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Distributed fiber-optic laser-ultrasound 
generation based on ghost-mode of tilted fiber 

Bragg gratings 

Jiajun Tian, Qi Zhang, and Ming Han
*
 

Department of Electrical Engineering, University of Nebraska–Lincoln, Lincoln, Nebraska 68588, USA 
*mhan3@unl.edu 

Abstract: Active ultrasonic testing is widely used for medical diagnosis, 
material characterization and structural health monitoring. Ultrasonic 
transducer is a key component in active ultrasonic testing. Due to their 
many advantages such as small size, light weight, and immunity to 
electromagnetic interference, fiber-optic ultrasonic transducers are 
particularly attractive for permanent, embedded applications in active 
ultrasonic testing for structural health monitoring. However, current fiber-
optic transducers only allow effective ultrasound generation at a single 
location of the fiber end. Here we demonstrate a fiber-optic device that can 
effectively generate ultrasound at multiple, selected locations along a fiber 
in a controllable manner based on a smart light tapping scheme that only 
taps out the light of a particular wavelength for laser-ultrasound generation 
and allow light of longer wavelengths pass by without loss. Such a scheme 
may also find applications in remote fiber-optic device tuning and quasi-
distributed biochemical fiber-optic sensing. 

©2013 Optical Society of America 

OCIS codes: (060.3735) Fiber Bragg gratings; (120.4290) Nondestructive testing. 
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1. Introduction 

Active ultrasonic testing is a powerful tool for medical diagnosis, material characterization 
and structural health monitoring [1–4]. It uses ultrasonic transducers and sensors to actively 
excite the structure and, in the meantime, measure its ultrasonic response for detecting the 
presence or extent of structural defects. With permanently imbedded transducers, active 
ultrasonic testing can provide real-time, on-demand accessing with reduced cost on the 
structural health status. Currently, piezoelectric transducers (PZTs) are the option for 
embedded, distributed applications. However, PZTs are relatively bulky, susceptible to 
electromagnetic interference, and each transducer requires two electric wires for power 
supply and data transmission. These disadvantages lead to significant limitations on the 
reliability and the number of transducers that can be imbedded in a structure. These 
disadvantages can be overcome by fiber-optic transducers [2, 3, 5–7]. For embedded 
applications, optical fiber is used to deliver the optical power to the location of interest to 
induce thermoelastic expansion in the material for laser ultrasound generation. Only modest 
optical power is required to ensure the operation in the thermoelastic region for non-
destructive testing. Both single-mode fibers and multimode fiber (MMF) have been 
demonstrated for optical power delivery. 

Despite the technical advancement in fiber-optic ultrasonic transducers, nearly all the 
reported configurations can only generate ultrasound at a single location of the fiber end. Few 
attempts have been made for ultrasonic generation at multiple points of a fiber toward all-
fiber-optic ultrasonic testing system, but with limited success. The difficulty is mainly from 
the lack of a smart way to efficiently tap out the light from the fiber at selected locations. For 
example, a straightforward way is to polish the cladding area all the way to the core and 
replace with absorption coatings at selected locations of a MMF for ultrasonic generation [6]. 
In such a configuration, each of the transducers cannot be excited independently and only 
uses a portion of the laser light for ultrasonic generation, significantly limiting the number of 
transducers that can be multiplexed in a fiber and the strength of the generated ultrasound. In 
this paper, we propose and demonstrate a novel approach that can efficiently make use of the 
optical power and generate ultrasound at multiple locations along the fiber in a controllable 
manner. 

2. Principle of operation 

The approach, schematically shown in Fig. 1(a), is based on the ghost mode of a tilted fiber 
Bragg grating (TFBG) [8–10]. Besides the Bragg reflection of the core mode, a TFBG can 
convert the forward-propagating core mode to a number of back-propagating cladding modes 
at wavelengths determined by the effective refractive indices of the corresponding cladding 
modes, as illustrated in Fig. 1(b). When the tilted angle is relatively small (< 5°), the TFBG 
converts the core mode of the fiber to a group of low-order cladding modes at a wavelength 
close to the Bragg wavelength (this group of modes is usually referred to as “ghost mode” 
because its distinguished coupling strength and spectral position compared to other cladding 
mode coupling) [9]. A series of strong TFBGs are fabricated on the fiber in such a way that a 
downstream TFBG always has a longer ghost mode wavelength than the Bragg wavelength of 
the neighboring upstream TFBG, as illustrated in Fig. 1(c). Such configuration will ensure 
that the laser light can be completely tapped out of the core and into the cladding of the fiber 
only at the position of the TFBG whose ghost wavelength is the same as the laser wavelength. 
For ultrasonic generation, as shown in Fig. 1(d), a section of the fiber cladding before the 
TFBG is partially removed and replaced with laser-responsive, ultrasonic-generating 
materials, such as metal films [11], polymer composite [12], gold nanoparticles arrays [13], 
and carbon nanotube composite [14]. Because the core mode is well confined at the center of 
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the fiber while the ghost mode spread out to the whole cross-section of the fiber, as shown in 
Fig. 1(e), the cladding removal and ultrasonic-generating material can absorb the ghost mode 
with high efficiency and have little effect on the core-mode propagation. As a result, the laser 
corresponding to the wavelength of a ghost mode passes through all the upstream TFBGs 
until it reaches the TFBG of the ghost mode and is tapped out of the fiber for ultrasound 
generation at that particular location. It is clear that the number of TFBGs that can be 
multiplexed is determined by the range of the operational wavelength and the spectral 
separation of the ghost mode and the Bragg reflection mode of each TFBG. The spectral 
separation between the ghost mode and the Bragg reflection for a TFBG with small tilt angles 
is typically < 2 nm. 

 

Fig. 1. Conceptual illustration of the distributive fiber-optic laser-ultrasound generation. a, 
Schematic of the proposed system. b, Transmission spectrum of a TFBG showing the Bragg 
reflection, ghost mode and cladding mode coupling. c, Laser-ultrasound generation by the 
ghost mode tapping out of the fiber that induces thermoelastic expansion of the absorption 
layer. d, TFBG spectrum arrangement to ensure that the light power is tapped out only at 
selected locations depending on the laser wavelength. e, Numerically-simulated mode-intensity 
distributions of the four cladding modes (LP11, LP12, LP13, and LP14) that form the ghost mode 

of a 4° TFBG in a 125 µm regular single-mode fiber [9]. 

3. Experimental results 

The proposed approach was demonstrated using a set up schematically shown in Fig. 2(a). 
Using a 193 nm UV laser and phasemasks [15], three TFBGs were fabricated on regular 
single-mode fibers (SMF-28), namely BG1, BG2, and BG3, whose ghost mode wavelengths 
were located at 1544.1, 1548.9, and 1555.2 nm, respectively. Each TFBG was 5.5 mm long 
and had a tilt angle of 2°. They were connected sequentially along a fiber approximately 1 m 
apart from each other. As discussed earlier, such arrangement ensures that upstream TFBGs 
do not affect the ultrasound generation from downstream TFBGs. A short section of fiber 
approximately 5 mm long before each of BG2 and BG3 were etched with 50 w.t. % 
hydrofluoric (HF) acid to reduce the fiber diameter and facilitate the ghost mode tapping. The 
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fiber diameter was reduced to ~60 µm from 125 µm with a transient length of ~560 µm, as 
shown in Fig. 2(f). Note that the reduced fiber diameter is still much larger than the mode 

field diameter (~10.4 µm) of the core mode and does not affect its propagation. The etched 

region of the fiber was then buried into a 200 µm deep slot pre-machined on an aluminum 

plate using a mixture of fine graphite powder (−200 mesh) and epoxy resin (Duralco: 4460) 
that was subsequently cured at a temperature of 120 °C for 4 hours, as shown in Fig. 2(e). The 
cured graphite/epoxy mixture also serves as the highly absorptive material with large thermal 
expansion coefficient for efficient laser-ultrasound generation. The transmission spectrum of 
three gratings in the setup is shown in Fig. 2(c), clearly showing the wavelength positions of 
the ghost mode coupling and Bragg reflections. The spectral separation between the ghost 
mode and the Bragg reflection for each TFBG is approximately 1.7 nm. The wavelengths of 
the Bragg reflections are further confirmed by the reflection spectrum of the three TFBGs 
shown in Fig. 2(d). Two pulsed seed fiber lasers, whose wavelengths are centered at 1549.3 
and 1555.9 nm, were used for ultrasound generation at BG2 and BG3, respectively. The light 
from the seed laser were amplified by a high-power erbium-doped-fiber-amplifier (EDFA) 
before launching to the fiber. To account for the slight difference between the ghost mode 
wavelengths and the laser wavelengths, a translation stage was used for each grating to tune 
the ghost mode wavelength with the help from an optical spectrum analyzer (OSA) by 
stretching the fiber, as schematically shown in Fig. 2(b). Note that, in real applications, the 
wavelength tuning of the TFBGs may not be necessary if wavelength tunable lasers or laser 
sources whose wavelengths match the wavelengths of the ghost modes of the TFBGs are 
used. The generated ultrasound was detected by a PZT ultrasonic sensor (Panametrics V122) 
mounted underneath the buried fiber on the opposite side of the aluminum plate. The PZT 
sensor has a resonant frequency of 7.5 MHz. 

 

Fig. 2. Experimental demonstration. a,b, Schematic of the experimental setup. c, d, 
Transmission spectrum (c) and reflection spectrum (d) of the three TFBGs. e, Picture of one of 
the laser-ultrasound generation nodes. f, Picture of an etched fiber before a TFBG for tapping 
out the ghost mode. 
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Fig. 3. Laser characteristics. a, Seed laser spectrum. b, Laser pulse measured after the EDFA. 

We studied the ultrasound generation from BG3 first. The optical pulses from the 1555.9 
nm laser with a repetition rate of 3 kHz and pulse width of ~100 ns were amplified by the 
EDFA to an average optical power of 1 W before launching into the fiber. Figures 3(a) and 
3(b) show the spectrum of the seed laser measured by the OSA and the laser pulse after the 
EDFA measured by a photodetector and an oscilloscope. The energy of each of the optical 
pulses after the EDFA is estimated to be 0.33 mJ. Because the BG3 ghost mode wavelength is 
slightly shorter than the laser wavelength, the laser is transmitted through the fiber, as 
indicated by the spectrum measured at the fiber end shown in Fig. 4(a) which is similar to 
original laser spectrum shown in Fig. 3(a). Then the ghost mode wavelength was tuned to 
match the laser wavelength by stretching the fiber with the translation stage. Evidenced by the 
spectrum shown in Fig. 4(b), the laser was coupled to the ghost mode and ultrasound was 
detected with the PZT sensor. Figure 4(d) is the ultrasound signal detected by the PZT, which 
is a series of narrow ultrasonic pulses with the same repetition rate (3 kHz) of the laser pulses. 
The detail of an ultrasonic pulse is shown in Fig. 4(e) and its Fourier transform shown in Fig. 
4(f) reveals that the generated ultrasound had a broad and relatively flat spectrum below 8 
MHz. As the fiber was further stretched so that the ghost mode was longer than the laser 
wavelength, in which case the transmission spectrum of the laser is shown in Fig. 4(c), no 
ultrasound was detected. Note that, due to the high optical power of the EDFA output, an 
optical loss was intentionally introduced to the fiber link by coiling the fiber right before the 
OSA [see Fig. 2(a)] when the spectra shown in Figs. 4(a)-4(c) were measured. 

 

Fig. 4. Experimental results. a-c, Laser spectrum measured after the three TFBGs when the 
ghost mode of the BG3 was tuned to be shorter than (a), equal to (b), and longer than (c) the 
laser peak wavelength. d Ultrasonic signal pulses generated by BG3 and detected by a PZT 
sensor. Signal was averaged over 10 measurements. e, Enlarged view of an ultrasonic pulse in 
(d). e, Fourier transform of the data shown in (f). 
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To demonstrate distributive ultrasound generation, the seed laser was replaced with the 
1549.3 nm laser whose wavelength was close to the ghost mode wavelength of BG2. 
Ultrasound signal was detected by the PZT sensor at the location of BG2 when its ghost mode 
wavelength of BG2 is tuned to match the laser wavelength. The results, including the 3 kHz 
ultrasonic pulse train, the detailed view of an ultrasonic pulse, and its Fourier transform, are 
shown in Figs. 5(a), 5(b) and 5(c), respectively. They are similar to those generated from 
BG3. 

 

Fig. 5. a, Ultrasonic signal pulses generated by BG2 and detected by a PZT sensor. Signal was 
averaged over 10 measurements. b, Enlarged view of an ultrasonic pulse in (a). c, Fourier 
transform of the data shown in (b). 

4. Conclusion 

We have proposed and demonstrated a smart light tapping scheme which can only couple the 
light of a given wavelength out of the fiber and allow the light of longer wavelength pass by 
without loss. Using this light tapping scheme, we experimentally demonstrated, for the first 
time, efficient and distributive laser-ultrasound generation at multiple locations along a fiber 
in a controllable manner, which may find attractive applications in all-fiber and embedded 
ultrasonic testing system for structural health monitoring. The proposed light tapping method 
can also find applications in remote fiber device actuation [16] and distributed biochemical 
sensing [17]. 
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