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Modern surveillance systems often utilize multiple physically
distributed sensors of different types to provide complementary
and overlapping coverage on targets. In order to generate target
tracks and estimates, the sensor data need to be fused. While
a centralized processing approach is theoretically optimal, there
are significant advantages in distributing the fusion operations
over multiple processing nodes. This paper discusses architec-
tures for distributed fusion, whereby each node processes the
data from its own set of sensors and communicates with other
nodes to improve on the estimates. The information graph is
introduced as a way of modeling information flow in distributed
fusion systems and for developing algorithms. Fusion for target
tracking involves two main operations: estimation and association.
Distributed estimation algorithms based on the information graph
are presented for arbitrary fusion architectures and related to
linear and nonlinear distributed estimation results. The distributed
data association problem is discussed in terms of track-to-track as-
sociation likelihoods. Distributed versions of two popular tracking
approaches (joint probabilistic data association and multiple hy-
pothesis tracking) are then presented, and examples of applications
are given.

I. INTRODUCTION

In recent years there has been increasing emphasis on
using multiple data sources for detection, tracking, clas-
sification, situation assessment, etc. The synergistic use
of overlapping and complementary data sources provides
information that is otherwise not available from individual
sources. For example, radar provides accurate range but
poor ange data while infrared provides accurate angle but
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poor range data. Even for similar sensor types, the different
viewing angles from multiple physically distributed sensors
can be exploited to provide better location data. Further-
more, multiple sensors provide more robust performance
due to the inherent redundancy.

Fusion is necessary to integrate the data from the different
sensors and extract the relevant information on the targets.
The traditional architecture for fusion is centralized. Data
from multiple sensors are sent to a single location where
the data are fused and the results distributed to various
users. Recent advances in computing and communication
have made other architecture options feasible. These in-
clude hierarchical architectures where the fusion nodes
are arranged in a hierarchy with the lowest level nodes
processing sensor data and sending results to higher level
nodes to be combined. When the higher level node collects
processing results only periodically, significant savings in
communication can be achieved.

In a fully distributed architecture, there is no fixed
superior/subordinate relationship. Each node can commu-
nicate with other nodes subject to connectivity constraints.
Communication can be adaptive and dependent on the
information content and needs of the individual nodes. In
an extreme case, each sensor may have its own processor to
fuse the local data and cooperate with other sensor nodes.

The centralized architecture is theoretically optimal if
the communication bandwidth is high enough to send the
sensor data to the fusion node, which has enough computer
resources to process the data. It is also conceptually simpler.
On the other hand, a distributed (including hierarchical)
fusion architecture has the following advantages: lighter
processing load at each fusion node due to the distribution
over multiple nodes; no need to maintain a large centralized
database since each node has its own local database; lower
communication load since data does not have to be sent
to/from a central processing site; faster user access to
fusion results since there is less communication delay; and
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Fig. 1. Functional architectures for tracking/fusion.

higher survivability since there is no single point of failure
associated with a central fusion node. The distributed fusion
architecture is also a necessity since many fusion systems
have to be built with existing (legacy) fusion systems as
components.

While there are many advantages to distributed fusion,
there are also technical issues on system architecture and
algorithms that need to be addressed before high perfor-
mance systems can be developed. Some important technical
issues include the following items.

• Architecture: how the nodes should share the fusion
responsibility, e.g., which sources or sensors should
report to each node, and the targets that each node
should be responsible for.

• Communication: how the nodes should communicate,
e.g., connectivity and bandwidth of the communication
network, information push or pull, and communicating
raw data versus processing results.

• Algorithms: how the nodes should fuse data for high
performance results and select their communication
actions (who, when, what, and how).

Compared to centralized fusion on which much research
has been performed [1], [2], distributed fusion is a much
less mature area of research. The goal of this paper is
to review the current status of research, and present an
approach for analyzing distributed architectures and devel-
oping distributed fusion algorithms.

There are two main types of fusion problems: fusion for
making a decision on a hypothesis such as detecting the
presence of targets or classifying a signal, and fusion for
target tracking. The distributed version of the first type of
problems is usually known as distributed decision/detection
fusion [3], [4], and will not be the subject of this paper.
Instead, we will focus on the tracking problem [5]–[8] and
how it can be distributed.

Since the main components of tracking are estimation
and data association, distributed fusion for tracking will
involve distributed estimation and distributed association.
For distributed estimation, most research has assumed a
hierarchical fusion architecture. Most results on distributed
linear Gaussian estimation start with the various forms
of Kalman filters [9] to derive the distributed equations
[10]–[23]. Distributed nonlinear results generally follow
the same philosophy [24], [25]. The information graph
approach for modeling the information flow in arbitrary
distributed fusion architectures and developing fusion equa-
tions was introduced in [26]–[29]. The linear and nonlinear
fusion equations for hierarchical architectures can also be
derived using this approach.

For the distributed data association problem, early work
dealt with the track to track association problem [30], [31].
Since then distributed versions of centralized algorithms
such as joint probabilistic data association (JPDA) [32],
[33], or multiple hypothesis tracking (MHT) [34], [35],
have been developed [36], [27]–[29].

The structure of this paper is as follows. In Section II
we first review the key functional components in a fusion
system used for tracking. Section III presents different
fusion architectures, the information graph approach to
represent the information flow, and what we mean by
optimal distributed fusion. A methodology for develop-
ing distributed estimation algorithms is then discussed in
Section IV and related to standard linear and nonlinear
results. The effects of dynamic states and process noise
are also considered. Section V discusses the distributed
version of the data association problem. Some examples
of applications are given in Section VI.

II. FUSION FOR TARGET TRACKING

The sensor/data fusion problem [1], [2] is present in
many different applications including surveillance, robotics,
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manufacturing automation, etc. In each application area,
even though the general goal is to utilize the available
data to improve the understanding of some state of the
world, the specific nature of the problem may be quite
different. For example, parts inspection in manufacturing
automation generally involves a known number of coopera-
tive static objects in a controlled environment, while fusion
in surveillance has to deal with an unknown number of
noncooperative dynamic objects in an adverse environment.
In this paper, we focus on the problem of determining
the location, velocity, type, and other attributes of mul-
tiple moving objects from sensor data. Such problems,
sometimes called tracking, are prevalent in surveillance
applications such as defense or air traffic control, and also
occur in robotics applications.

A common characteristic in fusion for tracking is that
the sensors do not provide information on the origins of
the measurements. For example, a radar scan provides
multiple detections of targets and clutter but the detections
are not identified with the targets. Thus a key function in
fusion is the association of the measurements to the targets
before any estimates can be made from the measurements.
Fig. 1 shows an architecture for tracking/fusion which
is adapted from [37]. The architecture consists of the
following functions.

A. Alignment

Data alignment is the first step in the fusion process.
Typically data alignment deals with the spatial registration
or temporal prediction of the target tracks based on the
inputs of the sensor suite. Converting the data of each
sensor to a common coordinate system is necessary to fuse
target data from dissimilar sensors. Although conversion
provides a convenient frame of reference, it may create
biases when compensating for measurement error that needs
correcting [8]. Temporal alignment extrapolates the tracks
to the same time as the measurements so that they can
be compared with each other. It first links one or more
predetermined target kinematic models to the track; then
the temporal prediction portion of the Kalman filter is used
to estimate the location or state of the target at the time of
the next scheduled sensor report.

B. Association

Association is responsible for partitioning the measure-
ments into sets that could have originated from the same
targets. In a recursive processing algorithm, this involves
associating measurements to the set of aligned tracks.
Validation gates are first computed from the extrapolated
track and sensor errors and used to reduce the number
of possible associations to a track. Then association is
performed using one of a number of possible approaches.

Thenearest neighborapproach assumes that the measure-
ment closest to the center of the validation gate represents
the target. All other detections in the gate are then labeled
as false alarms. Although this simple approach requires
minimal computational resources, it may not work well

in difficult situations with high clutter, poor detection or
dense targets.

In contrast to the simple nearest neighbor approach,
the JPDA algorithm [32], [33] makes the assumption that
the nearest detection from the extrapolated target estimate
may not always originate from the target and that other
detections which are farther away may be the real mea-
surement. To account for this, the JPDA algorithm assigns
a weight to each detection within the target validation gate
to represent its likelihood of being associated with the
target. All the detections are then used to update the target
state estimate, the contribution of each detection being
proportional to their association weights. The probabilistic
association results from the fact that all detections are used
with weights that depend on their association likelihoods.
This technique represents an all neighbor approach. One
advantage of the JPDA approach is that it readily allows
for the assignment of a single sensor report to multiple
tracks, thus reducing the difficulty of track conflicts during
track crossings. Furthermore, memory and computational
requirements are usually kept fixed as compared to other
more complicated approaches. The primary disadvantage is
that excessive clutter can pull the tracker away from the
true target position.

The MHT approach [34], [35] delays making a firm as-
sociation decision when the situation is unclear. Generally,
the hypotheses are formed at two levels—track and scene.
Track-level hypotheses are formed from possible associ-
ations of current detections to previous tracks, and their
likelihoods are computed by comparing the extrapolated
track state estimates with the detections. Each scene level
hypothesis is a consistent set of track hypotheses (e.g., no
two tracks share the same measurements when a measure-
ment can only result from a single target). Scene level
hypotheses from the same set of detections are mutually
exclusive and represent alternate ways of associating the
data. Scene level hypotheses are also scored using track
likelihoods and probabilities of previous hypotheses. Even
with pruning and other hypothesis management techniques,
the MHT approach requires more computational resources
but can produce better results in more complex situations.

The different approaches are related. In fact, the JPDA
algorithm can be viewed as a special case of the MHT
by combining all the hypotheses after each update. The
specific choice of techniques depends on the scenario such
as target and sensor parameters, the desired performance
and the computation resources available. In other words,
application dictates the specific choice of the association
approach.

C. Updating

Given a particular association, the estimates of the states
for each track are updated with the sensor measurements.
When the measurement models are linear or can be approx-
imated by linearized models, e.g., measurements of position
and velocity, the Kalman filter measurement update equa-
tions [9] are used to combine the associated measurements
with the predicted states. For attributes that are nonlinear in
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nature, e.g., target type, Bayes rule or other approaches such
as Dempster–Shafer may be used. The updated information
is then used again to support future alignment, gating and
association when new measurements are received.

III. D ISTRIBUTED FUSION ARCHITECTURES

AND APPROACH

Many existing fusion systems have a centralized archi-
tecture with all data processed by a single fusion node.
The availability of distributed computing and the need to
deal with bigger problems, however, will imply distributed
fusion systems with multiple fusion nodes processing data
from their own sensors and communicating with other
nodes to improve upon the local results.

The presence of multiple data sources and fusion nodes
provides many choices in the architecture, i.e., how the
sensors or data sources report to each fusion node and the
connectivity among the nodes. Fig. 2 shows four possible
architectures: centralized, hierarchical without feedback,
hierarchical with feedback, and fully distributed. In a cen-
tralized architecture, there is a single track database and the
data from multiple sensors are aligned and associated with
the tracks in this database to update the tracks and their state
estimates. In the hierarchical architectures, the fusion nodes
are arranged in a hierarchy with the higher level nodes
processing results from the lower level nodes and possibly
providing some feedback. The hierarchical architecture is
natural for many applications, e.g., a fusion node for radar
data, another node for infrared sensor data, and a node
that combines the radar and infrared tracks. Considerable
savings in communication can be achieved if data is com-
municated to the higher levels at a rate slower than the
sensor observation rate. Hierarchical architecture with feed-
back is equivalent to periodic broadcast when the feedback
goes to every node. In a fully distributed architecture, there
is no pre-determined superior/subordinate relationship, each
node can communicate with any other node subject to
connectivity constraints, and the communication can be
asynchronous.

For architectures that are not centralized, a key problem is
how to combine the results from two fusion nodes. Standard
centralized techniques such as those described in Section
II can no longer be used since they usually assume that
the errors in the data to be fused are independent. This
assumption is usually violated in distributed fusion. In fact,
the rumor propagationor chicken little phenomenonarises
when information arriving by multiple paths has to be fused.
For example, may tell both and that he saw a target
with medium confidence. When gets this information
from both and , he may not recognize the redundant
information and increase the confidence to high because
he gets the same conclusions from bothand . This
phenomenon can produce biased and erroneous results at
the fusion nodes.

A. Information Graph

A model of the information flow among the components
in a fusion system is needed to analyze and design dis-

Fig. 2. Fusion architectures.

tributed fusion systems and algorithms. The information
graph has been proposed [28], [29] as a way to represent
the information events in a distributed fusion system and
their interactions. Using the information graph the common
information shared by arbitrary estimates can be identified
so that any redundant information can be removed in the
fusion process. This is especially useful when the commu-
nication structure among the fusion nodes is complicated
since the identification of common information may not be
easy.

The information graph contains four types of nodes to
represent the following information events:

• sensor observation nodes ;
• sensor data reception nodes ;
• communication transmission nodes ;
• communication reception nodes (fusion nodes) .

The directed links in the graph represent communication.
A directed path fromNode Ato Node Bmeans that there
is communication fromNode Ato Node B. Each node has
access to the information of the predecessor nodes and the
maximum information at a node consists of all predecessor
observation nodes. A node that is a common predecessor
to two nodes contains the common information of those
two nodes. Thus the information graph can be used to
find the common information of any two or more nodes
by identifying their common predecessors.

Fig. 3–6 show four examples of fusion architectures and
their information graphs. In each example, time goes from
left to right. It is obvious that the multiple information
path problem does not exist for centralized fusion (Fig. 3).
For hierarchical fusion, without or with feedback (Fig. 4
and 5), multiple information paths exist, but identifying
the redundant information from the information graph is
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Fig. 3. Information graph: centralized fusion.

Fig. 4. Information graph: Hierarchical fusion without feedback.

relatively straightforward. At each fusion node, one only
needs to determine the single common ancestor for the
nodes whose information is to be fused. For hierarchical
without feedback, this ancestor is at the lower level of the
hierarchy, i.e., F1 or F3. For hierarchical with feedback, the
ancestor is at the higher level of the hierarchy, i.e., F2.

For cyclic communication, each fusion node collects data
from its own sensor, forms the local estimate and then
communicates it to another node in a cyclical manner. The
receiving node then fuses the incoming estimate with the
local estimate. Fig. 6 shows that determining the common
information can be quite complicated. The information
graph can be used recursively to determine the common

source of information for any two nodes. In particular, the
information at the fusion node fuses the estimates at
nodes and , whose common information consists of that
at the common predecessor nodesand . The common
information of and consists of that at the nodesand

, which is equivalent to the node .

B. Distributed Fusion Approach

The distributed fusion algorithm attempts to duplicate the
results of a centralized algorithm as if the actual sensor
data were communicated instead of the outputs of the
tracker/correlators. Fig. 7 illustrates the philosophy of the
approach. On the right side of this figure, Nodes 1 and 2
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Fig. 5. Information graph: Hierarchical fusion with feedback.

Fig. 6. Information graph: cyclic fusion.

do not process the data but just communicate them to Node
3, which then generates the optimal (centralized) estimate
given the data. On the left side of the figure, each node
generates the best estimate given its data and sends it to
the fusion node (Node 3) which then combines the local
estimates to obtain the optimal centralized estimate.

In order for the fused estimate to be the same as the op-
timal (centralized estimate), the information communicated
by each node has to contain all the information needed
to reconstruct the optimal estimate (sufficient statistics).

Depending on the system architecture, this may include
processing history and previous estimates. When this in-
formation cannot be communicated, the resulting fused
estimate will be suboptimal.

IV. DISTRIBUTED ESTIMATION

As discussed before in Section II, a key part of target
tracking is estimating the target state given the associated
measurements. This target state may involve continuous
variables such as position and velocity and discrete vari-

100 PROCEEDINGS OF THE IEEE, VOL. 85, NO. 1, JANUARY 1997



Fig. 7. Philosophy of fusion approach.

Fig. 8. Fusion by removing redundant information.

ables such as target type. In a distributed situation, the main
problem is how to combine the estimates to arrive at the
best estimate.

A. Basic Algorithm

Let be the state (e.g., the location or type of a target) to
be estimated and the measurements for the two nodes, one
and two, be and . These
measurements may come from multiple sensors at different
times or the same time. Assume the individual measure-
ments are conditionally independent given the state,
i.e., . This assumption
is valid if the measurement errors are independent across
sensors and over time. The total information available to
the two nodes are then: and

The conditional independence
assumption implies:

(1)

where and are the set union and intersection operations
respectively.

Then the basic fusion equation is given by

(2)

where is the estimate by node one, is the
estimate by node two, is the estimate based on
the joint information, is the estimate based on
the common information, and is a normalization constant.
Basically each of the estimates contains the common infor-
mation , which has to be removed (divided)
from the product of the two estimates to avoid any double-
counting. This equation can be viewed as the distributed
version of Bayes rule. Fig. 8 illustrates the concept behind
this approach.

For estimation problems that are linear and Gaussian, the
fusion equation becomes

(3)

and

(4)

where and are the covariance and mean for the
Gaussian distribution , and and correspond
to union and intersection of the data sets. Equations (3) and
(4) can be derived from (2) or directly from the following
standard equations for linear estimation

(5)

(6)

where and are the mean and covariance of; the
measurements are related to the
state by

(7)

and the measurement errors are independent zero-mean
with covariance .

The state does not have to be static, i.e., it can be
the state of a dynamic system, as long as the conditional
independence assumption is valid. Under these assumptions
the local estimates can be generated by nonlinear filters or
Kalman filters and fusion involves only a static combination
of the local estimates.

B. Hierarchical Fusion Algorithm

The basic fusion equations (2)–(4), can be used with
the information graph to identify the common information
and develop the fusion equation for any arbitrary fusion
architecture. For the hierarchical architectures in Figs. 4 and
5, finding the common information is quite straightforward
and the fusion equations are:

Without feedback:

(8)

With feedback:

(9)
Note that in each case the communication does not

have to be synchronized and the local nodes can process
many measurements before communicating with the high
level node. The last term in each equation represents the
new information received from the lower level fusion
node. When there is no feedback, the new information is
the difference between the current and previous estimates
from the lower level. When there is feedback, the new
information is the difference between the new estimate and
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the last feedback from the higher level. The distributed
nonlinear fusion equations in [24], [25] can be derived
by including more nodes at the lower level. For example,
assuming communication at each instant and no feedback,
the fusion equation for the fusion node with lower
level nodes is given by [24]

(10)

For linear observations with Gaussian random variables,
fusion equations can be developed using a similar approach.
Different fusion equations for linear systems have been
developed in [10]–[23]. The following two common forms,
first appearing in [11], were based upon the information
form of the Kalman filter.

Without feedback:

(11)

(12)

With feedback:

(13)

(14)

In the above, , and
denote the updated and predicted estimates and error covari-
ances for the lower level nodewhile the nonsubscripted
quantities denote those at the higher level. As in the
nonlinear case, (11) and (12) show that the higher level
node fuses only the incremental information when there
is no feedback. When there is feedback, the fusion node
has to remove its own previously sent information before
combining the local estimates. The process of removing the
common estimates can be viewed as decorrelation to make
the local estimates independent again.

C. Algorithm for Arbitrary Architecture

Identifying the common information so that it can be
removed in fusion is relatively simple in a hierarchical
fusion architecture. For more complicated distributed fusion
architectures, identifying the common information is not
as straightforward. The information graph introduced in
Section III-A is useful for this purpose. When used in

conjunction with the basic fusion equation (2), it can be
used to derive fusion equations for arbitrary architectures
[26]–[29]. For example, in the cyclic communication of
Fig. 6, when the fusion equation is used a number of times,
with the help of the predecessor nodes identified before, the
following fusion equation can be obtained:

(15)

In this particular case, the common information shared
by the two nodes is represented not by one estimate (or
probability distribution) but by three.

For a general distributed fusion architecture characterized
by an information graph, the fusion equation is given by

(16)

where are the nodes (in the information graph)
to be fused by the fusion node,is a subset of information
nodes that are predecessors of the set is an
integer-valued function defined on, and is a normal-
izing constant. In this equation, means that the
information at the node is to be added (multiplication of
probability) while means that the information
has to be removed (division of probability) because of
redundancy. Equations for the means and covariances can
be derived for Gaussian distributions to be of the form:

(17)

(18)

In order to identify the common information using the
information graph and generate the set, the processing
history (or pedigree) also needs to be communicated in ad-
dition to the estimate. Using this additional information, the
fusion node can extract the relevant parts of the information
graph and construct the optimal fused estimate on the fly.
This approach supports fusion in arbitrary architectures with
asynchronous communication. For some architectures with
complicated information flow, the optimal fusion equation
may involve many previous estimates. However, com-
putational experience indicates that not much optimality
is sacrificed if only the recent history is communicated.
Also, the choice of the architecture and the design of
the fusion algorithm should be considered together. A
distributed fusion architecture that requires a complicated
fusion algorithm may not be a good choice.

D. Dynamic States and Process Noise

The optimality of the fusion equations in reproducing
the centralized estimates depends on the conditional
independence of the measurements given the target state.
For static target states, e.g., the state of a stationary target,
the measurements are conditionally independent and
the fusion equations always yield the optimal estimates.
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For dynamic states, e.g., when the state represents the
position and velocity of a moving target, the conditional
independence assumption holds only when the dynamic
model does not involve any process noise. For these so
called deterministic processes [28], the distributed fusion
equations produce the optimal estimates from the local
estimates. In particular, in the hierarchical architecture,
each local tracker can process many scans of sensor data
before sending the results to the higher level to be fused
[21]. This periodic communication reduces the amount
of communication needed between the levels.

For dynamic states with process noise, the conditional
independence assumption no longer holds unless synchro-
nized communication takes place after each sensor ob-
servation time. The loss in conditional independence is
due to the correlation from propagating the process noise.
Since communication at every observation instant requires
high bandwidth, hierarchical communication with periodic
update is more desirable. In this case the fusion results
produce only approximate results [19], [20]. Computational
experience indicates that the approximation is quite good
when the process noise is small.

E. Implementation Issues

The fusion equations in this section prescribe how local
estimates should be combined to obtain the optimal esti-
mates. In many instances, optimal fusion requires the use
of other estimates communicated earlier so that redundant
information can be removed. Distributed fusion imposes
additional communication, memory, and computation re-
quirements but it is possible to trade one for the other and
between nodes. Consider the hierarchical fusion equations
(11) and (12). These equations can be implemented in
two different ways. The first is for the local nodes to
compute the difference between the local updated and
predicted estimates and send the new information to the
higher level fusion node. The local nodes, rather than the
higher level node, perform the decorrelation function. The
second approach is for the local nodes to send the best
estimates. The high level node stores the estimates from
previous time, predict to the current time, find the differ-
ence with the updated estimates, and then computes the
fused estimates. This approach increases the memory and
computation requirements at the fusion node. In general, the
specific implementation of the fusion equations depends on
communication, computation, and memory considerations.

In some situations, the local nodes and fusion node may
be interested in different parts of the state space. For
example, the local nodes may collect data on local areas
while the fusion node has responsible over a bigger area.
For efficient computation, the local fusion node may use
lower dimensional models than the fusion node. Conditions
under which the optimal estimate can still be reconstructed
have been investigated in [12] and [25].

V. DISTRIBUTED TRACKING AND CORRELATION

In distributed fusion systems for target tracking, a fusion
node or local tracker processes the local sensor data to

Fig. 9. Track state and association hypothesis fusion.

generate target tracks and estimates on locations, velocities,
type, etc. Target tracks from different nodes are then
fused to improve on the tracks and state estimates. Fusion
generally involves two operations (Fig. 9): associating the
tracks from the different nodes to determine whether they
correspond to the same targets, and combining the state
estimates for those tracks that are associated. Note that this
process is similar to association and updating in centralized
fusion (Fig. 1).

The problem of track state fusion given associated tracks
has been extensively investigated and discussed in Section
IV. By comparison, much less work has been done in
distributed data association. This is partly due to the fact
that data association is already complicated in its central-
ized form, with different techniques applicable to different
scenarios. In the following we review several approaches
for distributed data association.

A. Track-to-Track Association Likelihoods

A metric for determining whether two tracks should be
associated is the likelihood of two tracks from different
nodes being associated with the same target. Given a
table of such metrics for all tracks, different association
approaches such as optimal assignment or other suboptimal
approaches can be used to make the association decision.

Suppose a track is formed by associating pairs of
tracks, and , one from each of the nodes 1 and
2. The information graph model can be used to derive
the likelihood of the track [21]. Let the set and the
function be defined as in Section IV-C, and

be the state distribution of a track given
the cumulative information . Then the likelihood of the
track formed by associating and is given by [29]

(19)

The state distribution of the fused track given the associ-
ation is

(20)

In the above, is used to represent a generalized
integral that may include summation for discrete variables
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such as the type of a target in addition to integration over
continuous variables such as position and velocity. If the
two nodes do not share any common information at all,
then the likelihood of associating two tracks is just the
product of the track state distributions. The likelihood is
high when there is much overlap in the state distributions
of the tracks and low otherwise. Ideally the metric should
involve the states of the tracks at all sensor observation
times since good overlap of track states at a single instant
may not represent a single target (e.g., tracks from two
distinct targets that happen to converge). Using the states at
all observation times satisfies the conditional independence
assumption and makes the likelihood formula exact.

Since using the entire track history is sometimes not
practical, most track association metrics consider only the
most recent time. Under the Gaussian assumption, with
only two nodes and prior density that is relatively flat, the
likelihood becomes:

(21)

where and are the means and covariances for the two
tracks. This expression is similar to the standard equations
for computing track-to-track association metrics and is valid
when the conditional independence assumption holds.

When the conditional independence assumption is not
satisfied, such as in a nondeterministic dynamic system with
process noise, (21) is no longer exact. Expressions have
been developed to approximate the association likelihood as
well as the fusion of the track state estimates by introducing
additional terms to compensate for the correlation in the
tracks [30], [31].

Recently, a general track association metric based on (19)
has been developed for nondeterministic processes [38] and
hierarchical architecture. This metric is given by

(22)

where and are two tracks based on the data sets
and is the track obtained by fusing and and
is the fused data. The likelihoods on the right hand side
are the track likelihoods given the data and are computed
recursively using all the observation data. In linear Gaussian
cases, they can be evaluated by Kalman filtering type
operations. This metric uses the track data at all observation
instants and has been shown to perform better than the
traditional static distance.

B. Distributed JPDA

The distributed version of the JPDA algorithm for a
hierarchical architecture is given in [36]. In this case, the
state estimate for a particular target after association and
fusion is given by

(23)

where , are the numbers of measurements for
the latest measurement sets of sensors one and two,

are the cumulative data sets, and is the association
event (hypothesis) that is the correct measurement, i.e.,
from the target. The first term on the right hand side is
computed from the distributed estimation algorithm given
the associations as described in Section IV. The second term
is computed from the individual association probabilities
as follows:

(24)

(25)

where are the joint feasible events involving all measure-
ments and targets and are binary measurement-target
association indicators.

Even though the product term implies that high individual
association probabilities result in a high joint association
probability, the additional term depends on the
individual correlation events and reflects the influence of the
actual measurement locations on the combined joint events.
These equations were derived assuming communication
after every observation and are only approximate with less
frequent communication and in the presence of process
noise.

C. Distributed MHT

The distributed version [27], [29] of the MHT has a
structure similar to the distributed JPDA. Consider the case
when a fusion node needs to fuse two sets of hypotheses
and tracks (one can be local and the other coming from
another site). Suppose the two sets of hypotheses and tracks
are represented by and , and the
probabilities of the hypotheses and state distributions
for the tracks are given by and .
The maximum information available to the fusion node is

. The goal of fusion is to obtain the hypothesis
set , track set , hypothesis probabilities ,
and track state distributions . Fusion consists of
the following two steps:

1) Hypothesis formation. For each pair of hypotheses,
and , that can be fused, a trackis formed by

associating pairs of tracks, and , one from each
node, that could have originated from the same target.
The result is a set of fused hypotheses and
tracks . Fig. 10 shows the distributed hypothesis
and track formation process.

2) Hypothesis evaluation. The probability of each asso-
ciation hypothesis and the state estimate of each fused
track are then computed. The distributed estimation
algorithm is used to compute the likelihoods of possi-
ble associations and the resulting estimates for a given
association. Using the information graph model, the
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Fig. 10. Distributed hypothesis formation.

probability of each fused hypothesis is given by

(26)

where is a normalization constant. The likelihood
of each fused track and the state estimates are given
by (19) and (20). These expressions can be simplified
under Gaussian assumptions.

VI. EXAMPLES OF APPLICATIONS

Distributed fusion techniques are applicable to many real
world problems where surveillance performance can be
enhanced by cooperation among sensing and processing
nodes. Much of the early work was sponsored by Advanced
Research Projects Agency (ARPA) under the Distributed
Sensor Networks Program. A testbed for distributed acous-
tic tracking of air targets was developed at Lincoln Lab-
oratory [39], [40], and the need for removing redundant
information was noted. A distributed MHT approach to
this problem was developed and demonstrated with both
simulated and real data in [41].

Recent applications include the use of multiple platforms
for airborne surveillance. Each platform has a suite of
sensors and the sensors on different types of platforms
have complementary capabilities. For example, a sensor
(e.g., radar) on one platform has good location accuracy
but poor classification performance, while another platform
has a sensor (e.g., electronic support measure) that is good
at classification but poor at location. Furthermore, some of
the sensors may be good at wide-area surveillance while
others are suitable for getting high resolution data. Thus by
using a sensor from one platform to cue a sensor on another
platform and sharing local processing results, distributed
fusion and resource management provides much better per-
formance than with the platforms working independently.
A system based on this concept has been described in [42].

VII. CONCLUSION

In many applications distributed fusion is a better archi-
tecture than centralized fusion because of advantages such
as distribution of processing load, lower communication
bandwidth, local authority, higher reliability, etc. The avail-
ability of low-cost and high performance computers has
also made distributed fusion feasible. However, distributed
fusion also presents technical challenges that must be over-
come before high performance systems can be developed.

These include the proper choice of distributed architectures
and the design of distributed fusion algorithms.

Over the past decade and a half significant advances have
been made in the theory of distributed fusion for tracking.
In particular, many distributed estimation algorithms have
been developed for both linear and nonlinear systems, and
hierarchical as well as general distributed architectures.
These algorithms can be viewed as distributed extensions
of linear and nonlinear estimation theory. To address the
data association problem in tracking, distributed versions
of standard approaches such as JPDA and MHT have also
been developed.

Distributed fusion ideas are beginning to show up in
many applications. Besides research prototypes, some cur-
rent or planned surveillance systems have incorporated
concepts of distributed fusion. The application efforts will
provide stimulus for further research on issues such as im-
pact of limited communication bandwidth, design of com-
munication strategies [43], fusion of outputs from nodes
using different models or algorithms [44], and distributed
fusion management.
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