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Distributed Geodesic Control Laws for Flocking of
Nonholonomic Agents

Nima Moshtagh and Ali Jadbabaie

Abstract—We study the problem of flocking and velocity alignment in
a group of kinematic nonholonomic agents in 2 and 3 dimensions. By ana-
lyzing the velocity vectors of agents on a circle (for planar motion) or sphere
(for 3-D motion), we develop a geodesic control law that minimizes a mis-
alignment potential and results in velocity alignment and flocking. The pro-
posed control laws are distributed and will provably result in flocking when
the underlying proximity graph which represents the neighborhood rela-
tion among agents is connected. We further show that flocking is possible
even when the topology of the proximity graph changes over time, so long
as a weaker notion of joint connectivity is preserved.

Index Terms—Cooperative control, distributed coordination, flocking,
multiagent systems.

I. INTRODUCTION

Cooperative control of multiple autonomous agents has become a
very active part of control theory research. The main underlying theme
of this line of research is to analyze and/or synthesize spatially dis-
tributed control architectures that can be used for motion coordination
of large groups of autonomous vehicles. Each vehicle is assumed to
be capable of local sensing and communication, and there is often a
global objective, such as swarming, or reaching a stable formation, etc.
A nonexhaustive list of relevant research in control theory and robotics
includes [1], [3], [5], [8]–[10], [12], [13], [19].

On the other hand, such problems of distributed coordination have
also been studied in areas as diverse as statistical physics and dynam-
ical systems (in the context of synchronization of oscillators and align-
ment of self propelled particles [18]), in biology, and ecology, and in
computer graphics in the context of artificial life and simulation of so-
cial aggregation phenomena, and in distributed computation [17], in the
context of reaching consensus in parallel and distributed processing.

Most of the above cited research on distributed control of multive-
hicle systems has been focused on fully actuated systems [16], or planar
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under-actuated systems [8]. Our goal here is to develop motion coordi-
nation algorithms that can be used for distributed control of a group of
nonholonomic vehicles in 2 and 3 dimensions. Using results of Bullo
et al. [2] we develop geodesic control laws that result in flocking and
velocity alignment for nonholonomic agents in 3 dimensions.

In order to introduce the idea of a geodesic control law to the reader,
we start with the special case of planar motion in Section III. We will
show that the planar version of such a control law (where the velocity
vector is restricted to stay on a circle) is exactly the well-known Ku-
ramoto model of coupled nonlinear oscillators [6], [14]. Such a control
law is a gradient controller that minimizes a potential function which
represents the aggregate “misalignment energy” between all agents. In
Section V we return to the general case of 3-D motion and we develop
control laws that result in stable coordination and velocity alignment
of a group of agents with a fixed connectivity graph. In Section VI, we
show that flocking is possible even when the topology of the proximity
graph changes over time. Finally, in Section VII, we provide simula-
tions that show the effectiveness of the designed controllers. But, let us
review the concepts of graph theory that we use in this note for stability
analysis.

II. GRAPH THEORY PRELIMINARIES

In this section, we introduce some standard graph theoretic notation
and terminology. An (undirected) graph consists of a vertex set, V ,
and an edge set E , where an edge is an unordered pair of distinct vertices
in . If x; y 2 V , and (x; y) 2 E , then x and y are said to be adjacent,
or neighbors and we denote this by writing x � y. The number of
neighbors of each vertex is its valence. A path of length r from vertex
x to vertex y is a sequence of r + 1 distinct vertices starting with x

and ending with y such that consecutive vertices are adjacent. If there
is a path between any two vertices of a graph , then is said to
be connected. If there is such a path on a directed graph ignoring the
direction of the edges, then the graph is weakly connected.

The adjacency matrix A( ) = [aij ] of an (undirected) graph is a
symmetric matrix with rows and columns indexed by the vertices of ,
such that aij = 1 if vertex i and vertex j are neighbors and aij = 0,
otherwise. The valence matrix D( ) of a graph is a diagonal matrix
with rows and columns indexed by V , in which the (i; i)-entry is the
valence of vertex i. The (un)directed graph of a (symmetric) matrix is a
graph whose adjacency matrix is constructed by replacing all nonzero
entries of the matrix with 1. Matrix A has property SC if and only if
jAj is the adjacency matrix of a strictly connected graph.

The symmetric singular matrix defined as:

L( ) = D( )� A( )

is called the Laplacian of . The Laplacian matrix captures many topo-
logical properties of the graph. The Laplacian L is a positive semidefi-
nite M-matrix (a matrix whose off-diagonal entries are all nonpositive)
and the algebraic multiplicity of its zero eigenvalue (i.e., the dimension
of its kernel) is equal to the number of connected components in the
graph. The n-dimensional eigenvector associated with the zero eigen-
value is the vector of ones, 1.

Given an orientation of the edges of a graph, we can define the in-
cidence matrix of the graph to be a matrix B with rows indexed by
vertices and columns indexed by edges with entries of 1 representing
the source of a directed edge and �1 representing the sink. The Lapla-
cian matrix of a graph can also be represented in terms of its incidence
matrix as L = BBT independent of the orientation of the edges.

0018-9286/$25.00 © 2007 IEEE



682 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 4, APRIL 2007

Fig. 1. Velocity vectors of agent i and its neighbor j are projected on the unit
circle. X is the tangent vector to v .

III. DISTRIBUTED CONTROL OF PLANAR NONHOLONOMIC VEHICLES

Consider a group of N agents on a plane. Each agent is capable of
sensing some information from its neighbors as defined by

Ni
:
= fjji � jg � f1; . . . ; Ngnfig: (1)

The neighborhood set of agent i, Ni, is a set of agents that can share
their heading (orientation) information with agent i. The size of the
neighborhood depends on the characteristics of the communication de-
vice. We therefore assume that there is a predetermined radiusRwhich
determines the neighborhood relationship. The location of agent i; (i =
1; . . . ; N) in the world coordinates is given by (xi; yi) and its velocity
is vi = ( _xi; _yi)

T . The heading or orientation of agent i is �i and is

given by: �i = atan2 _yi; _xi :

It is assumed that all agents move with constant unit speed. Thus,
the kinematic model of each agent can be written as

_xi = cos �i

_yi = sin �i
_�i =!i i = 1; . . . ; N: (2)

The goal is to design the control input !i so that the headings of the
mobile agents reach agreement and velocity vectors are aligned. We
therefore define the consensus set as follows.

Definition 3.1: The set of states where the headings of all agents are
the same is called the consensus set.

In this note, we say agents are “flocking” when their headings reach
asymptotic agreement. We consider the case where the neighboring
relations among agents are represented by a fixed weighted graph.

Definition 3.2: The proximity graph = fV; E ;Wg is a weighted
graph consisting of

• a set of vertices V indexed by the set of mobile agents;
• a set of edges E = f(i; j) j vi;vj 2 V; and i � jg;
• a set of weights W , over the set of edges E .
In order to design the desired control law for agent i, let us view all

the velocity vectors of neighbors of agent i in a unit circle as shown in
Fig. 1. Each velocity vector vi can be written in terms of the heading
angle �i (measured in a fixed inertial frame) as follows:

vi =
cos �i
sin �i

; i = 1; . . . ; N: (3)

As the velocity vector vi changes, we can write the dynamics equation
corresponding to the motion of agent i as _vi = !iXi� where vector
Xi� is tangent to vi and is given by

Xi� =
� sin �i
cos �i

; i = 1; . . . ; N:

Note: In the following the standard inner product is denoted by h�; �i,
and the cross product by �.

Let �ij be the angle between two velocity vectors vi and vj , �ij =
j�i � �j j. When vi and vj are neither equal nor opposite (0 < �ij <
�), we can define a unit vector Yij tangent to vi such that it is pointing
towards the velocity vector vj . This unit-length vector is defined as

Yij
:
=

v
?
j

jv?j j
=

(vi � vj)� vi

k (vi � vj)� vi k
=
vj � hvi;vjivi

sin�ij
(4)

where v?j is the component of vj orthogonal to vi. Now, we can prove
the following theorem for the distributed control of the velocity vectors
of a group of N agents.

Theorem 3.3: Consider the system ofN equations _vi = !iXi�; i =
1; . . . ; N . If the proximity graph is fixed and connected, then by ap-
plying the control law

!i =
j2N

sin�ijhYij ; Xi�i =
j2N

hvj ; Xi�i (5)

all trajectories converge to the set of equilibrium points given by _� = 0.
Furthermore, consensus set is locally attractive.

Proof: We observe that on the unit circle Yij = Xi� or Yij =
�Xi� , depending on the orientations of vi and vj . Hence, we write
the input (5) as

!i = �
j2N

sin(�i � �j): (6)

Notice that the above input is exactly the one used in the Kuramoto
model of coupled nonlinear oscillators [6], [10], [14].

Assume an arbitrary orientation for the edges of graph . Consider
the N � d incidence matrix, B, of this oriented graph with N vertices
and d edges. Then, we can write (6) as

_� = ! = �B sin(BT �) (7)

where � = [�1; . . . ; �N ]T , and sin(BT �) 2 d is a vector whose ele-
ments are sin(�i� �j). Equation (7) can be written in a more compact
form

_� = ! = �BW (�)BT � = �Lw(�)� (8)

where W (�) = diagfsinc(�i � �j) j (i; j) 2 Eg is a diagonal matrix
whose entries are the edge weights for . The ordering of the elements
on the diagonal of W (�) is consistent with the ordering of the edges
in the incidence matrix B. The matrix Lw(�) = BW (�)BT can be
thought of as the weighted Laplacian of , when sinc(�i � �j) =
sin(�i � �j)=(�i � �j) is positive. For this to hold � should belong
to the open cube (��=2; �=2)N , where N is the number of vertices
of the graph. In other words, over any compact subset of the cube
(��=2; �=2)N , the dynamics can be represented by a state-dependent
weighted Laplacian.

Now, consider the Lyapunov function

U=
1

2
j�i

kvi � vj k
2=

1

2
[ej�]�L[ej�]=

j�i

1� cos(�i � �j) (9)

where the sum is over all the neighboring pairs, denoted by i � j; L is
the Laplacian of the graph; and [ej�] is the stack of velocity vectors in
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complex notation. The above sum represents the total misalignment en-
ergy between velocity vectors. Since we have U = d�1

T cos(BT �),
and because of (8), the time derivative of U along the trajectories of
the system becomes

_U = rU _� = �TLw
_� = � _�T _� � 0:

A simple application of LaSalle’s invariance principle over the con-
figuration space which is an N-torus and therefore compact reveals
that all trajectories starting in anywhere on the N-torus converge to the
largest invariant sets in E = f� j _U = 0g. Note that this is a very rich
set and contains many equilibria other than the consensus set, some of
which could be stable. See Remark 3.4 for an instance of this situation.

In order to prove local attractivity of the consensus set we utilize a
simple quadratic Lyapunov function V = 1=2(�T �), and a compact
set 
c = f� j V � cg. This set, which is characterized by the largest
level set of V that is contained inside the cube (��=2; �=2)N , can be
used to show that the synchronized state is the only equilibrium within
the set E = f� 2 
c j _V = 0g. This is true since _V = ��TLw� � 0.
Thus, equilibrium points are the set of solutions of Lw� = 0. If graph

is connected, within 
c the null space of weighted Laplacian Lw is
the span of vector 1

:
= [1; . . . ; 1]T . Thus, the solution is NullfLwg,

which is the set S = f� j � 2 spanf1gg. This suggests that all agents
reach the same heading as t ! 1.

Remark 3.4: When the proximity graph has the ring topology
(i.e., all agents have exactly two neighbors), there are two sets of equi-
libria: � 2 spanf1g and BT � 2 spanf1g where the former corre-
sponds to the set f�i = �j ; 8i 6= jg and the latter corresponds to
f�i � �j = 2�=N; 8i 6= jg. See [7] for details.

Remark 3.5: Local attractivity of the consensus set can be estab-
lished even when the proximity graph changes with time. As will be
shown in Section VI, this holds as long as a weak notion of connec-
tivity called joint connectivity [5] holds.

Remark 3.6: The geodesic control input (6) for a group of planar
nonholonomic vehicles is basically the same controller that can stabi-
lize the Kuramoto model of coupled nonlinear oscillators [6]. The term
sin(�i � �j) in the angular velocity can be explained by noting that in
the planar case the angular velocity is the rate of rotation about the axis
vi � vj where vi is given by (3). The norm of vi � vj is nothing but
sin(�i � �j).

Remark 3.7: The geodesic controller (6) is the nonlinear version of
the control law

!i = �
j2N

(�i � �j)

proposed in [5], [12] as the continuous analogue of Viscek’s model
[18].

IV. LEADER FOLLOWING

One could envision in a social aggregation scenario such as flocking
of birds, one of the flock-mates acts as the leader of the group and
others follow the leader while staying in a formation. Similarly, here
we consider the case that one additional agent, labeled 0, acts as the
group’s leader. Agent 0 moves with the constant unit velocity (same
as others) and a fixed heading �0. Other agents in the group may or
may not have the leader as a neighbor. Here, we prove that the control
law (6) results in a stable formation of the group while following the

leader, so that in the end all agents reach the desired heading �0 (cf. [5]
for more details on leader following).

Consider the input of each agent in the leaderless case that is given
by (6). We can separate the leader from other agents and write:

_�i = �
j2N

sin(�i � �j)� ci sin(�i � �0) (10)

where ci = 1 if agent i and the leader are neighbors and ci = 0
otherwise.

To show that all the headings become equal to �0, we consider the
error term ei = �i � �0. Since _ei = _�i, we can write (10) as

_ei = �
j2N

sin(ei � ej)� ci sin ei:

Consider the error vector e = [e1; . . . ; eN ]T . Similar to calculations
of Section III, the error dynamics becomes

_e = �BW (e)BT e�Wle = �Lwe�Wle = �Hle (11)

where W (e) = diagfsinc(ei � ej) j (i; j) 2 Eg 2 d�d and
Wl = diagfci sinc(ei) j (i; 0) 2 Eg 2 N�N . Both W (e) and
Wl are weight matrices with positive entries, because sinc(ei� e0) =
sinc(�i��0) is positive for �i 2 (��=2; �=2), and ci is a nonnegative
coefficient.

In order to show that the error is asymptotically stable, consider the
Lyapunov function U = 1=2(eTe). The derivative of this along the
trajectory of the error system can be written as _U = �eTHle, where
Hl = Lw + Wl. We will prove that Hl is positive definite, and the
error will asymptotically decay to zero.

Note that both Lw and Wl are positive–semidefinite matrices and so
isHl. MatrixLw has property SC, because if we replace the nonzero el-
ements ofLw with 1, we obtain the adjacency matrix of the neighboring
graph that is strictly connected. matrix Wl is diagonal, thus adding it
to Lw doesn’t change the neighboring graph. ThusHl = Lw+Wl has
property SC. A matrix is irreducible if and only if it has property SC.
Thus, Hl is irreducible. See [4, Ch. 6], for more details on irreducible
matrices.

We need to show that Hl is actually positive definite. To do so, we
make the following observations.

• Hl is an irreducible matrix.
• Lw is diagonally dominant.
• For at least one of the rows of Hl the diagonal entry is strictly

greater than the sum of off-diagonal entries (because Wl ia a di-
agonal matrix with nonnegative entries).

According to Taussky theorem [4] matrix Hl is an irreducibly diag-
onally dominant matrix and is invertible. Thus, Hl must be a positive
definite matrix. As a result _U < 0 and the error vector asymptoti-
cally decays to zero; consequently �i = �0 for every i = 1; . . . ; N , as
t ! 1.

V. DISTRIBUTED COORDINATION OF NONHOLONOMIC AGENTS IN 3-D

Consider a group of N agents in the three-dimensional space. Our
goal in this section is to design a control law for each agent such that it
guarantees they reach the consensus set.

Each agent is capable of communicating some information with its
neighbors, defined by (1). The neighborhood set of agent i, Ni, is a
set of agents that can share their headings and attitudes (orientation)
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Fig. 2. (a) Heading of each agent is determined by two angles � (heading) and
� (attitude) relative to the world frame. (b) Velocity vectors of agents in 3-D
are projected onto a unit sphere.X andX form an orthonormal basis of the
tangent plane. The geodesic versor Y points towards the geodesic direction
from v to v .

information with agent i. As before, it is assumed that there is a pre-
determined sphere with radius R which determines the neighborhood
relationship. The location of agent i in the fixed world coordinates is
given by (xi; yi; zi) and its velocity is vi = ( _xi; _yi; _zi)

T . The orienta-
tion of the velocity vector of agent i can be characterized by specifying
two angles �i (heading) and �i (attitude) relative to the world frame
[see Fig. 2(a)], and they are defined as

�i =atan2 _yi; _xi ; 0 � �i � 2� (12)

�i =atan2 _x2i + _y2i ; _zi ; 0 < �i < �: (13)

Without loss of generality, it is assumed that all agents move with a
constant unit speed. The velocity of agent i in 3 dimensions is given by

vi =

_xi
_yi
_zi

=

cos �i sin�i
sin �i sin�i

cos�i

:

Hence, all velocity vectors are on a unit sphere S2
:
= fp = (x; y; z) 2

3 :k p k= 1g [see Fig. 2(b)]. We represent each vector vi as a point
on this unit sphere. As the direction of the velocity vector of agent i
changes, the corresponding point vi will move along a curve on the
sphere. The tangent vector to this curve at vi 2 S2 can be uniquely
represented as a vector _vi 2

3 such that _vi ? vi and _vi 2 TiS
2

where TiS2 is the tangent plane at vi. A basis for the tangent space
TiS

2 can be obtained by differentiating vi, and thus _vi can be written
as

_vi = ui�Xi� + ui�Xi� 2 TiS
2

whereBi = fXi�; Xi�g is an orthonormal basis for the tangent plane
TiS

2, and

Xi� =

� sin �i
cos �i
0

; Xi� =

cos �i cos�i
sin �i cos�i
� sin�i

:

The control inputs ui� and ui� are related to _�i and _�i:

ui� = _�i sin�i ui� = _�i: (14)

When points vi and vj are neither equal nor opposite, a vector Yij 2
TiS

2 called the geodesic versor can be defined to show the geodesic
direction from vi to vj [see Fig. 2(b)]. The unit length geodesic versor

is defined by (4). The difference from the 2-dimensional case is that on
the sphere the angle �ij is the radian distance between points vi and
vj over the great circle path.

Now, we can prove the following theorem for the geodesic control of
the velocity vectors of a group of N agents, which is a generalization
of Theorem 2 in [2] to an arbitrary number of agents and connected
topologies.

Theorem 5.1: Consider the system of N equations _vi = ui�Xi� +
ui�Xi�; i = 1; . . . ; N . If the proximity graph of the agents is fixed
and connected, then by applying the control laws

ui� =
j2N

sin�ijhYij ; Xi�i =
j2N

hvj ; Xi�i (15)

ui� =
j2N

sin�ijhYij ; Xi�i =
j2N

hvj ; Xi�i (16)

all trajectories converge to the equilibria given by ui� = 0 and ui� =
0, for i = 1; . . . ; N . Furthermore, the consensus set is locally attrac-
tive.

Proof: Convergence to equilibria can be established using the
Lyapunov function

V =
1

2
j�i

k vi � vj k
2=

j�i

1� hvi;vji (17)

which is a measure of discrepancy among the velocity vectors. The time
derivative of V becomes

_V = �

N

i=1 j2N

h _vi;vji = �

N

i=1

(u2i� + u
2

i�) � 0:

Similar to the 2-D case, the configuration space (which is now an N
copies of a sphere) is compact and therefore LaSalle’s invariance prin-
ciple can be used to establish convergence of all trajectories to invariant
sets, including the synchronized state where all �i’s are the same and
all �i’s are the same.

To prove local attractivity of the consensus set for the system of N
agents with the control laws given in Theorem (5.1), we need to write
(15) and (16) in terms of the heading and attitude angles. Using (14)
we obtain these expressions for _�i and _�i

_�i = �
j2N

sin�j
sin�i

sin(�i � �j) (18)

_�i = �
j2N

sin(�i � �j)� sin�j cos�i(1� cos(�i � �j)):

(19)

We now linearize (18) and (19) around the synchronized state �i =
�j , �i = �j . Let ~�i and ~�i be the deviations of �i and �i from the
synchronized state. The linearized dynamics can be written as

_~�i = �
j2N

( ~�i � ~�j)
_~�i = �

j2N

( ~�i � ~�j): (20)

Now, consider the quadratic Lyapunov function

V
:
=

1

2
~�T ~� +

1

2
~�T ~�: (21)

Then, by using (20) we can show that _V is nonpositive

_V = ~�T
_~� + ~�T

_~� = �~�TL~� � ~�TL~� � 0
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Fig. 3. Geodesic control laws result in (a) flocking in 2-D, (b) flocking in 3-D, and (c) following the leader in a planar motion.

where L = BBT is the graph Laplacian. Consider the compact set

c = f(~�; ~�) j V � cg. By LaSalle’s invariance principle any trajec-
tory starting in 
c converges to the largest invariant set, S, contained
in E = f(~�; ~�) j _V = 0g. The invariant set of this system is when
L~� = 0 and L~� = 0, or when ~�; ~� 2 NullfLg. Since the graph is
assumed to be connected, ~�; ~� 2 spanf1g is the only invariant set. As
a result, the synchronized state is locally asymptotically stable.

This analysis shows that with applying geodesic controllers (15) and
(16) the consensus set is locally attractive.

VI. STABILITY ANALYSIS FOR SWITCHING GRAPHS IN 2 DIMENSIONS

So far, the underlying assumption has been that the graph , repre-
senting the neighborhood relationship, is fixed and connected. In prac-
tice, the motion of individual agents will result in change in topology.
To avoid complications that occur because of discontinuous change in
the set of nearest neighbors, we will assume that there is always a min-
imum time, called a dwell time, �D , over which the graph does not
change. This simplifying assumption will avoid infinite switches over
a finite period of time.

Secondly, we assume that the switching is such that some weak no-
tion of connectivity “persists” over finite time intervals. Each agent i
would use control laws similar to (5) (which is now hybrid, since the
set of neighbors Ni changes discontinuously). With the dwell time as-
sumption, the control inputs would be of the following form:

!i(t) =
j2N (t )

hvj(t);Xi�(t)i; t 2 [tk; tk + �D): (22)

The hybrid controller (22) may result in change of the proximity
graph as the switching occurs. Let P denote a set that indexes the class
of all simple graphs defined on N vertices; so if p 2 P then p is
the corresponding proximity graph on N vertices. Let �(t) be a piece-
wise constant switching signal whose value at time t is the index of the
graph representing the proximity graph of agent i. As mentioned ear-
lier, following [5], we need to define a weaker notion of connectivity
for a collection of graphs with a switching signal � with �(tk) = pk .

Definition 6.1: A collection of graphs is called jointly connected, if
the union of its members is a connected graph.

It is natural to say that the N agents under consideration are
linked together across a time interval [t; � ] if the collection of graphs
f �(t ); �(t ); . . . ; �(�)g encountered along the interval, is
jointly connected.

In trying to extend Theorem 3.3 to graphs with the aforementioned
switching regime, we need the following lemma, which was proved in
[5].

Lemma 6.2: If f p ; p ; . . . ; p g is a jointly connected collec-
tion of graphs with Laplacians Lp ; Lp ; . . . ; Lp , then

m

i=1

kernel Lp = span f1g:

The previous lemma states that the intersection of the null space of
the Laplacians of a set of jointly connected graphs is only the vector of
ones. We can now state the following theorem.

Theorem 6.3: Let �D > 0 and the initial heading vector �0 be fixed.
Let � : [0;1) ! P be a piecewise constant persistent switching
signal corresponding to all graphs over N vertices whose switching
times t1; t2; . . . satisfy (tk+1 � tk) � �D; k � 1. If there exists an
infinite sequence of non-empty, bounded, time-intervals with the prop-
erty that across each such interval theN -agent group is linked together,
then by applying geodesic control law (22) all trajectories converge to
the equilibria of !i(t) = 0. Furthermore, the consensus set is locally
attractive.

The proof of convergence to the consensus set is omitted due to space
limitations, but the idea here is to use Lemma 6.2 in the context of a
LaSalle-like invariance principle for switched systems with dwell time
constraint on switching. With the assumption that there exists an infi-
nite sequence of nonempty, bounded, time-intervals with the property
that across each such interval the graphs are jointly connected, we show
that the intersection of the null spaces of the corresponding Laplacians
is only the vector of ones. In other words, even though the graphs might
be disconnected, and as a result their Laplacians have a larger kernel,
the intersection is span f1g. By showing that the heading angles follow
the persistent direction in the intersection of the Laplacians, we con-
clude that the consensus set is locally attractive. (cf. [11] for the de-
tailed description of the proof).

VII. SIMULATIONS

In this section, we numerically show that the distributed control law
(5), for the planar case, and the geodesic control laws (15) and (16),
for the three-dimensional case, can force a group of agents to reach the
consensus state. Fig. 3(a) and (b) show the leaderless flocking of ten
agents in two and three dimensions, respectively. The initial position
and heading of all agents are generated randomly within a prespecified
area. The neighboring radius is chosen large enough so that agents form
a connected graph at time t = 0. The arrows on each agent show the di-
rections of the velocity vectors. Simulations show that agents smoothly
adjust their headings and after a reasonable amount of time they con-
verge to a formation, and their relative distances stabilizes.
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Fig. 3(c) shows the effect of the presence of a leader in the group. In
the simulations, one of the agents is randomly chosen to be the leader
of the group, and its heading is constant. Without knowing which one
of them is the leader, all other agents adjust their headings to follow
him so that the formation remains stable. Even if the leader’s motion
has dynamics, as long as the group remains connected, all agents follow
the leader.

VIII. CONCLUSION AND FUTURE WORK

We provided a coordination scheme which resulted in flocking of a
collection of kinematic agents. The control law was based on nearest
neighbor sensing. It was shown that reaching consensus is possible de-
spite possible changes in the topology of the proximity graph repre-
senting the neighborhood relationship. A generalization of the current
analysis would be to develop results similar to [15], [16] for dynamic
models, by using artificial potential functions similar to [13]. An impor-
tant question that we need to answer is how to enforce the connectivity
condition of the proximity graph. A potential starting point would be
to use results of [20] in topology control.
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Fundamental Constraints on Uncertainty Evolution in
Hamiltonian Systems

Fu-Yuen Hsiao and Daniel J. Scheeres

Abstract—A realization of Gromov’s nonsqueezing theorem and its ap-
plications to uncertainty analysis in Hamiltonian systems are studied in this
note. Gromov’s nonsqueezing theorem describes a fundamental property
of symplectic manifolds, however, this theorem is usually started in terms
of topology and its physical meaning is vague. In this note we introduce
a physical interpretation of the linear symplectic width, which is the lower
bound in the nonsqueezing theorem, in terms of the eigenstructure of a pos-
itive-definite, symmetric matrix. Since uncertainty is often represented in
terms of a positive definite, symmetric matrix in control theory, our study
can be applied to uncertainty analysis by applying the nonsqueezing the-
orem to the uncertainty ellipsoid. We find a fundamental inequality for the
evolving uncertainty in a linear dynamical system and provide some nu-
merical examples.

Index Terms—Hamiltonian system, linear symplectic width, non-
squeezing theorem, symplectic manifold, uncertainty analysis.

I. INTRODUCTION

In this note, we study the realization of Gromov’s nonsqueezing the-
orem [3] in Hamiltonian systems and apply our results to uncertainty
analysis. An example from orbit determination of spacecraft is given as
a potential application. The nonsqueezing theorem was first proved by
Gromov using J -holomorphic curves [3]. Other mathematicians have
given proofs using different approaches [4], [8]. The theorem was then
extended to arbitrary symplectic manifolds by Lalonde and McDuff
[5]. Although this theorem has been proven rigorously in a topological
sense, its application to practical issues is still vague.

A well-known result from Hamiltonian dynamical systems theory is
Liouville’s Theorem [1], which says that the “volume” of a phase flow
in a nondissipative system is conserved. This result also applies to un-
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