-
timation error is always present due to the uncertainty in the learning
process. Of course, this may lead to certain faults being undetectable
if they cause an estimation error small enough to be indistinguishable
from the estimation error due to the uncertainty. This intuitive point
will be formalized in Theorem 3.1. First, analogously to (4) and (5),
the following quantities are defined:

�����
�
� ��� ���

�
 �	
���

�
������
 ���
 ��� � ����
 ��

�������
 ���
 ��
 ����

�����
�
� �����
 ���
 ��� � ����
 ��� ��� ��
 ���
 ��
 ��

��
�

as well as the mismatch function

�
�	�
� ���

�
� �

�
���	�

����� � ����
�	�

� �
�	�
� � �

�	�
� �

Now, we can state the following result.
Theorem 3.1 (Fault Detectability): Given a variable ���� with an

overlap set 
�, suppose that for some time-interval ���
 ��� the corre-
sponding components of the mismatch functions �����, � � 
�, fulfill
the following inequality for at least the �th LFD, � � 
�:

�

�

���� �����

���

�
�� �

� 	�

� �

�

�

���� �����

���

����� �
�
��� � ��

�� �

� 	�

� ������ �

���

���� � � � � ��	��� �
�� �

� �
� �

Then, a fault will be detected at time-instant � � �� by the �th LFD,
that is ���� �

� ����� � ��
�� �
� ����. Moreover, �� is an upper bound on the

fault occurrence time ��.
Proof: Following the proof of Theorem 3.2 in [10], the error dy-

namics at the generic time instant � can be written as follows:
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where ����
�
� ��� � ����� . By using the mismatch function, the solution

to the error dynamics is
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Fig. 3. Time-behaviors of signals related to tanks no. 3 when a leakage is introduced at time 20 s, with (a,b,c) and without (d, e, f) consensus.

so that the application of the triangle inequality leads to
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A sufficient condition for the previous inequality to hold is
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and, if ���� �
� ����� � 	�

�� �
� ���� for some �� � ��, then a fault is detected.

This translates into the following inequality:
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which implies the thesis when �� � ��, thus proving the theorem.
Remark 3.1: It is worth noting that in a decentralized fault-diag-

nosis system where no information is exchanged between the LFDs, a
detection decision may be difficult to reach in presence of a low mis-
match �

�� �

� and/or high uncertainties 
������
�
�	� � � 	�

�� �

� . On the
other hand, we expect a consensus mechanism like the one proposed in
the technical note to be of benefit in such a scenario. However, due to
the generality of the framework considered here (we do not make any
assumption on the structural/geometric properties of the faults with re-
spect to the structure of the distributed plant, and we do not assume
persistency of excitation) proving that the proposed consensus-based
methodology in general performs better than a decentralized one turns
out to be difficult and is beyond the scope of the present note.

IV. SIMULATION RESULTS

Now, a simple example to illustrate the effectiveness of the proposed
FD scheme will be presented. It is based on the well-known three-tank
problem, extended to encompass a five-tank string and two LFDs (see
Fig. 2). The two LFDs monitor three tanks each, while sharing the third
tank. Clearly, here the local nominal functions �� and �� describe the
flows through the pipes linking tanks assigned to the same LFD, while
the interaction terms �� and �� are due to the flow between tanks 3 and
4 and between tanks 2 and 3 (for details about the dynamical equations
of a multi-tank system the reader is referred for example to [1]). All
the tanks are cylinders with a cross-section � � � ��, whilst every
pipe has a cross-section �
 � �
� �� and unitary outflow coefficient.
The tank levels are denoted by �

���
� and �

���
� , with � � �, 2, 3, and are

limited between 0 and 10 m. The scalars � � �� � � ���
, � � �, 2,
correspond to the inflows supplied by two pumps.

The interconnection variables being 	�� � �
���
� and 	�� � �

���
� ,

������ 	��� ��� and ������ 	��� ��� should be 5-inputs, 3-outputs
functions. Because of the topology of this specific example, both ��
and �� have only one non-zero output component and depend only
on ��

���
� � �

���
� � and ��

���
� � �

���
� � respectively. Therefore, the adaptive

approximators ��� and ��� were realized with two 2-inputs, 1-output
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radial basis neural networks. The network ��� is implemented with 49
basis functions, while the network ��� is made of 4 basis functions
only. In both cases the basis functions are equally spaced over the
square ��� ����; the learning rate matrices are �� � �	
����
��
and the estimator constants are �� � ���. After suitable offline
simulations the parameter domains �� and �� are chosen to be
hyperspheres with radii equal to 0.75 and 1.5, respectively. The
non-zero bounds on the approximation error are set to ��

���
� � �����

and ��
���
� � ���. Finally, the inflows are �� � ��� � ��������� � ���

and �� � ���� � ��������� � ���; the nominal tank initial levels were
8, 6.5, 5, 3.5 and 3 m, while the estimated ones are 15% higher and
15% lower, respectively for the first and the second LFD.

Fig. 3 shows the results of a simulation where at �� � �� � an abrupt
leakage with cross section	� � ������ was introduced in tank 3, first
when a consensus-filter is employed and then when it is not. In this re-
spect, it can be observed that the LFD based on the network with fewer
neurons (hence with more limited approximation capabilities) does not
reach a detection decision in the absence of the consensus mechanism
whereas a decision is reached in the presence of consensus using the
information provided by the other LFD based on a networks with a
much larger number of basis functions. The much better performance
when the consensus mechanism is used is also due to the fact that the
consensus equation dampens the difference between the estimates and
the true values and also the difference among the two estimates. This
can be seen very clearly by comparing the initial transient behaviors in
Fig. 3(a) and (d).

V. CONCLUSION

In this note, a problem formulation and a distributed fault diagnosis
architecture for large-scale dynamical systems was presented. The pro-
posed scheme relies on overlapping decompositions of the system into
sets of interconnected simpler subsystems. Each subsystem is moni-
tored by a local fault diagnoser, which is able to detect the presence of
faults in the corresponding subsystem based on its own measurements
and information from neighboring subsystems. An adaptive approx-
imation scheme is developed for learning the functional uncertainty
in the interconnection between neighboring subsystems. As overlap-
ping decompositions lead to some state components being shared be-
tween two or more subsystems, in the proposed scheme a specially de-
signed consensus-based estimation scheme was implemented in order
to allow the diagnoser to reach a common decision about faults af-
fecting such variables and a detectability result was proved. Finally
simulation results were provided to illustrate the effectiveness of the
proposed scheme.

Future research efforts will be devoted to fully characterize the per-
formances of the proposed consensus-based method as compared to
decentralized schemes, to more practical detectability conditions and
to extend the technique to the case where delays and disturbances af-
fect the information exchanged among the local fault detectors.
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