
HAL Id: hal-00306315
https://hal.archives-ouvertes.fr/hal-00306315

Submitted on 1 Aug 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed games with causal memory are decidable for
series-parallel systems

Paul Gastin, Benjamin Lerman, Marc Zeitoun

To cite this version:
Paul Gastin, Benjamin Lerman, Marc Zeitoun. Distributed games with causal memory are decidable
for series-parallel systems. Proc. of the 24th Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS04, 2004, Chennai, India. pp.275-286, �10.1007/b104325�.
�hal-00306315�

https://hal.archives-ouvertes.fr/hal-00306315
https://hal.archives-ouvertes.fr

Distributed games with causal memory are

decidable for series-parallel systems?

Paul Gastin, Benjamin Lerman, and Marc Zeitoun

LIAFA, Université Paris 7 & CNRS
2, pl. Jussieu, case 7014, F-75251 Paris cedex 05, France

{Paul.Gastin, Benjamin.Lerman, Marc.Zeitoun}@liafa.jussieu.fr

Abstract. This paper deals with distributed control problems by means
of distributed games played on Mazurkiewicz traces. The main difference
with other notions of distributed games recently introduced is that, in-
stead of having a local view, strategies and controllers are able to use
a more accurate memory, based on their causal view. Our main result
states that using the causal view makes the control synthesis problem
decidable for series-parallel systems for all recognizable winning condi-
tions on finite behaviors, while this problem with local view was proved
undecidable even for reachability conditions.

1 Introduction

This paper addresses a distributed control problem. We are given a distributed
open system interacting with its environment. While actions of the environment
cannot be controlled, actions performed by the system are controllable. We are
also given a specification and the problem is to find, for each local process, a
finite-state local controller such that synchronizing each local process with its
local controller makes an overall system satisfying the specification.

Sequential versions of control problems have been studied for a long time [2,
16, 14] and have usually decidable answers. What makes the distributed control
problem more difficult is that a given process and its associated local controller
only have a partial view of what happened so far. For instance, a controller can-
not take a decision depending on what occurred on a concurrent process, unless
such information is forwarded to it (via another process or via the environment).

The problem can be modeled by a game with incomplete information. Each
process is a player of the controller team and the environment is the other team.
Finding a distributed controller is then equivalent to computing a distributed
winning strategy for the controller team. The general situation for multiplayer
games with incomplete information is undecidable [13, 12] and in this light, it
is not really surprising that the distributed control problem is undecidable even
for simple specifications [15, 7, 8, 10]. The aim of the present paper is to open
a breach in the list of undecidable results for distributed systems. Obtaining

? Work partly supported by the European research project HPRN-CT-2002-00283
GAMES and by the ACI Sécurité Informatique 2003-22 (VERSYDIS).

efficient and broadly applicable algorithms is a long term issue, out of the scope
of the paper.

We believe that there are two main reasons for undecidability results obtained
in previous works and that they are both related to the fact that interleavings
were used to model distributed behaviors. First, specifications were often given
as regular conditions on linearizations and were not necessarily closed under
commutations of independent actions. This is a well-known cause of undecid-
ability, already addressed in [10]. The second reason has to do with the memory
that local controllers are allowed to use. This memory is an abstraction of the
part of the behavior that the controller is able to see. Previous works used a local
view : a process can only see its own previous actions. However, the distributed
control problem remains undecidable using this local view even when specifica-
tion are both regular and closed under commutations [10]. For distributed games
defined in [11], even reachability specifications are undecidable [1].

In our work, the local memory is based on the causal view of a process (a no-
tion which already yielded positive decidability results for branching-time spec-
ifications [9]). This causal view is more accurate than the local one and includes
all actions that are causally in the past of the current local action. Importantly,
this causal memory can be implemented for reasonable communication archi-
tectures by forwarding additional informations along with usual messages. The
main contribution of this paper is that, if we use causal memory, the distributed
control problem becomes decidable for series-parallel systems and for controlled
reachability conditions, encompassing specifications such as recognizability on
finite behaviors, and reachability and safety conditions (on finite or infinite be-
haviors). Further, one can effectively compute a distributed controller when it
exists. This result contrasts deeply with previous work since the problem is un-
decidable with local memory. Our proof is based on a structural induction that
is possible for series-parallel systems.

The causal view was also considered in [6]. It was shown that distributed
games with causal memory are undecidable for rational winning conditions on
linearizations even for cograph dependence alphabets. This explains why we
consider only recognizable winning conditions in this paper.

The distributed control problem remains open for classical conditions on
infinite traces such as Büchi, liveness, parity conditions, . . . We conjecture that
these problems are still decidable. Another important issue is to exhibit a more
direct construction of the winning strategies. Finally, the distributed control
problem is still open, even for finite behaviors, on non-cograph alphabets.

Due to lack of space, most proofs had to be omitted.

2 Definitions and notation

Mazurkiewicz traces. We briefly recall definitions for our models of distributed
behaviors, see [4] for details.

If (V,≤) is a poset and S ⊆ V , the past of S is ↓S = {x ∈ V | ∃s ∈ S, x ≤ s}.
If x ∈ V , we write ↓x for ↓{x} and we let ⇓x = ↓x \ {x} be the strict past of x.
The successor relation associated with the partial order < is l = < \ <2.

A dependence alphabet is a pair (Σ, D) where Σ is a finite alphabet and D
is a reflexive, symmetric binary relation over Σ, called the dependence relation.
For A ⊆ Σ, we let D(A) be the set of letters that depend on some letters in A.

A (Mazurkiewicz) trace over (Σ, D) is an isomorphism class [V,≤, `] of a
pomset such that for all x, y ∈ V : (1) `(x) D `(y) ⇒ x ≤ y or y ≤ x, (2)
xly ⇒ `(x)D`(y) and (3) ↓x is finite. We denote by R(Σ, D) (resp. by M(Σ, D))
the set of traces (resp. of finite traces) over (Σ, D).

If t = [V,≤, `] is a trace, we denote by max(t) (resp. by min(t)) the set of
maximal (resp. minimal) elements of t. The alphabet of t is alph(t) = `(V). A
prefix of t is a trace s = [U,≤, `], where U ⊆ V satisfies ↓U = U . We write s ≤ t
if s is a prefix of t. In this case, we let s−1t = [V \ U,≤, `]. The empty trace is
denoted by ε.

Distributed games. The distributed systems we want to control are based on
asynchronous automata [18]. We are given a finite set of processes communicating
asynchronously via shared memory variables. Each process stores a value in
a register. When executing, an action reads registers of some processes, and
then writes some other registers through a test-and-set instruction. Some actions
are controllable. The other ones, representing the environment’s actions, are
uncontrollable.

We model these systems by distributed games [6] over a given architecture
(Σ,P , R, W). Here, P is a finite set of processes, Σ = Σ0] Σ1 is a finite set of
players (or actions), where Σ0 is the set of players of team 0 (the controller) and
Σ1 the set of players of team 1 (the environment). Player a ∈ Σ can atomically
read states of processes in R(a) ⊆ P and write new states on processes in
W (a) ⊆ P . We require two natural restrictions also considered in [18].

∀a ∈ Σ, ∅ 6= W (a) ⊆ R(a)

∀a, b ∈ Σ, R(a) ∩ W (b) = ∅ ⇐⇒ R(b) ∩ W (a) = ∅
(S)

These conditions encompass in particular all purely asyn- q1

q2

q3

a

b

chronous architectures (i.e., such that R = W) and all cellu-
lar architectures (i.e., such that |W (a)| = 1 for all a ∈ Σ).
In contrast, we do not treat here “one way” communication
architectures, as the one depicted opposite, where circles represent processes
read by the corresponding player, and squares represent processes which are
both read and written. That is, R(a) = {q1, q2}, W (a) = {q2}, R(b) = {q2, q3},
W (b) = {q3}, which obviously violates (S).

A distributed game over the architecture (Σ,P , R, W) is given by a tuple G =
(Σ0, Σ1, (Qi)i∈P , (Ta)a∈Σ , q0,W), where Qi is the set of local states (register
values) of process i. Given I ⊆ P , we let QI =

∏

i∈I Qi, and if q = (qi)i∈P ∈ QP ,
we let qI = (qi)i∈I . A global state of the game is then a tuple q ∈ QP . Player
a has a table of legal moves Ta ⊆ QR(a) × QW (a). A (sequential) play is a

sequence of moves starting in the global state q0 ∈ QP , the initial position of
the game. There is an a-move from p ∈ QP to q ∈ QP if (pR(a), qW (a)) ∈ Ta and
qP\W (a) = pP\W (a). The winning condition W describes a set of desired plays
and will be discussed later on.

Note that, if R(a)∩W (b) = ∅ = R(b)∩W (a) then in any global state p the two
moves a and b can be executed simultaneously or in any order without affecting
the resulting global state q: they are independent. Therefore, a (distributed)
play of a distributed game is more accurately defined by an equivalence class
of sequential plays, or equivalently, by a Mazurkiewicz trace over a suitable
dependence alphabet.

Distributed plays will be defined as traces with doubly labeled vertices: the
first label is the player’s name, and the second one is a vector of local states
representing what was written by the player. Formally, we consider a new symbol
/∈ Σ, with R(#) = W (#) = P . Let then Σ′ = {(a, p) | a ∈ Σ] {#} and p ∈
QW (a)}. We define the dependence relation D over Σ] {#} by a D b ⇔ R(a) ∩
W (b) 6= ∅ ⇔ R(b) ∩ W (a) 6= ∅ and D′ over Σ′ by (a, p) D′ (b, q) ⇔ a D b.
We write a trace of R(Σ′, D′) as [V,≤, `, σ], where ` : V → Σ] {#} and σ :
V →

⋃

a∈Σ]{⊥} QW (a) together define the labeling: a vertex x is labeled by

(`(x), σ(x)). A trace t = [V,≤, `, σ] ∈ R(Σ′, D′) is rooted if `−1(#) = {x#} is a
singleton and x# ≤ y for all y ∈ V . The global state reached on a finite rooted
trace t ∈ M(Σ′, D′) is q(t) = (qi(t))i∈P ∈ QP where:

qi(t) = (σ(y))i with y = max{x ∈ V | i ∈ W (`(x))}.

In other words, we retain the last write action performed on each process.
A (distributed) play is a rooted trace t = [V,≤, `, σ] ∈ R(Σ′, D′) which obeys

the rules given by (Ta)a∈Σ , i.e., σ(x#) = q0 and

∀x ∈ V, `(x) = a 6= # =⇒ (q(⇓x)R(a), σ(x)) ∈ Ta

Note that after the beginning of a play, several moves may be enabled, concur-
rently or not, from Σ0 or from Σ1. Thus, we do not see a distributed play as
turn-based. The winning condition W can then formally be defined as a subset
of R(Σ′, D′). Team 0 wins the play t if t ∈ W .

Example. Romeo and Juliet are in two

r j

4 4

3 3

2 2
Broken line

1 1

separate houses and they want to set up
an appointment. There are four com-
munication lines of which exactly one is
broken. At any time, Romeo (or Juliet)
may look at the status of the communi-
cation lines to see which one is broken
and then chooses to connect to one line (the whole operation is atomic). The
environment tries to prevent the communication. For this, at any time, it might
look at which line Romeo and Juliet are connected, and then decide to change
the broken line (again this operation is atomic). The actions of Romeo and Juliet
are independent but they both depend on the action of the environment. The

Q1

Q2

Q3

r

e j

Fig. 1. A simple cograph architecture

problem is to find two strategies, one for Romeo and one for Juliet, so that they
end up communicating whatever the environment does. If there is no restriction
on the environment then it might monopolize the system by constantly chang-
ing the broken line, thus preventing any action by Romeo or Juliet due to the
dependence of actions. Therefore we restrict the environment so that it cannot
act twice consecutively.

We formalize this system using three processes with states Q1 = Q2 = Q3 =
{1, 2, 3, 4} × {0, 1} and three players r, e, j whose read and write domains are
depicted in Figure 1, where circles represent processes read by the corresponding
player, and squares represent processes which are both read and written. State
(1, 0) for process 1 means that Romeo is connected to the first line and has played
an even number of times. The situation is similar for process 3 and Juliet. State
(2, 1) for process 2 means that line number 2 is broken and the environment
has played an odd number of times. The environment is allowed to play only if
the total number of moves is odd. A process based picture and a Hasse diagram
representation of a distributed play are given below. Between moves (whose reads
are • and read-writes are �), we draw local states which get modified by the test-
and-set legal moves. For instance, the first e reads (3,1), (1,0), (4,0) on processes
1, 2 and 3 and writes (3,1) on process 2. The global state reached at the end is
(1,0), (4,0), (1,1) which is winning for Romeo and Juliet. The interested reader
might check that Romeo and Juliet have memoryless strategies to win this game.

Q1

Q2

Q3

1,0

1,0

1,0
#

3,1

r

2,1
j

4,0
j

3,1

e

1,0

r
4,0

e
1,1

j
#
1, 0

1, 0

1, 0

j
2,1

j
4,0

r
3,1

e
3,1

r
1,0

e
4,0

j
1,1

Strategies and memory. Intuitively, player a of team 0 can restrict its set of
potential moves depending on its own history of the play. In the distributed
setting, it would not make sense to define this history on sequential plays. Indeed,
the strategy of player a should not depend on the ordering of independent moves
that are in its past and it should not depend either on concurrent moves that
happen to occur before it in some linearization.

A first solution is to define the history of some move a as the sequence of
moves that have written on process W (a) (assuming W (a) is a singleton). This
is the minimal reasonable amount of information we want to provide to players.
This defines strategies with local memory [11, 8, 10]. Unfortunately, even games
with reachability conditions on the simple architecture given in Figure 1 are
undecidable with the local view [1].

The representation of plays by traces provides another natural solution. In
order to choose which move to take, player a may look at all the causal past
(in the partial order) of the last write-events on the processes in R(a). This is
intuitively the maximal amount of information we can provide to players. This
is technically a bit more complicated since this memory information has to be
computed in a distributed way via states. The idea is that any player a can
compute, in addition to the values qW (a), a memory value that he also writes in
all locations of W (a).

Let t = [V,≤, `, σ] ∈ R(Σ′, D′) be a rooted trace. For A ⊆ Σ, the trace
∂At is the smallest prefix of t containing all vertices labeled in A under `. For
I ⊆ P , the trace ∂It is the smallest prefix of t containing all vertices x such that
W (`(x)) ∩ I 6= ∅.

An asynchronous mapping [3] is a function µ : M(Σ′, D′) → M such that
µ(∂A∪Bt) only depends on µ(∂At) and µ(∂Bt), and µ(∂D(a)t.a) only depends
on µ(∂D(a)t) and a. Asynchronous mappings can be computed in a distributed
way [3]. A distributed memory is a computable abstraction of an asynchronous
mapping. Formally, µ : M(Σ′, D′) → M is a distributed memory if there is
a computable asynchronous mapping ν : M(Σ′, D′) → N and a computable
function π : N → M such that π ◦ ν = µ. The function µ is the informa-
tion actually needed for a strategy, and the asynchronous mapping ν represents
an asynchronous implementation of this memory. Property (S) makes it possi-
ble to implement causal memory. Indeed, if x l y in a trace, then by definition
`(x)D`(y) and therefore, by (S), there is at least one process where x writes and
y reads. Hence, information computed by player `(x) can be forwarded to player
`(y). Observe that the environment’s team participates to the computation of
the causal view. This is not unrealistic: one cannot know when an environment’s
action will occur, but some systems may be designed so that events of the envi-
ronment forward the necessary information to compute the needed abstraction
of the causal view.

Intuitively, a given memory will be used by players of team 0 as an abstraction
(computed in M) of their past in a play. (This is why we call these memories
causal.) For instance, µ(t) = t is the largest possible memory and would provide
for each player a full view of its past.

The distributed memory µ : M(Σ′, D′) → M is said to be finite if it is
realized by a finite asynchronous mapping ν : M(Σ′, D′) → N . In this case, its
size is defined as the number of elements of a minimal such N .

A distributed strategy with memory µ : M(Σ′, D′) → M for team 0 is a
function f :

⋃

a∈Σ0
QR(a) ×M ×{a} → QW (a) ∪ {stop} such that if f(p, m, a) =

q 6= stop, then (p, q) ∈ Ta. Intuitively, if f(p, m, a) = q 6= stop, then the strategy
f dictates an a-move to q ∈ QW (a) on any distributed play t ∈ R(Σ′, D′) such
that ∂R(a)t is finite, p = q(∂R(a)t)R(a) and m = µ(∂R(a)t). If f(p, m, a) = stop,
the a-move is disabled by the strategy. Note that several players of team 0
may be simultaneously enabled by f during a play. A distributed play t =
[V,≤, `, σ] ∈ R(Σ′, D′) is an f -play if for all x ∈ V with `(x) ∈ Σ0, we have
σ(x) = f(q(⇓x)R(a), µ(⇓x), a).

A play t is f -maximal if f(q(∂R(a)t)R(a), µ(∂R(a)t), a) = stop for all a ∈ Σ0

such that ∂R(a)t is finite. The maximality condition is natural: if the distributed
strategy of team 0 dictates some a-moves at some f -play t, then the f -play t is not
over. This applies also if t is infinite and corresponds to some fairness condition:
along an infinite f -play, a move of team 0 cannot be ultimately continuously
enabled by f without being taken. Note that any f -play t is the prefix of some f -
maximal f -play. If each f -maximal f -play is in W then f is a winning distributed
strategy (WDS) for team 0.

3 Controlled reachability games

In this section, we introduce controlled reachability games and we prove their
decidability on cograph dependence alphabets.

Define the set of global states seen along a rooted (possibly infinite) trace t as

P (t) = {q(s) | s finite and ε < s < t}

Observe that q(t) is not necessarily in the set P (t).

#

q(t)
︸ ︷︷ ︸

P (t)

Define (P , q)(t) = (P (t), q(t)) with q(t) = ∞ if t is infinite.

Let G = (Σ0, Σ1, (Qi)i∈P , (Ta)a∈Σ , q0,W) be a distributed game. Say that
G is a controlled reachability game if there is a set F ⊆ 2QP × (QP] {∞})
such that a play t is winning for team 0 iff (P , q)(t) ∈ F . One will then write
G = (Σ0, Σ1, (Qi)i∈P , (Ta)a∈Σ , q0,F). Note that we get classical reachability or
safety conditions as special cases of controlled reachability conditions.

An undirected graph is a cograph if it belongs to the smallest class of graphs
containing singletons and closed under parallel product and complementation.
Therefore, if (A, DA) and (B, DB) are cographs with A ∩ B = ∅, then so are
(A∪B, DA ∪DB) and (A∪B, DA ∪DB ∪A×B ∪B ×A) and vice versa, every
cograph can be decomposed using these two operations. All Mazurkiewicz traces
on a cograph alphabet are series-parallel, that is, they can be described by an
expression using only single-vertex traces, and parallel and sequential product
of directed graphs. It is well-known that cographs are undirected graphs with
no P4, i.e., no induced subgraph of the form a – b – c – d. We can now state the
main result of the paper.

Theorem 1. Given a controlled reachability game on a cograph alphabet, one
can decide if team 0 has a WDS on this game. One can effectively compute such
a strategy if it exists.

We would like to stress that this theorem might be applied to more general
settings than series-parallel systems by adding dependencies (communication
channels) and thus turning an arbitrary dependence alphabet into a cograph.

Any recognizable winning condition on finite traces can be reduced to a
(controlled) reachability condition by building a product of the game with an
asynchronous automaton on the same architecture for this recognizable winning
condition.

Corollary 1. Given a distributed game on a cograph alphabet, with a recogniz-
able set of finite traces as winning condition, one can decide if team 0 has a
WDS on this game. One can effectively compute such a strategy if it exists.

To prove Theorem 1, we will build from an arbitrary WDS f with memory
µ another WDS f ′ whose memory is bounded by an effectively computable
function depending only on |Σ| and |QP |. By [6], given a distributed memory
µ, one can then effectively transform a distributed game G into a new game Gµ

such that team 0 has a winning distributed strategy with memory µ in G iff it
has a memoryless strategy in Gµ, which is decidable, again by [6].

We build f ′ from f by induction on the cograph alphabet. For technical
reasons, one proves in the induction the following additional property on f ′.

Definition 1. Let f , f ′ be two distributed strategies. Then f ′ is f -compatible
if for all finite f ′-play t′, there exists an f -play t such that (P , q)(t) = (P , q)(t′).

Obviously, the compatibility relation is transitive. The following result we
shall prove is more accurate than Theorem 1.

Theorem 2. Let G be a controlled reachability game. There exists a computable
function M : N2 → N, such that, for any WDS f over G, there exists a WDS f ′

which is f -compatible and whose memory is bounded by M(|Σ|, |QP |).

We start with an intuitive sketch of the proof of Theorem 2. We build the
f -compatible WDS f ′ using strategies obtained by induction over smaller al-
phabets. The parallel case is easy: the game defines two subgames, one on each
alphabet of the parallel product, and f induces WDS’s on these subgames. The
induction provides compatible WDS’s with bounded memory, which we recom-
bine into a new strategy on the parallel product.

The sequential case is more complex. To simplify notation, we write max(r) ⊆
A instead of `(max(r)) ⊆ A and we use similar a notation for min. We also
write alph(t) instead of `(t). On Σ = A] B, where A × B ⊆ D (with A,
B cographs), f -plays have the form (#, q0)s1s2 · · · where alph(si) ⊆ A iff
alph(si+1) ⊆ B. Each block si can be seen as a play (#, qi−1)si over A or
B where qi = q((#, q0)s1 · · · si). From f , one derives restricted strategies over A
or B to go from qi−1 to qi, visiting the same set of states. We then replace, using
the induction, these restricted strategies by strategies with bounded memory.
This is where controlled reachability is used: the induction hypothesis ensures
that states visited by the new strategies are the same as for original strategies.
We need this information to ensure we won’t reach new states from which team

1 could escape in the other alphabet. By simplifying the strategy f (removing
unwanted loops from all f -plays), this makes it possible to recombine the strate-
gies over the smaller alphabets to obtain the desired strategy f ′. We also have
to prove that players of team 0 can detect with a distributed memory if they are
minimal in some block si, to know which restricted strategy they have to play.
The rest of this section is devoted to the formal proof of Theorem 2.
Induction basis: |Σ| = 1.
In this case, G is a 1-player sequential game. If we do not insist on getting an
f -compatible strategy for f ′ it would be enough to observe that the winning
condition is recognizable (alphabetic condition on states seen along the play and
reachability on the possible last state) and computable by an automaton of size
2|QP |. The existence of a winning strategy is therefore equivalent to the existence
of a winning strategy with memory less than 2|QP |. However, the strategy f ′ we
have to build must be f -compatible, and we cannot use directly this result. For
our proof, we distinguishes two cases.
1. Σ = {a} = Σ1. Then, the set of plays does not depend on the strategy of
team 0, since team 0 has no choice. Hence, if team 0 has a winning strategy, this
winning strategy is memoryless.
2. Σ = {a} = Σ0. Then, if player a has a winning strategy f , there exists a
unique f -maximal f -play r and this play is winning. It is possible to show that
one can build from r a new play t satisfying the following three conditions:

∀s, s′ ≤ t, (P , q)(s) = (P , q)(s′) ⇒ s−1t = s′−1t (1)

(P , q)(t) = (P , q)(r) (2)

∀t′ ≤ t, ∃r′ ≤ r, (P , q)(t′) = (P , q)(r′) (3)

Observe that property (1) guarantees that t is played according to a strategy f ′

with memory µ : s → (P , q)(s) which is indeed distributed since Σ is a singleton.
Property (2) ensures that f ′ is winning, while (3) implies that f ′ is f -compatible.
It follows that M(1, |QP |) ≤ |QP | · 2|QP |.

Induction, first case: Σ = A] B with (A × B) ∩ D = ∅
Without loss of generality, we may assume that P = R(A) ∪ R(B) and that
R(A) ∩ R(B) = ∅. Indeed, since R(A) ∩ W (B) = R(B) ∩ W (A) = ∅, we have
i /∈ W (A) ∪ W (B) if i ∈ R(A) ∩ R(B). In other terms, such a component i
remains constant along a run, and does not play any role during the moves.

Abusing notation we write qA instead of qR(A) for q ∈ QP . Let qA ∈ QR(A)

and qB ∈ QR(B). One defines q = qA ‖ qB by qi = (qA)i if i ∈ R(A) and
qi = (qB)i if i ∈ R(B). Further, ∞ ‖ qB = qA ‖ ∞ = ∞ ‖ ∞ = ∞. One extends
this definition to pairs of 2QP × (QP] {∞}) by

(P, q) ‖ (P ′, q′) =
(
(((P ∪ {q} \ {∞}) ‖ P ′) ∪ (P ‖ (P ′ ∪ {q′} \ {∞}))), q ‖ q′

)
.

Let A′ = {(a, p) ∈ Σ′ | a ∈ A} ∪ ({#} ×QR(A)), and B′ be defined similarly.
Let rA = (#, q0

A) · sA be a rooted trace over A′ and rB = (#, q0
B) · sB a rooted

trace over B′. Define rA ‖ rB = (#, q0
A ‖ q0

B) · sA · sB = (#, q0
A ‖ q0

B) · sB · sA.

Lemma 1. Let rA and rB be two rooted traces on the alphabets A′ and B′

respectively. Then (P , q)(rA ‖ rB) = (P , q)(rA) ‖ (P , q)(rB).

A rooted trace t over Σ′ can be uniquely factorized as t = tA ‖ tB where tA
and tB are rooted traces over alphabets A′ and B′ respectively.

If r = rA ‖ rB and s = sA ‖ sB are f -plays on G then rA ‖ sB is again
an f -play of G. Indeed, since A × B ∩ D = ∅, the strict past of a vertex of
rA ‖ sB is either (#, q0), or the same as that of the corresponding vertex in r
or in s (depending on whether `(x) ∈ A or `(x) ∈ B). If r and s are f -maximal,
then rA ‖ sB is also f -maximal since, if c ∈ A for instance, ∂R(c)(rA ‖ sB) =
∂R(c)(rA ‖ (#, q0

B)) = ∂R(c)(r).
The set S of f -maximal f -plays is therefore of the form S = SA ‖ SB. Let

FA = (P , q)(SA) and FB = (P , q)(SB). Let us show that FA ‖ FB ⊆ F . Let
rA ∈ SA and sB ∈ SB. By definition, there exists rB and sA such that r = rA ‖
rB ∈ S and s = sA ‖ sB ∈ S. We have seen that this implies t = rA ‖ sB ∈ S.
Using Lemma 1, one gets (P , q)(rA) ‖ (P , q)(sB) = (P , q)(t) ∈ F , since the
strategy f is winning and t ∈ S.

Let GA = (Σ0 ∩ A, Σ1 ∩ A, (Qi)i∈R(A), (Ta)a∈A, q0
A,FA) on the architecture

(A, R(A), R|A, W|A). This is again a distributed game. Define GB symmetrically.
Define fA(q(rA), µ(rA), a) = f(q(rA ‖ (#, q0

B)), µ(rA ‖ (#, q0
B)), a). Let us

show that fA is a WDS for GA. First, fA is a distributed strategy with memory
µ in GA, since one can associate to any play rA of GA the play rA ‖ (#, q0

B) of
G. It remains to show that fA is winning. Consider an fA-maximal fA-play rA

and let rB be an fB-maximal fB-play of GB . Then, rA ‖ rB is an f -maximal
f -play. Hence, (P , q)(rA) ∈ FA, and rA is a winning play of GA.

By induction, there exists an fA-compatible winning strategy f ′
A for team

Σ0∩A in GA with memory µA of size less that M(|A|, |QP |), and dually for B. We
define the memory µ on M(Σ′, D′) by µ(t) = (µA(tA), µB(tB)) for t = tA ‖ tB.
We build from f ′

A and f ′
B an f -compatible winning strategy f ′ for Σ0 in G

as follows. For a ∈ A and qR(a) ∈ QR(a), we define f ′(qR(a), (mA, mB), a) =
f ′

A(qR(a), mA, a) and similarly, we let f ′(qR(b), (mA, mB), b) = f ′
B(qR(b), mB, b)

for b ∈ B and qR(b) ∈ QR(b).
Using the next statement, one can bound the memory of f ′ by a function

depending only on M(|A|, |QP |) and M(|B|, |QP |), which finishes the induction
for the parallel case.

Lemma 2. The strategy f ′ is an f -compatible WDS for team 0 on G.

Induction, second case: Σ = A] B with (A × B) ⊆ D.

We define the product r·As by r·As = rs if max(r) * A and min(s) ⊆ A. The
product is undefined otherwise. Let f be a WDS for team 0 on G and let S the
set of all f -plays. If t is a finite f -play, we let t−1S = {t−1S | t ≤ s and s ∈ S}
and FromA(t) = t−1S ∩ (min ⊆ A). We also define

CutA,P,q = {t ∈ S | t is finite, max(t) * A and (P , q)(t) = (P, q)}.

A distributed strategy f is (A, P, q)-uniform if for all r1, r2 ∈ CutA,P,q, we have
FromA(r1) = FromA(r2). Say that f is uniform if it is (A, P, q)-uniform and
(B, P, q)-uniform for all (P, q) ∈ 2QP × QP .

Lemma 3. For any winning distributed strategy f on G, there exists a winning
f -compatible distributed strategy on G, which in addition is uniform.

Thanks to Lemma 3 and using the transitivity of the compatibility relation,
we may assume that f is uniform for the rest of the proof of Theorem 2. Let
then

NextA(t) = FromA(t) ∩ (alph ⊆ A)

A play r is (f, A)-maximal if for all a ∈ A ∩Σ0, f(q(r)R(a), µ(r), a) = {stop}. If
CutA,P,q 6= ∅, we choose r ∈ CutA,P,q and define a winning condition FA,P,q:

FA,P,q =
{
(P , q)((#, q)s) | s ∈ NextA(r) and rs is (f, A)-maximal

}

Since f is uniform, FromA(r) and NextA(r) do not depend on r. One shows that
if rs is (f, A)-maximal, then for all r′ ∈ CutA,P,q, r′s is also fA-maximal. One
deduces that FA,P,q does not depend on the choice of r.

If CutA,P,q 6= ∅, define GA,P,q = (Σ0∩A, Σ1∩A, (Qi)i∈P , (Ta)a∈A, q,FA,P,q).
From f , one can derive a distributed strategy for the distributed game GA,P,q:

fA,P,q(q((#, q)s), µ((#, q)s), a) = f(q(rs), µ(rs), a) where r ∈ CutA,P,q

Since f is uniform, fA,P,q does not depend on r, and by construction of fA,P,q,
the set of fA,P,q-plays is exactly (#, q)NextA(r). By construction of GA,P,q and
FA,P,q, all fA,P,q-maximal fA,P,q-plays are winning in GA, so fA,P,q is winning.

Moreover, GA,P,q is a controlled reachability game on the alphabet A, smaller
than Σ. By induction, there exists a winning strategy f ′

A,P,q on GA,P,q which is
fA,P,q-compatible and whose memory is of size at most M(|A|, |QP |). One easily
transforms f ′

A,P,q to ensure that if (∅, q) ∈ FA,P,q, then f ′
A,P,q((#, q), a) = {stop}

for all a ∈ Σ0 ∩ A. This modification does not change the amount of memory
necessary for f ′

A,P,q. Further, f ′
A,P,q is still fA,P,q-compatible and winning.

We now have WDS on smaller games GA,P,q, GB,P,q whose memories have a
controlled size. It remains to glue them suitably to reconstruct the f -compatible
WDS f ′. For this, we need to know on which subgame (A, P, q) or (B, P, q) to
play. To this aim, we have to compute necessary information with a distributed
memory: The lb-factorization (for last-block factorization) of a rooted trace t 6=
(#, q0) is defined (in a unique way) as the factorization t = rs such that

t =

{

r ·A s with ∅ 6= alph(s) ⊆ A

r ·B s with ∅ 6= alph(s) ⊆ B.

One can write an MSOΣ′(≤)-formula LastcutP,q which is satisfied by a trace t
if and only if (P , q)(r) = (P, q) where t = rs is the lb-factorization of t. Now,
an MSOΣ′(≤)-definable trace language can be accepted by an asynchronous
mapping [17, 5, 3]. Hence, the mapping t 7→ (P , q)(r) where t = rs is the lb-
factorization of t is a distributed memory. Similarly, one can show that a mapping
indicating to a player if its move (if played) would change the alphabet from A to
B or from B to A, is also a distributed memory. These informations give exactly

the needed information to players of team 0 to know in which game they are
playing. Hence, they make it possible to glue strategies f ′

A,P,q, f
′
B,P,q to obtain

the desired f -compatible WDS f ′. For lack of space, we cannot provide details
for this construction. Since we have bounded the sizes of the memories used by
the small strategies, this gives us a bound for the memory needed for f ′.

Acknowledgements The authors wish to thank the anonymous referees for their
careful reading of the submitted version of the paper, which helped us improve its
presentation. We also thank J. Bernet, D. Janin and I. Walukiewicz for fruitful
discussions.

References

1. J. Bernet, D. Janin, and I. Walukiewicz. Private communication. 2004.
2. J. R. Büchi and L. H. Landweber. Solving sequential conditions by finite-state

strategies. Trans. Amer. Math. Soc., 138:295–311, 1969.
3. R. Cori, Y. Métivier, and W. Zielonka. Asynchronous mappings and asynchronous

cellular automata. Inform. and Comput., 106:159–202, 1993.
4. V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific, 1995.
5. W. Ebinger and A. Muscholl. Logical definability on infinite traces. Theoret.

Comput. Sci., 154(1):67–84, 1996. Conference version in ICALP ’93.
6. P. Gastin, B. Lerman, and M. Zeitoun. Distributed games and distributed control

for asynchronous systems. In LATIN04, volume 2976 of LNCS, pages 455–465.
Springer, 2004.

7. O. Kupferman and M. Y. Vardi. Synthesizing distributed systems. In LICS ’01,
pages 389–398. Computer Society Press, 2001.

8. P. Madhusudan and P. S. Thiagarajan. Distributed controller synthesis for local
specifications. In ICALP ’01, volume 2076 of LNCS. Springer, 2001.

9. P. Madhusudan and P. S. Thiagarajan. Branching time controllers for discrete
event systems. Theor. Comput. Sci., 274(1-2):117–149, 2002.

10. P. Madhusudan and P. S. Thiagarajan. A decidable class of asynchronous dis-
tributed controllers. In CONCUR ’02, volume 2421 of LNCS. Springer, 2002.

11. S. Mohalik and I. Walukiewicz. Distributed games. In FSTTCS ’03, volume 2914
of LNCS, pages 338–351. Springer, 2003.

12. G. Peterson, J. Reif, and S. Azhar. Lower bounds for multiplayer noncooperative
games of incomplete information. Comput. Math. Appl., 41(7-8):957–992, 2001.

13. G. L. Peterson and J. H. Reif. Multiple-person alternation. In 20th Annual Sympo-
sium on Foundations of Computer Science (San Juan, Puerto Rico, 1979), pages
348–363. IEEE, New York, 1979.

14. A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive module.
In ICALP ’89, volume 372 of LNCS, pages 652–671. Springer, 1989.

15. A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthetize. In
31th IEEE Symp. FOCS, pages 746–757, 1990.

16. P. Ramadge and W. Wonham. The control of discrete event systems. In IEEE,
volume 77, pages 81–98, 1989.

17. W. Thomas. On logical definability of traces languages. In workshop of ESPRIT
BRA 3166, ASMICS, pages 172–182, Kochel am See, 1990.

18. W. Zielonka. Asynchronous automata. In G. Rozenberg and V. Diekert, editors,
Book of Traces, pages 175–217. World Scientific, Singapore, 1995.

