
Abstract 
In this paper, we propose new method for group key distribution among ‘four’ persons using polynomials over non-
commutative division semirings. We generate the common key or group key using polynomial symmetric decomposition 
problem. Security of the proposed protocol is based on PSDP over non-commutative division semirings. This can be 
extended to a group of ‘n’ persons also in similar fashion.
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1. Introduction
Digital signature has become one of the most primal 
important techniques in modern information security 
system for its functionality of providing data integrity 
and authentication. Many emerging network applications 
and functions (such as teleconference and information 
dissemination services) are based upon a group com-
munications model. As a result, protecting the security 
of group communications becomes a complicated and 
critical networking research issue. One primitive problem 
area in securing group communication is the group key 
management problem, which is associated with the secure 
distribution and refreshment of user keying material.

As a consequence and upshot of the increased popu-
larity in group oriented applications and protocols, group 
communication becomes essential in many situations, 
from network layer multicasting to application layer tele-
conferencing and videoconferencing. Regardless of the 
environment and situation, security protocols and their 
services are necessary to provide communication privacy 
and integrity, authentication.

Let us presume that a little group of people at a con-
ference or seminar has come together in a room for an 
ad hoc meeting. They would like to setup a structure of 
wireless network session with their laptop computers 
for the whole interval of the meeting. They would like 

to share and distribute information securely so that no 
one outside the room can eavesdrop and cram about the 
information or main contents of the meeting. The people 
physically there in the room be familiar with the contents 
and belief one another. However, they do not contain any 
a priori means of digitally identifying and authenticating 
each other, such as shared secrets or public key certificate 
authority or access to trusted third party key distribution 
centers. An invader can supervise and alter all traffic on 
the wireless communication channel and may also put an 
effort to impersonate as a legitimate member of the group. 
There is no system for safe and secure communication 
channel to connect the computers. The problem is: how 
can the group setup a system for safe and secure session 
among their computers under these circumstances? The 
network in the scenario depicted above is a paradigm of 
an Ad-hoc network in which entities create a communi-
cation network with little or no infrastructural support.

In recent years, mobile ad-hoc networks have estab-
lished a massive deal of concentration in both academia 
and industry because they proffer anytime-anywhere 
networking services. Ad-hoc networks have devastat-
ing influence on military warfare where troops can 
be deployed anywhere in the world and in any hostile 
environment. Moreover, they need to set up a secure 
communication channel among themselves swiftly and 
also they have to preserve the security of that channel in 
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case of group detachment and re-attachment. As wire-
less networks are being rapidly deployed, secure wireless 
environment will be essential and unavoidable. To ensure 
security, encryption can be utilized to protect messages 
exchanged among group members. A primal and vital 
element of any encryption technique is the cryptographic 
key (also called group key in ad-hoc networks). In ad-hoc 
networks, secure distribution of the group key to all valid 
members is a very huge and tedious deal.

1.1 Related Works
Key agreement in ad-hoc networks is categorized into 
three main modules:

1)  Centralized group key management protocols: A 
particular entity called the Key Distribution Center 
(KDC) is performed for controlling the whole group 
members.

2)  Decentralized group key management protocols: The 
management of a huge group is separated among sub-
group managers, trying to minimize the problem of 
concentrating the work in a distinct place.

3)  Distributed group key management protocols: There 
is no explicit KDC, and all the members contribute 
in the production of the group key and each member 
appends to a portion of the key. 

1.1.1  Centralized Group Key Management 
Protocols

With a unique managing entity, the central server is a 
single point of breakdown. The group privacy is reliant 
on the successful execution of the single group controller; 
when the controller is not functioning, the group becomes 
vulnerable because the keys, which are the pedestal for 
the group privacy, are not being generate/regenerated 
and distributed. Furthermore, the group may become 
too hefty to be managed by a unique party, thus elevat-
ing the issue of scalability. The group key management 
security protocol can be implemented in a centralized 
system seeks to minimize the necessities of both group 
members and KDC in order to supplement the scalability 
of the group management. The competence of the pro-
tocol can be calculated by: Storage requirements, Size of 
messages, Backwards and forward secrecy and Collusion. 
Some well-liked centralized protocols are: Group Key 
Management Protocol (GKMP)3, Logical Key Hierarchy 
(LKH)4, One-way Function Tree (OFT)5, Efficient Large-
Group Key (ELK) Protocol6 etc.

1.1.2  Decentralized Group Key Management 
Protocols

In the decentralized subgroup approach, the bulky mem-
bers of group are split into small subgroups. Different 
controllers recycled to manage each subgroup, minimizing 
the problem of directing the work on a single place. In this 
approach, more entities are permitted to be unsuccessful 
before the whole group is affected. We use the following 
characteristics to estimate the efficiency of decentralized 
frameworks: Key independence, Decentralized control-
ler, Local rekey, Keys vs. data and Rekeyper membership. 
Scalable Multicast Key Distribution7, Kronos8, Intra-
Domain Group Key Management (IGKMP)9, Hydra10 are 
some of the popular security protocols that go after the 
decentralized architecture.

1.1.3  Distributed Group Key Management 
Protocols

The distributed key administration approach is charac-
terized by having no group controller. The group key can 
be either produced in a contributory fashion, where all 
members contribute their own share to computation of 
the group key, or computed by one member. In the lat-
ter case, even though it is fault-tolerant, it may not be 
secure to leave any member to generate new keys since 
key generation involves secure mechanisms, such as ran-
dom number generators, that may not be available to all 
members. Moreover, in the majority contributory pro-
tocols (apart from tree-based approaches), processing 
time and communication requirements amplify linearly 
in term of the number of members. Additionally, con-
tributory protocols require every user to be aware of the 
group membership list to make sure that the protocols 
are robust. We use the following attributes to compute the 
competence of distributed key management protocols:

• Number of rounds: The protocol should try to mini-
mize the number of iterations among the entities to trim 
down processing and communication requirements.

• Number of messages: The overhead introduced by 
each message exchanged between members produces 
unbearable delays as the group increases. Therefore, 
the protocol should have need of a minimum number 
of messages.

• DH key: Identify whether the protocol employs Diffie-
Hellman (DH) to generate the keys. The use of DH to 
generate the group key implies that the group key is 
produced in a contributory fashion.
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• Number of Exponentiations: Since exponentiations 
inflict more overhead than additions/multiplications, 
the number of exponentiations performed by a node 
should be kept to as minimum as possible. Some fash-
ionable protocols in this category are Burmester and 
Desmedt (BD) Protocol11, Group Diffie-Hellman Key 
Exchange (G-DH)12, Octopus Protocol13, Conference 
Key Agreement (CKA)14, Diffie-Hellman Logical Key 
Hierarchy (DH-LKH)15, Password Authenticated 
Multi-Party Diffie-Hellman Key Exchange 
(PAMPDHKE) Protocol16.

Several emerging network applications (such as tele-
conference and information dissemination services) are 
supported upon a group communications model. As a 
consequence, securing group communications becomes 
a decisive networking research issue. Recently, Internet 
Research Task Force (IRTF) has framed Secure Multicast 
Research Group (SMuG)17 to inspect the problem of 
securing group communications. One foremost problem 
area in securing group communication is the group key 
supervision problem, which is concerned with the secure 
distribution and refreshment of user keying material.

The intention of a key management system is to 
augment access control on top of efficient multicast 
communication such as over IP multicast. A standard 
technique to this end is to maintain a common group 
key that is identified to all multicast group members, but 
is unknown to non-group members. All group commu-
nication will be encrypted by means of this shared key. 
The significant problem for this approach is that in a 
dynamic membership atmosphere, clients will join and 
leave the group, therefore, efficiently altering the group 
key becomes a performance issue.

It is evident that a user join requests do not pose a 
question because all users in the group distribute a com-
mon group key prior to the new user joins, and therefore 
can vary to a new group key using the current group 
key. It is user depart requests that pose the scalability 
issue. Since the departing user shares the group key with 
other users, in order to distribute a new group key to the 
remaining members, other keys may have to be used. In 
the simplest case, the key server may have to send the 
new group key encrypted by a remaining user’s individual 
key, which is only distributed between a user and the key 
server. If the number of users in the group is ‘ n’ then 
complexity of this trouble-free scheme has a complexity 
of O(n). In the past few years, several schemes have been 

projected to progress rekeying performance, and these 
schemes can pick up the rekeying complexity from O(n) 
to O(log(n)) 19.

2.  Cryptographic Assumptions on 
Non-Commutative Groups

2.1  Two Well-known Cryptographic 
Assumptions 

In a non-commutative group G, two elements x, y are 
conjugate, denote x ~ y, if y = z-1 x z for some z∈G. Here z 
or z-1 is known as a conjugator. Over a non commutative 
group G, we can define the following two cryptographic 
issues, which are related to conjugacy
Conjugator Search Problem (CSP): Given (x,y) ∈ G x G, 
compute z ∈ G such that y = z-1 x z
Decomposition Problem (DP): Given (x,y) ∈ G xG and S ⊆ 
G, compute z1, z2 ∈ S such that y = z1x z2

At present, we trust that for general non-commutative 
group G, both of the above problems CSP and DP are not 
tractable.

2.2  Symmetrical Decomposition and 
Computational Diffie–Hellman 
Assumptions over Non-commutative 
Groups 

Enlightened by the above said problems, Zhenfu Cao et al.2 
defined the following Cryptographic problems over a 
non-commutative group G. 
Symmetrical Decomposition Problem (SDP): Given (x,y)∈ 
G x G and m, n∈Z, the set of integers, compute z ∈ G such 
that y = zm x zn 
Generalized Symmetrical Decomposition Problems 
(GSDP): Given (x,y) ∈ G x G, S ⊆ G and m, n ∈ Z, com-
pute z ∈ S such that y = zm x zn. 

3.  Building Blocks for Proposed 
Group Key Distribution

3.1 Integral Co-efficient Ring Polynomials
Let R be a ring with (R, +, 0) and (R,·, 1) as its additive 
Abelian group and multiplicative non-abelian semigroup, 
respectively. Now, we define positive integral co-efficient 
ring Polynomials. Let f(x) = a0+a1x+… + an x

n ∈ Z>0[x] be 
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For k = 0, it is very trivial to define (k) r = 0
Property 1. (a)rm

· (b)rn = (ab) ·rm+n =(b)rn ·(a)rm , ∀ 

a,b,m,n ∈ Z , ∀ r∈R
Remark: Note that in common
(a)r · (b)s ≠ (b)s · (a)r when r ≠ s, since the multipli-

cation in R is non-commutative.
Now, we define positive integral coefficient semiring 

polynomials. Let us suppose that f(x) = a0 + a1x + a2x
2 + 

...... + anx
n 
∈ Z>0[x] be a given positive integral coefficient 

polynomial. We put this polynomial in R by selecting an 
element r in R & finally, we obtain f(r) = a0 + a1r + a2r

2 + 
...... + anr

n 
∈ R

Similarly h(r) = b0 + b1r + b2r
2 + ...... + bmrm 

∈ R for 
some polynomial h(x) Z>0[x] and for some n ³ m. Then we 
have the following upshots
Theorem1: f(r).h(r) = h(r).f(r)  for f(r), h(r) € R
Remark: If r & s are two distinct variables in R, then  
f(r) ·h(s) ¹ h(s) ·f(r) in general.

3.5  Additional Cryptographic Assumptions 
on Non-commutative Division 
Semirings

Suppose that (R, +, ·) is a non-commutative division 
semiring. For any a∈R, we identify the set Pa ⊆ R by  
Pa  

{f(a) / f(x)∈ Z>0[x]}. Then, let us think about the new versions 
of GSD and CDH problems over (R,·.) with respect to 
its subset Pa, and entitle them as Polynomial Symmetrical 
Decomposition (PSD) Problem and Polynomial Diffie – 
Hellman (PDH) problem – respectively: 
Polynomial Symmetrical Decomposition (PSD) problem 
over Non- commutative division semiring R: Given arbi-
trary triple (a, x ,y)∈R3 and m ,n,∈Z, find z∈Pa such that 
y = zm x zn 

4. Outline of the Article
The presentation of this article is as follows. The Proposed 
Group Key Distribution has been presented in section 5 
and followed by security analysis of the Proposed Group 
Key Distribution in section 6. The article will be com-
pleted by conclusions in section 5.

5.  Proposed Group Key 
Distribution

Let (R, +, ·) be the non-commutative division semiring. 
Let there are four members in the group be A, B, C, D. 

a given positive integral coefficient polynomial. We trans-
form this polynomial as an element of R by selecting an 
element ‘r’ in R and in conclusion, we achieve

which is an element in R.

Further, if we regard r as an arbitrary element in R, 
then f(r) can be looked as polynomial about r. The set of 
all this class of polynomials, taking over all f(x) ∈ Z>0[x], 
can be seemed the extension of Z>0 with r, denoted by 
Z>0[r]. We entitle it as the set of 1-ary positive integral 
coefficient R – Polynomials. 

3.2 Semiring
A Semiring R is a non-void set, on which the composi-
tions of addition & multiplication have been defined such 
that the following conditions are satisfied.

(i)  (R, +) is a commutative monoid with identity  
element “0”

(ii)  (R, ·) is a monoid with identity element 1.
(iii)  Multiplication distributes over addition from either 

side
(iv)  0 · r = r · 0 for all r in R 

3.3 Division Semiring 
An element r in a semiring R, is a “unit” if there exists an 
element r1 of R satisfying r · r1 = 1 = r1 · r 

Then that element r1 is called the inverse of r in R. If 
such an inverse r1 exists for a unit r, it must be unique. We 
will generally denote the inverse of r by r-1. It is uncompli-
cated to see that, if r & r1 units of R, then r·(r1)-1 = (r1)-1

·r-1 
and also, in particular (r-1)-1 = r.

We will designate the set of all units of R, by U(R). This 
set is always non-empty, since it contains “1” & is not all of 
R, since it does not contain ‘0’. We have just identified that 
U(R) is a submonoid of (R,·), which is in fact a group. If 
U(R) = R/{0}, Then such R is called as a division semiring.

3.4 Polynomials on Division Semiring 
Suppose (R, +, ·) is a non-commutative division semiring. 
Let us think about positive integral co-efficient polynomi-
als with semiring assignment as follows.

In the begining, the concept of scale multiplica-
tion over R is already on hand. For k∈Z>0  & r∈R. Then  
(k) r =r + r + r +… + r + r (k times) 

f r a
i

ri a a r an rn
i

n
( ) ( ) ( ) ( ) ... ( )= = + + +

=

∑ 0 10

∆
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One will Select two elements p≠ 0, q ≠0 in R, and m, n € 
I as public parameters. Four members A, B, C, D would 
choose fi (x) for 1≤i≤4 , as positive integral co-efficient 
polynomials independently. Next, they would calculate  
fi (p) ≠ 0 in R, as their individual private keys. Therefore, 
they can compute yi = {fi(p)}m q{fi(p)}n for 1≤i≤4 as their 
public keys. There are many routing algorithms available, 
by applying them we can able to compute contributed 
common group key in all possible different routes. So 
finally, they generate the contributed common group key 
by applying following algorithm

In route 1, A will send his public key to B, then B will 
calculate part of the common key and then he will send 
to C, at last C will do the same and Finally D can compute 
common group key. Similarly the same thing can be done 
in other routes. So that A, C, and B can able to calculate 
the same common group key. Then the common and con-

tributed group key in all routes is 
Remark: The above algorithm can be generalized among 
the group of n – people also. For  this, we find n-different 
routes and in each route, one will get group common key. 

6.  Soundness and Security 
Analysis

The key inspiration is that pickingup a polynomial f(x) 
randomly, with semiring assignment and for any p € S, 
such that f(p) (≠ 0) €(R, +, · ). Any hacker P* has no way 
to tract the polynomial f(x) € Z>0[x] such that f(p) (≠0) € 
(S, +, ·), even if he has unlimited computational power. 
Let n be the number of elements of S, P* best strategy is 
to estimate the value of p, and there are n choices for p. 
Hence, even with infinite computing power, the cheat-
ing prover P* with a insignificant probability to trace the 
exact private key f(p) € S, so as to present a valid response 

k p p p p
m

q p p p p
n

= { } { }f1 f2 f3 f4 f1 f2 f3 f4( ). ( ). ( ). ( ) ( ). ( ). ( ). ( )

for an invalid common key. Hence this key agreement 
protocol is sound. 

The strength and security of the proposed key agree-
ment protocol is based on the intractability of Polynomial 
Symmetrical Decomposition Problem over the given 
non-commutative division semirings. This PSDP is 
another hard mathematical problem on all non-commu-
tative algebraic structures. This problem is generalization 
of conjugacy problem on non-commutative algebraic 
structures and polynomials as elements. 

7. Conclusions
In this research article, we designed a distributed group 
key agreement protocol among four persons, depend-
ing on general non-commutative division semiring. 
The key notion behind our scheme lies that we derive 
polynomials over the given non-commutative algebraic 
system as the underlying work structure for construct-
ing key agreement scheme. The security of the proposed 
scheme is depending on the intractability of Polynomial 
Symmetrical Decomposition Problem over the given 
non-commutative division semirings. The base of PSDP 
is Conjugacy problem, which is intractable on non-com-
mutative algebraic structures.
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