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Abstract. This paper presents a data management solution which allows fast Virtual Machine (VM) instantiation and efficient run-time
execution to support VMs as execution environments in Grid computing. It is based on novel distributed file system virtualization techniques
and is unique in that: (1) it provides on-demand cross-domain access to VM state for unmodified VM monitors; (2) it enables private file
system channels for VM instantiation by secure tunneling and session-key based authentication; (3) it supports user-level and write-back
disk caches, per-application caching policies and middleware-driven consistency models; and (4) it leverages application-specific meta-data
associated with files to expedite data transfers. The paper reports on its performance in wide-area setups using VMware-based VMs. Results
show that the solution delivers performance over 30% better than native NFS and with warm caches it can bring the application-perceived
overheads below 10% compared to a local-disk setup. The solution also allows a VM with 1.6 GB virtual disk and 320 MB virtual memory
to be cloned within 160 seconds for the first clone and within 25 seconds for subsequent clones.
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1. Introduction

A fundamental goal of computational “Grids” is to allow
flexible, secure sharing of resources distributed across dif-
ferent administrative domains [1]. To realize this vision, a
key challenge that must be addressed by Grid middleware is
the provisioning of execution environments that have flexible,
customizable configurations and allow for secure execution of
untrusted code from Grid users [2]. Such environments can be
delivered by architectures that combine “classic” virtual ma-
chines (VMs) [3] and middleware for dynamic instantiation
of VM instances on a per-user basis [4]. Efficient instantiation
of VMs across distributed resources requires middleware sup-
port for transfer of large VM state files (e.g. memory, disk)
and thus poses challenges to data management infrastruc-
tures. This paper shows that a solution for efficient and se-
cure transfer of VM state across domains can be implemented
by means of extensions to a user-level distributed file system
virtualization layer.

Mechanisms that present in existing middleware can be
utilized to support this functionality by treating VM-based
computing sessions as processes to be scheduled (VM mon-
itors) and data to be transferred (VM state). In order to fully
exploit the benefits of a VM-based model of Grid comput-
ing, data management is key: without middleware support for
transfer of VM state, computation is tied to the end-resources
that have a copy of a user’s VM; without support for the trans-
fer of application data, computation is tied to the end-resources
that have local access to a user’s files. However, with appro-
priate data management support, the components of a Grid
VM computing session can be distributed across three dif-
ferent logical entities: the “state server”, which stores VM
state; the “compute server”, which provides the capability of

instantiating VMs; and the “data server”, which stores user
data (Figure 1).

The proposed VM state provisioning solution is
constructed upon a user-level distributed file system virtu-
alization layer [5] which leverages the NFS [6] de-facto
distributed file system standard and provides a basis for es-
tablishing dynamic Grid Virtual File System (GVFS) ses-
sions. GVFS extends upon the virtualization infrastructure
at the user level to support on-demand, secure and high-
performance access to Grid VM state. It leverages SSH
tunneling and session-key based cross-domain authentication
to provide private file system channels, and addresses per-
formance limitations associated with typical NFS setups in
wide-area environments (such as buffer caches with limited
storage capacity and write-through policies) by allowing for
user-level disk caching. It also supports application-driven
meta-data at the file system level to allow for data requests
being satisfied using partial- or full-file transfer selectively to
efficiently handle VM state files. These mechanisms are im-
plemented transparently to the kernels and applications, and
hence support unmodified VM technologies, such as VMware
[7], UML [8] and Xen [9], which use the file system to store
VM state.

The paper also reports on the performance of this approach
via experiments conducted with VMware-based VMs instan-
tiated in wide-area environments. Experimental results show
that it significantly improves the execution time of applica-
tions in Grid VMs compared to native NFS (the speedup is
more than 30%), and it experiences relatively small overhead
compared to VMs with locally stored state (less than 10%
with warm proxy caches). Results also show that the use of
on-demand transfer, disk caching and meta-data information
allows fast instantiation of a large VM clone (less than 160
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Figure 1. Middleware supported data management for both virtual machine state and user data allows for application-tailored VM instantiations (VM 1, VM2
and VM3) across Grid resources (compute servers C1 and C2, state servers S1 and S2, data servers D1 and D2).

seconds for the first clone and about 25 seconds for subsequent
clones), and substantially outperforms cloning via native NFS-
based data access (more than 30 minutes) and SCP-based file
transfer (more than 20 minutes).

The rest of this paper is organized as follows. Section 2
presents an introduction to GVFS. Sections 3,4 and 5 describe
the proposed GVFS extensions for cross-domain authentica-
tion and data encryption, caching and meta-data handling, re-
spectively. Section 6 discusses the integration of GVFES with
Grid VMs. Section 7 presents results from quantitative perfor-
mance analyses. Section 8 examines related work, and Section
9 concludes the paper.

2. Background

Current Grid data management solutions typically employ
file-staging techniques to transfer files between user accounts
in the absence of a common file system. File staging ap-
proaches require the user to explicitly specify the files that
need to be transferred (e.g. GridFTP [10]), or transfer entire
files at the time they are opened (e.g. GASS [11]), which may
lead to unnecessary data transfer. Data management solutions
supporting on-demand transfer for Grids have also been inves-
tigated in related work, as discussed in Section 8. However,
these solutions often require customized application libraries
and/or file servers.

Previous work has shown that a data management model
supporting cross-domain on-demand data transfers without
requiring dynamically-linked libraries or changes to either ap-
plications or native O/S file system clients and servers can be
achieved by way of two mechanisms—Iogical user accounts
[12] and a distributed virtual file system [5]. Such a distributed
virtual file system can be built through the use of a virtual-
ization layer on top of NFS, a de-facto LAN distributed file
system standard, allowing data to be transferred on-demand

between Grid storage and compute servers for the duration
of a computing session. The resulting virtual file system
utilizes user level proxies to dynamically forward data re-
quests and map between short-lived user identities allocated
by middleware on behalf of a user [13].

Although the current deployment of a virtual file system
session only leverages a single (per-user) native NFS server-
side proxy [14], the design supports connections of proxies “in
series” between a native NFS client and server. While a multi-
proxy design may introduce more overhead from processing
and forwarding RPC calls, there are important design goals
that lead to its consideration:

Additional functionality: Extensions to the protocol can
be implemented between proxies, again, without modifi-
cations to native NFS clients/servers or applications. For
example, private file system channels can be realized by
inter-proxy session-key authentication and encrypted data tun-
neling, which is explained in details in Section 3. Another
possible functionality extension is inter-proxy cooperation for
fine-grained cache coherence and consistency models.

Improved performance: The addition of a proxy at the client
side enables the caching of file system data to improve ac-
cess latency for requests that exhibit locality. For example,
Section 4 describes the use of a level of caches additional
to kernel-level memory buffers, enabled by proxy-controlled
disk caching. Other possible extensions include inter-proxy
high-speed data transfer protocols for large files (e.g. GridFTP
(10D).

Figure 2 illustrates a multi-proxy GVFES setup, where two
proxies work between the native NFS server and client co-
operatively. The server-side proxy deployed on the VM state
server S authenticates and forwards data accesses from the
shadow account shadow on the compute server C to a VM
state directory /home/vm/vmOI under the file account v on
S, and maps between the credentials of shadow and vm inside
each RPC message. If the requests come from the client-side
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Figure 2. Proxy extensions for VM state transfers. At the compute server, the VM monitor (VMM) issues system calls that are processed by the kernel

NFS client. Requests may hit in the kernel-level memory buffer cache (1); those that miss are processed by the user-level proxy (2). At the proxy, requests

that hit in the block-based disk cache (3), or in the file-based disk cache if matching stored meta-data (4), are satisfied locally; proxy misses are forwarded

as SSH-tunneled RPC calls to a remote proxy (5), which fetches data directly (for VM memory state) (6) or through the kernel NFS server (for VM disk
state) (7).

proxy directly, the server-side proxy should export the di-
rectory to shadow@C. But in this example, the connections
are forwarded via SSH tunneling, so the directory is ex-
ported to shadow@localhost. On the other hand, the client-
side proxy on C authenticates and forwards data access from
shadow @localhost to the server-side proxy, and more impor-
tantly, it implements the extensions to enable more functional-
ity and better performance. These extensions will be discussed
in details in the following sections, including private file
system channels (Section 3), client-side proxy disk caching
(Section 4) and application-specific meta-data handling (Sec-
tion 5).

3. Private file system channels
3.1. Secure data tunneling

Security is always a major concern for data provisioning
across wide-area environments. In the context of RPC-based
applications, security in communication can be provided
within or outside the RPC protocol. A key advantage of the
latter approach lies in the fact that existing RPC-based clients
and servers can be reused without modifications; it is the ap-
proach taken by GVFES.

Secure RPC-based connections can be established through
the use of TCP/IP tunneling. A tunnel allows the encapsula-
tion and encryption of datagrams at the client side, and corre-
sponding decryption and de-capsulation at the remote site. It
supports private communication channels in an application-
transparent manner. The application-transparent property of
tunneling is a key advantage of this technique and has found
wide use in applications such as Virtual Private Networks
(VPNs) and secure remote X-Windows sessions.

Tunneling of RPC-based connections can be achieved
through mechanisms such as SSL and SSH. The latter is a de-
facto standard for secure logins, and provides strong authen-
tication, data privacy and integrity for remote login sessions,

as well as tunneling of arbitrary TCP connections. GVFS
leverages the functionality of SSH to create authenticated, en-
crypted tunnels between client-side and server-side proxies.
(Tunneled GVFS connections are TCP-based. This, however,
does not prevent GVFS from supporting UDP-based kernel
clients and servers. A client-side proxy can receive RPC calls
over UDP from localhost and forward to the server-side proxy
using TCP, and the server-side proxy can receive RPC calls
over the TCP tunnel and forward to localhost using UDP.)

The use of SSH to tunnel NFS traffic has been pursued by
related efforts, such as Secure NFS [15]. A key differentiator
of GVFS from previous approaches is that private file system
sessions are established dynamically by middleware on a per-
session basis, rather than statically by a system administrator
for groups of users. Another key difference is the GVFS sup-
port for per-user identity mappings across network domains.
Per-user tunnels and user mappings are key to establishing
dynamic file system sessions in a Grid-oriented environment,
where users belong to different administrative domains. A se-
cure tunnel multiplexed by users faces the same limitations
for cross-domain authentication as NFS, since RPC-based se-
curity must be used to authenticate users within a tunnel [16].
With a secure connection and per-user file system channels,
the task of authenticating users can be independently carried
out by each private file system channel, and the task of guaran-
teeing privacy and integrity can be leveraged from the secure
connection.

3.2. Security model

GVFES private file system channels rely on existing kernel-
level services at the client (file system mounting), server (file
system exporting), user-level middleware-controlled proxies
at both client and server, and SSH tunnels established between
them. Hence, the deployment of GVFS involves the setup
of appropriate trust relationships between client, server and
middleware.
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In the GVES security model, it is assumed that the data
management middleware supports logical user accounts: it
can authenticate to a server-side “file account” and to a client-
side “shadow account” as described in [12]. The data server
administrator needs to trust Grid middleware to the extent that
it allows access to an exported directory tree to be brokered
by proxies (e.g. /home/vm/vmO1 on server S in Figure 2). In
essence, the server administrator delegates access control to
one or more exported directories to the Grid middleware. This
is a trust relationship that is similar to those found in other
Grid data deployments (e.g. GridFTP [10]). The architecture
of GVES allows kernel export definitions to be implemented
by local system administrators in a simple manner—the kernel
server exports only to the localhost, and only the directories
that should be accessible via GVFS. Users outside the local-
host cannot directly mount file systems from the kernel—only
via server-side proxies. A typical scenario, where a base home
directory for Grid users is exported through GVFS, requires
a single entry in an exports definition file.

Then, server-side proxies are responsible for authenticat-
ing accesses to those file systems exported by GVFS. This
is accomplished by means of two mechanisms. The first au-
thentication mechanism is independent from the proxy and
consists of the client machine being able to present appro-
priate credentials (an SSH key, or an X.509 certificate for
GSI-enabled SSH) to the server machine to establish a tun-
nel. Second, once the tunnel is established, it is necessary
for the server-side proxy to authenticate requests received
through it. Typically, NFS servers authenticate client requests
by checking the origin of NFS calls and only allowing those
that come from privileged ports of trusted IPs to proceed. In
the GVES setup, the originator of requests sent to the server-
side proxy is the server’s tunnel end-point. Hence, the server-
side proxy receives requests from the localhost and from non-
privileged ports and cannot authenticate the client based on
trusted IP/port information. It thus becomes necessary to im-
plement an alternative approach for inter-proxy authentication
between tunnel end-points.

The approach of this paper consists of the dynamic cre-
ation of a random session key by middleware at the time the
server-side proxy is started and its transmission over a separate
private channel to the client-side proxy. Then the client-side
proxy appends the key to each NFS procedure call, and the
server-side proxy only authenticates a coming request if it is
originated from the localhost and it has a session key that
matches the server-side proxy’s key. Hence, the use of session
keys is completely transparent to kernel clients and servers
and requires no changes to their implementations; it only ap-
plies to inter-proxy authentication between tunnel end-points.
These session keys are used for authentication, similarly to
X11/xauth, but not for encryption purposes. In the implemen-
tation, a session key is a randomly generated 128-bit string
and encapsulated in original NFS RPC messages by replac-
ing an unused credential field, so the run-time overhead of
supporting this method is very small, consisting of only en-
capsulation and decapsulation of a session key, and a simple
comparison between key values.
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The server-side proxy thus needs to trust the Grid middle-
ware security infrastructure to authenticate user credentials
and establish an encrypted tunnel, create a random session
key, and provide the key to the client-side proxy through a
separate private channel. These mechanisms can be provided
by existing Grid security infrastructure, such as Globus GSI.
Finally, the client administrator needs to trust Grid middle-
ware to the extent that it needs to allow NFS mount and un-
mount operations to be initiated by Grid middleware (pos-
sibly within a restricted set of allowed base directories, e.g.
/home/vm/vm01/* in Figure 2). In current GVFES setups, this is
implemented with the use of sudo entries for these commands.

4. Client-side proxy disk caching
4.1. Designs

Caching is a classic, successful technique to improve the per-
formance of computer systems by exploiting temporal and
spatial locality of references and providing high-bandwidth,
low-latency access to cached data. The NFS protocol allows
the results of various NFS requests to be cached by the NFS
client [16]. However, although memory caching is generally
implemented by NFS clients, disk caching is not typical. Disk
caching is especially important in the context of a wide-area
distributed file system, because the overhead of a network
transaction is high compared to that of a local I/O access.
The large storage capacity of disks implies great reduction
on capacity and conflict misses [17]. Hence complementing
the memory file system buffer with a disk cache can form an
effective cache hierarchy: Memory is used as a small but fast
first level cache, while disk works as a relatively slower but
much greater second level cache.

Disk caching in GVFS is implemented by the file system
proxy. A virtual file system can be established by a chain of
proxies, where the native O/S client-side proxy can establish
and manage disk caches, as illustrated in Figure 2. GVFES disk
caching operates at the granularity of NFS RPC calls. The
cache is generally structured in a way similar to traditional
block-based hardware designs: the disk cache contains file
banks that hold frames in which data blocks and cache tags
can be stored. Cache banks are created on the local disk by
the proxy on demand. The indexing of banks and frames is
based on a hash of the requested NFS file-handle and offset
and allows for associative lookups. The hashing function is
designed to exploit spatial locality by mapping consecutive
blocks of a file into consecutive sets of a cache bank.

GVFS proxy disk caching supports different policies for
write operations: read-only, write-through and write-back,
which can be configured by middleware for specific user and
application per file system session. Write-back caching is an
important feature in wide-area environments to hide long write
latencies. Furthermore, write-back disk caching can avoid
transfer of temporary files. After performing computing, a
user or data scheduler can remove temporary files from the
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working directory, which automatically triggers the proxy to
invalidate cached dirty data for those files. Thus when the
dirty cache contents are written back to the server, only useful
data are submitted, so that both bandwidth and time can be
effectively saved.

There are several distributed file systems that exploit the ad-
vantages of disk caching too, for example, AFS [18] transfers
and caches entire files in the client disk, and CacheFS supports
disk-based caching of NFS blocks. However, these designs re-
quire kernel support, and are not able to employ per-user or
per-application caching policies. In contrast, GVFES is unique
to support customization on a per-user/application basis [19].
For instance, the cache size and write policy can be config-
ured by user requirements/priorities, or optimized according
to the knowledge of a Grid application. A more concrete ex-
ample is enabling heterogeneous disk caching by meta-data
handling and application-tailored knowledge, which is em-
ployed to support block-based caching for VM disk state and
file-based caching for VM memory state (Section 5).

4.2. Deployment

Disk caching is beneficial to many VM technologies, includ-
ing VMware [7], UML [8] and Xen [9], where VM state (e.g.
virtual disk, memory) is stored as regular files or filesystems.
As GVES sessions are dynamically setup by middleware, disk
caches are also dynamically created and managed by proxies
on per-session basis. When a GVFS session starts, the proxy
initializes the cache with middleware configured parameters,
including cache path, size, associativity and policies. During
the session, some of the parameters, including cache write
and consistency policies, can also be reconfigured. When the
session finishes, policies implemented by Grid middleware
can drive the proxy to flush, write-back or preserve cached
contents.

Typically, kernel-level NFS clients are geared towards a
local-area environment and implement a write policy with
support for staging writes for a limited time in kernel memory
buffers. Kernel extensions to support more aggressive solu-
tions, such as long-term, high-capacity write-back buffers are
unlikely to be undertaken; NFS clients are not aware of the
existence of other potential sharing clients, thus maintaining
consistency in this scenario is difficult. The write-back proxy
cache described in this paper leverages middleware support to
implement a session-based consistency model from a higher
abstraction layer: it supports O/S signals for middleware-
controlled writing back and flushing of cache contents.

Such middleware-driven consistency is sufficient to sup-
port many Grid applications, e.g. when tasks are known to
be independent by a scheduler for high-throughput comput-
ing. This model is assumed in this paper because under a VM
management system, such as VMPlant [20] and VMware Vir-
tualCenter [21]: a VM with persistent state can be dedicated
to a single user, where aggressive read and write caching with
write delay can be used; a VM with non-persistent state can
be read-shared among users while each user has independent

redo logs, where read caching for state files and write-back
caching for redo logs can be employed. Furthermore, it is also
possible to achieve fine-grained cache coherence and consis-
tency models by implementing call back and other inter-proxy
coordination mechanisms, which are subjects of on-going in-
vestigations.

While caches of different proxies are normally indepen-
dently configured and managed, it also allows them to share
read-only cached data for improving cache utilization and hit
rates. On the other hand, a series of proxies, with indepen-
dent caches of different capacities, can be cascaded between
client and server, supporting scalability to a multi-level cache
hierarchy. For example, a two-level hierarchy with GBytes of
capacity in a node’s local disk to exploit locality of data ac-
cesses from the node, and TBytes of capacity available from
a LAN disk array server to exploit locality of data accesses
from nodes in the LAN.

5. Application-specific meta-data handling

Another extension made to GVFS is the handling of meta-data
information. The main motivation is to use middleware infor-
mation to generate meta-data for certain categories of files ac-
cording to the knowledge of Grid applications. Then, a GVFS
proxy can take advantage of the meta-data to improve data
transfer. Meta-data contains the data characteristics of the file
it is associated with, and defines a sequence of actions which
should be taken on the file when it is accessed, where each
action can be described as a command or in a script. When
the proxy receives a NFS request to a file which has meta-data
associated with, it processes the meta-data and executes the
required actions on the file accordingly. In the current imple-
mentation, the meta-data file is stored in the same directory
as the file it is associated with, and has a special filename so
that it can be easily looked up.

For example, resuming a VMware VM requires reading
the entire memory state file (typically in hundreds of MBytes).
Transferring the entire contents of this file is time-consuming;
however, with application-tailored knowledge, it can be pre-
processed to generate a meta-data file specifying which blocks
in the memory state are all zeros. Then, when the memory
state file is requested, the client-side proxy, through processing
of the meta-data, can service requests to zero-filled blocks
locally, ask for only non-zero blocks from the server, then
reconstruct the entire memory state and present it to the VM
monitor. Normally the memory state contains many zero-filled
blocks that can be filtered by this technique [22], and the traffic
on the wire can be greatly reduced while instantiating a VM.
For instance, when resuming a 512 MB-RAM Red Hat 7.3
VM which is suspended after boot-up, the client issues 65,750
NFS reads while 60,452 of them can be filtered out by this
technique.

Another example of GVFS’ meta-data handling capability
is to help the transfer of large files and enable file-based disk
caching. Inherited from the underlying NFS protocol, data
transfer in GVFS is on-demand and block-by-block based
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(typically 4 K to 32 Kbytes per block), which allows for par-
tial transfer of files. Many applications can benefit from this
property, especially when the working set of the accessed files
are considerably smaller than the original sizes of the files. For
example, accesses to the VM disk state are typically restricted
to a working set that is much smaller (<10%) than the large
disk state files. But when large files are indeed completely re-
quired by an application (e.g. when a remotely stored memory
state file is requested by VMware to resume a VM), block-
based data transfer becomes inefficient.

However, if Grid middleware can speculate in advance
which files will be entirely required based on its knowledge of
the application, it can generate meta-data for GVFS proxy to
expedite the data transfer. The actions described in the meta-
data can be “compress”, “remotely copy”, “uncompress’” and
“read locally”, which means when the referred file is accessed
by the client, instead of fetching the file block by block from
the server, the proxy will: (1) compress the file on the server
(e.g. using GZIP); (2) remotely copy the compressed file to
the client (e.g. using GSI-enabled SCP) ; (3) uncompress it
to the file cache (e.g. using GUNZIP); and (4) generate re-
sults for the request from the locally cached file. Once the
file is cached all the following requests to the file will also be
satisfied locally (Figure 2).

Hence, the proxy effectively establishes an on-demand fast
file-based data channel, which can also be secure by employ-
ing SSH tunneling for data transfer, in addition to the tradi-
tional block-based NFS data channel, and a file-based cache
which complements the block-based cache in GVFES to form a
heterogeneous disk cache. The key to the success of this tech-
nique is the proper speculation of an application’s behavior.
Grid middleware should be able to accumulate knowledge
for applications from their past behaviors and make intelli-
gent decisions based on the knowledge. For instance, since
for VMware the entire memory state file is always required
from the state server before a VM can be resumed on the
compute server, and since it is often highly compressible, the
above technique can be applied very efficiently to expedite its
transfer.

6. Integration with VM-based Grid computing

VMs can be deployed in a Grid in two different kinds of
scenarios, which pose different requirements of data manage-
ment to the distributed virtual file system. In the first sce-
nario, the Grid user is allocated a dedicated VM which has
a persistent virtual disk on the state server. It is suspended
at the current state when the user leaves and resumed when
the user comes again, while the user may or may not start
computing sessions from the same server. When the session
starts, the VM should be efficiently instantiated on the com-
pute server, and after the session finishes, the modifications
to the VM state from the user’s executions should also be
efficiently reflected on the state server. The extended GVFS
can well support this scenario in that: (1) the use of meta-data
handling can quickly restore the VM from its checkpointed
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state; (2) the on-demand block-based access pattern to the
virtual disk can avoid the large overhead incurred from down-
loading and uploading the entire virtual disk; (3) proxy disk
caches can exploit locality of references to the virtual disk
and provide high-bandwidth, low-latency accesses to cached
file blocks; (4) write-back caching can effectively hide the la-
tencies of write operations perceived by the user, which are
typically very large in a wide-area environment, and submit
the modifications when the user is off-line or the session is
idle.

In the other scenario, the state server stores a number
of non-persistent VMs for the purpose of “cloning”. These
generic VMs have application-tailored hardware and software
configurations, and when a VM is requested from a compute
server, the state server is searched against the requirements of
the desired VM. The best match is returned as the “golden”
VM, which is then “cloned” at the compute server [20]. The
cloning process entails copying the “golden” VM, restoring
it from checkpointed state, and setting up the clone with cus-
tomized configurations. After the new clone “comes to life”,
computing can start in the VM and modifications to the origi-
nal state are stored in the form of redo logs. So data manage-
ment in this scenario requires efficient transfer of the VM state
from the state server to the compute server, and also efficient
writes to the redo logs for checkpointing.

Similar to the first scenario, the extended GVFS can quickly
instantiate a VM clone by using meta-data handling for the
memory state file and on-demand block-based access to the
disk state files. Instead of copying the entire virtual disk, only
symbolic links are made to the disk state files on the compute
server. After a computation starts, the proxy disk cache can
help speedup access to the virtual disk after the cache becomes
“warm”, and write-back can help save user time for writes to
the redo logs. However, a differentiation in this scenario is
that a small set of golden VMs can be used to instantiate many
clones, e.g. for concurrent execution of a high-throughput task.
The proxy disk caches can exploit temporal locality among
cloned instances and accelerate the cloning process. On the
compute server, the cached data of memory and disk state
files from previous clones can greatly expedite new clonings
from the same golden VMs. And a second-level proxy cache
can be setup on a LAN server, as explained in Section 4.2, to
further exploit the locality of golden VMs which are cloned
to computer servers in the same local network.

7. Performance evaluation
7.1. Experimental setup

A prototype of the approach discussed in this paper has been
built upon the implementation of middleware-controlled user-
level file system proxies. The core proxy code described in
[5] has been extended to support private file system chan-
nels, client-side disk caching and meta-data handling. This
section evaluates the performance of the proposed techniques
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for supporting VMs in the Grid by analyzing the data from
experiments of a group of typical benchmarks.

Experiments are conducted in both local-area and wide-
area environments. The LAN state server is a dual-processor
1.3GHz Pentium-III cluster node with 1 GB of RAM and
18 GB of disk storage. The WAN state server is a dual-
processor 1 GHz Pentium-III cluster node with 1 GB RAM
and 45 GB disk. In Sections 7.2 and 7.3, the compute server
is a 1.1 GHz Pentium-III cluster node with 1 GB of RAM and
18 GB of SCSI disk; in Section 7.4, the compute servers are
cluster nodes which have two 2.4 GHz hyper-threaded Xeon
processors with 1.5 GB RAM and 18 GB disk each. All of
the compute servers run VMware GSX server 2.5 to support
x86-based VMs. The compute servers are connected with the
LAN state server in a 100 Mbit/s Ethernet at the University
of Florida, and connected with the WAN state server through
Abilene between Northwestern University and University of
Florida. The RTT from the computer servers to the LAN state
server is around 0.17 msec, while to the WAN state server is
around 32 msec as measured by RTTometer [23].

In the experiments on GVFS with proxy caching, the cache
is configured with 8 GByte capacity, 512 file banks and 16-
way associativity. The proxy cache prototype currently sup-
ports NFS version 2, which limits the maximum size of an
on-the-wire NFS read or write operation to 8 KB. Thus NFS
version 2 with 8 KB block size is used for GVFS when the
proxy caching is enabled. However, in the experiments on na-
tive NFS, NFS version 3 with 32 KB block size is used. Fur-
thermore, all the experiments are initially setup with “cold”
caches (both kernel buffer cache and possibly enabled proxy
disk cache) by un-mounting and re-mounting the GVFS par-
tition and flushing the proxy cache if it is used. Private file
system channels are always employed in GVFS during the
experiments.

7.2. Performance of private file system channels

Before the evaluation of GVFS’ support for Grid VM, it is
necessary to understand the performance of GVFS itself com-
pared to local-area NFS and local-disk file system. Previous
work has shown the proxy-based distributed virtual file sys-
tem performs well in comparison to native NFS in a local-area
setup [5]. Hence here the investigation focuses on the perfor-

mance of private file system channels enabled by GVFES and
the performance of GVFS in wide-area environments. Exper-
imental results shown in this subsection consider application-
perceived performance measured as elapsed execution times
for the following benchmarks:

SPECseis: a benchmark from the SPEC high-performance
group. It consists of four phases, where the first phase
generates a large trace file on disk and the last phase
involves intensive seismic processing computations. The
benchmark is tested in sequential mode with the small
dataset. It models a scientific application that is both
I/O-intensive and compute-intensive.

LaTeX: a benchmark designed to model an interactive doc-
ument processing session. Itis based on the generation of
a PDF (Portable Document File) version of a 190-page
document edited by LaTeX. It runs the “latex”, “bib-
tex” and “dvipdf” programs in sequence and iterates 20
times, where each time a different version of one of the
LaTeX input files is used.

These benchmarks are executed on the compute servers
in various environments, where the working directories are
either stored on local disks or mounted from the remote LAN
or WAN state servers. To investigate the overhead incurred
by private file system channels, in the LAN environment the
performance of native NFS (LAN/N) is compared with GVFS
(LAN/G) without proxy caches. Experiments conducted in
the WAN environment must use GVFS to ensure data privacy
and passing firewalls, but the performance of GVFS without
proxy caches (WAN/G) and with caches (WAN/GC) are both
measured against the performance of the local disk (Local), so
as to investigate the overhead of GVFS and the performance
improvement achieved by proxy caches.

The experiment results are summarized in Table 1. Con-
sider the execution of the LaTeX benchmark. In the LAN sce-
narios, the overhead of private file system channels (LAN/N
vs. LAN/G) is large at the beginning but is substantially re-
duced once the kernel buffer cache holds the working dataset.
(The overhead of GVFS here consists of the overhead incurred
by SSH tunneling and proxy processing of RPC calls, but for a
relatively fast server, the latter is considerably small [5].) The
results also show that the kernel buffer cache alone is not suffi-
cient to lower WAN execution time of the LaTeX benchmark

Table 1
GVES overheads for LaTeX and SPECseis benchmarks. The overhead data are calculated by comparing the execution times of the benchmarks in
different scenarios: Local disk (Local), LAN on NFS (LAN/N), LAN on GVFS (LAN/G), WAN on GVES without proxy caches (WAN/G) and with
proxy caches (WAN/GC). For LaTeX benchmark, the comparisons for the execution time of the first iteration, the average execution time of the second
to the twentieth iterations and the total execution time are listed. For SPECseis benchmark, the comparisons for the execution time of the first phase,
the fourth phase and the total are listed. For both benchmarks, in the WAN/GC scenario the write-back cached data are submitted to server after the
executions and the time is summed into the total execution time.

LaTeX SPECseis
Overhead 1st run (%) 2nd-20th run (%) Total (%) Phase 1 (%) Phase 4 (%) Total (%)
LAN/G vs. LAN/N 124 7 13 47 0 9
WAN/G vs. Local 797 180 215 1500 1 265
WAN/GC vs. Local 691 17 60 24 0 26
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in WAN/G, but the proxy cache can remarkably reduce the
overhead to 17% in WAN/GC compared to Local. Two fac-
tors allow the combination of kernel buffer and proxy caches
to outperform a solution with kernel buffer only. First, a larger
storage capacity; second, the implementation of a write-back
policy that allows write hits to complete without contacting
the server.

For the execution of the SPECseis benchmark, the
compute-intensive phase (phase 4) as expected achieves very
close performance in all scenarios, but the performance of
the I/O-intensive phase (phase 1) differentiates very much. It
is reasonable to see the overhead of private file system chan-
nels becomes larger as more network communication requires
more time for SSH tunneling. The overhead is especially large
in WAN/G due to much higher network latency in the wide-
area environment; however in WAN/GC the proxy cache effec-
tively hides the latency and significantly reduces the overhead
to 24% relative to Local. Besides, the write-back caching also
helps to improve performance by avoiding transfer of tempo-
rary data to server. In fact, the benchmark generates hundreds
of MBytes of data in the working directory during its calcu-
lations, while only tens of MBytes are the required results.
The dirty cache contents are written back to the server after
the execution and the time is summed into the total execution
time of WAN/GC which is less than tenth of that of WAN/G.

In overall, the performance of GVFS’ private file system
sessions is close to NFS in LAN within 10% for both bench-
marks, and with the help from proxy caches the overhead in
WAN is within 20% for the LaTeX benchmark and within
30% for the SPECseis benchmark relative to the local-disk
file system. Based on these observations, the following sub-
sections focus on the performance of GVFS’ support for VMs
in Grid environments.

7.3. Performance of application execution within VMs

This subsection employs the same two benchmarks introduced
in the previous subsection. The LaTeX benchmark is used
to study a scenario where users interact with a VM to cus-
tomize an execution environment for an application that can
then be “cloned” by other users for execution [20]. In this
environment, it is important that interactive sessions for VM
setup show good response times to the Grid users. SPECseis is
used to study the performance of an application that exhibits
a mix of compute-intensive and I/O-intensive phases. In addi-
tion, a third benchmark is used to evaluate the performance of
applications executing on GVFS-mounted VM environments:

Kernel compilation: a benchmark that represents file
system usage in a software development environment,
similar to the Andrew benchmark [24]. The kernel is a
Linux 2.4.18 with the default configurations in a Red Hat
7.3 Workstation deployment, and the compilation con-
sists of four major steps, “make dep”, “make bzImage”,
“make modules” and “make modules_install”’, which in-
volve substantial reads and writes on a large number of
files.
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Figure 3. SPECseis benchmark execution times. The results show the run-
times for each execution phase in various scenarios.

The execution times of the above benchmarks withina VM,
which has 512 MB RAM and 2 GB disk (in VMware plain disk
mode [25]), installed with Linux Red Hat 7.3, the benchmark
applications and their data sets, are measured in the following
four different scenarios:

Local: The VM state files are stored in a local-disk file
system.

LAN/G: The VM state files are stored in a directory
mounted from the LAN state server via GVFS without
proxy caches.

WAN/G: The VM state files are stored in a directory
mounted from the WAN state server via GVES without
proxy caches.

WAN/GC: The VM state files are stored in a directory
mounted from the WAN state server via GVFS with
proxy caches.

Figure 3 shows the execution times for the four phases of
the SPECseis benchmark. The performance of the compute-
intensive part (phase 4) is within a 10% range across all sce-
narios. The results of the I/O intensive part (phase 1), however,
shows a large difference between the WAN/G and WAN/GC
scenarios—the latter is faster by a factor of 2.1. The benefit
of a write-back policy is evident in the phase 1, where a large
file that is used as an input to the following phases is created.
The proxy cache also brings down the total execution time by
33 percent in the wide-area environment.

The LaTeX benchmark results in Figure 4 show that in the
wide-area environment interactive users would experience a
start-up latency of 225.67 seconds (WAN/G) or 217.33 sec-
onds (WAN/GC). This overhead is substantial when compared
to Local and LAN, which execute the first iteration in about
12 seconds. Nonetheless, the start-up overhead in these sce-
narios is much smaller than what one would experience if the
entire VM state has to be downloaded from the state server at
the beginning of a session (2818 seconds). During subsequent
iterations, the kernel buffer can help to reduce the average re-
sponse time for WAN/G to about 20 seconds. The proxy disk
cache can further improve it for WAN/GC to very close to
Local (8% slower) and LAN/G (6% slower), and 54% faster
than WAN/G. The time needed to submit cached dirty blocks
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Figure 4. LaTeX benchmark execution times in various scenarios. The run-
times of the first run, the average runtimes of the following 19 runs, and the
total runtimes are listed.
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Figure 5. Kernel compilation benchmark execution times in various scenar-
i0s. The results show the runtimes for four different phases in two consecutive
runs of the benchmark.

is around 160 seconds, which is also much shorter than the
uploading time (4633 seconds) of the entire VM state.

Experimental results from the kernel compilation bench-
mark are illustrated in Figure 5. The first run of the benchmark
in the WAN/GC scenario which begins with “cold” caches
shows an 84% overhead compared to that of the Local sce-
nario. However, for the second run, the “warm” caches help
to bring the overhead down to 9%. And compared to the sec-
ond run of the LAN scenario, it is less than 4% slower. The
availability of the proxy cache allows WAN/GC to outper-
form WAN/G by more than 30 percent. As in the LaTeX case,
the data show that the overhead experienced in an environ-
ment where program binaries and/or datasets are partially re-
used across iterations (e.g. in application development envi-
ronments), the response times of the WAN-mounted virtual
file system are acceptable.

7.4. Performance of VM cloning

Another benchmark is designed to investigate the performance
of VM cloning under GVFS. The cloning scheme is as dis-
cussed in Section 6, which includes copying the configuration
file, copying the memory state file, building symbolic links to

the disk state files, configuring the clone, and at last resuming
the new VM. The execution time of the benchmark is also
measured in five different scenarios:

Local: The VM state files are stored in a local-disk file
system.

WAN-SI1: The VM state files are stored in a directory
mounted from the WAN state server via GVFS. During
the experiment, a single VM is cloned eight times to the
compute server sequentially. The clonings are supported
by GVFES with all extensions, including private file sys-
tem channel, proxy disk caching and meta-data handling.
It is designed to evaluate the performance when there is
temporal locality among clonings.

WAN-S2: The setup is the same as WAN-S1 except that
eight different VMs are each cloned once to the com-
puter server sequentially. It is designed to evaluate the
performance when there is no locality among clonings.

WAN-S3: The setup is the same as WAN-S2 except that
a LAN server provides second-level proxy disk cache
to the compute server. Eight different VMs are cloned,
which are new to the compute server, but are pre-cached
on the LAN server due to previous clones for other com-
puter servers in the same LAN. This setup is designed to
model a scenario where there is temporal locality among
the VMs cloned to compute servers in the same LAN.

WAN-P: The VM state files are stored in a directory
mounted via GVFS from the WAN state server to eight
computer servers, which are eight nodes of a cluster. In
the experiment, eight VMs are cloned to the compute
servers in parallel.

Figure 6 shows the cloning times for a sequence of VMs
which have 320 MB of virtual memory and 1.6 GB of virtual
disk. In comparison with the range of GVFS-based cloning
times shown in the figure, if the VM is cloned using SCP
for full file copying, it takes approximately twenty minutes
to transfer the entire state. If the VM state is not copied but
read from a native NFS-mounted directory, the cloning takes
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Figure 6. The times for a sequence of VM clonings (from 1 to 8). Each
cloned VM has 320 MB of virtual memory and 1.6 GB of virtual disk. The
results show the VM cloning times in different scenarios.
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Table 2
Total time of cloning eight VMs in WAN-S1 and WAN-P
when the caches (kernel buffer cache, proxy block-based
cache and proxy file-based cache) are cold and warm.

Total time when
caches are warm

Total time when
caches are cold

WAN-S1
WAN-P

1056 seconds
150.3 seconds

200 seconds
32 seconds

more than half an hour because the block-based transfer of the
memory state file is very slow. However, the enhanced GVFS
with proxy disk caches and meta-data support to compress
(using GZIP) and transfer (using SCP) the VM’s memory
state can greatly speed up the cloning process to within 160
seconds. Furthermore, if there is temporal locality of access to
the memory and disk state files among the clones, the proposed
solution even allows the cloning to be performed within 25
seconds if data are cached on local disks or within 80 seconds
if data are cached on a LAN server.

Table 2 compares sequential cloning with parallel cloning.
In the experiment of WAN-P, the eight compute servers share a
single state server and server-side GVFS proxy. But when the
eight clonings start in parallel, each client-side GVFS proxy
spawns a file-based data channel to fetch the memory state file
on demand. The speedup from parallel cloning versus sequen-
tial cloning is more than 700% when the caches are cold and
more than 600% when the caches are warm. Compared with
the average time to clone a single VM in the sequential case,
the total time for cloning eight VMs in parallel is 14% longer
with cold caches and 24% longer with warm caches, which
implies GVFS’ support for VM cloning can scale to parallel
cloning of large number of VMs very well. In both scenar-
ios, the support from GVFS is on-demand and transparent to
user and VM monitor. And, as demonstrated in Section 7.3,
following a VM’s instantiation via cloning, GVFS can also
improve its run-time performance substantially.

8. Related work

Data management solutions such as GridFTP [10] and GASS
[11] provide APIs upon which applications can be pro-
grammed to access data on the Grid. Legion [26] employs a
modified NFS server to provide access to a remote file system.
The Condor system [27] and Kangaroo [28] implement system
call interception by means of either static or dynamic library
linking to allow remote I/O. NeST [29] is a Grid storage ap-
pliance that supports only a restricted subset and anonymous
accesses of the NFS protocol, and it does not integrate with un-
modified O/S NFS clients. In contrast to these approaches, the
solution of this paper allows unmodified applications to access
Grid data using conventional operating system clients/servers,
and supports legacy applications at the binary level. Previous
effort on the UFO [30] and recently, Parrot file system [31],
leverage system call tracing to allow applications to access
remote files, but they require low-level process tracing capa-
bilities that are complex to implement and highly O/S depen-
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dent, and cannot support non-POSIX compliant operations
(e.g. setuid).

The self-certifying file system (SFS [32]) is another exam-
ple of a file system that uses proxies to forward NFS protocol
calls and implement cross-domain authentication and encryp-
tion. The approach of this paper differs from SFS in that it
employs dynamically-created per-user file system proxies, al-
lowing for middleware-controlled caching policies (e.g. write-
back vs. write-through) on a per-user basis, and the setup of
multiple levels of proxy caching. In contrast, SFS employs a
single proxy server for multiple users.

GVEFS uses SSH (or GSI-SSH) for the creation of encrypted
tunnels rather than a customized algorithm. Implementations
of SSH-based NFS tunnels have been pursued by the Secure
NFS project [15]. But such tunnels are created statically by
system administrators and are multiplexed by several users,
while GVFS is capable of establishing dynamic private file
system channels on a per-user basis.

There are related kernel-level DFS solutions that exploit the
advantages of disk caching and aggressive caching. For ex-
ample, AFS [18] transfers and caches entire files in the client
disk, CacheFS supports disk-based caching of NFS blocks,
and NFS V4 [33] protocol includes provisions for aggressive
caching. However, these designs require kernel support, are
not able to employ per-user or per-application caching poli-
cies, and are not widely deployed in Grid setups. In contrast,
GVEFS supports per-user/application based customization for
caching, and leverages the implementations of NFS V2 and
V3, which are conveniently available for a wide variety of
platforms.

A related project [22] has investigated the optimizations on
the migration of VMs, possibly across low-bandwidth links;
[34] proposes a system that delivers virtual desktops to per-
sonal computer users via cache-based system management
model. Common between their approaches and this paper
are mechanisms supporting on-demand block transfers and
VMM-tailored disk caches. The work presented in [35] also
introduces techniques for low overhead live migration of VMs
in LAN environments. In contrast to these approaches, the data
management solution of this paper supports efficient instan-
tiation of VMs in cross-domain wide-area environments, and
the techniques are applicable to any VM technology that uses
file systems to store VM state.

9. Conclusions

Grid computing with classic virtual machines promises the
capability of provisioning a secure and highly flexible com-
puting environment for its users. To achieve this goal, it is
important that Grid middleware provides efficient data man-
agement service for VMs—for both VM state and user data.
This paper shows user-level techniques that build on top of
de-facto distributed file system implementations can provide
an efficient framework for this purpose. These techniques can
be applied to VMs of different kinds, so long as the VM mon-
itor allows for VM state to be stored in file systems that can
be mounted via NFS.
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GVFES provides private file system channels for VM in-
stantiation and leverages proxy disk caching to improve on
the performance. Experimental results show that with “warm”
caches the overhead of running applications inside VMs which
are instantiated over a WAN via GVES is relatively small
compared to VMs stored on a local-disk file system. Results
also show that the use of on-demand transfers and meta-data
information allows instantiation of a 320 MB-RAM/1.6GB-
disk Linux VM clone in less than 160 seconds for the first
clone and less than 25 seconds for subsequent clones, consid-
erably outperforming the cloning based on either transfer of
entire VM state or native NFS-based state access.
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