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Abstract— This paper presents a decentralized controller to
drive a team of agents to reach a desired formation in the
absence of a global reference frame. Each agent is able to
measure its relative position and orientation with respect to its
neighbors. The different orientations imply that the relative
positions between pairs of agents are sensed differently for
each agent. In order to reach the desired configuration, the
agents run two simultaneous consensus controllers, one to
control their relative orientations, and another for their relative
positions. The convergence to the desired configuration is shown
by comparing the system with time-varying orientations with
the equivalent approach with fixed rotations, showing that
their difference vanishes as time goes to infinity. While the
analysis in the paper is performed in a 2-dimensional space with
orientations belonging to SO(2), our approach can be extended
to handle 3 dimensions and orientations in SO(3). Simulation
results, as well as hardware experiments with two quadrotor
UAVs, corroborate the theoretical findings of the paper.

I. INTRODUCTION

Formation control is one of the cornerstone problems in

decentralized control. Many multi-agent tasks require the

agents to reach and maintain a given formation. In some

applications all the agents need to travel with the same

orientation in order to maintain the desired formation, for

example for formation flying in fixed wing UAVs [1], or

for some cooperative sensing scenarios [2]. In other applica-

tions agents are required to keep a formation with different

orientations, such as aerial manipulation [3], environmental

monitoring [4], or distributed escorting [5]. This need to

maintain relative orientations as well as positions motivates

the work in this paper.

Among existing formation control approaches, we can

distinguish between leader-follower strategies and solutions

based on nearest neighbor rules. Solutions of the first kind

allow each agent to specify its movement depending only

on a particular “leader” agent within the formation. Exam-

ples of controllers of this type have been presented using

vision [6], considering relative bearing measurements [7],

and including obstacle avoidance [8], to name a few. On

the other hand, nearest-neighbor approaches let each agent

design its motion using locally available information [9]

from nearby agents. Nearest neighbor approaches frequently
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depend on a consensus-type control algorithm, and they

have the advantage that they are robust to a broad range

of interaction topologies between the team of agents.

Another important issue in the formation control problem

is the specification of the desired configuration. The most

common way of defining the formation is in terms of the

relative information between pairs of agents. Depending

on the sensors onboard them some approaches work with

relative bearings [10], [11], relative distances [12], [13], or

relative positions [14], [15]. However, a constant assumption

in all of these approaches is the presence of a common

rotation reference frame. In some cases it is because agents

are modeled as d-dimensional points without orientations

whereas in others it is assumed that there exist a previous

agreement about a common rotation frame.

The difficulty with controlling orientation as well as posi-

tion is that the orientation matrix appears as a multiplicative

nonlinearity in the position dynamics of the agents. Hence

the system dynamics in this case are nonlinear. We present

a new consensus-based formation controller that is proven

to drive the agents to the desired formation despite this

nonlinearity. While consensus-based controllers have been

deeply studied for positions [14], [15] and rotations [16],

[17] independently, to the best of our knowledge there are

no results analyzing the non-linear system that describes the

evolution of the positions of the agents due to the variation

of the rotation frames. Thus, the chief novelty in our problem

lies in controlling both relative position and orientation for

the agents at the same time.

In this paper we show that, with the proposed controller,

the dynamics have a back-stepping structure that allows the

orientation consensus to be proven first. Then the position

consensus can be analyzed with the rotation matrix treated

as a time-varying term that approaches a known limit. We

prove that the coupled positions and orientations converge

to a desired relative configuration. Additionally, while the

analysis is done considering agents moving in SE(2), the

proposed control scheme is also well designed to work on

SE(3). To conclude, we also validate our proposal with

simulations and in hardware experiments with two quadrotor

UAVs.

The remainder of the paper is organized as follows: In

Section II we introduce the notation of the paper and provide

a formal definition of the problem we solve. Section III dis-

cusses the position controller when the agents have constant,

but different rotation frames. The general case, with varying

rotation frames is studied in Section IV. Simulation results

are shown in Section V. Finally, Section VI presents the

conclusions of the work and future lines of research.



II. NOTATION AND PROBLEM SETUP

In the paper we consider a team of N agents labeled

by V = {1, . . . , N}. We let Fw be some fixed (unknown)

reference frame for the agents and Fi be the frame of agent

i. The state of the agent i expressed in Fw is defined by its

position, pi = [xi, yi]
T , and orientation,  i. We denote by

Ri the rotation matrix associated to  i:

Ri =

✓

cos( i) � sin( i)
sin( i) cos( i)

◆

.

Each agent is able to move with holonomic differential

dynamics with respect to its own frame. Expressed in the

world frame this is:

ṗi = Rivi (1)

with vi = [vxi
, vyi

]T the linear velocity in the local x and y

directions and

 ̇i = wi (2)

with wi the angular velocity. Under the dynamics described

in (2), the time derivative of the rotation matrix, Ri, is equal

to

Ṙi = SiRi,

with Si the skew-symmetric matrix associated to wi,

Si =

✓

0 �wi

wi 0

◆

.

We let p = [pT
1
, . . . ,pT

N ]T denote the concatenation of

the positions of all the agents and ψ = [ 1, . . . , N ]T the

concatenation of all the orientations.

Given two agents, we denote by pij and  ij the relative

position and orientation of agent j measured in the frame

Fi. The relative position between the agents is described by

pij = [xij , yij ]
T = RT

i (pj � pi), (3)

whereas the relative rotation is, on a general instance, equal

to the difference between the two rotations, i.e.,

 ij =  j �  i. (4)

Additionally Rij = RT
i Rj .

The objective of the agents is to end up in a configuration

defined by the desired relative positions and orientations, p∗

ij

and  ∗

ij , between them.

Assumption 2.1: (Realizable configuration). The desired

configuration can be achieved by the team, in the sense that

all the relative positions and orientations are consistent with

each other. Formally speaking, it must hold that

p∗

ij = p∗

ik +R∗

ikp
∗

kj and  ∗

ij =  ∗

ik +  ∗

kj , (5)

for all i, j, k 2 V , with R∗

ik the rotation matrix defined by

the angle  ∗

ik.
Note that there are infinite sets of positions in Fw for the

agents such that they satisfy (5), all of them related by

some rotation and translation. Also note that in general

pij 6= �pji.

Let G = (V, E) be the interaction graph between the

agents. The nodes in the graph, V , are associated to the

different agents, whereas the edges, (i, j) 2 E , represent

the availability of the relative position and orientation of

agent j, [pij , ij ], to agent i. The set of neighbors of agent

i is defined as the set of agents perceived by agent i, i.e.,

Ni = {j 2 V | (i, j) 2 E}, and |Ni| its cardinality. Let

L = [lij ] be the Laplacian matrix associated to G:

lij =

8

<

:

|Ni| if i = j
�1 if (i, j) 2 E and i 6= j
0 otherwise

.

Assumption 2.2: (Connected, undirected graph). The in-

teraction graph, G, is connected and undirected, i.e., there

exist a path joining any two nodes and (i, j) 2 E , (j, i) 2
E .

It is well known that under this assumption L has one eigen-

value, �1 = 0, with associated right (and left) eigenvector

1N = [1, . . . , 1]T 2 R
N , and the rest of eigenvalues are all

strictly positive. Along the paper, we let `i denote the ith row

of the Laplacian matrix. Additionally, in the paper Ik, k 2 N,
denotes the identity matrix of dimension k⇥k. To conclude,

the Kronecker product between two matrices is represented

by A⌦B.

III. FORMATION CONTROL WITH FIXED ROTATION

FRAMES

Let us start by assuming that the robots have fixed, but not

necessarily equal, rotation frames, that satisfy the following

assumption:

Assumption 3.1: (Fixed desired orientations). The initial

orientations of the agents are such that  ij =  ∗

ij for all

i, j 2 V .

Consequently, in this scenario, Rij = R∗

ij and wi = 0 for

all i, j 2 V . The analysis of this simplified case will help

us to demonstrate in the next section the convergence to

the desired formation pattern of the general case with time-

varying rotations.

The controller used by the agents is a standard consensus

controller of the form:

vi =
X

j∈Ni

�

pij � p∗

ij

�

. (6)

The following lemma will be useful for the analysis of

both, the fixed and the time-varying rotations cases.

Lemma 3.2: (Eigenvalues of the “relative” Laplacian).

Under Assumption 2.2 (Connected, undirected graph), the

matrices L and L�1N `1 have exactly the same eigenvalues.

Proof: Since L is symmetric, it is diagonalizable. Thus,

we can find an orthogonal matrix P, such that P−1 = PT

and

PTLP = Λ (7)

with Λ = diag(�1 = 0,�2, . . . ,�N ) the diagonal matrix

containing all the eigenvalues of L. Additionally, note that

the columns of P contain the set of (normalized) eigenvec-

tors of L, with the special case of the first column, equal to



1N/N . Now, if we multiply L� 1N `1 by PT and P on the

left and right respectively, we get:

PT (L� 1N `1)P = Λ�PT1N `1P. (8)

Noting that `11N = 0

`1P = (0,�2γ12, . . . ,�Nγ1N ) , (9)

with γ1i the first component of the ith eigenvector of L, and,

PT1N = (1, 0, . . . , 0)
T
. (10)

Therefore Λ�PT1N `1P is an upper triangular matrix, with

the same elements in the diagonal as Λ. Recalling that the

matrix transformation given by PT and P preserves the

eigenvalues, we conclude that the matrix L� 1N `1 has the

same eigenvalues as the matrix L.

Remark 3.3: (Eigenvectors of the “relative” Laplacian).

Although the eigenvalues of L and L�1N `1 are the same, the

eigenvectors of the two matrices are not necessarily equal.

In fact, while the right eigenvector of L�1N `1 associated to

�1 is the same as the one for L, i.e., 1N , the left eigenvector

of the former matrix associated to �1 is ζ1 = (1, 0, . . . , 0)T ,

which is different than 1N . These eigenvectors will be used

later in the analysis.

Proposition 3.4: (Coonvergence with fixed rotation

frames). Let Assumptions 2.1 (Realizable configuration),

2.2 (Connected, undirected graph) and 3.1 (Fixed desired

orientations) be true. Then, using the controller in (6) the

positions of the agents evolve in such a way that

lim
t→∞

pij = p∗

ij , 8i, j 2 V.

Proof: Let us define the change of variables

qi = p1i � p∗

1i. (11)

Using (3) and (5) and Assumption 3.1

pij = R∗

i1(p1j � p1i) (12)

and similarly p∗

ij = R∗

i1(p
∗

1j � p∗

1i). Note that in the

(unknown) global frame R∗

i1 = RT
i R1 for some fixed Ri

and R1, which are also the rotation matrices that appear

in (1). Thus

ṗi = R1

X

j∈Ni

(qj � qi). (13)

Differentiating (11),

q̇i = RT
1
(ṗi � ṗ1)

=
X

j∈Ni

(qj � qi)�
X

k∈N1

(qk � q1),
(14)

which, denoting q = (q1, . . . ,qN )T , yields in matricial form

q̇ = � [(L� 1N `1)⌦ I2]q. (15)

By Lemma 3.2, the matrix � (L� 1N `1), has one eigen-

value equal to zero, and the rest of eigenvalues strictly

negative. Thus

lim
t→∞

q =

✓

1NζT
1

ζT
1
1N

⌦ I2

◆

q(0) = 1Nq1(0), (16)

with ζ1 = (1, 0, . . . , 0)T . However, note that q1 is always

constant and equal to 0, and therefore q ! 0. Consequently

p1i tends to p∗

1i for all i, and because of Assumption 2.1

the result is proved.

Remark 3.5: (Comparison with [14]) The controller

in (6) is similar the one in [14], with the exception that it

allows the agents to have different (but fixed) rotation frames.

The analysis in the proof of Proposition 3.4 is also somewhat

different to accommodate these different rotations. We will

leverage this intermediate result to prove our main result with

time-varying rotation frames in the next section.

IV. FORMATION CONTROL WITH VARYING ROTATION

FRAMES

In this section we analyze the full system when both the

translation and the rotation evolve in the time.

Initially, we require to make an assumption about the

initial orientations of the agents:

Assumption 4.1: (Relative initial orientations). The initial

relative orientations satisfy

max
i∈V

( 1i �  ∗

1i)�min
i∈V

( 1j �  ∗

1j) < ⇡. (17)

As in the previous section, we consider that the linear

velocities of the agents are defined according to (6), whereas

in order to reach the desired relative rotations, the agents

execute the consensus controller:

wi =
X

j∈Ni

�

 ij �  ∗

ij

�

. (18)

Theorem 4.2: (Coonvergence with time-varying rotation

frames) Let Assumptions 2.1 (Realizable configuration), 2.2

(Connected, undirected graph) and 4.1 (Relative initial ori-

entations) be true. Then, using the controller in (6) and (18)

the positions and orientations of the agents evolve in such a

way that

lim
t→∞

pij = p∗

ij , and lim
t→∞

 ij =  ∗

ij ,

for all i, j 2 V.
Proof: According to the dynamics in (1) and (2),

using the control inputs in (6) and (18) the evolution of the

orientations is decoupled from the positions of the agents.

This implies that we can analyze the orientations separately

and study afterwards what happens with the positions of the

agents with the time-varying rotation frames.

In order to prove the convergence of the orientations

we define the change of variables ✓i =  1i �  ∗

1i and

θ = (✓1, . . . , ✓N )T . Note that the new variables are also

orientations that belong to the manifold SO(2). Assump-

tion 4.1 ensures that all these new orientations are contained

in a ball of radius ⇡ with respect to some reference frame,

a necessary condition in order to reach consensus when

measuring relative orientations [16], [18].

After some manipulations, the dynamics of θ can be

expressed by

θ̇ = �(L� 1N `1)θ.



Using similar arguments as in Proposition 3.4 we reach

lim
t→∞

θ =
1NζT

1

ζT
1
1N

θ(0) = ✓1(0)1N , (19)

and since ✓1 = 0 for all t,  1i converges to  ∗

1i for all i.
Finally, because of Assumption 2.1 we conclude that all the

pairs of agents reach their desired relative rotations.

At this point we know that the rotations asymptotically

converge to a constant value such that Rij = R∗

ij and

wi = 0 for all the agents. We also know that controller (6)

with constant rotations reaches the desired configuration.

However, these two arguments do not guarantee that the

agents will end up with the desired relative positions. A new

analysis of the positions is required.

In order to simplify the notation, let us define

b∗

i =
X

j∈Ni

p∗

ij

and b∗ = [b∗

1
, . . . ,b∗

N ]T . The dynamics of the positions in

the world frame can be expressed now by

ṗ = �(L⌦ I2)p� diag(Ri)b
∗,

with diag(Ri) = diag(R1, . . . ,RN ) 2 R
2N×2N the block

diagonal matrix defined by the N rotational matrices of the

agents in the (unknown) global frame. Note that, in terms of

p, this dynamics corresponds to a non-homogeneous linear

time-variant system, because Ri changes with the time, but

with a known evolution.

Let us consider the change of variables

qi = p1i = RT
1
(pi � p1), (20)

that transforms all the positions relative to agent 1. Using (3)

and (5)

pij = pi1 +Ri1p1j = �Ri1p1i +Ri1p1j

= RT
i R1(p1j � p1i).

(21)

Hence

ṗi = Ri

X

j∈Ni

pij �Rib
∗

i

= R1

X

j∈Ni

(qj � qi)�Rib
∗

i .

Differentiating (20) and using some algebra,

q̇i = ṘT
i (pi � p1) +RT

1
(ṗi � ṗ1)

= ST
1
qi +

X

j∈Ni

(qj � qi)�RT
1
Rib

∗

i�

�
X

k∈N1

(qk � q1) + b∗

1
,

(22)

and, piling the variables q = (q1, . . . ,qN )T ,

q̇ =
⇥

IN ⌦ ST
1
� (L� 1N `1)⌦ I2

⇤

q�

�diag(R1i)b
∗ + b∗

1
⌦ 1N ,

(23)

with diag(R1i) = diag(R11, . . . ,R1N ) 2 R
2N×2N the

block diagonal matrix defined by the N relative rotational

matrices of the agents with respect to agent 1.

In order to analyze the new system, we are going to com-

pare it with the time-invariant system described in section III

with fixed rotations. To distinguish them, in the proof we

will denote by p̄ the system with fixed rotations. Similarly,

we let q̄ be the same change of variables as in (20), whose

dynamics is

˙̄q = � [(L� 1N `1)⌦ I2] q̄�diag(R∗

1i)b
∗+b∗

1
⌦1N , (24)

with diag(R∗

1i) defined as diag(R1i) with the desired relative

rotations.

Let us denote

e = q� q̄, (25)

the difference between the two relative positions. Using (23)

and (24), the evolution in the time of e is given by

ė = We+ β, (26)

with

W =
⇥

IN ⌦ ST
1
� (L� 1N `1)⌦ I2

⇤

, (27)

and

β =
�

IN ⌦ ST
1

�

q̄+ (diag(R∗

1i)� diag(R1i))b
∗. (28)

Let us remark that even when e depends on q̄, the evolution

of this variable is known, and for that reason it can also be

put as a part of β (the same cannot be said about q because

its evolution is still unknown).

The system in (26) is another non-autonomous linear

time-varying system, because both W and β change with

the time. In order to demonstrate that it converges to zero

let us first consider the autonomous version of (26), i.e,

β = 0 for all times. Consider the following candidate

Lyapunov function V = eT e, which is positive definite and

has time derivative equal to V̇ = 2eTWe. Replacing W

by the expression in (27), since ST
1

is a skew symmetric

matrix, eT
�

IN ⌦ ST
1

�

e = 0 for any value of w1. Recalling

Lemma (3.2),

2eT (� (L� 1N `1)⌦ I2) e  �2�2kek
2,

with �2 the second smallest eigenvalue of L, which because

of Assumption 2.2 is strictly positive. Then, the system (26)

is input-to-state stable (Lemma 4.6 in [19]).

Additionally, it holds that limt→∞ β = 0 because we

know that limt→∞ R1i = R∗

1i for all i and limt→∞ wi =
0 ) limt→∞ ST

i = 0. Therefore, using again [19] we

conclude that e converges to zero. Consequently, for all i
it holds that

lim
t→∞

qi = lim
t→∞

q̄i = p∗

1i,

and by Assumption 2.1 we conclude that all the pairs of

agents also reach their desired relative positions.

Remark 4.3: (Analysis in the local frame). Note that the

part of the proof of Theorem 4.2 dealing with the positions

cannot be analyzed in the global frame, that is, considering

the difference between the variables p and p̄ instead of

q and q̄ in eq. (25). In fact, the difference between these

two variables does not necessarily go to zero, because the
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Fig. 1. Distributed formation control with time-varying rotation frames. The figure shows the desired configuration (left), the initial configuration (middle)
and the trajectories with the final configuration of the agents (right).

evolution of the positions of the agents in Fw is different for

the two variables.

Remark 4.4: (Extension to time-varying topologies). Al-

though we do not prove it in the paper, it should be noted

that, considering that our approach is based on standard

consensus-controllers, the team of agents will also be able to

form in the desired pattern in a scenario with time-varying

interaction topologies, given the standard requirements of

bounded dwell time and periodic joint connectivity [9].

Remark 4.5: (Extension to three dimensions). The for-

mulation used in the paper makes our approach easily

extensible to SE(3). The only requirement is to find an

appropriate consensus controller that ensures convergence

of the orientations of the agents in SO(3) with relative

measurements and without taking into account the relative

positions. Fortunately, there are already existing works in

the literature that present solutions to this problem, e.g., [18],

[20]. In such case, if the agents use the position controller

given in (6), the analysis presented here is still valid and thus,

the convergence to the desired relative 3D configuration.

V. SIMULATIONS AND EXPERIMENTS

In this section we validate the theoretical results of the

paper with an illustrative example using a simulated en-

vironment as well as with hardware experiments with two

quadrotor UAVs.

A. Simulation Results

In this section we demonstrate the behavior of our forma-

tion controller with an illustrative example carried out using

MATLAB. We consider a team of N = 10 mobile agents.

We design the desired formation such that the agents are

equally spaced around the perimeter of a circle, oriented so

that they are all pointing outward from the circle. This is

shown in the left plot of Fig. 1, where the configuration is

shown in the world frame.

The initial configuration of the agents is depicted in the

middle plot of Fig. 1, and is chosen such that the angle

condition in Assumption 4.1 is satisfied. The trajectories of

the positions as well as the final orientation of the agents

obtained using the proposed controller can be seen in the

right plot of Fig. 1. As proven in Theorem 4.2, we can

observe that the team has reached the configuration with all

the relative positions and orientations equal to the desired

ones, despite each one having a different reference frame.

Note that in the left plot of Fig. 1 we are using the world

frame for simplicity in depicting the desired relative positions

of the agents, but, as in fact happens, the final positions of

the agents in the global frame (right plot of Fig. 1) are given

by a rigid body transformantion than those of the left one.

However, the relative positions and orientations between the

agents are equal in both cases. Finally, the evolution of the

orientation of the agents measured in the global frame is

shown in Fig. 2.
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Fig. 2. Evolution of the orientation of the agents measured in Fw

B. Hardware Experiments

Here we present the results of an experiment with

two quadrotor robots in a motion capture environment

to verify the performance of the controller. The robots

used in the experiments are KMel kQuad500 quadrotors

(http://kmelrobotics.com/). The position and ori-

entation of the quadrotors are observed by an OptiTrack

motion capture system (NaturalPoint, Inc, http://www.

naturalpoint.com/optitrack/) at an update rate

120Hz and obtained by MATLAB via Java scripts reading

UDP packets from the OptiTrack system.

The desired trajectory for each quadrotor is computed in

MATLAB using the control law described in (6) and (18).

This trajectory is implemented for the quadrotors using a

differential-flatness based trajectory following controller, the



Fig. 3. System diagram.

details of which can be found in [21]. The desired angular

and linear accelerations for realizing the desired trajectory

are then sent over a ZigBee wireless link to the quadrotors

to close the control loop. Furthermore, each quadrotor uses

a low level on-board controller running at 500Hz to achieve

the desired angular and linear accelerations, using an on-

board IMU for feedback. Figure 3 shows a diagram of this

experimental setup.

Fig. 4. Control station, with one Kquad500 flying in the arena.

Figure 4 shows the control station with the OptiTrack

computer (Windows), Flight control computer (Ubuntu), a

joystick (Logitech Extreme 3D pro), a Spectrum remote

control unit, and the antenna used for autonomous flight

control. The joystick and the remote control unit are used

for manual flight and also for switching between the manual

flight and autonomous flight.

The results of our experiment are shown in Fig. 5, with a

composite photograph of the experiment on the top, and the

corresponding MATLAB simulation on the bottom. One can

see from the figure that the experimental results match the

simulation well. The quadrotors change both their orientation

and position in moving from their initial configuration (with

the robots at the far left and right of the frame), to their final

configuration (with the robots facing upward and downward

at the top and bottom of the frame). The robots compute

their control action using relative measurements in their own

local reference frame, and they have no knowledge of a

global reference frame. They reach a consensus on a global

reference frame, while simultaneously achieving the desired

configuration, as proven in Theorem 4.2. A movie of the

(a) Experiment

(b) Simulation

Fig. 5. This figure shows a composite photograph of the experiment on
top, with the corresponding MATLAB simulation below it. The quadrotors
start at the far left and right of the frame, and move to the bottom and top,
respectively.

experiment can be found at http://people.bu.edu/

schwager/Movies/MontijanoACC13Movie.mov.

The time evolution of the relative positions of the two

robots are shown in Fig. 6 and their relative orientations are

shown in Fig. 7. The effects of the different rotation frames

are clearly reflected in these plots. The final configuration

for both robots is to have the other robot 1 meter behind

them, with their orientations 180degs apart. We can observe

that in the relative frames both ’y’ coordinates converge to

-1, while both ’x’ coordinates converge to 0. If they shared

a common reference frame, the two ’y’ coordinates would

have to be 1m and -1m to describe this formation. In general,

the presence of time varying reference frames complicates

the formation control problem because changes in rotation

result in nonlinear changes in relative position. The controller

in this paper is proven to converge to the desired formation

despite this nonlinearity, as verified in the experiments.

VI. CONCLUSIONS

In this paper we have presented a distributed consensus

controller that drives a team of agents to reach a desired

formation with specified relative positions and orientations

in the absence of a global reference frame. Although the

time-varying rotations make the system dynamics nonlinear,
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Fig. 6. The x (blue) and y (red) positions of quadrotor 2 as seen from
quadrotor 1 is shown in the top plots, and of quad 1 as seen from quad 2
is shown in the bottom plots. The final configuration has the quads back to
back, separated by 1 meter, as shown in these plots.
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Fig. 7. The relative angles of the two quadrotors are shown here. Red shows
the angle of quad 1 as seen from quad 2, and the blue curve shows quad 2
as seen from quad 1. One can see that the robots converge to a configuration
in which they are back-to back, separated by an angle of 180deg.

the back-stepping structure of our approach has allowed us

to separate the analysis in the rotations and the positions.

The convergence to the desired configuration has been shown

demonstrating that the difference between the system with

time-varying orientations and an equivalent system with fixed

rotations approaches zero in time. Additionally, the proposed

structure makes the extension to 3 dimensions and orien-

tations in SO(3) straightforward, provided that the agents

use an appropriate consensus controller for SO(3). We have

demonstrated the feasibility of the theoretical analysis in

a simulated scenario and with a hardware implementation

using two quadrotor UAVs. Current research is being devoted

to the estimation of the relative positions on-board by means

of computer vision.
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