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ABSTRACT Swarm of drones, as an intensely significant category of swarm robots, is widely used in various

fields, e.g., search and rescue, detection missions, military, etc. Because of the limitation of computing

resource of drones, dealing with computation-intensive tasks locally is difficult. Hence, the cloud-based

computation offloading is widely adopted, nevertheless, for some latency-sensitive tasks, e.g., object recog-

nition, path planning, etc., the cloud-based manner is inappropriate due to the excessive delay. Even in some

harsh environments, e.g., disaster area, battlefield, etc., there is no wireless infrastructure existed to combine

the drones and cloud center. Thus, to solve the problem encountered by cloud-based computation offloading,

in this paper, Fog Computing aided Swarm of Drones (FCSD) architecture is proposed. Considering the

uncertainty factors in harsh environments which may threaten the success of FCSD processing tasks, not

only the latency model, but also the reliability model of FCSD is constructed to guarantee the high reliability

of task completion. Moreover, in view of the limited battery life of the drone, we formulated the problem

as the task allocation problem which minimized the energy consumption of FCSD under the constraints

of latency and reliability. Furthermore, to speed up the process of the optimization problem solving to

improve the practicality, relying on the recent advances in distributed convex optimization, we develop a

fast Proximal Jacobi Alternating Direction Method of Multipliers (ADMM) based distributed algorithm.

Finally, simulation results validate the effectiveness of our proposed scheme.

INDEX TERMS Swarm of drones, distributed fog computing, latency, reliability, energy consumption.

I. INTRODUCTION

Swarm of drones, which consists of several small and low-

cost drones, has drawn great attention both of academia and

industry, especially in military [1]. Through working collab-

oratively, drones swarm has demonstrated great capabilities,

and gained significant advantages in some tasks which are

difficult for single large drone to accomplish. Thanks to the

low-cost and superior performance characteristics, swarm of

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiankang Zhang .

drones has been used in various fields, e.g., military, search-

and-rescue, intelligent agriculture, etc [2]–[9].

Most of the tasks that the drones swarm need to

cope are computation-intensive, e.g., topographic mapping,

object recognition, etc [10]. Nevertheless, the limitations of

resources (e.g., battery life, computing capability, etc.) that

a single low-cost drone equipped limit its ability to handle

the tasks alone [11]. Therefore, to deal with the computation-

intensive tasks, the cloud-based computation offloading is

widely adopted [12]. Through offloading the computation-

intensive tasks to the remote cloud server, the computing

results will be obtained. For the tasks which are insensitive
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to the latency, the cloud-based working manner is intensely

appropriate, but in practice, quite a few taskswhich the drones

need to process are sensitive to latency, e.g., dynamic object

recognition, emergency obstacle avoidance, etc. However,

because of the long distance between the cloud server and

the drones, the cloud-based approachmay cause the excessive

delay. Even in some harsh environments, e.g., disaster area,

battlefield, etc., there is no available wireless infrastructure to

combine drones with a cloud server. Hence, the cloud-based

computation offloading is unsuitable for latency-sensitive

tasks.

Fog computing [13]–[15], which extends the computing

service closer to the users, motivates us to introduce it into

swarm of drones to make up the shortcomings of cloud com-

puting in dealing with latency-sensitive services. The drones

which are close to the task initiator drone are thought to be fog

computing nodes to complete the computing task collabora-

tively for reducing the latency. Besides, in practice, swarm of

drones usually works in harsh environments, and inevitable

disturbances (e.g., hardware damage, software breakdown,

communication link failure, etc.) are likely to result in the

failure of the tasks. Hence, besides considering the latency

guarantee, a proper reliability-guarantee mechanism is espe-

cially needed. Nevertheless, most researches about task allo-

cation among drones swarm are focusing on non-real-time

tasks [16]–[22], and there lacks full knowledge on the task

allocation which both considering the latency and reliability

[23]. Otherwise, although the energy consumption of drone

is mostly caused by the movements, the energy consumption

of processing continuous computing tasks cannot be ignored.

Hence, considering the limited battery capacity of drones,

the energy consumption both of computing and communica-

tion in dealing with computing tasks to which should be paid

attention.

Therefore, in this paper, focusing on the latency and relia-

bility sensitive computing tasks, we introduce fog comput-

ing into swarm of drones, and construct a task allocation

optimization problem which jointly considering the latency,

reliability and energy consumption, in order to minimize the

energy consumption of the swarm of drones when the latency

and reliability requirements are met. Considering the strin-

gent latency requirements of the latency and reliability sensi-

tive tasks, a fast and efficient algorithm is intensely needed.

Therefore, benefit by the recent advances in distributed con-

vex optimization, a fast Proximal Jacobi Alternating Direc-

tion Method of Multipliers (ADMM) based distributed task

allocation algorithm is proposed, which decompose the opti-

mization problem into several subproblems, and each drone

can solve the subproblem using their local status information

separately. Furthermore, we compare it with the centralized

convex optimization algorithm and the heuristic algorithm

proposed in our conference version, i.e., latency and relia-

bility constrained minimum energy consumption algorithm

based on genetic algorithm (LRGA-MIE) [24].

In summary, the main contributions of this paper are as

follows:

• To enhance the capability of drones swarm handling the

computation-intensive tasks, the Fog Computing aided

Swarm of Drones (FCSD) architecture is proposed,

which makes up for the shortcomings of cloud-based

computation offloading in processing latency and reli-

ability sensitive tasks of drones swarm.

• Focusing on the latency and reliability sensitive tasks,

we construct a task allocation optimization problem

which jointly considering the latency, reliability and

energy consumption. Moreover, to solve the formu-

lated problem fastly and efficiently, a Proximal Jacobi

ADMM based distributed task allocation algorithm is

designed.

• Extensive simulations show that the proposed distributed

algorithm is beneficial in terms of global opti-

mization capability, expansibility, convergence rate,

etc., in comparison to the state-of-the-art algorithms,

e.g., centralized convex optimization algorithm,

LRGA-MIE algorithm, dual decomposition algo-

rithm, etc.

The rest of the paper is organized as follows. In section II

we present the related work. Section III presents the system

model and problem formulation. Section IV demonstrates the

algorithm design in detail. The simulation results are given in

Section V. Finally, we conclude the paper in Section VI.

II. RELATED WORK

The task allocation problem among swarm of drones has been

explored extensively with different situations.

Fu et al. [17] analyzed the task allocation problem among

drones swarm under the limitation of communication band-

width and proposed a BW-ACCBBA algorithm to conduct

task assignment with fewer overall messages passed in the

network. Tang et al. [25] studied the task allocation problem

among drones swarm in uncertain circumstances and con-

structed a collaborative task assignment mechanism both uti-

lizing the advantages of centralized algorithm and distributed

algorithm. Kopeikin et al. [26] proposed a task allocation

mechanism with communication control to utilize the under-

utilized drones to play a role as a relay nodes to help the

network support the services. Fu et al. [27] comprehensively

considered the security of the drones, both of the collisions

among drones swarm, network attacks and sudden prob-

lems, and proposed the corresponding methods to conduct

the drones swarm task allocation, and the authors do several

real physical flying experiments invalidate the effectiveness

of their method. Cui et al. [28] considered the requirements

of quality of service (QoS) among drones, and proposed a

dynamic task allocation model with the principle of inter-

mittent asynchronous communication to achieve the tasks

with lower communication overhead. However, to the best

of our knowledge, there is no research existed which both

considering the latency and reliability.

Furthermore, various algorithms have been researched to

solve the task allocation problem among drones swarm,
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which can be classified into centralized algorithms and dis-

tributed algorithms.

Centralized algorithms mainly include convex optimiza-

tion algorithm, heuristic algorithms, swarm intelligence

algorithm. Among them, the basic method is the centralized

convex optimization, the authors in [29], [30] proposed a

mixed integer linear programming (MILP) based algorithm

to obtain the global optimal task allocation scheme but with

poor scalability and low search speed. To get an accept-

able solution with fast speed, heuristic algorithms have been

explored. Gao et al. [31] formulated the task allocation prob-

lem among multiple drones into multi-objective optimization

problem, and proposed particle swarm optimization to solve

it. Zhao et al. [32] and Li et al. [33] introduced the ant algo-

rithm to solve the task allocation problem. Zhao et al. [34]

designed an improved K-means clustering algorithm of simu-

lated annealing algorithm, which makes the task assignments

of drones swarm balanced. Chen et al. [35] introduced the

genetic algorithm into the task allocation problem of multiple

drones. Nevertheless, although the heuristic algorithms are

with relatively fast speed and high scalability, but the results

are near-optimal and cannot give the concrete gap between the

final result and the optimal solution. In addition, the heuristic

algorithms are easily falling into the local optimum, which is

a troublesome issue to solve.

The research on distributed algorithm is relatively fewer

than that of centralized algorithm. Jošilo et al. [36] devel-

oped a decentralized algorithm for task allocation among

multiple fog computing nodes based on game theory.

Capitan et al. [37] proposed a decentralized mechanism for

multiple drones cooperation based on partially observable

Markov decision processes. Zhao et al. [38] introduced a

distributed heuristic task allocation algorithm, and the simu-

lation results validate that the designed method can achieve

excellent performance compared with the consensus-based

bundle algorithm. However, these algorithms either converge

slowly or cannot guarantee the convergence to the optimal

solution. For the latency and reliability sensitive tasks we

focused, the existing algorithms are not suitable.

III. SYSTEM MODEL AND PROBLEM FORMULATION

To improve the capability of drones swarm handling the

computation-intensive tasks, the FCSD architecture is pro-

posed, which aims to make up for the shortcomings of the

cloud-based computation offloading in coping with latency

and reliability sensitive tasks. The architecture of FCSD is

shown in Fig. 1.

The drone dr0 has a computing taskΨ0 , {D0, α0,T0,R0},

where D0 denotes the input size of the total task; T0 and R0
represent the latency and the reliability constraints, respec-

tively. We denote by E0 the total required amount CPU

cycles to complete the task Ψ0. The number of CPU cycles

E0 is modeled as E0 = α0D0 , where α0(α0 > 0)

depends on the computational complexity of the task [39].

The drone dr0 requests nearby drones dri that can serve

as the fog nodes to complete the task Ψ0 collabora-

FIGURE 1. The architecture of Fog Computing aided Swarm of Drones
(FCSD).

tively. These drones available nearby, denoted by a set

D = {dr1, dr2, . . . , drN }, are equipped with storage and

computation resources. We denote by f0 the CPU fre-

quency of the drone dr0. Similarly, the CPU frequency

of the drones available nearby, denoted by a set F =

{f1, f2, . . . , fN }. The coordinate of the drone dr0 is (x0, y0, z0).

The C = {(x1, y1, z1), (x2, y2, z2), · · · , (xN , yN , zN )} are the

three-dimensional coordinates of the drones available nearby,

respectively.

According to [40], the distance between the drone dri ∈ D

and the drone dr0 can be given by

g0,i = [(x0 − xi)
2 + (y0 − yi)

2 + (z0 − zi)
2]

1
2 , g0,i ≤ r,

(1)

where r is the maximum communication radius of individual

drones.

According to [41], [42], the uplink rate from dr0 to dri can

be given as

RUL(0, i) = WUL log2

(

1 +
PTx

(

g0,i
−γ |h0|

)

N0

)

, (2)

where WUL represents the uplink bandwidths between the

drone dr0 and dri; PTx denotes the transmission power of

the drone dr0; γ is the path loss exponent which ranges from

2 ≤ γ ≤ 5; h0 is the complex Gaussian channel coefficient

which follows the complex normal distribution CN(0,1); N0

is the additive white Gaussian noise(AWGN).

In FCSD, the task Ψ0 will be divided into several subtasks

and assigned to multiple drones. In practice, how to divide

the task depends not only on the structure of the task, but also

on the requirements, which deserves further study. Hence, for

simplicity, it can be assumed that task Ψ0 can be divided into

arbitrary proportions with arbitrary precision and there is no

overlap existed between any two subtasks, according to [23].

We denote by ρ (0 ≤ ρ ≤ 1) the offloading coefficient,

therefore, the part of the task Ψ0 which need to be executed

locally by drone dr0, can be described as ρΨ0, and the part

of the task which need to be offloaded to the drones available

nearby is (1 − ρ) Ψ0. Then, we denote the subtask offloaded
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to the drone dri as λi(1 − ρ)Ψ0, where λi ∈ [0, 1], and
N
∑

i=1

λi = 1. We denote by λ = [λ1, λ2, . . . , λN ]
T the task

allocation vector.

According to the optimal task allocation scheme, the drone

dr0 and the drones dri ∈ D are orchestrated to perform

distributed computing to complete the task Ψ0 collabora-

tively. Note that the flying speeds of the low-cost drones

are relatively slow, and the relative positions of them are

relatively stable, instead of constantly changing [43], and

meantime, the tasks which we studied is latency-sensitive,

which is in general processed within a ultra-low duration.

Hence, the status of the entire drones swarm will not change,

during the extremely short slot from the task initiation to the

completion of the task processing. Furthermore, it is reason-

able to neglect the impact of the dynamics of the environment

on our proposed scheme.

A. LATENCY MODEL

We denote TLocal as the latency of the drone dr0 dealing with

the subtask ρΨ0 locally, which can be represented by

TLocal =
ρα0D0

f0
. (3)

When the drone dr0 offloads the subtask λi(1 − ρ)Ψ0

to the drone dri, the size of the transmitted data will be

βλi(1 − ρ)D0, where β (β ≥ 1) represents a ratio of the

transmitted data size to the original task data size due to

transmission overhead [39]. Thus, the transmission latency of

the subtask from the drone dr0 to the drone dri can be given

by

Ti
UL =

βλi(1 − ρ)D0

RUL(0, i)
. (4)

And the computation latency of the subtask addressed on the

drone dri is expressed as

Ti
Comp =

α0λi(1 − ρ)D0

fi
. (5)

According to [44], due to the fact that for many applica-

tions (e.g., object recognition), the size of the computation

result is much smaller than the size of input data, the trans-

mission latency for the drones to send the computation result

back to the initiator drone dr0 is neglected in general. Hence,

the total execution latency of the subtask completed on the

drone dri can be denoted by

Ti = TUL
i + T

Comp
i

=
βλi(1 − ρ)D0

RUL(0, i)
+

α0λi(1 − ρ)D0

fi
. (6)

Therefore, the total execution latency of the task Ψ0 can be

described as

TTotal = max
i∈N

{TLocal,Ti}

= max
i∈N

{

ρα0D0

f0
,
βλi(1 − ρ)D0

RUL(0, i)
+

α0λi(1 − ρ)D0

fi

}

.

(7)

To meet the latency requirement of the task Ψ0,

the total execution latency TTotal should meet the constraint

TTotal ≤ T0.

B. RELIABILITY MODEL

Considering the various disturbances that the drones swarm

might encounter in its working environment, which may

result in the failure of the task, reliability is a significant

indicator to which must be paid attention.

According to the widely accepted reliability model pro-

posed by Shatz [45], the system reliability is that ‘‘ the

product of the probability that each processor is operational

during the time of processing the tasks assigned to it, and

the probability that each communication link is operational

during the period of the data transmission.’’ The failures of the

drones and communication links follow the Poisson process

[45], further, the failure rates of the drone dr0 and dri are

denoted as ν0 and νi, respectively, and the failure rate of

the communication links between dr0 and dri is denoted as

µ0,i. Therefore, the computation reliability of the drone dr0

and dri can be represented as e
−νi

ρα0D0
f0 and e

−νi
λi(1−ρ)α0D0

fi ,

respectively. And the communication reliability between dr0

and dri can be represented as e
−µ0,i

λi(1−ρ)βD0

RUL(0,i) . The reliability

of the subtask which executed locally can be represented as

RLocal = e
−ν0

ρα0D0
f0 . (8)

Then, the reliability of the subtask which distributed to the

drone dri can be represented as

Ri = e
−νi

λi(1−ρ)α0D0
fi

−µ0,i
λi(1−ρ)βD0

RUL(0,i) . (9)

Therefore, the reliability of the swarm of drones during the

execution time of the task Ψ0 can be given by

RTotal = RLocal

N
∏

i=1

Ri

= e
−ν0

ρα0D0
f0

+
N
∑

i=1

(

−νi
λi(1−ρ)α0D0

fi
−µ0,i

λi(1−ρ)βD0

RUL(0,i)

)

. (10)

To meet the reliability requirement of the task Ψ0, the total

reliability RTotal should meet the constraint RTotal ≥ R0.

C. ENERGY CONSUMPTION MODEL

Flight endurance is the bottleneck of swarm of drones,

although the energy consumption of drone is mainly caused

by the movements, the energy consumption caused by contin-

uous computing tasks processing should also be concerned.

Thus, in this paper, we established the energy consumption

model both considering the computing and the communica-

tion of FCSD in dealing with a single computing task, so as

to minimize the energy consumption as far as possible on the

premise of ensuring the latency and reliability requirements

of the task.
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1) COMPUTATIONAL ENERGY CONSUMPTION

The computational energy consumption of the drone dr0 and

dri can be given by

E
Comp
Local = kf σ

0 T
Local, (11)

and

E
Comp
i = kf σ

i T
Comp
i , (12)

respectively, where kf σ
0 and kf σ

i are the computation power

of the drone dr0 and dri. According to [46], the k > 0 and the

σ ≥ 2 (which usually close to 3), are the positive constant.

As in [47], the k and the σ can be set as 1.25 × 10−26 and 3,

respectively.

Therefore, the total computational energy consumption of

swarm of drones is represented as

E
Comp
Total = kf σ

0 TLocal +

N
∑

i=1

kf σ
i T

Comp
i

= kf σ
0

ρα0D0

f0
+

N
∑

i=1

kf σ
i

α0λi(1 − ρ)D0

fi
. (13)

2) TRANSMISSION ENERGY CONSUMPTION

The transmission energy consumption of drone dr0 and drone

dri can be given by

ETrans
Local = PTxT

UL
i , (14)

and

ETrans
i = PRxT

UL
i , (15)

respectively, where PTx and PRx denote the transmitting and

receiving power of drone dr0 and dri, respectively, which are

regarded as constant [47]. Therefore, the total transmission

energy consumption of the FCSD system can be given by

ETrans
Total =

N
∑

i=1

ETrans
Local +

N
∑

i=1

ETrans
i

=

N
∑

i=1

PTR
βλi(1 − ρ)D0

RUL(0, i)
+

N
∑

i=1

PSR
βλi(1 − ρ)D0

RUL(0, i)
.

(16)

In summary, the total energy consumption of swarm of

drones can be represented as

ETotal = E
Comp
Total + ETrans

Total

= kf σ
0

ρα0D0

f0
+

N
∑

i=1

kf σ
i

α0λi(1 − ρ)D0

fi

+

N
∑

i=1

PTx
βλi(1 − ρ)D0

RUL(0, i)
+

N
∑

i=1

PRx
βλi(1 − ρ)D0

RUL(0, i)
.

(17)

D. PROBLEM FORMULATION

To sum up, a problem to minimize the energy consumption of

FCSDwithin latency and reliability constraints, is modeled as

follows:

P1 : min
ρ,λ

ETotal (18)

s.t. ρ +

N
∑

i=1

λi(1 − ρ) = 1, (19a)

TTotal ≤ T0, (19b)

RTotal ≥ R0, (19c)

0 ≤ λi, ρ. (19d)

IV. ALGORITHM DESIGN

In this section, a centralized Linear Programming (LP) based

convex optimal algorithm is constructed as a benchmark,

i.e., always with optimal solution, but with high compu-

tational complexity. Therefore, to accelerate the decision

making process and enhance the scalability, we propose a

distributed algorithm based on the Proximal Jacobi ADMM.

A. CENTRALIZED LP-BASED ALGORITHM (BENCHMARK)

To deal with P1, firstly, we simplify the hard constraints of

it, and further linearize it into a LP problem for convenient

solving.

Constraints (19b) and (19c) are obstacles for problem

solving, thus equivalent substitutions are adopted to convert

these them into the linear constraints. Constraint (19b) can be

replaced by

ρα0D0

f0
≤ T0, (20)

and

βλi(1 − ρ)D0

RUL(0, i)
+

α0λi(1 − ρ)D0

fi
≤ T0. (21)

And due to the monotonically increasing property of expo-

nential functions, constraint (19c) is equivalent to

N
∑

i=1

(

−νi
λi(1 − ρ)α0D0

fi
−µ0,i

λi(1 − ρ)βD0

RUL(0, i)

)

− ν0
ρα0D0

f0
≥ lnR0. (22)

Substituting formula (20), (21), and (22) into problem P1,

we can obtain a standard convex QP problem P2.

P2 : min
ρ,λ

ETotal

s.t. (19a), (19d)

(20), (21), and (22). (23)

Furthermore, to linearize the problem, we use ρ′, λ
′ =

[λ′
1, λ

′
2, . . . , λ

′
N ]

T to substitute the quadratic terms inP2, i.e.,
{

ρ = ρ′;

λi(1 − ρ) = λ′
i,

(24)

VOLUME 8, 2020 7121



X. Hou et al.: Distributed Fog Computing for Latency and Reliability Guaranteed Swarm of Drones

Through the above process, a convex LP problem is obtained,

as shown as:

P3 : min
ρ′,λ′

kf σ
0

ρ′α0D0

f0
+

N
∑

i=1

kf σ
i

α0λ
′
iD0

fi

+

N
∑

i=1

PTx
βλ′

iD0

RUL(0, i)
+

N
∑

i=1

PRx
βλ′

iD0

RUL(0, i)
(25)

s.t. ρ′ +

N
∑

i=1

λ′
i = 1, (26a)

ρ′α0D0

f0
≤ T0, (26b)

βλ′
iD0

RUL(0, i)
+

α0λ
′
iD0

fi
≤ T0, (26c)

N
∑

i=1

(

νi
λ′
iα0D0

fi
+µ0,i

λ′
iβD0

RUL(0, i)

)

+ ν0
ρ′α0D0

f0
≤ − lnR0, (26d)

0 ≤ λ′
i, ρ

′. (26e)

The problem P3 can be solved by numerous convex

optimization methods, e.g., simplex method, dual simplex

method, etc. In this paper, we adopt a interior point method

here, as a benchmark algorithm for comparing with following

distributed algorithm. Algorithm 1 summarized the LP-based

algorithm in detail.

Algorithm 1 LP-Based Algorithm

Input: 90, D, F , C, f0, (x0, y0, z0), N , ν0, νi, µ0, µi, α, β.

Output: ρ∗, λ∗

1: Solve P3 to obtain ρ′ and λ
′ = [λ′

1, λ
′
2, . . . , λ

′
N ]

T

2: Substitute ρ′ and λ
′ for ρ∗ and λ

∗ using Eq. (24) and

Eq. (28);

3: return ρ∗, λ∗.

B. DISTRIBUTED ALGORITHM BASED ON PROXIMAL

JACOBI ADMM

However, due to the signaling overhead and relatively large

computation pressure on the initiator drone, caused by

centralized algorithm, especially when the amounts of partic-

ipating drones are excessive, a decentralized algorithm exe-

cuted on each participant is intensely needed for practically

implementing. Alternating direction method of multipliers

(ADMM) [48] is an efficiently distributed algorithm with

superior convergence property and robustness, which has

drawn great attention in machine learning, image processing,

etc., recent years. Therefore, in this paper, we are motivated

to introduce the ADMM to solve the computation offload-

ing and task allocation optimization problem distributedly.

Unfortunately, the traditional ADMM is proved that it will

not converge when extend it directly to solve multi-block

problem [49]. The typical method is to introduce new global

variables to convert the optimization problem into two-block

problem [48], nevertheless, this method will increase the

number of global variables, making the optimization problem

troublesome. Moreover, traditional ADMM is Gauss-Seidel

type, i.e., the variable blocks are updated one after another,

which is inappropriate to solve the problem we formulated

in parallel. Therefore, to solve the problem mentioned above,

we propose a novel distributed computation offloading and

task allocation algorithm, based on the latest development of

Jacobi type ADMM, named Proximal Jacobi ADMM [50],

which update the decision variables in parallel and can con-

verge to the optimal solution with fast rate.

To satisfy the ADMM, we introduce relaxation variables

λ′
N+1 to transform the inequality constraint (26d) into equal-

ity constraint, i.e.,

N
∑

i=1

(

νi
λ′
iα0D0

fi
+µ0,i

λ′
iβD0

RUL(0, i)

)

+ ν0
ρ′α0D0

f0
+ λ′

N+1 = − lnR0, (27)

in which λ′
N+1 ≥ 0. For brevity, we denote x =

[x0, x1, x2, . . . , xN+1]
T, where

xi =







ρ′, i = 0,

λ′
i, 1 ≤ i ≤ N + 1.

(28)

Define that χi is the feasible set of xi, thus, according to

constraints (26c), (26c), (26e), the feasible set of xi is outlined

as follows

χi =



























{

xi|
xiα0D0

f0
≤ T0, xi ≥ 0

}

, i = 0,

{

xi|
βxiD0

RUL(0, i)
+

α0xiD0

fi
≤T0, xi≥0

}

, 1 ≤ i ≤ N ,

{xi|xi ≥ 0} , i = N + 1.

(29)

Obviously, χi ⊆ R is a nonempty closed convex set. With

the task allocation vector x, the optimization target function

of P3 is composed by multiple sub-functions, i.e., the energy

consumption of drone dr0 and dri, which can be represented

as

Ei =











































kf σ
0

xiα0D0

f0
, i = 0,

kf σ
i

α0xiD0

fi
+ PTx

βxiD0

RUL(0, i)

+PRx
βxiD0

RUL(0, i)
, 1 ≤ i ≤ N ,

0, i = N + 1.

(30)

For further simplicity, indicator function is introduced to

incorporate the constraints xi ∈ χi to the sub-function Ei, i.e.,

Iχi (xi) =







0, xi ∈ χi,

+∞, xi 6∈ χi.

(31)
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For each drone, the sub-function Ei is replaced by:

E+
i = Ei(xi) + Iχi (xi). (32)

The problem of P3 can be represented as a standard multi-

block ADMM problem, i.e.,

P4 : min
x

N+1
∑

i=0

E+
i (33)

s.t.

N+1
∑

i=0

Aixi = c. (34)

where Ai is

A =

























A0
T

A1
T

...

Ai
T

...

AN
T

ANC1
T

























T

=







































1
ν0α0D0

f0

1
ν1α0D0

f1
+

µ0,1βD0

RUL(0, 1)
...

...

1
νiα0D0

fi
+

µ0,iβD0

RUL(0, i)
...

...

1
νNα0D0

fN
+

µ0,NβD0

RUL(0,N )
0 1







































T

,

and c is represented as

c =

(

1

− lnR0

)

.

Dual decomposition methods [51] is a simple distributed

algorithm to solve P4. Consider the Lagrangian function

of P4:

L(x,u) =

N+1
∑

i=0

E+
i − uT

(

N+1
∑

i=0

Aixi − c

)

, (35)

where u ∈ R
2 is the Lagrange multiplier variable. We can

decompose the problem P4 into several subproblems for

drones swarm to execute it in parallel:


































































xk+1
0 = argmin

x0
Lρ(x0, x1, . . . , xN+1,u

k ),

...

xk+1
i = argmin

xi
Lρ(x0, x1, . . . , xN+1,u

k ),

...

xk+1
N+1 = arg min

xN+1

Lρ(x0, x1, . . . , xN+1,u
k ),

uk+1 = uk+1 − θk

(

N+1
∑

i=0

Aixi − c

)

,

(36)

where θk > 0 is step-size. Due to the components xi of

task allocation vector x are separable, the updates of xi are

independent. However, in practice, the convergence of dual

decomposition method is intensely slow [52]. Therefore,

Jocabi type ADMM which integrates the decomposability

of dual decomposition method and the superior convergence

of multiplier method is presented to solve the computation

offloading and task allocation problem. Compared with dual

method, ADMM utilizes the augmented Lagrangian function

for P4:

Lη(x,u) =

N+1
∑

i=0

E+
i − uT

(

N+1
∑

i=0

Aixi − c

)

+
η

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N+1
∑

i=0

Aixi − c

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

, (37)

where
η
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N+1
∑

i=0

Aixi − c

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

is a quadratic penalty of the con-

straints to enhance the convexity of Lagrangian function

Eq. (35) with a parameter η. Similar to dual decomposition

method, Jacobi ADMM can also decompose the problem into

several sub-problems, i.e.,


































































xk+1
0 = argmin

x0
Lρ(x0, x

k
1 , . . . , xki . . . , xkN+1,u

k ),

...

xk+1
i = argmin

xi
Lρ(x

k
0 , xk1 , . . . , xi . . . , x

k
N+1,u

k ),

...

xk+1
N+1 = arg min

xN+1

Lρ(x
k
0 , xk1 , . . . , xkN+1, xN+1,u

k ),

uk+1 = uk+1 − θ

(

N+1
∑

i=0

Aixi − c

)

.

(38)

Expanding the ith sub-problem, it can be represented as

xk+1
i = argmin

xi
E+
i

+
η

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Aixi +

N+1
∑

i=0,j 6=i

Ajxj − c−
uT

η

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

. (39)

However, if we implement the update of xi directly according

to Eq. (38), (39) with any variants [53], it will not converge.

Therefore, to obtain the global optimal solution, a proximal

term 1
2

∣

∣

∣

∣xi − xki

∣

∣

∣

∣

2

Pi
for the update of xi and a damping factor

ξ > 0 for the update of u are added, hence the updates of xi
and u are replaced by

xk+1
i = argmin

xi
E+
i

+
η

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Aixi+

N+1
∑

i=0,j 6=i

Ajxj−c−
uT

η

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

+
1

2

∣

∣

∣

∣

∣

∣
xi−x

k
i

∣

∣

∣

∣

∣

∣

2

Pi
,

(40)

and

uk+1 = uk+1 − θξ

(

N+1
∑

i=0

Aixi − c

)

, (41)

respectively. Where Pi is a symmetric positive semi-definite

matrix, and 1
2

∣

∣

∣

∣xi − xki

∣

∣

∣

∣

2

Pi
is defined as

1

2

∣

∣

∣

∣

∣

∣
xi − xki

∣

∣

∣

∣

∣

∣

2

Pi
:=

1

2
(xi − xki )

TP i(xi − xki ). (42)
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According to [54], the choice of P i is adopted as

P i = τ Ixi − ηAi
TAi, (43)

where Ixi is an identity matrix with the same dimension

of xi, in this paper, the dimension is 1. And τ is a key

weight parameter that controls the relative weight or balance

between the Lagrangian function and the proximal term,

i.e., Eq. (42) [55].

Let define

X =

(

x

u

)

, (44)

and

Y =

(

τ Ix
1
η
Iu

)

. (45)

To guide the update of τ in the iterations, a judgement func-

tion is defined here:

Ŵ := 2(uk − uk+1)TA(xk − xk+1) +

∣

∣

∣

∣

∣

∣
Xk − Xk+1

∣

∣

∣

∣

∣

∣

2

Y

= 2
(

uk − uk+1
)T

A
(

xk − xk+1
)T

+ τ

∣

∣

∣

∣

∣

∣
xk − xk+1

∣

∣

∣

∣

∣

∣

2

2
+

1

η

∣

∣

∣

∣

∣

∣
uk − uk+1

∣

∣

∣

∣

∣

∣

2

2
. (46)

In the iteration, τ updates according to the following rules:

τ k+1 =











τ k , if Ŵ > ̟

∣

∣

∣

∣

∣

∣
Xk − Xk+1

∣

∣

∣

∣

∣

∣

2

Y
,

̺τ k , otherwise,

(47)

where ̺ > 1, and ̟ ∈ R
+ which usually set as small as

enough. According to [55], when τ k+1 6= τ k , the updates

in the (k + 1)th iteration both of primal variable x and dual

variable u should be discarded and recover the values to that

of the kth iteration, i.e., xk+1 = xk , uk+1 = uk . According

to [50], the value of τ should be assigned a relatively small

value initially, and with the iteration, the value of τ increase

to make the proportion of proximal term to Eq. (40) larger

and larger.

In FCSD, the initiator drone dr0 takes charge of the

updates of x0 and xN+1, and meantime, other participating

drones, i.e., dri ∈ D, are responsible for the updates of

xi, i ∈ {1, 2, . . . ,N }, according to Eq. (40). After all the

drones finish their subproblems and report their results to

the drone dr0, the drone dr0 will update the dual variable

u according to Eq. (41). Repeat the process mentioned in

the above, until the convergence conditions are met or the

maximum number of iterations is reached, and the optimal

solution will be obtained. According to the optimal solution,

i.e., the optimal task allocation strategy, the task will be

divided and assigned to the drones swarm for distributed

computing collaboratively. More details are summarized in

Algorithm 2.

Algorithm 2 Proximal Jacobi ADMM Algorithm

Input: 90, D, F , C, f0, (x0, y0, z0), N , ν0, νi, µ0, µi, α, β,

θ , ξ , ̺, ̟ , x0, u0, τ 0, MaxIter

Output: ρ∗, λ∗

1: for k = 1 to MaxIter do

2: Each drone Update xi for i = {0, 1, . . . ,N ,N + 1} in

parallel by Eq. (40)

dr0: Update x
k+1
0 and xk+1

N+1;

dri: Update x
k+1
i and send the result to dr0;

3: After all the the xk+1
i are received, dr0 do:

Update dual variable uk+1 using Eq. (41);

Update parameter τ k+1 using Eq. (47);

4: if Stopping criteria are satisfied then

5: break;

6: end if

7: dr0 returns x
k+1, uk+1 and τ k+1 to each drone dri;

8: end for

9: Obtain the optimal solution xk+1;

10: Substitute xk+1 for ρ∗ and λ
∗ using Eq. (24) and Eq.

(28);

11: return ρ∗, λ∗.

C. COMPUTATIONAL COMPLEXITY ANALYSIS OF THE

ALGORITHMS

For the centralized optimal algorithm, i.e., the LP-based

algorithm, the computational complexity is typically

O
(

(2N + 2)3.5 ∗ (N + 3)2
)

. Although it can achieve the opti-

mal solution, the scalability is poor. Thus, to obtain an

acceptable solution with relatively fast speed, an heuristic

algorithm, i.e., LRGA-MIE algorithm is proposed in our

conference version [24], the computational complexity of

LRGA-MIE is O (G ∗ S ∗ (N + 1)), where S and G repre-

sent the population size and maximum iterations number,

respectively. According to [56], S and G are linear functions

with respect to (N +1), hence the complexity of LRGA-MIE

can be represented as O
(

(N + 1)3
)

. However, the heuristic

algorithms are easily falling into local optimum, and the

selection of algorithm parameters is also troublesome. There-

fore, the proposed Proximal Jacobi ADMM based distributed

algorithm is a better method, which can achieve the opti-

mal solution as well as with fast speed. The computational

complexity on the drone dr0 is O (N + 1), and solving each

subproblem in each drone dri ∈ D is O (1). Furthermore,

according to [50] and [55], if τ is adjusted as demonstrated

in Eq. (47), the Proximal Jacobi ADMM based distributed

algorithmwill converge to the optimal solutionwith an o(1/k)

convergence rate.

V. SIMULATION RESULTS

In this section, simulation results of the proposed algorithms

are presented.

A. PARAMETER SETTINGS

Unless otherwise specified, referring to [41], [47], [57],

the system parameters of FCSD are set as follows:
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TABLE 1. System parameters of FCSD.

1) DEFAULT SYSTEM PARAMETERS OF FCSD

WUL = 0.5 MHz, N0 = −100 dBm, PRx = 1.181 W,

PTx = 1.258 W, γ = 3. h0 follows the complex normal

distribution CN(0,1). k = 1.25 × 10−26, σ = 3, r =

100 m. And due to the communication overhead is much

small to neglect, the β is set to 1 [23]. The CPU-frequencies

of swarm of drones including dr0 and dri, are assumed to be

uniformly distributed, i.e., f0, fi ∼ U([0.3, 0.8] GHz), The

coordinates of the master drone dr0 are set to the origin,

i.e., (0 m, 0 m, 0 m), and the coordinates of the drones nearby

available are distributed randomly in 100 m3 area. The failure

rates of the drones dr0 and dri are assumed to be uniformly

distributed, i.e., ν0, νi ∼ U([0, 0.005]). And the failure rates

of the communication links between dr0 and dri are also

assumed to be uniformly distributed, i.e.,µi ∼ U([0, 0.005]).

We assume that the fog nodes are 10. i.e., N = 10. For

convenient reference, the main default system parameters of

FCSD are summarized in Table. 1.

2) DEFAULT TASK PARAMETERS

Unless otherwise specified or used as variables, in the fol-

lowing simulations, the parameters of the task Ψ0 are set

as follows. D0 is 4 Mb. α0 is 1900
8

cycles/bit to denote a

computation-intensive task, i.e., x264 CBR encode task [46].

T0 and R0 are set as 0.8 s and 99%, respectively.

3) DEFAULT ALGORITHM PARAMETERS

The parameters of the Proximal Jacobi ADMM are set as

follows: The step-size of θ is set as 10. The damping factor

ξ is 1. ̺ is 2. ̟ is 10−26. x0 is random initialized range in

(0,1). u0 is initialized asAx0 − c. τ 0 is set as 0.4∗(N+1)∗θ .

MaxIter is 50. The primal residual convergence accuracy is

set as 10−2. The parameters of the LRGA-MIE algorithm are

set as follows: The maximum number of iterations is 50. The

population size is 100. The crossover and mutation probabil-

ities are set as 0.2 and 0.2, respectively.

B. EXPERIMENTS ANALYSIS

1) ENERGY CONSUMPTION PERFORMANCE

Fig. 2 shows the energy consumption performance com-

parison of different algorithms when processing different

tasks, i.e., gzip ASCII compress task, x264 VBR encode

task, x264 CBR encode task. Correspondingly, the computa-

tional complexities of the tasks mentioned above are set as

FIGURE 2. Energy consumption performance comparison of different
algorithms towards different kinds of tasks versus input data size.

330
8

cycles/bit, 1300
8

cycles/bit, 1900
8

cycles/bit, respectively

[46]. As we can see, with the increasing of input data size,

the system energy consumption with different algorithms are

increased gradually but with different rates. When assign-

ing the tasks without optimization, i.e., random allocation,

the processing energy consumption of FCSD system is pretty

large, compared with that of the optimized ones. But different

VOLUME 8, 2020 7125



X. Hou et al.: Distributed Fog Computing for Latency and Reliability Guaranteed Swarm of Drones

FIGURE 3. Convergence performance of different distributed algorithms
for the formulated multiple-block optimization problem.

algorithms are with different performance. The LP-based

algorithm (optimal algorithm) achieves the lowest energy

consumption all along. And the performance of Proximal

Jacobi ADMM based algorithm is always close to the opti-

mal one, especially when the processing tasks with large

input data size. Although the LRGA-MIE algorithm achieves

relatively good performance compared with random task

assignment, the performance is poor and unstable compared

with LP-based algorithm and Proximal Jacobi ADMM based

algorithm. The reason is that the genetic algorithm is easy

falling into the local optimal solution although with fast

search speed.

The convergence and the convergence rate of distributed

algorithm are the key factors whether the algorithm can

be adopted in practice. Thus in Fig. 3, we show the good

convergence performance of Proximal Jacobi ADMM, and

compared with dual decomposition algorithm, which is the

origin of the ADMM, as well as the Jacobi ADMM without

proximal term. We can see that the Proximal Jacobi ADMM

converge fast, and after the 14th iteration, the energy con-

sumption performance of Proximal Jacobi ADMM is gradu-

ally fitted to the optimal value (see Fig. 3(a)), and the primal

residual (see Fig. 3(b)) is gradually fitted to 0, which indicate

that the algorithm is converged. The dual decomposition

algorithm converges intensely slowly, in fact, it may takes

hundreds of iterations for the algorithm to converge. But for

FIGURE 4. Impact of transmission bandwidth on the energy consumption.

FIGURE 5. Comparison of latency performance of different computing
paradigms.

Jacobi ADMM without proximal term, it cannot converge,

although hundreds of iterations we took. Similar conclusions

can be found in [50] and [55].

Within the same requirements of latency and reliabil-

ity. Fig. 4 show the impact of bandwidth on the system

energy consumption. As we can see that the smaller the

bandwidth, the lower the energy consumption. For instance,

when the input data size is 5 Mb, the energy consump-

tion of the FCSD system with a bandwidth of 0.5 MHz

is 48 % greater than that of the FCSD system with a band-

width of 2 MHz, 37 % greater than that of the FCSD system

with a bandwidth of 1.5 MHz, 18 % greater than that of

the system with a bandwidth of 1 MHz. However, with the

increasing of system bandwidth, the impact of bandwidth on

the system energy consumption will become insignificant.

2) LATENCY PERFORMANCE

Fig. 5 shows the comparison of different computing

paradigms, i.e., cloud computing, local computing, and fog

computing. We can observe that when the input data size is

relatively small, all of three computing paradigms are with

small latency, which can satisfy the latency requirement of

the task well. For instance, when the input data size is less

than 0.5 Mb, the latency of three computing paradigms are

all less than 1 s. However, with the increasing of input data

size, the latency of cloud computing increases rapidly. The

reason is that the cloud computing is far away from the drone
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FIGURE 6. Reliability performance comparison of different algorithms in
different environments.

dr0, which leads to high transmission latency, hence although

it has powerful computing capability, but with the increasing

of input data size, the transmission latency of cloud com-

puting paradigm increases linearly. As for local computing

approach, due to the drone dr0 is with certain computing

capability, it is manageable for dealing the tasks with small

data size. However, when the data size of the tasks increase,

the processing latency of local computing approach increases

linearly due to the limited computing capability. But for fog

computing manner, benefit by the huge computing capability

of the whole drones swarm, without long transmission due

to the close distance among drones, although the input data

size increases, the fog computing based manner can handle

the computing tasks in a relatively smaller latency.

3) RELIABILITY PERFORMANCE

In Fig. 6, we compared the reliability performance of different

algorithms in different environments. In the best environ-

ment, the failure rates of fog nodes and links are set as 0,

i.e., νi, µi = 0. In the good environment, the failure rates of

fog nodes and links are assumed to be uniformly distributed,

i.e., νi, µi ∼ U([0, 0.03]). In the poor environment, νi, µi ∼

U([0.1, 0.5]). In themixed environment, some nodes and links

have νi, µi ∼ U([0, 0.03]), and other nodes and links have

νi, µi ∼ U([0.1, 0.5]). As we can see, in the best environ-

ment, the reliability performance of any algorithm including

random allocation is 100 %, because there won’t be any node

or link failures in such a ideal environment. But in practice,

such ideal environment is not existed, therefore, we studied

the reliability performance in three experiments which are

close to the real world, i.e., the good environment, the poor

environment, and the mixed environment. We can observe,

with any optimization, the reliability performance of random

allocation scheme is intensely low, especially in poor envi-

ronments, the reliability of random allocation scheme is only

57 %, which is unacceptable for a task with low latency and

high reliability requirements. As comparison, the reliability

performance of LRGA-MIE algorithm, LP-based algorithm,

and Proximal Jacobi ADMM based algorithm are 78 %,

94 %, and 96 %, respectively, which is considerable in a

environment with high failure rates, e.g., in the battlefield

with complex electromagnetic disturbances.

FIGURE 7. Reliability performance of different algorithms versus input
data size.

FIGURE 8. Convergence performance of Proximal Jacobi ADMM with
different step size θ .

Fig. 7 shows the reliability performance of algorithms

versus the input data size. We can observe that the LP-based

algorithm and Proximal Jacobi ADMM algorithm are with

high adaptability to the data size. With the increasing of

the input data size, the reliability of these two algorithms

still maintain a high level more than 99 %. Although the

reliability performance of LRGA-MIE algorithm is inferior

to the LP-based and Proximal Jacobi ADMM algorithm,

it still keeps the reliability more than 85 %. As a contrast,

without optimization, the random task allocation scheme has

the worst reliability performance. When the input data size
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is 5 Mb, the reliability of random task allocation scheme is

only 55 %.

4) IMPACT OF PARAMETER SETTING ON THE

PERFORMANCE OF ADMM

In Fig. 8, we explored the impact of step size on the conver-

gence performance of Proximal Jacobi ADMM based algo-

rithm. We can observe that the larger the step size, the faster

the algorithm converges. When the step size is relatively

smaller, e.g., θ = 0.01 or 0.1, the algorithm cannot converge

within 50 iterations. When the step size θ increase to 1,

the algorithm converges rapidly. However, when the step size

increases from 1 to a higher value, the convergence speed first

increases gradually, and then reaches a saturation value. From

then on, the convergence speed does not increase significantly

with the increase of step size.

VI. CONCLUSION

In this paper, to enhance the capability of the drones

swarm dealing with the latency and reliability sensitive tasks,

the FCSD architecture is proposed, which can make up for

the shortcomings of the cloud-based architecture. The drones

which close to the task initiator drone are thought to be

fog computing nodes to complete the task with the initiator

drone cooperatively. Considering the limited battery capac-

ity of drones, the task allocation optimization problem is

constructed as an energy consumption minimization prob-

lem with the latency and reliability constraints. Furthermore,

due to the stringent latency requirements of the latency and

reliability sensitive tasks, a fast and efficient algorithm is

intensely needed, therefore, benefit by the recent advances

of distributed convex optimization, a distributed task alloca-

tion algorithm with low computation complexity is designed

based on Proximal Jacobi ADMM. Finally, extensive simula-

tions invalidate the effectiveness of the proposed scheme.
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