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Distributed Global Output-Feedback Control for a Class of
Euler–Lagrange Systems

Qingkai Yang, Student Member, IEEE, Hao Fang, Member, IEEE, Jie Chen, Senior Member, IEEE,
Zhong-Ping Jiang, Fellow, IEEE, and Ming Cao, Senior Member, IEEE

Abstract—This paper investigates the distributed tracking
control problem for a class of Euler–Lagrange multiagent systems
when the agents can only measure the positions. In this case,
the lack of the separation principle and the strong nonlinearity in
unmeasurable states pose severe technical challenges to global
output-feedback control design. To overcome these difficulties, a
global nonsingular coordinate transformation matrix in the upper
triangular form is first proposed such that the nonlinear dynamic
model can be partially linearized with respect to the unmeasur-
able states. And, a new type of velocity observers is designed to
estimate the unmeasurable velocities for each system. Then, based
on the outputs of the velocity observers, we propose distributed
control laws that enable the coordinated tracking control system
to achieve uniform global exponential stability. Both theoretical
analysis and numerical simulations are presented to validate the
effectiveness of the proposed control scheme.

Index Terms—Coordinate transformation, distributed control,
Euler–Lagrange systems, global output feedback.

I. INTRODUCTION

Recently, intensive attention has been paid to distributed control

for Euler–Lagrange systems due to its broad applications. Several
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approaches have been proposed to deal with the distributed tracking

problem, see, for example, sliding-mode method [1], [2], disturbance

observer [3], and extended proportional-integral control scheme [4].

Extension to handle unknown parameter uncertainties can be found in

[5], where an adaptive controller is proposed to synchronize noniden-

tical Euler–Lagrange systems with communication time delays. Later,

[6] solves the synchronization problem of networked robotic systems

with both the kinematic and dynamic uncertainties using passivity

theory. It has also been shown that, under a jointly connected switch-

ing network topology, leader-following consensus can be achieved for

multiple Euler–Lagrange systems by employing adaptive control [7],

in which various reference signals, such as sinusoidal and ramp signals,

generated by an exosystem are considered.

In order to relax the restrictive requirement for full state measure-

ments in designing the controllers in the existing results, some efforts on

partial state feedback control have been made. To estimate the unmea-

surable velocity, observers are constructed by invoking the Immersion

and Invariance (I&I) techniques [8]–[10]. Through introducing two

extra states, some lower dimensional observer is proposed in [9] in

comparison to that in [8], and moreover, the explicit expressions of the

observer have been given. In [10], dynamic scaling and high-gain terms

have been adopted to perform the Lyapunov stability analysis. Note that

the dynamics of the observers relying on I&I techniques are generally

high dimensional and complex. In addition, it is required to find a cer-

tain attractive and invariant manifold in the extended state space of the

plant and the observer, which will likely increase the computational

burden.

For multiagent systems, a consensus algorithm using linear observers

is first proposed in [11], and, in [12], a distributed control law with

time-varying control gains is designed to compensate for the lack of

neighbors’ velocity measurements. For the distributed tracking prob-

lem, [13] presents a sliding mode observer-based controller to track

the leader with constant velocity in finite time. The more challenging

problems of tracking a leader with varying velocity have also been

investigated in [14]–[16]. When only nominal parameters of Euler–

Lagrange systems are available, global asymptotic stability can be

ensured using continuous control algorithms with adaptive coupling

gains [14]. More generally, in cases when we do not have access to

any velocity measurement, it is desirable to coordinate the agents using

output-feedback strategies. However, some drawbacks of the available

results still exist. For example, tracking errors can only be guaranteed

to be uniformly ultimately bounded but not converging to zero [15]

and the resulted closed-loop system is only locally but not globally

stable under the designed control laws [16]. For some specific class

of nonlinear systems, the global output feedback control problem has

been investigated recently in [17] and [18], where the cyclic-small-

gain approach and distributed internal model have been introduced,

respectively, to achieve global convergence. To deal with the leader’s

unavailable velocity measurements, distributed observers are designed

for second-order agents in [19].

0018-9286 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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The goal of this paper is to address the problem of distributed global

output-feedback tracking for multiple Euler–Lagrange systems model-

ing a class of two-link revolute robot manipulators. Up to now, there

is no known result for such distributed global tracking algorithms

due to several technical challenges. The main difficulties in achiev-

ing global stability lie in the quadratic nonlinearities and the cross

terms of the unmeasurable velocity states derived from the Coriolis

and centrifugal torques. To eliminate such quadratic terms, different

state transformation methods have been utilized in [20]–[23]. In [20]

and [21], the coordinate transformation strategies are first applied to

simplify the nonlinear models, and then controllers are proposed for

1 DOF Euler–Lagrange systems and underactuated mechanical systems

in their Hamiltonian forms, respectively. It should also be noted that

both of the techniques in [22] and [23] pose constraints on the system

model, i.e., a class of nonlinear systems that are linear in unmeasured

states, globally stabilizable using output feedback [22], and with skew-

symmetric Coriolis terms [23]. However, the models of the two-link

revolute robot manipulators considered in this paper do not possess any

of the properties just mentioned that contribute to the simplification of

the system model. So, all of these approaches cannot be directly ap-

plied to the robot manipulators discussed in this paper. Inspired by the

works [22] and [23], we shall focus on how to partially linearize the

dynamics of the robot manipulators through coordinate transformation

and state reconstruction. With the help of the model transformation, a

distributed velocity observer is proposed, which enables us to imple-

ment the output-feedback control for multiple robot manipulators such

that the tracking errors uniformly globally exponentially converge to

zero.

The rest of the paper is organized as follows. Section II reviews

the system dynamics and presents the method on how to partially

linearize the nonlinear system through coordinate transformation. In

Section III, an observer-based control strategy is proposed based on

the partially linearized system. Section IV gives the main result of this

paper, followed by the numerical simulations in Section V. Finally,

conclusions are provided in Section VI.

Notations: |X | denotes the determinant of a real square matrix X .

‖x‖ is used to denote the two norm of a vector x. In represents the

identity matrix with dimension n, and 1n denotes the column vector

whose components are all one. We use iXj k to denote the (j, k)th

element of matrix Xi , and λX and λX are the largest and smallest

eigenvalues of a real symmetric matrix X , respectively.

II. PARTIAL LINEARIZATION

In this section, we first briefly introduce the general expression of

Euler–Lagrange systems, followed by the specific dynamics of two-link

revolute robot manipulators. Then, we present the process removing

the cross terms of the velocity states via coordinate transformation.

A. Dynamics of Robot Manipulator

We consider here a group of n mechanical robots, each of which is

described by a Euler–Lagrange equation as follows:

Mi (qi )q̈i + Ci (qi , q̇i )q̇i + Gi (qi ) = τi , i = 1, . . . , n (1)

where qi is the vector of the generalized coordinates, Mi (qi ) is the

symmetric positive-definite inertia matrix, Ci (qi , q̇i )q̇i is the Coriolis

and centrifugal torque, Gi (qi ) is the vector of the gravitational torques,

and τi is the control torque on robot i.
The neighbor relationships between the robots are described by a

directed graph G with the vertex set V = {1, 2, . . . , n} and the edge

set E ⊆ V × V . We use A = [aij ]n×n to denote the adjacency matrix,

where aij = 1 means there is an edge (j, i) between robots i and j,

and robot i can obtain information from robot j, but not vice versa,

and aij = 0, otherwise. There is one leader robot and the rest are

followers. The interaction relationships among the followers and the

leader is denoted by the matrix B = diag {b1 , . . . , bn }, where bi =
1 if the leader is a neighbor of robot i, and bi = 0, otherwise. The

Laplacian matrix L = [lij ]n×n is defined by lii =
∑

j∈Ni
aij and lij =

−aij , i �= j, where Ni denotes the set of neighbors of robot i.
It is well known that a wide range of mechanical systems can be

represented by Euler–Lagrange equations, such as robot manipulators,

mobile robots, and rigid bodies. Here, we focus on a class of two-link

revolute robot manipulators, whose dynamics are given by (see [24])

Mi (qi ) =

[

Oi(1) + 2Oi(2) cos(qi(2) ), Oi(3) + Oi(2) cos(qi(2))

Oi(3) + Oi(2) cos(qi(2) ), Oi(3)

]

Ci (qi , q̇i ) =

[

−Oi(2) sin(qi(2) )q̇i(2) , −Oi(2) sin(qi(2))(q̇i(1) + q̇i(2) )

Oi(2) sin(qi(2))q̇i(1) , 0

]

Gi (qi ) =

[

Oi(4)g cos(qi(1) ) + Oi(5)g cos(qi(1) + qi(2))

Oi(5)g cos(qi(1) + qi(2) )

]

where g is the acceleration of gravity, qi = [qi(1) , qi(2) ]
T represents

the joint angles of the two links and Oi = [Oi(1) , Oi(2) , Oi(3) , Oi(4) ,
Oi(5) ] = [m1 l

2
c1 + m2 (l

2
1 + l2c2 ) + J1 + J2 , m2 l1 lc2 , m2 l

2
c2 + J2 ,

m1 lc1 + m2 l1 , m2 lc2 ], in which the variables mi , li , and Ji are,

respectively, used to denote the masses, the lengths, and the moments

of inertia of link i, and lc i represents the distance from the previous

joint to the center of mass of link i, i = 1, 2. The inertia matrix Mi (qi )
satisfies the following property: for all qi ∈ IR2 , there exist positive

constants km and kM , such that km I2 ≤ Mi (qi ) ≤ kM I2 .

B. Coordinate Transformation

In order to linearize the quadratic velocity terms in Ci (qi , q̇i )q̇i and

to simplify the dynamics model, motivated by [23], we introduce the

following coordinate transformation

zi = Ti (qi )q̇i (2)

where Ti (qi ) ∈ IR2×2 , a nonsingular matrix with bounded elements to

be determined, is constructed as follows:

Ti (qi ) =

[

iT11
iT12

iT21
iT22

]

=

[

iM11
iM12

0 iT22

]

(3)

where iT22 needs to be determined. Here, instead of fully linearizing

system (1), we aim at partially linearizing the nonlinear mechanical

system. Hence, the transformation matrix is chosen to be in its upper

triangular form (3), which not only simplifies the system model, but

also reduces the computational complexity greatly when solving a set

of partial differential equations (PDEs). Considering the system model

(1), the dynamics of the new state zi can be described by

żi =
(

Ṫi (qi )q̇i − Ti (qi )Mi (qi )
−1Ci (qi , q̇i )q̇i

)

+ Ti (qi )Mi (qi )
−1 (τi − Gi (qi )) . (4)

Note that the matrix Ti (qi ) is globally nonsingular as long as iT22 is

not equal to zero. In order to determine iT22 , substituting (3) into (4)
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yields

żi(2) =
∂ iT22

∂qi(1)

q̇i(1) q̇i(2) +
∂ iT22

∂qi(2)

q̇2
i(2)

−
iT22 Oi(2) sin(qi(2) )

|Mi (qi )| iM11

(

iM11 q̇i(1) + iM12 q̇i(2)

)2

+
iT22

|Mi (qi )|
Oi(2) sin(qi(2))

iM12 ( iM12 − iM11 )
iM11

q̇2
i(2)

+ iT22 (M
−1
i )21ui(1) + iT22 (M

−1
i )22ui(2) . (5)

Here, for the purpose of removing the cross coupling term q̇i(1) q̇i(2)

in żi(2) , we let

∂ iT22

∂qi(1)

q̇i(1) q̇i(2) +
∂ iT22

∂qi(2)

q̇2
i(2)

=
iT22

|Mi (qi )|
Oi(2) sin(qi(2))

iM12 ( iM11 − iM12 )
iM11

q̇2
i(2) . (6)

With (6), the dynamics of żi(2) reduce to

żi(2) = −
iT22 Oi(2) sin(qi(2))

|Mi (qi )| iM11

(

iM11 q̇i(1) + iM12 q̇i(2)

)2

+ iT22 (M
−1
i )21ui(1) + iT22 (M

−1
i )22ui(2) . (7)

One can check that one solution to (6) is

iT22 =

√

|Mi (qi )|
iM11

. (8)

So, the globally nonsingular transformation matrix Ti (qi ) is obtained

as follows:

Ti (qi ) =

[

iM11
iM12

0
√

|M i (q i ) |
i M 1 1

]

. (9)

Consequently, the coordinate transformation (2) results in the par-

tially linearized system with the state [qT
i , zT

i ]T , output yi and input

ui = τi − Gi (qi )

⎧

⎨

⎩

q̇i = Ai (qi )zi

żi = fi (qi , zi ) + Di (qi )ui

yi = qi

(10)

where

Ai (qi ) =

⎡

⎣

1
i M 1 1

− i M 1 2√
i M 1 1 |M i (q i ) |

0
√

|M i (q i ) |
i M 1 1

⎤

⎦

Di (qi ) =

[

1 0

− i M 1 2√
i M 1 1 |M i (q i ) |

√

i M 1 1
|M i (q i ) |

]

and

fi (qi , zi ) =

[

0,− Oi(2) sin(qi(2) )
√

iM11 |Mi (qi )| iM11

z2
i(1)

]T

.

It can be seen that the quadratic cross terms of the unmeasurable

velocities have been removed from the system dynamics (10). More-

over, the matrices Ai and Di are both independent of the velocity states

and bounded. Both of the above properties will facilitate the design of

globally stable observers and controllers.

Remark 1: For future reference, denote

δi (qi(2)) � − Oi(2) sin(qi(2) )
√

iM11 |Mi (qi )| iM11

. (11)

It follows from the positive definiteness of the inertia matrix Mi (qi )
that iM11 > 0 and inf t

iM11 (qi (t)) = Oi(1) − 2Oi(2) . Since Mi (qi )
is bounded, we have

sup
t

δi [qi(2) (t)] =
Oi(2)√

km

(Oi(1) − 2Oi(2))
2/3 � δ̄i > 0. (12)

Remark 2: The simplification of Euler–Lagrange systems was pre-

viously studied in [25] and [26], where the conditions for the exis-

tence of the transformation matrix Ti (qi ) were presented based on

the equation Ṫi (qi ) = Ti (qi )Mi (qi )
−1Ci (qi , q̇i ). However, for a class

of Euler–Lagrange systems, such as the robot manipulators we dis-

cussed here and unicycle-type mobile robots [23], such a nonsingular

matrix solution Ti (qi ) does not exist. So, in this paper, a wide class

of transformation matrices is derived from the relaxed equation, i.e.,

Ṫi (qi )q̇i = Ti (qi )Mi (qi )
−1Ci (qi , q̇i )q̇i resulted from (4).

Remark 3: It can be seen that the computation of the nonsingular

coordinate transformation matrix (9) relies on the exact knowledge of

the inertia parameters. When the parameter uncertainties are taken into

account, the construction of robust adaptive controllers needs to be

considered based on the parameter linearizability property of Euler–

Lagrange systems.

C. Problem Formulation

Consider a group of n followers modeled by (1), and the leader la-

beled by 0 with the same dynamics as the followers. Hence, by employ-

ing (2), the leader’s dynamics can also be transformed to (10) with the

states (q0 , z0 ). The distributed global output-feedback tracking prob-

lem is to design local control protocols ui using only output information

for all the followers, such that all the followers’ states synchronize to the

leader’s state globally, i.e., limt→∞ qi (t) − q0 (t) = 0, i = 1, . . . , n.

III. OUTPUT-FEEDBACK TRACKING CONTROL

The purpose of this section is to present an observer-based control

law to solve the distributed output-feedback tracking problem. Toward

this end, we first design the observers to estimate the unmeasurable

velocities.

A. Observer Design

Note that system (10) can be rewritten into the following two sub-

systems

{

q̇i(1) = iA11zi(1) + iA12zi(2)

żi(1) = ui(1)
(13)

{

q̇i(2) = iA22zi(2)

żi(2) = δiz
2
i(1) +i D21ui(1) +i D22ui(2) .

(14)

It can be observed from (13) that the dynamics of qi(1) incorporate

the state zi(2) of the second subsystem. Similarly, the dynamics of zi(2)

also depend on the state zi(1) of the first subsystem in (14). This implies

that when we design the velocity observers for both of the subsystems,

the convergence analysis of the observation errors for each subsystem

is still related to each other, which makes it challenging to design

globally stable observers. To handle this problem, motivated by [26],

we aim at fully decoupling the subsystems by constructing the new
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sates xi = [xi(1) , xi(2) ]
T as follows:

xi(1) =

∫ q i ( 1 )

0

iM11 (qi(2))e
−(q i ( 1 ) −s)ds +

∫ q i ( 1 )

0

iM12 (s)ds

xi(2) =

∫ q i ( 2 )

0

iM12 (s)ds. (15)

Combining (2), (9), (13), and (14) and taking derivative of (15), the

dynamics of (x, z) are given by

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ẋi(1) = zi(1)

żi(1) = ui(1)

ẋi(2) = zi(2)

żi(2) = δi (qi(2))z
2
i(1) + iD21ui(1) + iD22ui(2)

, (16)

in which the dynamics of the first subsystem (xi(1) , zi(1) ) are inde-

pendent of the second one (xi(2) , zi(2) ). Consequently, it is relatively

straightforward to design the observers for the two subsystems in (16).

For the first subsystem, the observer is designed as
{

˙̂xi(1) = −ko ,1 (x̂i(1) − xi(1) ) + ẑi(1)

˙̂zi(1) = −ko ,2 (x̂i(1) − xi(1) ) + ui(1)

(17)

where x̂i and ẑi are the observations of xi and zi , respectively. Here,

ko ,1 and ko ,2 are positive observer gains. Correspondingly, the ob-

servation errors are defined as x̃i = x̂i − xi and z̃i = ẑi − zi , whose

dynamics are of the form

[

˙̃xi(1)

˙̃zi(1)

]

=

[

−ko ,1 1
−ko ,2 0

] [

x̃i(1)

z̃i(1)

]

∆
= Ã

[

x̃i(1)

z̃i(1)

]

. (18)

It can be easily checked that matrix Ã is Hurwitz and, therefore,

system (18) is exponentially stable at the origin. So

lim
t→∞

[

x̃i(1) (t)
z̃i(1)(t)

]

= 0. (19)

For the second subsystem (xi(2) , zi(2) ), the observer is

constructed as
{

˙̂xi(2) = −ko ,1 (x̂i(2) − xi(2) ) + ẑi(2)

˙̂zi(2) = −ko ,2 (x̂i(2) − xi(2) ) + δi ẑ
2
i(1) + iD2j ui(j )

(20)

where j = 1, 2. In view of (16) and (20), we have

[

˙̃xi(2)

˙̃zi(2)

]

= Ã

[

x̃i(2)

z̃i(2)

]

+

[

0
hi (t)z̃i(1)

]

(21)

where hi (t) = δi (qi(2) (t))(z̃i(1) + 2zi(1) (t)) is continuous in t and

z̃i(1) , and locally Lipschitz in z̃i(1) . Note that both (18) and the nominal

part of (21) are uniformly globally exponentially stable (UGES). Then,

the origin of the cascaded system (18) and (21) is UGES [27], namely,

x̃ and z̃ uniformly globally exponentially converge to zero.

B. Observer-Based Control Law Design

The following assumptions are made throughout this paper.

Assumption 1: The leader’s state information (x0 (t), z0 (t)) satis-

fies supt ‖ż0 (t)‖ ≤ z̄0 .

Assumption 2: The communication relationships among the n + 1
robots form a directed graph G that contains a spanning tree rooted at

the leader.

In order to keep this paper self-contained, two lemmas are presented.

Lemma 1 (see [28]): Let A ∈ IRm ×n , B ∈ IRr×s , C ∈ IRn×p ,
D ∈ IRs×t . Then

(A ⊗ B)(C ⊗ D) = AC ⊗ BD (∈ IRm r×p t ) (22)

and, for all A and B

(A ⊗ B)T = AT ⊗ BT . (23)

Lemma 2 (see [29], [30]): Under Assumption 2, (L + B) is a non-

singular M-matrix. Define

H = [h1 , . . . , hn ]T = (L + B)−1
1n

P = diag {pi} = diag {1/hi}. (24)

Then, P is positive definite and the matrix Q defined as

Q = P (L + B) + (L + B)T P (25)

is also positive definite.

To come up with the observer-based distributed control laws, an

auxiliary variable is introduced as follows:

ξi = ẑi − z0 + κ(xi − x0 ) (26)

where κ > 1 is a constant. The local differences are defined as
⎧

⎨

⎩

xir =
∑

j∈Ni

aij (xi − xj ) + bi (xi − x0 )

zir =
∑

j∈Ni

aij (ẑi − ẑj ) + bi (ẑi − z0 )
(27)

and

si = zir + κxir . (28)

The auxiliary variable si can be written into a compact form

s = ((L + B) ⊗ I2 ) ξ. (29)

The distributed control law for robot i is proposed as follows:

ui = D−1
i (qi ) (kc ,1 x̃i − kc ,2si − kc ,3 sign(si ) − fi (qi , ẑi )) , (30)

where sign(si ) =
[

sign(si(1) ), sign(si(2) )
]T ∈ IR2 . Here, kc ,1 can be

any positive number, and kc ,2 and kc ,3 are positive numbers satisfying
⎧

⎨

⎩

kc ,2 >
1

λQ

(

3κλP +κ2
λP +

κ2
λP

2(κ − 1)
+|kc ,1 − ko ,2 |λP σ(L+B )

)

kc ,3 > z̄0

(31)

where the real symmetric matrices P and Q are defined in (24) and

(25), respectively.

IV. MAIN RESULTS

The main result of this paper is given below.

Theorem 1: Under Assumptions 1 and 2, consider the system (16)

transformed from the mechanical system (1) in closed loop with the

observer-based controllers given by (30). Then, the origin of the closed-

loop system is UGES for the control gains satisfying (31) and any

positive observer gains ko ,1 and ko ,2 .

Proof of Theorem 1: The Lyapunov function candidate is chosen

as

Vc =
1

2
sT (P ⊗ I2 )s +

̟

2
xT

r xr

=
1

2

[

s
xr

]T [

P ⊗ I2 0
0 ̟I2n

] [

s
xr

]

∆
=

1

2
yT P̄ y (32)

where y
∆
= [sT , xT

r ]T , and ̟ is a positive scalar satisfying ̟ >
κ2

λP /2(κ − 1). It is straightforward to check that matrix P̄ is positive

definite and

λP̄

2
‖y‖2 ≤ Vc (y) ≤ λP̄

2
‖y‖2 . (33)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 9, SEPTEMBER 2017 4859

The generalized derivative of Vc (see [31, Remark 3.7]) is given by

V̇c = sT (P ⊗ I2 )((L + B) ⊗ I2 )
[

˙̂z − (1n ⊗ ż0 )

+ κz − κ(1n ⊗ z0 )
]

+ ̟xT
r (s − κxr − z̃r ) (34)

where z̃r = ((L + B) ⊗ I2 )z̃. Note that from (17) and (20), we know

˙̂z = −ko ,2 x̃ + f (q, ẑ) + D(q)u. (35)

Also, the control input (30) can be written in its stacked form as

u = D(q)−1 (kc ,1 x̃ − kc ,2s − kc ,3 sign(s) − f (q, ẑ)) (36)

where D(q)−1 = blockdiag{D−1
1 , . . . , D−1

n } ∈ IR2n×2n and sign(s)
= [sign(s1 )

T , . . . , sign(sn )T ]T ∈ IR2n . Substituting (35) and (36)

into (34), we get

V̇c = − kc ,2s
T (P (L + B) ⊗ I2 )s − ̟κxT

r xr

+ (kc ,1 − ko ,2 )s
T (P (L + B) ⊗ I2 )x̃

+ κsT (P (L + B) ⊗ I2 )(z − ẑ + ẑ − 1n ⊗ z0 )

+ ̟xT
r s − ̟xT

r z̃r − kc ,3s
T (PL ⊗ I2 ) sign(s)

− kc ,3s
T (PB ⊗ I2 ) sign(s) + sT (PB ⊗ I2 )(1n ⊗ ż0 ) (37)

where Lemma 1 and the equality that (L ⊗ I2 )(1n ⊗ ż0 ) = 0 have

been used.

Note that

z − ẑ = −z̃ = −((L + B) ⊗ I2 )
−1 z̃r (38)

and

ẑ − 1n ⊗ z0 =((L + B) ⊗ I2 )
−1zr =((L + B) ⊗ I2 )

−1 (s − κxr ).
(39)

Then, substituting (38) and (39) into (37) yields

V̇c = − kc ,2s
T (P (L + B) ⊗ I2 )s − ̟κxT

r xr

− κsT (P (L + B) ⊗ I2 )((L + B) ⊗ I2 )
−1 z̃r

+ κsT (P (L + B) ⊗ I2 )((L + B) ⊗ I2 )
−1 (s − κxr )

+ (kc ,1 − ko ,2 )s
T (P (L + B) ⊗ I2 )x̃ + ̟xT

r s − ̟xT
r z̃r

− kc ,3s
T (PL ⊗ I2 ) sign(s) − kc ,3s

T (PB ⊗ I2 ) sign(s)

+ sT (PB ⊗ I2 )(1n ⊗ ż0 ). (40)

Therefore

V̇c = − kc ,2s
T (P (L + B) ⊗ I2 )s − ̟κxT

r xr − κsT (P ⊗ I2 )z̃r

+ κsT (P ⊗ I2 )(s − κxr ) + ̟xT
r s − ̟xT

r z̃r

+ (kc ,1 − ko ,2 )s
T (P (L + B) ⊗ I2 )x̃

− kc ,3s
T (PL ⊗ I2 ) sign(s) − kc ,3s

T (PB ⊗ I2 ) sign(s)

+ sT (PB ⊗ I2 )(1n ⊗ ż0 )

= − kc ,2

2
sT (Q ⊗ I2 )s − ̟κxT

r xr + κsT (P ⊗ I2 )s

− κsT (P ⊗ I2 )z̃r − κ2sT (P ⊗ I2 )xr + ̟xT
r s − ̟xT

r z̃r

+ (kc ,1 − ko ,2 )s
T (P (L + B) ⊗ I2 )x̃

− kc ,3s
T (PL ⊗ I2 ) sign(s) − kc ,3s

T (PB ⊗ I2 ) sign(s)

+ sT (PB ⊗ I2 )(1n ⊗ ż0 ). (41)

From Lemma 2, we know matrix Q and P are positive definite.

Then, it follows

V̇c ≤ − kc ,2

2
λQ ‖s‖2 − ̟κ‖xr ‖2 + κλP ‖s‖2

+
κ

2
λP (‖s‖2 + ‖z̃r ‖2 ) +

κ2

2
λP (‖s‖2 + ‖xr ‖2 )

+
̟

2
(‖s‖2 + ‖xr ‖2 ) +

̟

2
(‖z̃r ‖2 + ‖xr ‖2 )

+
|kc ,1 − ko ,2 |

2
λP σ(L+B ) (‖s‖2 + ‖x̃‖2 )

− kc ,3

n
∑

i=1

pibi‖si‖1 +

n
∑

i=1

pibi z̄0‖si‖

≤ − α1‖s‖2 − α2‖xr ‖2 + α3‖z̃r ‖2 + α4‖x̃‖2 (42)

where αi , i = 1, . . . , 4, are given by

α1 =
1

2

(

kc ,2λQ − 3κλP − κ2
λP − ̟ − |kc ,1 − ko ,2 |λP σ(L+B )

)

α2 = ̟κ − ̟ − κ2

2
λP

α3 =
κ

2
λP +

̟

2

α4 =
|kc ,1 − ko ,2 |

2
λP σ(L+B ) . (43)

σ(X ) represents the largest singular value of matrix X , and here we

have used the facts that sT (PL ⊗ I2 ) sign(s) ≥ 0 and ‖si‖1 ≥ ‖si‖.

Under the condition (31) and the constraint for ̟ in (32), the parameters

αi > 0, i = 1, . . . , 4. Hence, V̇c satisfies

V̇c ≤ −min{α1 , α2}‖y‖2 + α3‖z̃r ‖2 + α4‖x̃‖2 . (44)

Combining (33) and (44), we get

V̇c (y) ≤ −2 min{α1 , α2}
λP̄

Vc (y) + α3‖z̃r ‖2 + α4‖x̃‖2 . (45)

Recall that ‖z̃‖ and ‖x̃‖ converge to zero exponentially from

Section III-A, so does ‖z̃r ‖ due to the fact that z̃r = ((L + B) ⊗
I2 )z̃. Then from the Converse Theorem [32], there exist a function

Vo (t, z̃r , x̃) that satisfies the inequalities

V̇o ≤ −β(‖z̃r ‖2 + ‖x̃‖2 ) (46)

where β is a positive constant. Then, we choose the overall Lyapunov

function candidate as

V = Vc + ̺Vo (47)

where ̺ is a positive constant satisfying ̺ > max{ α 3
β

, α 4
β
}. For sim-

plicity, we use ᾱ
∆
= 2 min{α1 , α2}/λP̄ . Taking the time derivative of

both sides of (47), and combining (45) and (46), we have

V̇ ≤ −ᾱVc − max{(β̺ − α3 ), (β̺ − α4 )}(‖z̃r ‖2 + ‖x̃‖2 ). (48)

Denoting β̄
∆
= max{(β̺ − α3 ), (β̺ − α4 )}, one has

V̇ ≤
{

−ᾱV − (β̄ − ᾱ̺)Vo , if β̄ > ᾱ̺

− β̄
̺
V − (ᾱ − β̄

̺
)Vc , if β̄ ≤ ᾱ̺.

(49)

Consequently, we get

V̇ ≤ −min{ᾱ, β̄/̺}V. (50)

It then follows from [32, Th 4.10] that [sT , xT
r ]T = 0 is UGES, which

implies xir and zir converge to 0 according to the definitions (27) and
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Fig. 1. Interaction topology, where agent 0 is the leader.

Fig. 2. Position tracking errors for each agent.

(28). By invoking [1, Th. 4] and limt→∞ ẑ = z, we know zi and xi ,

respectively, converge to z0 and x0 in the sense of uniform global ex-

ponential stability. This implies qi (t) exponentially globally converges

to q0 (t) due to the same integrand in definition (15).

Till now, it has been proved that the observation errors uniformly

globally exponentially converge to zero for any positive observer gains

ko ,1 and ko ,2 , and the origin of the closed-loop system is UGES for the

control gains satisfying (31). In addition, the global convergence of the

tracking errors can still be guaranteed if the observer states (x̂, ẑ) are

replaced by the real states (x, z) in controller (30). These imply that

the observer and the controller can be designed separately, namely the

separation principle holds. �

Remark 4: In comparison with the I&I technique reported in [8]–

[10], our proposed approach can reduce the complexity of the observer

and the distributed controller design. Moreover, the theoretical analysis

can also be more easily carried out based on the resulted partially

linearized cascaded system. The method to partially linearize the class

of Euler–Lagrange system can be applied to deal with the systems of

n DOFs, n > 2, by setting the transformation matrix in a particular

upper triangular form. However, to solve a set of PDEs with high order

is a challenging, yet interesting issue for future research.

Remark 5: To eliminate the chattering behavior caused by the

signum function, in practice, various continuous functions such as

the hyperbolic tangent function and the saturation function [33] have

been employed to approximate the discontinuous signum function. Al-

though the damage exerted on the actuator caused by discontinuity

could be avoided, the states of the closed-loop system might only be

stabilized within a bounded neighborhood of the equilibrium, instead

of converging to the equilibrium.

V. SIMULATIONS

To validate the theoretical results derived in the preceding sec-

tions, we shall consider four robot manipulators modeled by (1),

Fig. 3. Velocity tracking errors for each agent.

Fig. 4. Velocity observation errors for each agent.

with the physical parameters taken from [11] as [m1 , m2 , l1 , l2 , lc1 ,
lc2 , J1 , J2 , g] = [0.5, 0.4, 0.4, 0.3, 0.2, 0.15, 0.0067, 0.003, 9.8]. The

communication topology among the four followers and the leader is

represented by Fig. 1.

The initial values of xi (t) and ẑi (t), i = 1, . . . , 4, are set as

3 ∗ rands(2, 1) and [0, 0]T , respectively, and the leader’s trajectory is

[2 ∗ t, sin(t)]T , satisfying Assumption 1. The following parameters are

used in the simulation. Observer parameters: ko ,1 = 3, ko ,2 = 5, con-

trol gains: kc ,1 = 5, kc ,2 = 6, kc ,3 = 3. By employing the distributed

control laws (30), the numerical simulation results are shown in Figs. 2

and 4. It can be seen from Figs. 2 and 3 that the tracking errors for each

event converge to zero. Fig. 4 indicates that each agent can precisely

observe the unmeasurable velocities using the proposed observer (17)

and (20).

VI. CONCLUSION

In this paper, for a class of Euler–Lagrange systems that cannot

be fully linearized by output-feedback, we have constructed a non-

singular coordinate transformation matrix to partially linearize the

nonlinear systems. Then, observers have been designed to overcome

the unavailability of the velocity measurements. We have also pro-

posed observer-based control laws by output-feedback such that the

followers uniformly globally exponentially track the leader. It should

be noted that the system discussed here is fully actuated. Future re-

search directions may include distributed global output-feedback con-

trol for a class of underactuated Euler–Lagrange systems, such as
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nonholonomic wheeled mobile robots studied in [23]. We are also

interested in distributed observerless global output-feedback control

for Euler–Lagrange systems with parameter uncertainties reported

recently in [34].
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