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Abstract: The H∞ proportional-integral-differential (PID) feedback for arbitrary-order delayed multi-agent system is investigated
to improve the system performance. The closed-loop multi-input multi-output (MIMO) control framework with the distributed PID
controller is firstly described for the multi-agent system in a unified way. Then, by using the matrix theory, the prescribed H∞
performance criterion of the multi-agent system is shown to be equivalent to several independent H∞ performance constraints of the
single-input single-output (SISO) subsystem with respect to the eigenvalues of the Laplacian matrix. Subsequently, for each subsystem,
the set of the PID controllers satisfying the required H∞ performance constraint is analytically characterized based on the extended
Hermite-Biehler theorem. Finally, the three-dimensional set of the decentralized H∞ PID control parameters is derived by finding the
intersection of the H∞ PID regions for all the decomposed subsystems. The simulation results reveal the effectiveness of the proposed
method.
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1 Introduction

Rapid development in navigation, communication and
computational systems has enabled greater autonomy in
multi-agent systems. The main objective is to realize the co-
operative control of the multi-agent system. The main ad-
vantage of the cooperative control lies in that multiple sim-
ple vehicles can replace a single complicated vehicle to finish
some complex control tasks flexibly. Study of the multi-
agent systems performing cooperative tasks initially began
in the field of mobile robotics[1]. Their applications can
also be found in car platoons[2], multi-vehicle rendezvous
problems, control of unmanned air vehicles[3], cooperative
data fusion of multi-sensor networks[4] and intelligent traffic
control systems[5].

The centralized and distributed methods are commonly
adopted to control multi-agent system. The centralized con-
troller can be easily designed for multi-agent systems based
on multi-input multi-output (MIMO) control theory. How-
ever, it is difficult to be implemented in practice due to
its structural complexity and strict communication require-
ment for large-scaled system. A central station must be
available to provide strong power to control a whole group
of agents.

The distributed cooperative control of multi-agent sys-
tems has attracted more and more attention. The main
advantage of this control structure is that the distributed
controller imposed on each agent is implemented only based
on the states and outputs of the agent and its neighbors
and some inevitable physical constraints, such as limited en-
ergy and narrow bandwidths; and it has no influence on the
distributed control. Thus, the distributed control method
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seems more promising than the centralized control method.
Recent progress in the study of distributed multi-agent co-
ordination is reviewed in [6].

The consensus generation, which can drive all the agents
of the group through a local distributed protocol to reach a
common value, is a main research direction in the research
of distributed multi-agent coordination. The consensus
problems regarding delay effects, convergence speed, com-
plex dynamical systems and sampled-data framework were
solved in [7–9]. Various modifications of the consensus pro-
tocol lead to more general system theory including input-
output properties, controllability and observability[10, 11] A
consensus algorithm of multi-agent second-order dynamical
systems with nonsymmetrical interconnection and heteroge-
neous delays was studied in [12]. The leader-following con-
sensus problem for high-order multi-agent linear dynamic
systems was considered in [13]. While a lot of results about
the analysis of consensus system have been obtained, the
distributed control methods for the improvement of the con-
sensus performance have not been deeply studied. Most
methods focus on the design of consensus networks for in-
creasing the convergence rate by optimizing the Fiedler
eigenvalue[14]. Due to the computational complexity of the
consensus network, it is desirable to design the distributed
control protocol based on the dynamical output (or state)
feedback.

In [15], the distributed controller design methods are pro-
posed in a linear-fractional (LFT) framework. The net-
worked multi-agent system was first transformed into an
LFT model subject to constraints on the controller struc-
ture, and then the optimal control problem of the LFT
model was cast as a convex optimization problem by defin-
ing quadratic invariance. Algebraic graph theory has been
widely employed in a variety of research work dealing with
such systems. Thus, another kind of distributed control
methods focuses on the optimal control for the networked
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multi-agent system in terms of overall linear quadratic regu-
lator (LQR) performance. In [16], a stabilizing distributed
control design method is presented in terms of the solu-
tion of a single local LQR problem. Furthermore, the re-
lationship between stability of the overall large-scale sys-
tem, the robustness of local controllers and the spectrum
of a sparsity pattern matrix has been highlighted. In [17],
the coordination of a network of air vehicles is achieved by
employing an LQR based on distributed receding horizon
control (RHC) scheme. In [18, 19], the large-scale LQR
suboptimal control problems were solved for spatially dis-
tributed systems. However, these methods become more
complicated when the number of the agents increases, or
the dynamical model of the agent is not simple first-order or
second-order integral model but complex high-order model
with time delay. Due to the advantage of the proportional-
integral-differential (PID) controllers in control engineering
and application, it is desirable to introduce the distributed
PID feedback into the consensus system for performance
improvement. The design of the distributed controllers
with fixed structure (such as PID controllers) for some per-
formance requirement in unifying theoretical framework is
challenging, especially for case of directed topology graph
(which may lead to complex eigenvalues).

In this paper, the distributed PID feedback is consid-
ered to satisfy the required H∞ performance criterion for
the consensus of multi-agent system, in which each agent
is identical and has the model of arbitrary-order transfer
function with time delay. The H∞ norm requirement of the
overall large-scale system is decomposed into the local per-
formance requirement that each revised subsystem has to be
satisfied. Thus, the PID controller parameters, which make
each subsystem meet the local performance requirements
simultaneously, must satisfy the H∞ norm requirement of
the overall system. Then, the parametric space method ap-
plicable to the system model with complex coefficients is
introduced to determine the set of the PID control param-
eters to satisfy the local performance requirement for each
subsystem. The PID parameters chosen in the resultant set
can all lead to satisfactory system performance.

2 Preliminaries

Represent the communications between the agents by a
directed graph G = {V, ε, A}, where V = {V1, V2, · · · , Vn}
is the set of agents, and A = [aij ] ∈ Rn×n is the weighted
adjacency matrix of G with nonnegative adjacency elements
aij . An edge of G is denoted by eij = (Vi, Vj). The adja-
cency elements associated with the edges of the graph are
positive, i.e., eij ∈ ε ⇔ aij > 0. Assume that aii = 0. The
neighborhood of agent i is defined as Ni = {j ∈ V |aij = 0}.
The cardinal number of Nj denoted by dj is called the de-
gree of i. The normalized Laplacian matrix of G is defined
as L = D−1(D − A), where D = diag(d1, · · · , dn). Thus,
we have

Lij =

⎧
⎪⎪⎨

⎪⎪⎩

1, if i = j

− 1

di
, if j ∈ Ni

0, if j /∈ Ni.

(1)

The graph is connected if any two nodes i, j of the graph
are connected by a path. Recall that a graph is strongly
connected if and only if its Laplacian L has a single zero
eigenvalue. The smallest eigenvalue of L is exactly zero and
the corresponding eigenvector is given by 1 = Col(1 · · · 1).
The Laplacian L is always ranking deficient and positive
semi-definite. Moreover, the rank of L is n − 1 if and only
if G is connected[20]

A⊗B defines the Kronecker product between the matri-
ces A and B. Let Ik be the k× k identity matrix. For a set
of i matrices {M1, · · · , MN} of size r × s, the direct sum
is defined as the Nr × Ns block diagonal matrix M̂ whose
r×s diagonal blocks are the matrices M1, · · · , MN , and the
other entries are zero. Thus, M̂ can be written as

M̂ = diag(M1, · · · , MN ) = ⊕
N∑

i=1

Mi. (2)

For a given N × N matrix Q, define an Nk × Nk matrix
Q(k) by the equation

Q(k) = Q ⊗ Ik. (3)

Lemma 1[21]. Let Q be a N × N matrix. Then M
be r × s matrix with M̂ of size Nr × Ns such that M =
IN ⊗ M = diag(M, · · · , M); and let Q(k) = Q ⊗ Ik, then

M̂Q(s) = Q(r)M̂ . (4)

3 Problem statement

We consider the problem of controlling a networked
multi-agent system which consists of n identical linear time
invariant (LTI) agents. Each agent has access to its own
output measurements together with relative external mea-
surements with respect to the other agents. The informa-
tion exchange among these agents can be represented as
the Laplacian matrix L. The dynamics of each agent is
described by the following transfer function

G(s) =
n(s)

d(s)
e−θs (5)

where θ is the time delay of the agent, and N(s) and D(s)
are coprime polynomials in s, which are defined as

n(s) = υbs
b + υb−1s

b−1 + · · · + υ1s + υ0

d(s) = sa + μa−1s
a−1 + · · · + μ1s + μ0

where υ0, υ1, · · · , υb and μ0, μ1, · · · , μa−1 are real numbers,
and a > b. The distributed PID controller C(s) imposed
on each agent has the form

C(s) = kp +
ki

s
+ kds. (6)

where kp, ki and kd are the proportional, integral and dif-
ferential gains, respectively.

Now, the closed-loop multi-input and multi-output
(MIMO) representation of the networked multi-agent sys-
tem shown in Fig. 1 can be established. In Fig. 1, r =

[r1, · · · , rN ]T, y = [y1, · · · , yN ]T, Ĝ(s) = ⊕
N∑

i=1

G(s) and
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Ĉ(s) = ⊕
N∑

i=1

C(s). It is clearly seen that the coupling be-

tween the agents is caused via the communication channels.
The control system design for robustness can be cased

into the computation and minimization of H∞ norm of a
prescribed transfer function of the system[22]. Thus, the
problem of the H∞ optimal decentralized PID controller
design is considered in this paper, and the performance re-
quirement of the overall multi-agent system is defined with
respect to a weighted complementary sensitivity function.

Fig. 1 The closed-loop representation of the multi-agent system

The transfer function from r to y is given by

T (s, kp, ki, kd) = [I + LĜ(s)Ĉ(s)]−1Ĝ(s)Ĉ(s) (7)

Define W (s) as a stable weighting function to specify the
performance requirements. Then, for the known agent dy-
namics and communication topology, the design objective
is to determine the values of the distributed PID control pa-
rameters such that the following performance requirement
is satisfied.

||W (s)T (s, kp, ki, kd)||∞ < γ (8)

where γ is the system performance that wanted.

4 Design method of distributed HHH∞∞∞
PID feedback controller

In [17, 23], the analysis and controller synthesis meth-
ods are presented for the networked multi-agent system
by the modal decomposition technique. They allow check-
ing the system stability, designing a distributed stabilizing
controller; and their computational complexity does not
increase with the number of the agents. However, such
results cannot be extended to the H∞ distributed con-
trollers. In [24], the distributed controller design procedures
are performed under H2 or H∞ criteria for the distributed
static state feedback controller based on the decomposition
technique and LMI toolbox. Such a decomposition-based
method leads to a conservative design since the performance
of the multi-agent system cannot be guaranteed. Further-
more, the order of the resultant H∞ controller is always
larger than or equal to the order of the agent. Similar to
the result in [25], the design method of the H∞ distributed
PID controllers is presented in this section.

Assume that L is a normal matrix. Since L is diago-
nalizable, there exists a nonsingular matrix R such that
L = R−1ΛR, where Λ is a diagonal matrix in which
λ1, λ2, · · · , λN are the non-singular values of L. Define the
weighting function W (s) = Wn(s)

Wd(s)
, where Wn(s) and Wd(s)

are coprime polynomials and Wd(s) is stable. Then, define
δi(s, kp, ki, kd) and υi(s, kp, ki, kd, ϕ) as

δi(s, kp, ki, kd) = sd(s)eθs + λi(kds2 + kps + ki)n(s) (9)

υi(s, kp, ki, kd, ϕ) = sWd(s)d(s)eθs+

(kds2 + kps + ki)n(s)

[

λiWd(s) + ejϕ Wn(s)

γ(s)

]

. (10)

Here, ϕ is the independent variable ranging from 0 to 2π .
Theorem 1. Take

pi(s, kp, ki, kd) =
G(s)C(s)

1 + λiG(s)C(s)
. (11)

The necessary and sufficient conditions that the PID gains
satisfy ||W (s)T (s, kp, ki, kd)||∞ < γ are that, for each λi,
the following three conditions are all satisfied:

1) All the zeros of each δi(s, kp, ki, kd) belong to the open
left-half complex plane.

2) Each υi(s, kp, ki, kd, ϕ) is stable for all ϕ in [0, 2π).
3) |pi(∞, kp, ki, kd)| < γ.
Proof. we first prove condition (1) can guarantee the

stability of the multi-agent system. The characteristic func-
tion of the whole system is

δ(s) = det[I + LĜ(s)Ĉ(s)]. (12)

Since L = R−1ΛR, in terms of Lemma 1, we have

det
[
I + LĈ(s)Ĝ(s)

]
= det

[
R−1R + R−1ΛĈ(s)Ĝ(s)R

]
=

N′
∏

i=1

det [I + λiC(s)G(s)] =

e−N′θs

[sd(s)]N
′

N′
∏

i=1

det
[
sd(s)eθs + λi(kds2 + kps + ki)n(s)

]

(13)

where N ′ is the number of the non-zero singular values of
L. From (12), the stability of the networked multi-agent
system is equivalent to the PID controller stabilizing each
plant with the form (11). Thus, condition (1) ensures that
the multi-agent system is stable.

Subsequently, we consider the performance requirement
||W (s)T (s, kp, ki, kd)||∞ < γ. From (7), we have

T (s, kp, ki, kd) =

[I + R−1ΛRĜ(s)Ĉ(s)]−1Ĝ(s)Ĉ(s) = R−1H(s)R (14)

where

H(s, kp, ki, kd) = (I + Ĉ(s)Ĝ(s)Λ)−1Ĉ(s)Ĝ(s). (15)

From (15), it is known that H(s, kp, ki, kd) is a diagonal
matrix. In terms of (14), ||T (jω, kp, ki, kd)||2 can be written
as

||T (jω, kp, ki, kd)||2 =

H(jω, kp, ki, kd)RR−1H∗(jω, kp, ki, kd). (16)

Here ω is frequency. Since L is a normal matrix, it is seen
that R is unitary, i.e., RR∗ = I . Thus, we have

||T (jω, kp, ki, kd)|| = ||H(jω, kp, ki, kd)||. (17)

Thus, we have

||T (jω, kp, ki, kd)||∞ < γ ⇔ ||H(jω, kp, ki, kd)||∞ < γ.
(18)
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In terms of the definition of H∞ norm, we have

||W (s)T (s, kp, ki, kd)|| =

sup
ω

σmax(W (jω)T (jω, kp, ki, kd)). (19)

It follows that

||W (s)T (s, kp, ki, kd)||∞ <

γ ⇔ ||W (s)
C(s)G(s)

1 + λiC(s)G(s)
|| < γ (20)

for ∀i = 1, · · · , N ′. It can be computed that

W (s)
C(s)G(s)

1 + λiC(s)G(s)
=

Wn(s)(kds2 + kps + ki)n(s)

sWd(s)d(s)eθs + λiWd(s)(kds2 + kps + ki)n(s)
. (21)

According to the results in [24], if the right inequality in
(20) holds, then the following quasi polynomial is stable for
all ϕ in [0, 2π).

υi(s, kp, ki, kd, ϕ) = sWd(s)d(s)eθs+

(kds2 + kps + ki)[λiWd(s) + ejϕWn(s)]. (22)

Furthermore, when ω → ∞, |pi(jω, kp, ki, kd, ϕ)| < γ. As a
result, if conditions (2) and (3) are satisfied, the inequality
||W (s)T (s, kp, ki, kd)||∞ < γ must hold. This completes the
proof of Theorem 1. �

From Theorem 1, it is seen that the synthesis of the dis-
tributed H∞ PID controllers for the networked multi-agent
system is cast into simultaneous quasi polynomial stabi-
lization problem. If we can find the regions of the PID con-
trol parameters ensuring the stability of δ(s, kp, ki, kd, ) and
υ(s, kp, ki, kd), then the values of the PID control parame-
ters satisfying ||W (s)T (s, kp, ki, kd)||∞ < γ can be derived
by determining the intersection of such PID control regions.
Two approaches of presenting the PID control region for
the stability of υ(s, kp, ki, kd) will be given. These two ap-
proaches can also be directly applied to δ(s, kp, ki, kd, ) if
taking Wn(s) = 0 and Wd(s) = 1.

Based on the results in [26], the (kd, ki) region for a
fixed kp value can be obtained to guarantee the stability of
υ(s, kp, ki, kd) in (10). The linear programming characteri-
zation of the PID controllers that can ensure the stability of
the complex quasi polynomials υ(s, kp, ki, kd) are developed
on the basis of the extended Hermite-Biehler Theorem.

Let

L(s) = sWd(s)d(s) (23)

and

M(s) = n(s)

[

λiWd(s) + ejϕ Wn(s)

γ

]

(24)

The quasi polynomial (10) is transformed into

υi(s, kp, ki, kd) = L(s)eθs + (kds2 + kps + ki)M(s). (25)

It is seen that L(s) is a real polynomial and M(s) is a
complex polynomial. Then L(s) and M(s) can be written
as

L(s) = se + ce−1s
e−1 + · · · + c1s + c0

M(s) = (af + jbf )sf +(af−1 + jbf−1)s
f−1 + · · ·+(a0 + jb0)

where a0, a1, · · · , af , b0, b1, · · · , bf and c0, c1, · · · , ce−1 are
all real, (af + jbf ) 	= 0 and e > f + 2. Let s = jz

θ
. We have

L

(
jz

θ

)

= Lr(z) + jLi(z) (26)

M

(
jz

θ

)

= Mr(z) + jMi(z). (27)

It is observed from (25) that both the real and imaginary
parts of υi(s, kp, ki, kd, ϕ) depend on all the three gains:
kp, ki and kd. To overcome this problem, we construct a
new quasi polynomial in which the imaginary part depends
only on kp and the real part depends only on ki and kd.
Multiplying two sides of (25) by M(−s), we have

υi

(
jz

θ
, kp, ki, kd, ϕ

)

M(− jz

θ
) = p(z, ki, kd) + jq(z, kp)

(28)

where

p(z, ki, kd) = p1(z) +

(

ki − kdz2

θ2

)

[M2
r (z) + M2

i (z)] (29)

q(z, kp) = q1(z) +
zkp[M2

r (z) + M2
i (z)]

θ
. (30)

Here

p1(z) = [Lr(z)Mr(z) + Li(z)Mi(z)] cos(z)−
[Li(z)Mr(z) − Lr(z)Mi(z)] sin(z) (31)

q1(z) = [Li(z)Mr(z) − Lr(z)Mi(z)] cos(z)+

[Lr(z)Mr(z) + Li(z)Mi(z)] sin(z). (32)

In order to derive the (kd, ki) region for which
υi(s, kp, ki, kd, ϕ) is stable, some definitions are first given:

Definition 1. Let Z
¯

= −2lπ− ζ and Z̄ = 2lπ− ζ, where

ξ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−π

2
, if e is even and afbf = 0

0, if e is odd and afbf = 0

arctan(
−bf

af
) or π + arctan(

−bf

af
), if e+f is even

arctan(
af

bf
) or π + arctan(

af

bf
), if e+f is odd.

For a given value of kp, let z1 < z2 < · · · < zc−1be the real
distinct zeros of q(z, kp) in (28) in the interval (Z

¯
, Z̄), and

assume z0 = Z
¯

and zc = Z̄. Denote ςf = af + jbf as the
leading coefficient of M(s) and define it as

it = sgn[p(zt, ki, kd)] =

⎧
⎨

⎩

0, if M(
−jzt

θ
) = 0

−1 or 1, if M(
−jzt

θ
) 	= 0

where t = 0, 1, 2, · · · , c.
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Definition 2. Let F = {i0, i1, · · · , ic} or
{i0, i1, · · · , ic−1}. Then, the signature σ(F ) is denoted by

σ(F ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

[

[i0 + 2
c−1∑

t=1

it × (−1)t + (−1)cic]

]

×
(−1)c−1sgn

[
q(z+

c−1)
]
,

if f is odd and ςf is not purely imaginary,

or f is even and ςf is not purely real
1

2

[

2
c−1∑

t=1

it × (−1)t

]

× (−1)c−1sgn
[
q(z+

c−1)
]
,

if f is odd and ςf is purely imaginary,

or f is even and ςf is purely real.

Remark 1. According to the Theorem 6 in [27], the re-
gion of kp which makes δ(s, kp, ki, kd) stable can be known,
and denoted by S1. For a fixed ϕ∗, similar to [27], it can be
inferred the region of kp that makes υ( jz

θ
, kp, ki, kd, ϕ∗) sta-

ble. Then for all ϕ∗ ∈ [0, 2π), the intersection region of all
kp

′s regions can be signed by S2. The intersection of S1 and
S2 is the region of kp satisfying ||W (s)T (s, kp, ki, kd)||∞ <
γ.

Theorem 2. Let l(M) and r(M) denote the numbers
of left half-plane and right half-plane zeros of M(s), respec-
tively. For a fixed kp, if there exists one string I satisfying

σ(I) = (4l∗ + e) − [l(M) − r(M)] (33)

the set of (kd, ki) ensuring the stability of υ(s, kp, ki, kd) is
the intersection of the following inequalities:

[ki − A(zt)kd + B(zt)]it > 0, for ∀it ∈ F and it 	= 0.
(34)

Here, A(zt) = z2

θ2 and B(zt) = p1(zt)

[M2
r (z)+M2

i
(z)]

. If

the strings F1, F2, · · · , Fk all satisfy (33), then the set of
(kd, ki) is the union of the regions of i satisfying (34) for
F1, F2, · · · , Fk.

The proof of Theorem 2 can be referred to the results
in [26]. If the kp value is fixed, the regions of (kd, ki) for
the stability of the quasi polynomial υi(s, kp, ki, kd) can
be derived based on Theorem 2. For all λi values, the
intersection of the resultant (kd, ki) regions must satisfy
||W (s)T (s, kp, ki, kd)||∞ < γ. The results reveal that the
set of the integral and derivative gains has the linear pro-
gramming characterization and is a union of convex sets for
a fixed proportional gain.

In terms of Theorem 1, Theorem 2 and Remark 1, an
algorithm to determine the set of the PID parameters sat-
isfying ‖W (s)T (s, kp, ki, kd)‖∞ < γ is shown as follows:

Sept 1. Observe the topology structure and determine
the Laplacian matrix.

Sept 2. Compute the nonzero eigenvalues of the Lapla-
cian matrix, and denote them as λ1, λ2, · · · .

Sept 3. For each λi, determine the allowable range of kp

satisfying ||W (s)T (s, kp, ki, kd)||∞ < γ based on Remark 1.
Sept 4. Choose a k∗

p in the region of kp.
Sept 5. Choose one of the nonzero eigenvalue and take

it as λi.
Sept 6. In terms of Theorem 2, determine the region of

(kd, ki) which makes δi(s, kp, ki, kd) in (9) stable, denote it
as S(1,k∗

p).

Sept 7. let M(s) = N(s)[λiWd(s) + ejϕ∗
Wn(s)
γ

) and

L(s) = sD(s)Wd(s). Then, for ϕ ∈ [0, 2π), present the re-
gion of (kd, ki) for which υi(s, kp, ki, kd, ϕ∗) in (10) is stable
based on Theorem 2 and denote it as S(2,k∗

p).

Sept 8. Determine the region of (kd, ki) satisfying
|pi(∞, kp, ki, kd)| < γ, which is denoted as S(3,k∗

p).

Sept 9. Present the region of (kd, ki) (denoted as Si(k∗
p)),

which is the intersection of S(1,k∗
p), S(2,k∗

p) and S(3,k∗
p), i.e.,

Si(k∗
p) = S(1,k∗

p) ∩ S(2,k∗
p) ∩ S(3,k∗

p).
Sept 10. Go back to Step 5, pick another nonzero eigen-

value λi and repeat Step 5 to Step 9.
Sept 11. Determine the intersection of the (kd, ki) re-

gions (denoted as S(k∗
p)) for all nonzero eigenvalues, i.e.,

S(k∗
p) = S1(k∗

p) ∩ · · · ∩ S(n−1)(k∗
p).

Sept 12. By sweeping over kp in the allowable range,
repeat Step 5 to Step 11 to determine S(k∗

p) corresponding

to different k∗
p values. Thus, the set of (kp, ki, kd) which

satisfies ‖W (s)T (s, kp, ki, kd)‖∞ < γ is obtained.

5 Simulation example

Consider a consensus system with four identical agents.
The dynamics of each agent with the time delay is given by

G(s) =
s + 2

s3 + 5s2 + 7s + 3
e−0.5s

and the topological structure is shown in Fig. 2.

Fig. 2 Topological structure

The problem is to determine the set of the distributed
PID control parameters so that ||W (s)T (s, kp, ki, kd)||∞ <

1, where the weight W (s) is chosen as W (s) = (s+0.1)
(s+1)

.
From Fig. 2, the Laplacian matrix describing the inter-

connection of the agents is

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4 −1 0 −1 −1 −1

−1 2 −1 0 0 0

0 −1 1 0 0 0

−1 0 0 1 0 0

−1 0 0 0 2 −1

−1 0 0 0 −1 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The non-zero singular values of L are 0.4859, 1, 2.428, 3,
and 5.0861. According to Theorem 1, the quasipolynomials
δi(s, kp, ki, kd) and υi(s, kp, ki, kd, ϕ) corresponding to λ =
0.4859, λ = 1, λ = 2.428, λ = 3, and λ = 5.0861 can be
easily obtained from (9) and (10).

We first determine the allowable range of kp satisfying
||W (s)T (s, kp, ki, kd)||∞ < γ according to Remark 1. For
each different value of λ, it can be derived that the allowable
ranges of kp corresponding to λ = 0.4859, λ = 1, λ =
2.428, λ = 3, and λ = 5.0861 are (−3.0871, 19.1474), (−1.5,
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9.3037), (−0.6178, 2.8318), (−0.5, 3.1012) and (−0.2949
1.8292), respectively. Combining all these ranges, it can be
seen that allowable range of kp is (−0.2949, 1.8292).

Then for a fixed kp value, such as kp = 1, determine the
intersection of the stabilizing regions of (kd, ki) for different
nonzero eigenvalues, which is shown in Fig. 3. According
to the algorithm in Section 4, the (kd, ki) region satisfying
||W (s)T (s)||∞ < 1 for kp = 1 can be obtained and it is
shown in Fig. 4. By sweeping over kp ∈ (−0.2949, 1.8292),
the three-dimensional set of (kp, kd, ki) values satisfying
‖W (s)T (s)‖∞ < 1 is presented in Fig. 5.

Fig. 3 Intersection of stable region of (kd, ki) for different λ val-

ues

Fig. 4 The (kd, ki) region satisfying ‖W (s)T (s)‖∞ < 1 for

kp = 1

Fig. 5 The (kp, kd, ki) set satisfying ‖W (s)T (s)‖∞ < 1

In order to check the validity of the resultant (kp, kd, ki)
set, three groups of (kp, kd, ki) values are chosen, which are

(1, 0.4, 0.5), (0.3, 0.4, 0.4) and (1, 0.5, 1.8). The points
(1, 0.4, 0.5) and (0.3, 0.4, 0.4) lie inside the (kp, kd, ki)
set, while the point (1, 0.5, 1.8) is outside the (kp, kd, ki)
set. The output response curves in Figs. 6–8 shows that the
points (1, 0.4, 0.5) and (0.3, 0.4, 0.4) can lead to the con-
sensus with good performance. But for (1, 0.5, 1.8), the
serious oscillation phenomenon occurs during the transient
response period and the convergence rate is very slow. Fig. 9
shows the output response curves of the multi-agent system
without introducing the distributed PID feedback. Com-
paring Fig. 9 with Fig. 7, it is easily seen that the consensus
system with the distributed PID feedback has better per-
formance.

Fig. 6 The step response curves with the (kp, kd, ki) =

(1, 0.4, 0.5) satisfying ‖W (s)T (s)‖∞ < 1 for kp = 1

Fig. 7 The step response curves with the (kp, kd, ki) =

(0.3, 0.4, 0.4) satisfying ‖W (s)T (s)‖∞ < 1 for kp = 1

Fig. 8 The step response curves with the (kp, kd, ki) =

(1, 0.5, 1.8) without satisfying ‖W (s)T (s)‖∞ < 1 for kp = 1
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Fig. 9 The step response curves without the distributed PID

feedback

6 Conclusions

In this paper, a distributed PID feedback method based
on H∞ performance criterion is proposed in a parametric
manner for the consensus of arbitrary-order delayed multi-
agent system. The H∞ performance index is first decom-
posed based on the interconnection topology. Then the dis-
tributed PID feedback control problem for the H∞ perfor-
mance requirement is equivalently transformed into several
independent H∞ performance constraints of single-input
single output (SISO) subsystem with respect to the eigen-
values of the Laplacian matrix. For each subsystem, the set
of the PID controllers satisfying the required H∞ perfor-
mance constraint is further converted to simultaneous sta-
bilization problem of a family of complex quasipolynomials
and the characteristic equations. Subsequently, the sets of
the H∞ PID parameters for each subsystem are presented
based on the extended Hermite-Biehler theorem. Thus, the
intersection of the PID parameter sets for all the trans-
formed quasi polynomial is the values of PID control param-
eters satisfying the H∞ performance requirement. In com-
parison with the other distributed controller design meth-
ods, the proposed approach is easy to understand and can
deal with the restriction on the structure and order of the
distributed controller.
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