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Distributed generator coordination for initialization

and anytime optimization in economic dispatch
Ashish Cherukuri Jorge Cortés

Abstract—This paper considers the economic dispatch problem
for a group of generator units communicating over an arbitrary
weight-balanced digraph. The objective of the individual units
is to collectively generate power to satisfy a certain load while
minimizing the total generation cost, which corresponds to
the sum of individual arbitrary convex functions. We propose
a class of distributed Laplacian-gradient dynamics that are
guaranteed to asymptotically find the solution to the economic
dispatch problem with and without generator constraints. The
proposed coordination algorithms are anytime, meaning that its
trajectories are feasible solutions at any time before convergence,
and they become better and better solutions as time elapses. Ad-
ditionally, we design the provably correct, DETERMINE FEASIBLE

ALLOCATION strategy that handles generator initialization and
addition and deletion of units via a message passing routine over
a spanning tree of the network. Our technical approach com-
bines notions and tools from algebraic graph theory, distributed
algorithms, nonsmooth analysis, set-valued dynamical systems,
and penalty functions. Simulations illustrate our results.

I. INTRODUCTION

Environmental concerns and economic challenges are fuel-

ing technological advancements in renewable energy sources

and their integration into electricity grids. In the near future,

this trend will make power generation highly distributed,

giving rise to large-scale grid optimization problems with an

extremely dynamic nature. Since centralized approaches to

these problems might become impractical, there is a need

to develop distributed methods that find solutions for load

management and distribution. Such distributed algorithms have

the potential to meet dynamic demands and be robust against

generation and transmission failures. With this motivation in

mind, we study here the economic dispatch (ED) problem

where a group of generators with generation costs described by

smooth, convex functions seek to determine generation levels

that respect individual constraints, meet a specified load, and

minimize the total generation cost. For simplicity, we do not

consider transmission losses or line constraints. Our aim is

to design distributed algorithms that asymptotically converge

to the solutions of the ED problem, are anytime, i.e., generate

executions that are feasible at any time and have monotonically

decreasing cost, and handle unit addition and deletion.

Literature review

Given the expected high density of the future electricity

grid [1], the nature of the solution methodologies to the
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ED problem has shifted in recent years from centralized [2]

to distributed ones. Among these, many works introduce

consensus-based algorithms. A set of them consider gener-

ators with quadratic cost functions and undirected [3], [4] or

directed [5] communication topologies. The work [6] con-

siders linear cost functions and focuses on the design of

a heterogeneous network architecture for faster convergence

of the consensus scheme. The works [7], [8], [9] incorpo-

rate transmission losses, but either drop constraints on the

generator capacities [7], do not scale with the network size

because each unit maintains an estimate of the power mis-

match of every other unit [8], or do not formally characterize

the convergence properties of the proposed algorithm [9].

Regarding the information on the total load, there is a wide

variety in the scenarios considered: in [5] a few randomly

selected generators have this knowledge, in [3], [4], [6], [8],

[9] each generator knows the load demand at the bus it is

connected to and algorithms are devised to aggregate this

information, and [7] assumes that the load and generation

mismatch is retrieved by each generator from the droop control

implementation. A limitation of consensus-based approaches is

that, in general, the resulting algorithm is not anytime. Instead,

center-free algorithms [10], [11] solve an optimal resource

allocation problem that corresponds to the ED problem for

general convex functions, are distributed, and anytime, but

cannot handle individual generator constraints. The work [12]

deals with general convex functions and unit constraints, but

the proposed algorithm only finds suboptimal solutions by

solving a regularized version of the ED problem. None of

the approaches mentioned above study scenarios where the

set of generator units varies over time, which normally results

in violations of the load requirements. The iterative algorithms

in [13] solve asymptotically the problem of finding a feasible

(not necessarily optimal) power allocation for the ED problem.

The algorithmic solution that we provide here is able to find a

feasible allocation in finite time, and can therefore handle unit

addition and deletion. The implementation of this algorithm is

in line with classical strategies for parallel computation, see

e.g., [14]. Our work is also related to the emerging body of

research on distributed optimization, see e.g., [15], [16], [17]

and references therein. In this class of problems, each agent in

the network maintains, communicates, and updates an estimate

of the complete solution vector. This is a major difference

with respect to our setting, where each unit optimizes over

and communicates its own local variable, and these variables

are tied in together through a global constraint.
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Statement of contributions

Our starting point is the formulation of the ED problem

for a group of generator units that communicate over an

arbitrary weight-balanced, strongly connected digraph. The

first contribution pertains to the relaxed economic dispatch

(rED) problem, which is the ED problem without bounds

on the individual generators’ capacity. We introduce the dis-

tributed Laplacian-gradient dynamics, establish its exponential

convergence to the set of solutions of the rED problem, and

characterize the associated rate. As a by-product of our anal-

ysis, we establish the anytime nature of this algorithm and its

convergence under jointly strongly connected communication

topologies. Our second contribution concerns the ED problem.

We use a nonsmooth exact penalty function to transform

the problem, which has generators’ capacity bounds, into an

equivalent optimization with no such constraints. The resulting

formulation resembles the rED problem, and this leads us

to the design of the distributed Laplacian-nonsmooth-gradient

dynamics. This algorithm provably converges to the solutions

of the ED problem, and is also anytime and robust to switching

communication topologies that remain strongly connected. Our

third contribution deals with the distributed allocation of the

load to the network of generators while respecting the capacity

bounds. We propose the three-phase strategy DETERMINE

FEASIBLE ALLOCATION, that only involves message passing

between generator units over a spanning tree. The first phase

maintains a spanning tree over the units present in the network,

the second phase determines the capacity of each subtree to

allocate additional power, and the third phase allocates power

to each individual unit, respecting the constraints, to meet the

overall load. Our algorithm terminates in finite time and can be

used for the initialization of the Laplacian-nonsmooth-gradient

dynamics and to handle scenarios with power imbalances

caused by the addition or deletion of generators.

Organization

Section II contains basic preliminaries. Section III de-

fines the ED and rED problems. Sections IV and V intro-

duce, respectively, the Laplacian-gradient and the Laplacian-

nonsmooth-gradient dynamics. Section VI analyzes the

DETERMINE FEASIBLE ALLOCATION routine. Section VII

presents simulations and Section VIII gathers our conclusions.

II. PRELIMINARIES

This section introduces basic concepts and preliminaries

from graph theory, nonsmooth analysis, discontinuous dy-

namics, and constrained optimization. We begin with some

notational conventions. Let R, R≥0, R>0, Z≥1 denote the real,

nonnegative real, positive real, and positive integer numbers,

resp. The 2- and ∞-norms on R
n are ‖ · ‖2 and ‖ · ‖∞, resp.

We let B(x, δ) = {y ∈ R
n | ‖y − x‖2 < δ}. For D ⊂ R

n,

bd(D) and |D| denote its boundary and cardinality, resp. We

use 0n = (0, . . . , 0) ∈ R
n, 1n = (1, . . . , 1) ∈ R

n, and

In ∈ R
n×n for the identity matrix. For x, y ∈ R

n, x ≤ y iff

xi ≤ yi for i ∈ {1, . . . , n}. A set-valued map f : Rn
⇒ R

m

associates to each point in R
n a set in R

m. Finally, we let

[u]+ = max{0, u} for u ∈ R.

A. Graph theory

We present notions from algebraic graph theory [18]. A

digraph is a pair G = (V, E), with V the vertex set and E ⊆
V×V the edge set. A path is a sequence of vertices connected

by edges. A digraph is strongly connected if there is a path

between any pair of vertices. The sets of out- and in-neighbors

of vi are, resp., Nout(vi) = {vj ∈ V | (vi, vj) ∈ E} and

Nin(vi) = {vj ∈ V | (vj , vi) ∈ E}. A weighted digraph G =
(V, E ,A) is composed of a digraph (V, E) and an adjacency

matrix A ∈ R
n×n
≥0 with aij > 0 iff (vi, vj) ∈ E . The weighted

out- and in-degree of vi are, resp., dout(vi) =
∑n

j=1 aij and

din(vi) =
∑n

j=1 aji. The Laplacian matrix is L = Dout − A,

where Dout is the diagonal matrix with (Dout)ii = dout(i), for

i ∈ {1, . . . , n}. Note that L1n = 0. If G is strongly connected,

then 0 is a simple eigenvalue of L. G is undirected if L = L
⊤. G

is weight-balanced if dout(v) = din(v), for all v ∈ V iff 1⊤
n L =

0 iff Ls = (L + L
⊤)/2 ≥ 0. An undirected graph is weight-

balanced. If G is weight-balanced and strongly connected, then

0 is a simple eigenvalue of Ls, and

x⊤
Lsx ≥ λ2(Ls)

∥

∥x−
1

n
(1⊤

n x)1n

∥

∥

2

2
, ∀x ∈ R

n, (1)

with λ2(Ls) the smallest non-zero eigenvalue of Ls.

B. Nonsmooth analysis

We introduce notions from nonsmooth analysis follow-

ing [19]. A function f : R
n → R

m is locally Lipschitz at

x ∈ R
n if there exist Lx, ǫ ∈ (0,∞) such that ‖f(y) −

f(y′)‖2 ≤ Lx‖y − y′‖2, for all y, y′ ∈ B(x, ǫ). A function

f : Rn → R is regular at x ∈ R
n if, for all v ∈ R

n, the

right and generalized directional derivatives of f at x in the

direction of v coincide. Continuously differentiable and convex

functions are both regular. A set-valued map H : Rn
⇒ R

n is

upper semicontinuous at x ∈ R
n if, for all ǫ ∈ (0,∞), there

exists δ ∈ (0,∞) such that H(y) ⊂ H(x) + B(0, ǫ) for all

y ∈ B(x, δ). Also, H is locally bounded at x ∈ R
n if there

exist ǫ, δ ∈ (0,∞) such that ‖z‖2 ≤ ǫ for all z ∈ H(y) and

y ∈ B(x, δ). Given a locally Lipschitz function f : Rn → R,

let Ωf be the set (of measure zero) of points where f is not

differentiable. The generalized gradient ∂f : Rn
⇒ R

n is

∂f(x) = co{ lim
i→∞

∇f(xi) | xi → x, xi /∈ S ∪ Ωf},

where co denotes convex hull and S ⊂ R
n is any set of mea-

sure zero. The set-valued map ∂f is locally bounded, upper

semicontinuous, and takes non-empty, compact, and convex

values. A critical point x ∈ R
n of f satisfies 0 ∈ ∂f(x).

C. Stability of differential inclusions

We gather here some useful tools for the stability analysis of

differential inclusions [19]. A differential inclusion on R
n is

ẋ ∈ H(x), (2)

where H : R
n

⇒ R
n is a set-valued map. A solution

of (2) on [0, T ] ⊂ R is an absolutely continuous map

x : [0, T ] → R
n that satisfies (2) for almost all t ∈ [0, T ]. If

H is locally bounded, upper semicontinuous, and takes non-

empty, compact, and convex values, then existence of solutions
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is guaranteed. The set of equilibria of (2) is Eq(H) = {x ∈
R

n | 0 ∈ H(x)}. A set S ⊂ R
n is weakly (resp., strongly)

positively invariant under (2) if, for each x ∈ S, at least a

solution (resp., all solutions) starting from x is (resp., are)

entirely contained in S. For dynamics with uniqueness of

solution, both notions coincide and are referred as positively

invariant. Given f : Rn → R locally Lipschitz, the set-valued

Lie derivative LHf : Rn
⇒ R of f with respect to (2) at x is

LHf = {a ∈ R | ∃v ∈ H(x) s.t. ζ⊤v = a for all ζ ∈ ∂f(x)}.

The next result characterizes the asymptotic properties of (2).

Theorem II.1. (LaSalle Invariance Principle for differential

inclusions): Let H : R
n

⇒ R
n be locally bounded, upper

semicontinuous, with non-empty, compact, and convex values.

Let f : R
n → R be locally Lipschitz and regular. If

S ⊂ R
n is compact and strongly invariant under (2) and

maxLHf(x) ≤ 0 for all x ∈ S, then the solutions of (2)

starting at S converge to the largest weakly invariant set M
contained in S ∩ {x ∈ R

n | 0 ∈ LHf(x)}. Moreover, if the

set M is finite, then the limit of each solution exists and is an

element of M .

D. Constrained optimization and exact penalty functions

We introduce some notions on constrained optimization and

exact penalty functions following [20], [21]. Consider

minimize f(x), (3a)

subject to g(x) ≤ 0m, h(x) = 0p, (3b)

where f : R
n → R, g : R

n → R
m, and h : R

n → R
p,

with p ≤ n, are continuously differentiable. The refined Slater

condition is satisfied by (3) if there exists x ∈ R
n such that

h(x) = 0p, g(x) ≤ 0m, and gj(x) < 0 for all nonaffine

functions gj . The optimization (3) is convex if f and g are

convex and h affine. For convex optimization problems, the

refined Slater condition implies that strong duality holds. A

point x ∈ R
n is a Karush-Kuhn-Tucker (KKT) point of (3) if

there exist Lagrange multipliers λ ∈ R
m
≥0, ν ∈ R

p such that

g(x) ≤ 0m, h(x) = 0p, λ⊤g(x) = 0,

∇f(x) +
m
∑

j=1

λj∇gj(x) +

p
∑

k=1

νk∇hk(x) = 0.

If the optimization (3) is convex and strong duality holds, then

a point is a solution of (3) if and only if it is a KKT point.

In the presence of inequality constraints in (3), we are

interested in using exact penalty function methods to eliminate

them while keeping the equality constraints. Following [21],

consider the nonsmooth exact penalty function f ǫ : Rn → R,

f ǫ(x) = f(x) +
1

ǫ

m
∑

j=1

[gj(x)]
+

with ǫ > 0, and define the minimization problem

minimize f ǫ(x), (4a)

subject to h(x) = 0p. (4b)

Note that, if f is convex, then f ǫ is convex (given that t 7→
1
ǫ
[t]+ is convex). Therefore, if the problem (3) is convex, then

the problem (4) is convex as well. The following result, see

e.g. [21, Proposition 1], identifies conditions under which the

solutions of the optimization problems (3) and (4) coincide.

Proposition II.2. (Equivalence between (3) and (4)): Assume

that the problem (3) is convex, has nonempty and compact

solution set, and satisfies the refined Slater condition. Then, (3)

and (4) have exactly the same solutions if 1
ǫ
> ‖λ‖∞, for some

Lagrange multiplier λ ∈ R
m
≥0 of the problem (3).

Note that a Lagrange multiplier for (3) exists because the

refined Slater condition holds, and hence every solution is a

KKT point. The next result characterizes the solutions of a

class of optimization problems. The proof is straightforward.

Lemma II.3. (Solution form for a class of constrained opti-

mization problems): Consider the problem

minimize

n
∑

i=1

fi(xi), (5a)

subject to 1
⊤
n x = xl, (5b)

where {fi : R → R}ni=1 are continuous, locally Lipschitz, and

convex. Let f : Rn → R
n, f(x) = (f1(x1), . . . , fn(xn)). A

point x∗ is a solution of (5) iff there exists µ ∈ R such that

µ1n ∈ ∂f(x∗) and 1
⊤
n x

∗ = xl. (6)

III. PROBLEM STATEMENT

Consider a network of n ∈ Z≥1 power generator units

whose communication topology is represented by a strongly

connected and weight-balanced digraph G = (V, E ,A). Each

generator corresponds to a vertex and an edge (i, j) represents

the capability of unit j to transmit information to unit i.
The power generated by unit i is Pi ∈ R. Each generator

i ∈ {1, . . . , n} has a cost generation function fi : R → R≥0,

assumed to be convex and continuously differentiable. The

total cost incurred by the network with the power allocation

P = (P1, . . . , Pn) ∈ R
n is given by f : Rn → R≥0 as

f(P ) =

n
∑

i=1

fi(Pi).

The function f is also convex and continuously differentiable.

The generators must meet a total power load Pl ∈ R>0, i.e.,
∑n

i=1 Pi = Pl, while at the same time minimizing the total

cost f(P ). We assume that at least one generator knows the

total load. Each generator has upper and lower limits on the

power it can produce, Pm
i ≤ Pi ≤ PM

i for i ∈ {1, . . . , n}.

We neglect any transmission losses and any constraints on the

amount of power flow along transmission lines. Formally, the

economic dispatch (ED) problem is

minimize f(P ), (7a)

subject to 1
⊤
nP = Pl, (7b)

Pm ≤ P ≤ PM . (7c)

We refer to (7b) as the load condition and to (7c) as the

box constraints. We let FED = {P ∈ R
n | Pm ≤ P ≤
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PM and 1
⊤
nP = Pl} denote the feasibility set of (7). Since

FED is compact, the set of solutions of (7) is compact. More-

over, since the constraints (7b) and (7c) are affine, feasibility

of the ED problem implies that the refined Slater condition

is satisfied and strong duality holds. Note that PM ∈ FED

implies FED is a singleton set, i.e., FED = {PM}. Similarly

Pm ∈ FED implies FED = {Pm}. Without loss of generality,

we assume that PM and Pm are not feasible points.

A simpler version of this problem is the relaxed economic

dispatch (rED) problem, where the total cost is optimized with

the load condition but without the box constraints. Formally,

minimize f(P ), (8a)

subject to 1
⊤
nP = Pl. (8b)

We let FrED = {P ∈ R
n | 1⊤

nP = Pl} denote the feasibility

set of (8). Our objective is to design distributed procedures that

allow the network to solve the ED problem. In Section IV we

present an algorithmic solution to the rED problem and then

build on it in Section V to solve the ED problem.

Remark III.1. (Power system implications): In the power

system literature, the cost function of a generator is usually

quadratic and convex, and generator capacities have minimum

and maximum bounds, see e.g. [22]. In our algorithm design,

we assume that (1) generators exchange information about

the cost function or its gradient with their neighbors, and (2)

one or more generators know the value of the total load. Both

assumptions are reasonable in numerous scenarios. Regarding

(1), generators can be categorized in families where each

family’s cost function is defined by a finite number of pa-

rameters. Hence, neighboring units only need to communicate

their category and parameters. Regarding (2), we have in mind

hierarchical dispatch scenarios where a higher-level planner

assigns loads to each microgrid, consisting of a group of

generators, and communicates it to a unit in each group,

see [23]. At the lower level, each microgrid executes our

algorithms to arrive at an optimum dispatch allocation. •

IV. DISTRIBUTED ALGORITHMIC SOLUTION TO THE

RELAXED ECONOMIC DISPATCH PROBLEM

Here we introduce a distributed algorithm to solve the rED

problem (8). Consider the Laplacian-gradient dynamics

Ṗ = −L∇f(P ), (9)

where L is the Laplacian of G. This dynamics is distributed in

the sense that each generator only requires information from

its out-neighbors. Specifically, if each generator knows the cost

function of its neighbors, then they interchange messages that

contain their respective power levels. Else, if such knowledge

is not available, (9) can be executed by neighboring generators

exchanging their respective gradient information.

Theorem IV.1. (Convergence of the Laplacian-gradient dy-

namics): Consider the rED problem (8) with f : Rn → R≥0

radially unbounded. Then, the feasible set FrED is positively

invariant under the dynamics (9) and all trajectories starting

from FrED converge to the set of solutions of (8).

Proof. We use the shorthand notation XL-g : R
n → R

n to

refer to (9). We first establish that the total power generated

by the network is conserved,

LXL-g
(1⊤

nP ) = 1
⊤
nXL-g(P ) = −(1⊤

n L)∇f(P ) = 0, (10)

where we have used that G is weight-balanced in the last equal-

ity. As a consequence, FrED is positively invariant under (9).

Next, we show that f is monotonically nonincreasing,

LXL-g
f(P ) = −∇f(P )⊤Ls∇f(P ) ≤ 0, (11)

where we have used that G is weight-balanced in the inequal-

ity. Given P0 ∈ R
n, let

f−1(≤ f(P0)) = {P ∈ R
n | f(P ) ≤ f(P0)}.

Note that this sublevel set is closed, and since f is ra-

dially unbounded, bounded. Then, the set WP0
= f−1(≤

f(P0)) ∩ FrED is closed, bounded, and from (10) and (11),

positively invariant. The application of the LaSalle Invariance

Principle, cf. Theorem II.1, implies that the trajectories starting

in WP0
converge to the largest invariant set M contained

in {P ∈ WP0
| LXL-g

f(P ) = 0}. From (11) and the fact

that G is weight-balanced and strongly connected, we deduce

that LXL-g
f(P ) = 0 implies ∇f(P ) ∈ span{1n}, and hence

P ∈ Eq(XL-g). Since 1
⊤
nP0 = Pl by hypothesis, we conclude

that M = Eq(XL-g) ∩ FrED, which precisely corresponds to

the set of solutions of (8), cf. Lemma II.3.

Remark IV.2. (Initialization of (9)): To solve the rED prob-

lem, the Laplacian-gradient dynamics (9) requires an initial

condition satisfying the load constraints. Such initialization

can be performed in various ways. If each unit knows Pl and

n, then the network can start from Pl

n
1n. If only one unit

knows Pl, it can start from Pl while the others start from 0.•

The proof of Theorem IV.1 reveals that the load condition

is satisfied at all times and the total cost is monotonically

decreasing until convergence. Both facts imply that (9) is

anytime, i.e., its trajectories are feasible solutions at any time

before convergence, and they become better as time elapses.

Proposition IV.3. (Convergence rate of the Laplacian-gradient

dynamics): Under the hypotheses of Theorem IV.1, further as-

sume that there exist k,K ∈ R>0 such that kIn � ∇2f(P ) �
KIn for P ∈ R

n. Then, the dynamics (9) converges to the

unique solution of (8) exponentially fast with rate greater than

or equal to kλ2(Ls).

Proof. Uniqueness of the solution to (8) follows from noting

that strong convexity implies strict convexity. Let P opt ∈ R
n

denote the unique optimizer and let V : FrED ⊂ R
n → R,

V (P ) = f(P )−f(P opt). Note that V (P ) ≥ 0, and V (P ) = 0
iff P = P opt. From (11),

LXL-g
V (P ) ≤ −λ2(Ls)‖∇f(P )−

1

n
(1⊤

n∇f(P ))1n‖
2
2,

where we have used (1). For convenience, let e(P ) =
∇f(P ) − 1

n
(1⊤

n∇f(P ))1n. Using the fact that f is strongly
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convex, for P, P ′ ∈ FrED, we have

f(P ′) ≥ f(P ) + e(P )⊤(P ′ − P ) +
k

2
‖P ′ − P‖22. (12)

For fixed P , the minimum of the right-hand side is f(P ) −
1
2k‖e(P )‖22, and hence f(P ′) ≥ f(P ) − 1

2k‖e(P )‖22. In

particular, for P ′ = P opt, this yields V (P ) ≤ 1
2k‖e(P )‖22.

Combining this with the bound on LXL-g
V above, we get

LXL-g
V (P ) ≤ −2kλ2(Ls)V (P ),

which implies that, along any trajectory t 7→ P (t) of (9),

one has V (P (t)) ≤ V (P (0))e−2kλ2(Ls)t. Our next objective

is to relate the magnitude of V at P with ‖P − P opt‖. From

∇2f(P ) � KIn, one has f(P ′) ≤ f(P ) + ∇f(P )⊤(P ′ −
P ) + K

2 ‖P
′ − P‖22. Minimizing both sides over P ′ ∈ FrED,

V (P ) ≥
1

2K
‖e(P )‖22. (13)

Having established the relation between V (P ) and ‖e(P )‖,

our final step consists of establishing the relation between the

magnitudes of e(P ) and P − P opt. Using (12) for P ′ = P opt,

one has

f(P opt) ≥ f(P ) + e(P )⊤(P opt − P ) +
k

2
‖P opt − P‖22

≥ f(P )− ‖e(P )‖2‖P
opt − P‖2 +

k

2
‖P opt − P‖22.

Since f(P opt) ≤ f(P ) for any P ∈ FrED, we deduce ‖P −
P opt‖2 ≤ 2

k
‖e(P )‖2. Combining this with (13), we get

‖P − P opt‖22 ≤
8

k2
KV (P ). (14)

To obtain an upper bound, we use the fact that f is convex,

and hence f(P opt) ≥ f(P )+∇f(P )⊤(P opt−P ). Rearranging,

V (P ) ≤ ∇f(P )⊤(P − P opt) = e(P )⊤(P − P opt)

implying V (P )2 ≤ ‖e(P )‖22‖P − P opt‖22. Using (13), we get

V (P ) ≤ 2K‖P − P opt‖22. (15)

Finally, along any trajectory t 7→ P (t), using (14) and (15)

with P = P (0), we obtain ‖P (t) − P opt‖22 ≤ 16K2

k2 ‖P (0) −
P opt‖22e

−2kλ2(Ls)t, as claimed.

Proposition IV.3 opens up the possibility of selecting the

edge weights of the communication digraph G to maximize the

rate of convergence of the Laplacian-gradient dynamics (9).

Remark IV.4. (Comparison with the center-free algorithm):

The work [10] proposes the center-free algorithm to solve

the rED problem (termed there optimal resource allocation

problem). This algorithm essentially corresponds to a discrete-

time implementation of the Laplacian-gradient dynamics (9).

The convergence analysis of the center-free algorithm relies on

two assumptions. First, ∇2f needs to be globally upper and

lower bounded (in particular, this implies that f is strongly

convex). Second, the Laplacian must satisfy a linear matrix

inequality that constrains the choice of weights. In contrast, no

such conditions are required here to establish the convergence

of (9). In addition, the guaranteed rate of convergence of the

center-free algorithm vanishes once the upper bound on ∇2f

reaches a certain finite value for a fixed weight assignment

unlike the one obtained in Proposition IV.3 for (9). •

We next characterize the convergence of (9) when the

topology is switching under a weaker form of connectivity.

Proposition IV.5. (Convergence of the Laplacian-gradient dy-

namics under switching topology): Let Ξn be the set of weight-

balanced digraphs over n vertices. Denote the communica-

tion digraph of the group of units at time t by G(t). Let

t 7→ G(t) ∈ Ξn be piecewise constant and assume there

exists an infinite sequence of contiguous, nonempty, uniformly

bounded time intervals over which the union of communication

graphs is strongly connected. Then, the dynamics

Ṗ = −L(G(t))∇f(P ), (16)

starting from an initial power allocation P0 satisfying 1
⊤
nP0 =

Pl converges to the set of solutions of (8).

The proof is similar to that of Theorem IV.1 using that (i)

the load condition is preserved along (16), (ii) f is a common

Lyapunov function, and (iii) infinite switching implies conver-

gence to the invariant set characterized by ∇f ∈ span{1n},

the set of solutions of the rED problem.

V. DISTRIBUTED ALGORITHMIC SOLUTION TO THE

ECONOMIC DISPATCH PROBLEM

Here we propose a distributed algorithm to solve the ED

problem. We first develop an alternative formulation of this

problem without inequality constraints using an exact penalty

function approach. This allows us to synthesize our distributed

dynamics mimicking the algorithm design of Section IV.

A. Exact penalty function formulation

We first show that, unlike the rED problem, there might

be no network-wide agreement on the gradients of the local

objective functions at the solutions of the ED problem.

Lemma V.1. (Solution form for the ED problem): For any so-

lution P opt of the ED problem (7), there exist ν ∈ R, λm, λM ∈
R

n
≥0 with ‖λm‖∞, ‖λM‖∞, 2|ν| ≤ 2maxP∈FED

‖∇f(P )‖∞
such that

∇fi(P
opt
i ) =











−ν + λm
i if P opt

i = Pm
i ,

−ν if Pm
i < P opt

i < PM
i ,

−ν − λM
i if P opt

i = PM
i .

Proof. The Lagrangian for the ED problem (7) is

L(P, λm, λM , ν) = f(P ) + (λm)⊤(Pm − P ) + (λM )⊤(P −
PM )+ν(1⊤

nP −Pl). A point P opt is a solution of (7) iff there

exist ν ∈ R, λm, λM ∈ R
n
≥0 satisfying the KKT conditions

Pm − P opt ≤ 0n, (λm)⊤(Pm − P opt) = 0, (17a)

P opt − PM ≤ 0n, (λM )⊤(P opt − PM ) = 0, (17b)

1
⊤
nP

opt = Pl, ∇f(P opt)− λm + λM = −ν1n. (17c)
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Now, consider the partition of {1, . . . , n} associated to P opt,

I0(P
opt) = {i ∈ {1, . . . , n} | Pm

i < P opt
i < PM

i },

I+(P
opt) = {i ∈ {1, . . . , n} | P opt

i = PM
i },

I−(P
opt) = {i ∈ {1, . . . , n} | P opt

i = Pm
i }.

If i ∈ I0(P
opt), then (17a)-(17b) imply λm

i = λM
i = 0, and

hence ∇fi(P
opt
i ) = −ν by (17c). If i ∈ I+(P

opt), then (17a)-

(17b) imply λm
i = 0, λM

i > 0, and hence ∇fi(P
opt
i ) =

−ν − λM
i by (17c). Finally, if i ∈ I−(P

opt), then (17a)-(17b)

imply λm
i > 0, λM

i = 0, and hence ∇fi(P
opt
i ) = −ν + λm

i

by (17c). To establish the bounds on the multipliers, we

distinguish between whether (a) I0(P
opt) is non-empty or (b)

I0(P
opt) is empty. In case (a), from (17), ν = −∇fi(P

opt
i ) for

all i ∈ I0(P
opt), and therefore |ν| ≤ ‖∇f(P opt)‖∞. In case

(b), from (17), we get ν ≤ −∇fj(P
opt
j ) for all j ∈ I+(P

opt).

Similarly, we obtain ν ≥ −∇fk(P
opt

k ) for all k ∈ I−(P
opt).

Therefore, −∇fk(P
opt

k ) ≤ ν ≤ −∇fj(P
opt
j ) for all j ∈

I+(P
opt) and k ∈ I−(P

opt). Since I0(P
opt) is empty and by

assumption Pm, PM 6∈ FED, both I−(P
opt) and I+(P

opt) are

non-empty. Therefore, we obtain |ν| ≤ ‖∇f(P opt)‖∞. This in-

equality, together with (17c) and the fact that either λm
i or λM

i

is zero for each i ∈ {1, . . . , n}, implies ‖λm‖∞, ‖λM‖∞ ≤
2‖∇f(P opt)‖∞ ≤ 2maxP∈FED

‖∇f(P )‖∞.

Our next step is to provide an alternative formulation of

the ED problem that is similar in structure to that of the rED

problem. We do this by using an exact penalty function method

to remove the box constraints. Specifically, let

f ǫ(P ) =

n
∑

i=1

fi(Pi) +
1

ǫ

(

n
∑

i=1

([Pi − PM
i ]+ + [Pm

i − Pi]
+)

)

.

Note that this corresponds to a scenario where generator i ∈
{1, . . . , n} has local cost given by

f ǫ
i (Pi) = fi(Pi) +

1

ǫ

(

[Pi − PM
i ]+ + [Pm

i − Pi]
+
)

. (18)

This function is convex, locally Lipschitz, and continuously

differentiable in R except at Pi = Pm
i and Pi = PM

i . Its

generalized gradient ∂f ǫ
i : R ⇒ R is given by

∂f ǫ
i (Pi) =































{∇fi(Pi)−
1
ǫ
} if Pi < Pm

i ,

[∇fi(Pi)−
1
ǫ
,∇fi(Pi)] if Pi = Pm

i ,

{∇fi(Pi)} if Pm
i < Pi < PM

i ,

[∇fi(Pi),∇fi(Pi) +
1
ǫ
] if Pi = PM

i ,

{∇fi(Pi) +
1
ǫ
} if Pi > PM

i .

As a result, the total cost f ǫ is convex, locally Lipschitz, and

regular. Its generalized gradient at P ∈ R
n is ∂f ǫ(P ) =

∂f ǫ
1(P1)× · · · × ∂f ǫ

n(Pn). Consider the optimization

minimize f ǫ(P ), (19a)

subject to 1
⊤
nP = Pl. (19b)

We next establish the equivalence of (19) with the ED problem.

Proposition V.2. (Equivalence between (7) and (19)): The

solutions of (7) and (19) coincide for ǫ ∈ R>0 such that

ǫ <
1

2maxP∈FED
‖∇f(P )‖∞

. (20)

Proof. Observe the parallelism between (7) and (3) on one

side and (19) and (4) on the other. Recall that, for the ED

problem (7), the set of solutions is nonempty and compact,

and the refined Slater condition is satisfied. Thus, from

Proposition II.2, the solutions of (19) and (7) coincide if
1
ǫ
> ‖λm‖∞, ‖λM‖∞ for some Lagrange multipliers λm and

λM . From Lemma V.1, there exists λm and λM satisfying

‖λm‖∞, ‖λM‖∞ ≤ 2maxP∈FED
‖∇f(P )‖∞. Thus, if ǫ <

1
2maxP∈FED

‖∇f(P )‖∞
, then 1

ǫ
> 2maxP∈FED

‖∇f(P )‖∞ ≥

‖λm‖∞, ‖λM‖∞ and the claim follows.

B. Laplacian-nonsmooth-gradient dynamics

Here, we propose a distributed algorithm to solve the ED

problem. Our design builds on the alternative formulation (19).

Consider the Laplacian-nonsmooth-gradient dynamics

Ṗ ∈ −L∂f ǫ(P ). (21)

The set-valued map −L∂f ǫ is non-empty, takes compact,

convex values, and is locally bounded and upper semicon-

tinuous. Therefore, existence of solutions is guaranteed (cf.

Section II-C). Moreover, this dynamics is distributed in the

sense that, to implement it, each generator only requires

information from its out-neighbors. When convenient, we

denote the dynamics (21) by XL-n-g : Rn
⇒ R

n. The next

result establishes the strongly positively invariance of FED.

Lemma V.3. (Invariance of the feasibility set): The feasibility

set FED is strongly positively invariant under the Laplacian-

nonsmooth-gradient dynamics (21) provided that ǫ ∈ R>0

satisfies (with dout,max = maxi∈V dout(i))

ǫ <
min(i,j)∈E aij

2dout,max maxP∈FED
‖∇f(P )‖∞

. (22)

Proof. We begin by noting that, if ǫ satisfies (22), then there

exists α > 0 such that

ǫ <
min(i,j)∈E aij

2dout,max maxP∈Fα
ED

‖∇f(P )‖∞
, (23)

where Fα
ED = {P ∈ R

n | 1
⊤
nP = Pl and Pm − α1n ≤

P ≤ PM + α1n}. Now, we reason by contradiction. As-

sume that FED is not strongly positively invariant under the

Laplacian-nonsmooth-gradient dynamics XL-n-g. This implies

that there exists a boundary point P̄ ∈ bd(FED), a real

number δ > 0, and a trajectory t 7→ P (t) obeying (21)

such that P (0) = P̄ and P (t) 6∈ FED for all t ∈ (0, δ).
Without loss of generality, assume that P (t) ∈ Fα

ED for all

t ∈ (0, δ). Now, using the same reasoning as in the proof of

Theorem IV.1, it is not difficult to see that the load condition is

preserved along XL-n-g. Therefore, trajectories can only leave

FED by violating the box constraints. Thus, without loss of

generality, there must exist a unit i such that Pi(0) = PM
i and

Pi(t) > PM
i for all t ∈ (0, δ). This means that there must exist

t → ζ(t) ∈ −L∂f ǫ(P (t)) and δ1 ∈ (0, δ) such that ζi(t) ≥ 0
a.e. in (0, δ1). Next we show that this can only happen if
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Pj(t) ≥ PM
j for all j ∈ Nout(i). Since Pi(t) > PM

i for

t ∈ (0, δ1), then ∂fi(Pi(t)) = {∇fi(Pi(t)) +
1
ǫ
}. Therefore,

ζi(t) = −
∑

j∈Nout(i)

aij

(

∇fi(Pi(t)) +
1

ǫ
− ηj(t)

)

,

where ηj(t) ∈ ∂fj(Pj(t)). Note that if Pj(t) ≥ PM
j , then

ηj(t) ≤ ∇fj(Pj(t))+
1
ǫ
, whereas if Pj(t) < PM

j , then ηj(t) ≤
∇fj(Pj(t)). For convenience, denote this latter set of units by

N<
out(i). Now, we can upper bound ζi(t) by

ζi(t) ≤ −
∑

j∈Nout(i)

aij

(

∇fi(Pi(t))−∇fj(Pj(t))
)

−
1

ǫ

∑

j∈N<
out(i)

aij

≤ 2 max
P∈Fα

ED

‖∇f(P )‖∞dout,max −
1

ǫ

∑

j∈N<
out(i)

aij < 0,

where the last inequality follows from (23). Hence, ζi(t) ≥ 0
only if Pj(t) ≥ PM

j for all j ∈ Nout(i) and so the latter

is true on (0, δ1) by continuity of the trajectories. Extending

the argument to the neighbors of each j ∈ Nout(i), we obtain

an interval (0, δ2) ⊂ (0, δ1) over which all one- and two-hop

neighbors of i have generation levels greater than or equal to

their respective maximum limits. Recursively, and since the

graph is strongly connected and the number of units finite, we

get an interval (0, δ̄) over which P (t) ≥ PM , which implies

P (0) = PM , contradicting the fact that PM 6∈ FED.

We next build on this result to show that the dynamics (21)

asymptotically converges to the set of solutions of (7).

Theorem V.4. (Convergence of the Laplacian-nonsmooth-

gradient dynamics): For ǫ satisfying (22), all trajectories of

the dynamics (21) starting from FED converge to the set of

solutions of the ED problem (7).

Proof. Our proof strategy relies on the LaSalle Invariance

principle for differential inclusions (cf. Theorem II.1). Recall

that the function f ǫ is locally Lipschitz and regular. Further-

more, the set-valued map P 7→ XL-n-g(P ) = −L∂f ǫ(P ) is

locally bounded, upper semicontinuous, and takes non-empty,

compact, and convex values. The set-valued Lie derivative

LXL-n-g
f ǫ : Rn

⇒ R of f ǫ along (21) is

LXL-n-g
f ǫ(P ) = {−ζ⊤Lζ | ζ ∈ ∂f ǫ(P )}. (24)

Since G is weight-balanced −ζ⊤Lζ = −ζ⊤Lsζ ≤ 0, which

implies maxLXL-n-g
f ǫ(P ) ≤ 0 for all P ∈ R

n. From

Lemma V.3, the compact set FED is strongly positively invari-

ant under XL-n-g. Therefore, the application of Theorem II.1

yields that all evolutions of (21) starting in FED converge to

the largest weakly invariant set M contained in FED ∩ {P ∈
R

n|0 ∈ LXL-n-g
f ǫ(P )}. From (24) and the fact that G is weight-

balanced, we deduce that 0 ∈ LXL-n-g
f ǫ(P ) if and only if there

exists µ ∈ R such that µ1n ∈ ∂f ǫ(P ). Using Lemma II.3,

this is equivalent to P ∈ FED being a solution of (19). This

implies that M corresponds to the set of solutions of (19).

Finally, since (22) implies (20), Proposition V.2 guarantees

that the solutions of (7) and (19) coincide.

Since, FED is strongly positively invariant under XL-n-g, f ǫ

is nonincreasing along XL-n-g (cf. proof of Theorem V.4), and

f ǫ and f coincide on FED, the Laplacian-nonsmooth-gradient

dynamics is an anytime algorithm for the ED problem (7).

Because these properties do not depend on the specific graph,

the convergence properties of (21) are the same if the commu-

nication topology is time-varying as long as it remains weight-

balanced and strongly connected. Note that, following the

discussion of Remark III.1, the Laplacian-nonsmooth-gradient

dynamics can be employed in a hierarchical way for scenarios

where a set of buses form the communication network and

each bus is connected to a group of generators and/or loads.

At the top level, a copy of the dynamics would be implemented

over the set of buses (with the cost function for each bus being

the aggregated cost of the generators attached to it) and, at a

lower level, a copy of the dynamics is executed in each bus

among the generators connected to it. Finally, the initialization

procedures of Remark IV.2 do not work for (21) because of

the box constraints. The iterative algorithms in [13] provide

initialization procedures that only converge asymptotically to

a feasible point in FED. We address this issue next.

Remark V.5. (Robustness against initialization errors): Both

the Laplacian-gradient and the Laplacian-nonsmooth-gradient

dynamics preserve the total power generated by the system.

Thus, if they are initialized with an error in load satisfaction,

the dynamics ensures that the error stays constant while the

system evolves. In this sense, these dynamics are robust. We

plan to address in future work the more desirable property of

the dynamics driving the error to zero. •

VI. ALGORITHM INITIALIZATION AND ROBUSTNESS

AGAINST GENERATOR ADDITION AND DELETION

The distributed dynamics proposed in Sections IV and V

rely on a proper initialization of the power levels of the units to

satisfy the load condition, which remains constant throughout

the execution. However, the latter is no longer the case if some

generators leave the network or new generators join it. For the

rED problem, this issue can easily be resolved by prescribing

that the power of each unit leaving the network is compensated

with a corresponding increase in the power of one of its

neighbors, and that new generators join the network with zero

power. However, for the ED problem, the presence of the box

constraints makes the design of a distributed solution more

challenging. This is the problem we address here. Interestingly,

our strategy, termed DETERMINE FEASIBLE ALLOCATION, can

also be used to initialize the dynamics (21).

We assume that the communication topology among the

generators is undirected and connected at all times. A unit

deletion event corresponds to removing the corresponding

vertex, and all edges associated with it. A unit addition event

corresponds to adding a vertex, and some additional edges

associated with it. At any given time, the communication

topology is represented by Gevents = (Vevents, Eevents).

A. Algorithm rationale and informal description

Here, we provide an informal description of the three-

phase DETERMINE FEASIBLE ALLOCATION strategy that al-

lows units to collectively adjust their powers in finite time to

meet the total load while satisfying the box constraints.
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(i) Phase 1 (tree maintenance): This phase maintains a

spanning rooted tree Troot whose vertices are, at any instant

of time, the generators present in the network. When a unit

enters the network, it sets its power to zero (all units fall

into this case when this procedure is run to initialize (21))

and is assigned a token of the same value. A unit that leaves

the network transfers a token with its power level to one of

its neighbors. Every unit i, except the root, resets its current

generation to Pi +P tkn
i , where P tkn

i is the summation of the

tokens of i (with default value zero if no token is received).

The root adds Pl to its token if the algorithm is executed

for the initialization of (21). With these levels, the network

allocation might be unfeasible and sums Pl − P tkn
root .

(ii) Phase 2 (capacity computation): Each unit i aggre-

gates the difference between the current generation and the

lower and upper limits, respectively, for all the units in the

subtree Ti of Troot that has i as its root. Mathematically,

Cm
i =

∑

j∈Ti
(Pj−Pm

j ) and CM
i =

∑

j∈Ti
(PM

j −Pj). These

values represent the collective capacity of Ti to decrease or

increase, respectively, the total power of the network while

satisfying the box constraints. If −Cm
root ≤ P tkn

root ≤ CM
root does

not hold, then the root declares that the load cannot be met.

(iii) Phase 3 (feasible power allocation): The root initiates

the distribution of P tkn
root , starting with itself and going down

the tree until the leaves. Each unit gets a power value from its

parent, which it distributes among itself (respecting its box

constraints) and its children, making sure that the ulterior

assignments down the tree are feasible.

We next provide a formal description and analysis of phases

2 and 3. Regarding the tree maintenance in phase 1, we do

not enter into details given the ample number of solutions

in literature, see e.g. [14]. We only mention that the root

can be arbitrarily selected, the tree can be built via any tree

construction algorithm, and addition and deletion events can

be handled via tree repairing algorithms [24], [25].

B. The GET CAPACITY strategy

Here, we describe the GET CAPACITY strategy that does ca-

pacity computation of phase 2. The method assumes that each

unit i knows the identity of its parent parenti and children

childreni in the tree Troot, and hence is distributed. Informally,

[Informal description]: The leaves of the tree start

by sending their capacities Pi − Pm
i and PM

i − Pi

to their parents. Each unit, i, upon receiving the

capacities of all its children, adds them along with

its own to get Cm
i and CM

i , and sends the value to

its parent. The routine ends upon reaching the root.

Algorithm 1 formally describes GET CAPACITY. The next

result summarizes its properties. The proof is straightforward.

Lemma VI.1. (Correctness of GET CAPACITY): Starting from

the spanning tree Troot over Gevents and P ∈ R
|Vevents|, the

algorithm GET CAPACITY terminates in finite time, with each

unit i ∈ Vevents having the following information:

(i) the capacities Cm
i =

∑

k∈Ti
Pk − Pm

k and CM
i =

∑

k∈Ti
PM
k − Pk of the subtree Ti, and

(ii) the capacities Cm
j , CM

j of the subtrees {Tj}j∈childreni

stored in ~Cm
i , ~CM

i ∈ R
|childreni|.

Algorithm 1: GET CAPACITY

Executed by: generators i ∈ Vevents

Data : Pi, P
m
i , PM

i , parenti, childreni
Initialize : ~Cm

i = ~CM
i := −∞1|childreni|

if childreni is empty then

Cm
i = Pi−Pm

i , CM
i := PM

i −Pi

else

Cm
i = CM

i := −∞

1 if childreni is empty then send (Cm
i , CM

i ) to parenti
2

3 while (Cm
i , CM

i ) = (−∞,−∞) do

4 if message (Cm
j , CM

j ) received from child j then

5 update ~Cm
i (j) = Cm

j and ~CM
i (j) = CM

j

6 if ( ~Cm
i (k), ~CM

i (k)) 6= (−∞,−∞) for all

k ∈ childreni then

7 set (Cm
i , CM

i ) = (Pi − Pm
i +

Sum( ~Cm
i ), PM

i − Pi + Sum( ~CM
i ))

8 if i is not root then

9 send (Cm
i , CM

i ) to parenti

Note that the capacities Cm
i and CM

i are non-negative if all

units in the subtree Ti satisfy the box constraints. However,

this might not be the case due to the resetting of generation

levels in phase 1 to account for unit addition and deletion.

Lemma VI.2. (Bounds on feasible power allocations to sub-

tree): Given P ∈ R
|Vevents|, the following holds

(i) Cm+CM ≥ 0 if PM ≥Pm (same holds with strict signs)

(ii) for each i ∈ |Vevents|, the additional power P gv
i ∈ R

can be further allocated to the units in Ti respecting

their box constraints if and only if −Cm
i ≤ P gv

i ≤ CM
i .

Proof. Fact (i) follows from noting that Cm
i =

∑

k∈Ti
(Pk −

Pm
k ) =

∑

k∈Ti
(PM

k −Pm
k )−CM

i . Regarding fact (ii), P gv
i can

be allocated among the units in Ti while satisfying the box

constraints for each of them iff
∑

k∈Ti
Pm
k ≤

∑

k∈Ti
Pk +

P gv
i ≤

∑

k∈Ti
PM
k . That is, adding P gv

i to the current

generation of Ti gives a value that falls between the collective

lower and upper limits of Ti. Rearranging the terms yields the

desired result.

C. Algorithm: FEASIBLY ALLOCATE

Here, we describe the FEASIBLY ALLOCATE strategy that

implements the feasible allocation computation of phase 3. Be-

fore this strategy is executed, the generation levels computed in

phase 1 are unfeasible because their sum is Pl−P tkn
root and does

not satisfy the load condition. Additionally, because of unit

addition and deletion, some might not be satisfying their box

constraints. The FEASIBLY ALLOCATE strategy addresses both

issues. The procedure assumes that each unit i knows parenti,

childreni, and the capacities Cm
i , CM

i , ~Cm
i , and ~CM

i obtained

in GET CAPACITY, and is therefore distributed. Informally,

[Informal description]: The root initiates the algo-

rithm by setting P gv
root = P tkn

root . Each unit i, upon

initializing P gv
i , computes its change in power gen-

eration (P chg
i ∈ R) and the power to be allocated
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among its children (~P chg
i ∈ R

|childreni|). The unit sets

its generation to Pi + P chg
i and sends ~P chg

i (j) to

child j ∈ childreni. The strategy ends at the leaves.

Algorithm 2: FEASIBLY ALLOCATE

Executed by: generators i ∈ Vevents

Data : Pi, P
m
i , PM

i , parenti, childreni, ~Cm
i , ~CM

i

Initialize : P chg
i := −∞, ~P chg

i := −∞1|childreni|,

myP dm
i := Pi−Pm

i , myP dM
i := PM

i −Pi

1 while P chg
i = −∞ do

2 if i root or message ~P chg
parenti

(i) from parenti then

3 if i root then P gv
i =P tkn

root else P gv
i = ~P chg

parent
i
(i)

4

5 set P chg
i = argminx∈[−myPdm

i
,myPdM

i
] |x|

6 for j ∈ childreni do

7 set ~P chg
i (j) = argmin

x∈[−~Cm

i
(j), ~CM

i
(j)] |x|

8 set P gv
i = P gv

i − P chg
i − Sum(~P chg

i )
9 if P gv

i ≥ 0 then

10 set X = min{P gv
i ,myP dM

i − P chg
i }

11 set (P chg
i , P gv

i ) = (P chg
i +X,P gv

i −X)
12 for j ∈ childreni do

13 set X=min{P gv
i , ~CM

i (j)− ~P chg
i (j)}

14 set (~P chg
i (j), P gv

i )=

(~P chg
i (j)+X,P gv

i −X)
15 else

16 set X = max{P gv
i ,−myP dm

i − P chg
i }

17 set (P chg
i , P gv

i ) = (P chg
i +X,P gv

i −X)
18 for j ∈ childreni do

19 set X=max{P gv
i ,− ~Cm

i (j)− ~P chg
i (j)}

20 set (~P chg
i (j), P gv

i )=

(~P chg
i (j)+X,P gv

i −X)
21 set Pi = Pi + P chg

i

22 send ~P chg
i (j) to each j ∈ childreni

Algorithm 2 gives a formal description of FEASIBLY ALLO-

CATE. The next result establishes its correctness.

Proposition VI.3. (Correctness of FEASIBLY ALLOCATE): Let

P tkn
root ∈ R with −Cm

root ≤ P tkn
root ≤ CM

root. Then, the FEASIBLY

ALLOCATE strategy ends in finite time at an allocation P+ ∈
R

|Vevents| satisfying the box constraints, Pm
i ≤ P+

i ≤ PM
i ,

i ∈ Vevents, and the load condition, Pl =
∑

i∈Vevents
P+
i .

Proof. By Lemma VI.2(ii), −Cm
root ≤ P tkn

root ≤ CM
root implies

that P tkn
root can be allocated to the units in T . In turn, by the

same result, for a unit i, −Cm
i ≤ P gv

i ≤ CM
i implies existence

of a decomposition P chg
i ∈ R and ~P chg

i ∈ R
|childreni| with

P chg
i + Sum(~P chg

i ) = P gv
i , (25a)

−myP dm
i ≤ P chg

i ≤ myP dM
i , (25b)

− ~Cm
i ≤ ~P chg

i ≤ ~CM
i , (25c)

where we denote myP dm
i = Pi − Pm

i and myP dM
i =

PM
i − Pi. Equation (25b) corresponds to the box constraints

being satisfied for unit i if assigned the additional power P chg
i

to generate. Equation (25c) ensures that a feasible allocation

exists for the subtree of each of its children. We compute P chg
i

and ~P chg
i in two steps. First, we find the portion of power that

ensures feasibility for i and its children. This is done via

ai = argminx∈[−myPdm

i
,myPdM

i
] |x| ,

~bi(j) = argmin
x∈[−~Cm

i
(j), ~CM

i
(j)] |x| , for j ∈ childreni.

Observe that P chg
i = ai and ~P chg

i = ~bi satisfy (25b) and (25c)

but not necessarily (25a). The second step takes care of this

shortcoming by defining Xi ∈ R and ~Yi ∈ R
|childreni| as

P chg
i = ai +Xi, ~P chg

i = ~bi + ~Yi.

In these new variables, (25) reads as

Xi + Sum(~Yi) = P gv
i − ai − Sum(~bi), (26a)

−myP dm
i − ai ≤ Xi ≤ myP dM

i − ai, (26b)

− ~Cm
i −~bi ≤ ~Yi ≤ ~CM

i −~bi. (26c)

Adding the lower limits of (26b) and (26c) yields −Cm
i −ai−

Sum(~bi), where we use Cm
i = myP dm

i +Sum( ~Cm
i ). Similarly,

the upper limits sum CM
i − ai − Sum(~bi). Therefore, with

−Cm
i ≤ P gv

i ≤ CM
i , (26) is solvable by unit i with knowledge

of P gv
i , myP dm

i , myP dM
i , ~Cm

i , and ~CM
i . Note that the lower

limits of (26b) and (26c) are nonpositive and the upper ones

are nonnegative. Therefore, if P gv+
i ≥ 0, FEASIBLY ALLO-

CATE considers first unit i and then its children sequentially

and assigns the maximum power each can take (bounded by

the upper limit of (26b) and (26c)) as Xi and ~Yi until there is

no more to allocate. Similarly if P gv+
i < 0 negative values are

assigned (lower bounded by lower limits of (26b) and (26c)).

For unit i, this corresponds to steps 10-11 (if P gv+
i ≥ 0)

or 16-17 (if P gv+
i < 0) of Algorithm 2. For the children,

this corresponds to steps 12-14 (if P gv+
i ≥ 0) or steps 18-20

(if P gv+
i < 0) of Algorithm 2. Consequently, the resulting

power allocation P+ = P + P chg satisfies Pm ≤ P+ ≤ PM

because (25b) holds for each unit i ∈ Vevents. Additionally,
∑

i∈Vevents

P chg
i = P chg

root +
∑

i∈Vevents\root

P chg
i

= P chg
root +

∑

i∈childrenroot

~P chg
root = P gv

root,

where we use that (25a) holds for each i ∈ Vevents in the

second and third inequalities. Since P gv
root = P tkn

root and
∑

i∈Vevents
Pi = Pl − P tkn

root , we get
∑

i∈Vevents
P+
i = Pl.

Remark VI.4. (Trade-offs between additional information and

network-wide computation): When dealing with the addition

and deletion of generators, it is conceivable that, depending

on the nature of the events, agents may use algorithmic

implementations that do not involve the whole network in

determining a feasible allocation. As an example, consider a

scenario where network changes occur in a localized man-

ner and do not affect substantially the network generation

capacity. Then, one could envision that a feasible allocation

could be found involving only a small set of generators in the

computation of capacities and the allocation of the mismatch.

Such localized solutions are prone to failure when faced with
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more extreme events (e.g., a large change to the overall

network generation capacity caused by topological changes).

Instead, the DETERMINE FEASIBLE ALLOCATION strategy is

guaranteed to find a feasible allocation whenever it exists. •

VII. SIMULATIONS

Here, we illustrate the application of the Laplacian-

nonsmooth-gradient dynamics to solve the ED problem (7) and

the use of the DETERMINE FEASIBLE ALLOCATION strategy to

handle unit addition and deletion. The dynamics (21) is sim-

ulated with a first-order Euler discretization. The optimizers

are computed using an sdp solver in the YALMIP toolbox.

1) IEEE 118 bus: Consider the ED problem for

the IEEE 118 bus test case [26]. This test case has

54 generators, with quadratic cost functions for each

unit i, fi(Pi) = ai + biPi + ciP
2
i , whose coeffi-

cients belong to the ranges ai ∈ [6.78, 74.33], bi ∈
[8.3391, 37.6968], and ci ∈ [0.0024, 0.0697]. The load is

Pl = 4200 and the capacity bounds vary as Pm
i ∈

[5, 150] and PM
i ∈ [150, 400]. The communication topol-

ogy is a directed cycle with the additional bi-directional

edges {1, 11}, {11, 21}, {21, 31}, {31, 41}, {41, 51}, with all

weights equal to 1. Fig. 1 depicts the execution of (21). Note

that as the network converges to the optimizer while satisfying

the constraints, the total cost is monotonically decreasing.

0 100 200 300 400
0

50

100

150

200

250

300

350

400

(a) Power allocation

0 100 200 300 400
6

6.2

6.4

6.6

6.8

7
x 10

4

(b) Total cost

Fig. 1. Evolution of the power allocation (a) and the network cost (b) under
the Laplacian-nonsmooth-gradient dynamics in the IEEE 118 bus test case.
The stepsize of the Euler time-discretization is 2.5× 10−3 and ǫ = 0.006.

2) Unit addition and deletion: Consider six power gen-

erators initially communicating over the graph in Fig. 2(a).

The units implement (21) starting from the allocation P0 =
(1.15, 2.75, 1.5, 3.35, 1.25, 2) that meets the load Pl = 12
and quickly achieve a close proximity of the optimizer

(0.94, 2, 2.4, 2.61, 1.35, 2.7). After 0.75 seconds, unit 7 joins

the network and unit 3 leaves it, with the resulting topology

shown in Fig. 2(b). The network then employs the DETERMINE

FEASIBLE ALLOCATION strategy, whose execution is illus-

trated in Fig. 2(b)-2(d), and finds the new feasible allocation

(0.9, 2.05, 3.5, 1.35, 2.7, 1.5) from which (21) is re-initialized.

Table I gives the cost function and the box constraints for each

unit. Fig. 3 shows the evolution of the power allocations and

the total cost. The network asymptotically converges to the

optimizer (0.9, 2, 2.5, 1.1, 2.7, 2.8). In Fig. 3(a), the disconti-

nuity at t = 0.75s corresponds to the DETERMINE FEASIBLE

ALLOCATION strategy handling the addition and deletion. Note

also the jump in the cost. In this case, the jump is to a higher

value, although in general it can go either way based on the

Unit ai bi ci P
m

i P
M

i

1 1 4 5 0.9 1.5
2 1 2 3 2 3.6
3 4 4 1 1 2.4
4 2 3 2 2.5 3.5
5 1 0 5 1.1 1.6
6 1 1 1 1 2.7
7 2 2 1 1.5 3

TABLE I
Coefficients of the quadratic cost function fi(Pi) = ai + biPi + ciP

2
i

and

lower Pm

i
and upper PM

i
generation limits for each unit i.

network topology, the cost functions, and the box constraints.

The network eventually obtains a lower cost than the one

before the events because the added unit 7 incurs a lower

cost when producing the same power as the deleted unit 3.

VIII. CONCLUSIONS

We have proposed a class of anytime, distributed dynamics

to solve the economic dispatch problem over a group of

generators with convex cost functions. When units commu-

nicate over a weight-balanced, strongly connected digraph,

the Laplacian-gradient and the Laplacian-nonsmoooth-gradient

dynamics provably converge to the solutions of the economic

dispatch problem without and with generator constraints, resp.

We have also designed the DETERMINE FEASIBLE ALLO-

CATION strategy to allow a group of generators with box

constraints communicating over an undirected graph to find

a feasible power allocation in finite time. This method can be

used to initialize the Laplacian dynamics and to tackle cases

where the load condition is violated by the addition and/or

deletion of generators. We view the proposed algorithmic

solutions for the ED problem formulated here as a building

block towards solving more complex scenarios. Future work

will focus on the extension of the algorithms to make them

oblivious to initialization errors, to handle cases where the total

load is not known to a particular generator, the consideration of

time-varying loads, and the study of transmission losses, trans-

mission line capacities, and more general generator dynamics.
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