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Ran Xin, Student Member, IEEE, and Usman A. Khan, Senior Member, IEEE

Abstract—We study distributed optimization to minimize a
global objective that is a sum of smooth and strongly-convex local
cost functions. Recently, several algorithms over undirected and
directed graphs have been proposed that use a gradient tracking
method to achieve linear convergence to the global minimizer.
However, a connection between these different approaches has
been unclear. In this paper, we first show that many of the existing
first-order algorithms are in fact related with a simple state trans-
formation, at the heart of which lies the AB algorithm. We then
describe distributed heavy-ball, denoted as ABm, i.e., AB with
momentum, that combines gradient tracking with a momentum
term and uses nonidentical local step-sizes. By simultaneously
implementing both row- and column-stochastic weights, ABm
removes the conservatism in the related work due to doubly-
stochastic weights or eigenvector estimation. ABm thus naturally
leads to optimization and average-consensus over both undirected
and directed graphs, casting a unifying framework over sev-
eral well-known consensus algorithms over arbitrary strongly-
connected graphs. We show that ABm has a global R-linear
rate when the largest step-size is positive and sufficiently small.
Following the standard practice in the heavy-ball literature, we
numerically show that ABm achieves accelerated convergence
especially when the objective function is ill-conditioned.

Index Terms—Distributed optimization, linear convergence,
first-order method, heavy ball method, momentum.

I. INTRODUCTION

We consider distributed optimization, where n agents col-

laboratively solve the following problem:

min
x∈Rn

F (x) ,
1

n

n∑

i=1

fi(x),

and each local objective, fi : R
p → R, is smooth and strongly-

convex. The goal of the agents is to find the global minimizer

of the aggregate cost via only local communication with their

neighbors. This formulation has recently received great interest

with applications in e.g., machine learning [1–4], control [5],

cognitive networks, [6, 7], and source localization [8, 9].

Early work on this topic builds on the seminal work by

Tsitsiklis in [10] and includes Distributed Gradient Descent

(DGD) [11] and distributed dual averaging [12] over undi-

rected graphs. Leveraging push-sum consensus [13], Refs. [14,

15] extend the DGD framework to directed graphs. Based on

a similar concept, Refs. [16, 17] propose Directed-Distributed

Gradient Descent (D-DGD) for directed graphs that is based on

surplus consensus [18]. In general, the DGD-based methods

achieve sublinear convergence at O
(

log k√
k

)
, where k is the

number of iterations, because of the diminishing step-size

used in the iterations. The convergence rate of DGD can be

improved with the help of a constant step-size but at the
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expense of an inexact solution [19, 20]. Follow-up work also

includes augmented Lagrangians [21–24], which shows exact

linear convergence for smooth and strongly-convex functions,

albeit requiring higher computation at each iteration.

To improve convergence and retain computational simplic-

ity, fast first-order methods that do not (explicitly) use a

dual update have been proposed. Reference [25] describes a

distributed Nesterov-type method based on multiple consensus

inner loops, at O
(

log k
k2

)
for smooth and convex functions,

with bounded gradients. EXTRA [26] uses the difference of

two consecutive DGD iterates to achieve an O
(
1
k

)
rate for

arbitrary convex functions and a Q-linear rate for strongly-

convex functions. DEXTRA [27] combines push-sum [13]

and EXTRA [26] to achieve an R-linear rate over directed

graphs given that a constant step-size is carefully chosen in

some interval. Refs. [28, 29] apply an adapt-then-combine

structure [30] to EXTRA [26] and generalize the symmetric

weights in EXTRA to row-stochastic, over undirected graphs.

Noting that DGD-type methods are faster with a constant

step-size, recent work [31–40] uses a constant step-size and

replaces the local gradient, at each agent in DGD, with an

estimate of the global gradient. A method based on gradient

tracking was first shown in [31] over undirected graphs, which

proposes Aug-DGM (that uses nonidentical step-sizes at the

agents) with the help of dynamic consensus [41] and shows

convergence for smooth convex functions. When the step-

sizes are identical, the convergence rate of Aug-DGM was

derived to be O
(
1
k

)
for arbitrary convex functions and R-

linear for strongly-convex functions in [32]. ADD-OPT [33]

extends [32] to directed graphs by combining push-sum with

gradient tracking and derives a contraction in an arbitrary norm

to establish an R-linear convergence rate when the global

objective is smooth and strongly-convex. Ref. [34] extends

the analysis in [32, 33] to time-varying graphs and establishes

an R-linear convergence using the small gain theorem [42].

In contrast to the aforementioned methods [31–34], where

the weights are doubly-stochastic for undirected graphs and

column-stochastic for directed graphs, FROST [35, 36] uses

row-stochastic weights, which have certain advantages over

column-stochastic weights. Ref. [39] unifies EXTRA [26] and

gradient tracking methods [31, 32] in a primal-dual frame-

work over static undirected graphs. More recently, Ref. [38]

proposes distributed Nesterov over undirected graphs that

also uses gradient tracking and shows a convergence rate

of O((1 − cQ− 5

7 )k) for smooth, strongly-convex functions,

where Q is the condition number of the global objective.

Refs. [43, 44], on the other hand, consider gradient tracking in

distributed non-convex problems, while Ref. [40] uses second-

order information to accelerate the convergence.
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Of significant relevance here is the AB algorithm [37], also

appeared later in [45], which can be viewed as a generalization

of distributed first-order methods with gradient tracking. In

particular, the algorithms over undirected graphs in Refs. [31,

32] are a special case of AB because the doubly-stochastic

weights therein are replaced by row- and column- stochastic

weights. AB thus is naturally applicable to arbitrary directed

graphs. Moreover, the use of both row- and column-stochastic

weights removes the need for eigenvector estimation1, required

earlier in [33–36]. Ref. [37] derives an R-linear rate for AB
when the objective functions are smooth and strongly-convex.

In this paper, we provide an improved understanding of AB
and extend it to the ABm algorithm, a distributed heavy-ball

method, applicable to both undirected and directed graphs. We

now summarize the main contributions:

1) We show that many of the existing accelerated first-order

methods are either a special case of AB [31, 32], or can

be adapted from its equivalent forms [33–36].

2) We propose a distributed heavy-ball method, termed

as ABm, that combines AB with a heavy-ball (type)

momentum term. To the best of our knowledge, this paper

is the first to use a momentum term based on the heavy-

ball method in distributed optimization.

3) ABm employs nonidentical step-sizes at the agents and

thus its analysis naturally carries to nonidentical step-

sizes in AB and to the related algorithms in [31–36].

4) We cast a unifying framework for consensus over arbi-

trary graphs that results from ABm and subsumes several

well-known algorithms [18, 46].

On the analysis front, we show that AB (without momentum)

converges faster as compared to the algorithms over directed

graphs in [33–36], where separate iterations for eigenvector

estimation are applied nonlinearly to the underlying algorithm.

Towards ABm, we establish a global R-linear convergence

rate for smooth and strongly-convex objective functions when

the largest step-size at the agents is positive and sufficiently

small. This is in contrast to the earlier work on non-identical

step-sizes within the framework of gradient tracking [31, 47–

49], which requires the heterogeneity among the step-sizes to

be sufficiently small, i.e., the step-sizes are close to each other.

We also acknowledge that similar to the centralized heavy-ball

method [50, 51], dating back to more than 50 years, and the

recent work [52–58], a global acceleration can only be shown

via numerical simulations. Following the standard practice,

we provide simulations to verify that ABm has accelerated

convergence, the effect of which is more pronounced when

the global objective function is ill-conditioned.

We now describe the rest of the paper. Section II provides

preliminaries, problem formulation, and introduces distributed

heavy-ball, i.e., the ABm algorithm. Section III establishes

the connection between AB and related algorithms. Section IV

includes the main results on the convergence analysis, whereas

Section V provides a family of average-consensus algorithms

that result naturally from ABm. Finally, Section VI provides

numerical experiments and Section VII concludes the paper.

1Simultaneous application of both row- and column-stochastic weights
was first employed for average-consensus in [18] and towards distributed
optimization in [16, 17], albeit without gradient tracking.

Basic Notation: We use lowercase bold letters to denote

vectors and uppercase letters for matrices. The matrix, In,

is the n × n identity, whereas 1n (0n) is the n-dimensional

column vector of all ones (zeros). For an arbitrary vector, x,

we denote its ith element by [x]i and its largest and smallest

element by [x]max and [x]min, respectively. We use diag(x)
to denote a diagonal matrix that has x on its main diagonal.

For two matrices, X and Y , diag (X,Y ) is a block-diagonal

matrix with X and Y on its main diagonal, and X⊗Y denotes

their Kronecker product. The spectral radius of a matrix, X ,

is represented by ρ(X). For a primitive, row-stochastic ma-

trix, A, we denote its left and right eigenvectors corresponding

to the eigenvalue of 1 by πr and 1n, respectively, such

that π⊤
r 1n = 1; similarly, for a primitive, column-stochastic

matrix, B, we denote its left and right eigenvectors corre-

sponding to the eigenvalue of 1 by 1n and πc, respectively,

such that 1⊤
nπc = 1. For a matrix X , we denote X∞ as its

infinite power (if it exists), i.e., X∞ = limk→∞ Xk. From

the Perron-Frobenius theorem [59], we have A∞ = 1nπ
⊤
r

and B∞ = πc1
⊤
n . We denote ‖·‖A and ‖·‖B as some arbitrary

vector norms, the choice of which will be clear in Lemma 1,

while ‖·‖ denotes the Euclidean matrix and vector norms.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider n agents connected over a directed graph, G =
(V , E), where V = {1, · · · , n} is the set of agents, and E is

the collection of ordered pairs, (i, j), i, j ∈ V , such that agent j
can send information to agent i, i.e., j → i. We define N in

i as

the collection of in-neighbors of agent i, i.e., the set of agents

that can send information to agent i. Similarly, N out
i is the

set of out-neighbors of agent i. Note that both N in
i and N out

i

include agent i. The agents solve the following problem:

P1 : min
x∈Rn

F (x) ,
1

n

n∑

i=1

fi(x),

where each fi : R
p → R is known only to agent i. We

formalize the set of assumptions as follows.

Assumption A1. The graph, G, is strongly-connected.

Assumption A2. Each local objective, fi, is µi-strongly-

convex, i.e., ∀i ∈ V and ∀x,y ∈ R
p, we have

fi(y) ≥ fi(x) +∇fi(x)
⊤(y − x) +

µi

2
‖x− y‖2,

where µi ≥ 0 and
∑n

i=1 µi > 0.

Assumption A3. Each local objective, fi, is li-smooth, i.e.,

its gradient is Lipschitz-continuous: ∀i ∈ V and ∀x,y ∈ R
p,

we have, for some li > 0,

‖∇fi(x)−∇fi(y)‖ ≤ li‖x− y‖.
Assumptions A2 and A3 ensure that the global mini-

mizer, x∗ ∈ R
p, of F exists and is unique [60]. In the sub-

sequent analysis, we use µ , 1
n

∑n
i=1 µi and l , 1

n

∑n
i=1 li,

as the strong-convexity and Lipschitz-continuity constants, re-

spectively, for the global objective, F . We define l , maxi li.
We next describe the heavy-ball method that is credited to

Polyak and then introduce the distributed heavy-ball method,

termed as the ABm algorithm, to solve Problem P1.
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A. Heavy-ball method

It is well known [51, 60] that the best achievable conver-

gence rate of the gradient descent algorithm,

xk+1 = xk − α∇F (xk) ,

is O((Q−1
Q+1 )

k), where Q , l
µ

is the condition number of

the objective function, F . Clearly, gradient descent is quite

slow when Q is large, i.e., when the objective function is ill-

conditioned. The seminal work by Polyak [50, 51] proposes

the following heavy-ball method:

xk+1 = xk − α∇F (xk) + β(xk − xk−1), (1)

where β (xk − xk−1) is interpreted as a “momentum” term,

used to accelerate the convergence process. Polyak shows that

with a specific choice of α and β, the heavy-ball method

achieves a local accelerated rate of O((
√
Q−1√
Q+1

)k). By local,

it is meant that the acceleration can only be analytically

shown when ‖x0−x∗‖ is sufficiently small. Globally, i.e., for

arbitrary initial conditions, only linear convergence is estab-

lished, while an analytical characterization of the acceleration

is still an open problem, see related work in [52, 53, 56–

58]. Numerical analysis and simulations are often employed

to show global acceleration, i.e., it is possible to tune α
and β such that the heavy-ball method is faster than gradient

descent [54, 55].

B. Distributed heavy-ball: The ABm algorithm

Recall, that our goal is to solve Problem P1 when the agents,

possessing only local objectives, exchange information over

a strongly-connected directed graph, G. Each agent, i ∈ V ,

maintains two variables: xi
k, yi

k ∈ R
p, where xi

k is the

local estimate of the global minimizer and yi
k is an auxiliary

variable. The ABm algorithm, initialized with arbitrary xi
0’s,

xi
−1 = 0p and yi

0 = ∇fi(x
i
0), ∀i ∈ V , is given by2:

xi
k+1 =

n∑

j=1

aijx
j
k − αiy

i
k + βi

(
xi
k − xi

k−1

)
, (2a)

yi
k+1 =

n∑

j=1

bijy
j
k +∇fi

(
xi
k+1

)
−∇fi

(
xi
k

)
, (2b)

where αi ≥ 0 and βi ≥ 0 are respectively the local step-

size and the momentum parameter adopted by agent i. The

weights, aij’s and bij’s, are associated with the graph topology

and satisfy the following conditions:

aij =





> 0, j ∈ N in
i ,

0, otherwise,

n∑

j=1

aij = 1, ∀i,

bij =





> 0, i ∈ N out
j ,

0, otherwise,

n∑

i=1

bij = 1, ∀j.

2We note that several variants of this algorithm can be extracted by con-

sidering an adapt-then-combine update, e.g.,
∑n

j=1 bij(y
j
k
+∇fi(x

i
k+1

)

−

∇fi
(

x
i
k)), see [37], instead of the combine-then-adapt update that we have

used here in Eq. (2b). The momentum term in Eq. (2a) can also be integrated
similarly. We choose one of the applicable forms and note that extensions to
other cases follow from this exposition and the subsequent analysis.

Note that the weight matrix, A = {aij}, in Eq. (2a) is RS

(row-stochastic) and the weight matrix, B = {bij} in Eq. (2b)

is CS (column-stochastic), both of which can be implemented

over undirected and directed graphs alike. Intuitively, Eq. (2b)

tracks the average of local gradients, 1
n

∑n
i=1 ∇fi(x

i
k),

see [31–39, 41], and therefore Eq. (2a) asymptotically ap-

proaches the centralized heavy-ball, Eq. (1), as the descent

direction yi
k becomes the gradient of the global objective.

Vector form: For the sake of analysis, we now write ABm
in vector form. We use the following notation:

xk ,




x1
k

...

xn
k


 , yk ,




y1
k

...

yn
k


 , ∇f(xk) ,




∇f1(x
1
k)

...

∇fn(x
n
k )


 ,

all in R
np. Let α and β define the vectors of the step-sizes

and the momentum parameters, respectively. We now define

augmented weight matrices, A,B, and augmented step-size

and momentum matrices, Dα, Dβ:

A , A⊗ Ip, Dα , diag(α)⊗ Ip,

B , B ⊗ Ip, Dβ , diag(β)⊗ Ip,

all in R
np×np. Using the notation above, ABm can be

compactly written as:

xk+1 = Axk −Dαyk +Dβ (xk − xk−1) , (3a)

yk+1 = Byk +∇f(xk+1)−∇f(xk), . (3b)

We note here that when βi = 0, ∀i, ABm reduces to AB [37],

albeit with two distinguishing features: (i) the algorithm in [37]

uses an identical step-size, α, at each agent; and (ii) Eq. (2b)

in [37] is in an adapt-then-combine form.

III. CONNECTION WITH EXISTING FIRST-ORDER METHODS

In this section, we provide a generalization of several

existing methods that employ gradient tracking [31–36] and

show that AB lies at the heart of these approaches. To proceed,

we rewrite the AB updates below (without momentum) [37].

xk+1 = Axk − αyk, (4a)

yk+1 = Byk +∇f(xk+1)−∇f(xk). (4b)

Since AB uses both RS and CS weights simultaneously, it is

natural to ask how are the optimization algorithms that require

the weight matrices to be doubly-stochastic (DS) [26, 31, 32,

34], or only CS [33, 34], or only RS [35, 36], are related to

each other. We discuss this relationship next.

Optimization with DS weights: Refs. [31, 32, 34] consider

the following updates, termed as Aug-DGM in [31] and

DIGing in [34]:

xk+1 = Wxk − αyk, (5a)

yk+1 = Wyk +∇f(xk+1)−∇f(xk), (5b)

where W = W⊗Ip, and W is a DS weight matrix. Clearly, to

obtain DS weights, the underlying graph must be undirected

(or balanced) and thus the algorithm in Eqs. (5) is not

applicable to arbitrary directed graphs. That AB generalizes
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Eqs. (5) is straightforward as the DS weights naturally satisfy

the RS requirement in the top update and the CS requirement

in the bottom update, while the reverse is not true. Similarly,

we note that a related algorithm, EXTRA [26], is given by

xk+1 = (I +W)xk − W̃xk−1 − α (∇f(xk)−∇f(xk−1)) ,

where the two weight matrices, W and W̃ , must be symmetric

and satisfy some other stringent requirements, see [26] for

details. Eliminating the yk-update in AB, we note that AB
can be written in the EXTRA format as follows:

xk+1 =(I + (A+ B − I))xk

− (BA)xk−1 − α (∇f(xk)−∇f(xk−1)) . (6)

It can be seen that the linear convergence of AB does not

follow from the analysis in [26] as A+ B − I and BA are

not necessarily symmetric. Analysis of the AB algorithm,

therefore, generalizes that of EXTRA to non-doubly-stochastic

and non-symmetric weight matrices.

Optimization with CS weights: We now relate AB to ADD-

OPT/Push-DIGing that only require CS weights [33, 34].

Since B is already CS in AB, it suffices to seek a state trans-

formation that transforms A from RS to CS, while respecting

the graph topology. To this aim, let us consider the follow-

ing transformation on the xk-update in AB: x̃k , Πrxk,
where Πr , diag(nπr)⊗ Ip and πr is the left-eigenvector of

the RS weight matrix, A, corresponding to the eigenvalue 1.

The resulting transformed AB is given by

x̃k+1 = B̃ x̃k − αΠryk, (7a)

xk+1 = (diag(nπr)⊗ Ip)
−1

x̃k+1, (7b)

yk+1 = Byk +∇f(xk+1)−∇f(xk), (7c)

where it is straightforward to show that B̃ = ΠrAΠ−1
r is now

CS and B̃ (πr ⊗ Ip) = πr ⊗ Ip.

In order to implement the above equations, two different

CS matrices (B̃ and B) suffice, as long as they are primitive

and respect the graph topology. The second update requires

the right-eigenvector of the CS matrix used in the first update,

i.e., B̃. Since this eigenvector is not known locally to any

agent, ADD-OPT/Push-DIGing [33, 34] propose learning this

eigenvector with the following iterations: wk+1 = B̃wk,w0 =
1np. The algorithms provided in [33, 34] essentially implement

Eqs. (7), albeit with two differences: (i) the same CS weight

matrix is used in all updates; and, (ii) the division in Eq. (7b)

is replaced by the estimated component, wi
k+1, of the left-

eigenvector at each agent. This nonlinearity causes stability

issues in ADD-OPT/Push-DIGing, whereas their convergence

compared to AB is slower because such an eigenvector esti-

mation is not needed in the latter on the account of using the

RS weights. Furthermore, the local step-sizes are now given

by nα[πr]i that shows that ADD-OPT/Push-DIGing should

work with nonidentical step-sizes.

Optimization with RS weights: The state transformation

technique discussed above also leads to an algorithm from AB
that only requires RS weights. Since A in AB is RS, a

transformation now is imposed on the yk-update and is given

by ỹk , Π−1
c yk, where Πc , diag(πc) ⊗ Ip, and πc is the

right-eigenvector of the CS weight matrix, B, corresponding

to the eigenvalue 1. Equivalently, AB is given by

xk+1 = Axk − αΠcỹk, (8a)

ỹk+1 = Ãỹk +Π−1
c (∇f(xk+1)−∇f(xk)) , (8b)

where Ã = Π−1
c BΠc is now RS and

(
π⊤

c ⊗ Ip
)
Ã = π⊤

c ⊗Ip.

Since the above form of AB cannot be implemented be-

cause πc is not locally known, an eigenvector estimation

is used in FROST [35, 36] and the division in Eq. (8b) is

replaced with the appropriate estimated component of πc. The

observations on different weight matrices in the two updates,

nonidentical step-sizes, stability, and convergence made earlier

for ADD-OPT/Push-DIGing are also applicable here.

In conclusion, the AB algorithm has various equivalent rep-

resentations and several already-known protocols can in fact

be derived from these representations. In a similar way, ABm
leads to protocols that add momentum to Aug-DGM, ADD-

OPT/Push-DIGing, and FROST. We will revisit the relation-

ship and equivalence cast here in Sections V and VI. In

Section V, we will show that both AB and ABm naturally

provide a non-trivial class of average-consensus algorithms, a

special case of which are [46] and surplus consensus [18]. In

Section VI, we will compare these algorithms numerically.

IV. CONVERGENCE ANALYSIS

We now start the convergence analysis of the proposed

distributed heavy-ball method, ABm. In the following, we first

provide some auxiliary results borrowed from the literature.

A. Auxiliary Results

The following lemma establishes contractions with RS and

CS matrices under arbitrary norms [37]; note thacontraction in

the Euclidean norm is not applicable unless the weight matrix

is DS as in [32, 34]. A similar result was first presented in [33]

for CS matrices, and later in [35, 36] for RS matrices.

Lemma 1. Consider the augmented weight matrices A and B.

There exist vector norms, denoted as ‖·‖A and ‖·‖B, such

that ∀x ∈ R
np,

‖Ax−A∞x‖A ≤ σA ‖x−A∞x‖A , (9)

‖Bx− B∞x‖B ≤ σB ‖x− B∞x‖B , (10)

where 0 < σA < 1 and 0 < σB < 1 are some constants.

The next lemma from [37] states that the sum of yi
k’s pre-

serves the sum of local gradients. This is a direct consequence

of the dynamic consensus [41] employed with CS weights in

the yk-update of ABm.

Lemma 2. (1⊤
n ⊗ Ip)yk = (1⊤

n ⊗ Ip)∇f(xk), ∀k.

The next lemma is standard in the convex optimization

theory [61]. It states that the distance to the optimizer contracts

at each step in the standard gradient descent method.

Lemma 3. Let F be µ-strongly-convex and l-smooth. For 0 <
α < 2

l
, we have

‖x− α∇F (x)− x∗‖ ≤ σF ‖x− x∗‖ ,
where σF = max (|1− µα| , |1− lα|).
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Finally, we provide a result from nonnegative matrix theory.

Lemma 4. (Theorem 8.1.29 in [59]) Let X ∈ R
n×n be a

nonnegative matrix and x ∈ R
n be a positive vector. If Xx <

ωx with ω > 0, then ρ(X) < ω.

B. Main results

The convergence analysis of ABm is based on deriving

a contraction relationship between the following four quan-

tities: (i) ‖xk+1 − A∞xk+1‖A, the consensus error in the

network; (ii) ‖A∞xk+1 − 1n ⊗ x∗‖, the optimality gap;

(iii) ‖xk+1 − xk‖, the state difference; and (iv) ‖yk+1 −
B∞yk+1‖B, the (biased) gradient estimation error. We will

establish an LTI-system inequality where the state vector is

the collection of these four quantities and then develop the

convergence properties of the corresponding system matrix.

Before we proceed, note that since all vector norms on finite-

dimensional vector spaces are equivalent [59], there exist

positive constants cAB, cBA, c2A, cA2, c2B, cB2 such that

‖ · ‖A ≤ cAB‖ · ‖B, ‖ · ‖ ≤ c2A‖ · ‖A, ‖ · ‖A ≤ cA2‖ · ‖,
‖ · ‖B ≤ cBA‖ · ‖A, ‖ · ‖ ≤ c2B‖ · ‖B, ‖ · ‖B ≤ cB2‖ · ‖.

We also define α , [α]max and β , [β]max. In the following,

we first provide an upper bound on the estimate, yk, of the

gradient of the global objective that will be useful in deriving

the aforementioned LTI system.

Lemma 5. The following inequality holds, ∀k:

‖yk‖ ≤ c2Al ‖B∞‖ ‖xk −A∞xk‖A + c2B‖yk − B∞yk‖B
+ l ‖B∞‖ ‖A∞xk − 1n ⊗ x∗‖.

Proof. Recall that B∞ = (πc ⊗ Ip)(1
⊤
n ⊗ Ip). We have

‖yk‖ ≤ c2B ‖yk − B∞yk‖B + ‖B∞yk‖ . (11)

We next bound ‖B∞yk‖:

‖B∞yk‖ = ‖(πc ⊗ Ip)(1
⊤
n ⊗ Ip)∇f(xk)‖,

= ‖πc‖
∥∥∑n

i=1∇fi(x
i
k)−

∑n
i=1∇fi(x

∗)
∥∥ ,

≤ ‖πc‖ l
√
n‖xk − 1n ⊗ x∗‖,

≤ c2A l ‖B∞‖ ‖xk −A∞xk‖A
+ l ‖B∞‖ ‖A∞xk − 1n ⊗ x∗‖, (12)

where the first inequality uses Jensen’s inequality and the last

inequality uses the fact that ‖B∞‖ =
√
n‖πc‖. The lemma

follows by plugging Eq. (12) into Eq. (11).

In the next Lemmas 6-9, we derive the relationships among

the four quantities mentioned above. We start with a bound

on ‖xk+1 −A∞xk+1‖A, the consensus error in the network.

Lemma 6. The following inequality holds, ∀k:

‖xk+1 −A∞xk+1‖A
≤
(
σA + αcA2c2A l ‖Inp −A∞‖ ‖B∞‖

)
‖xk −A∞xk‖A

+ αcA2 l ‖Inp −A∞‖ ‖B∞‖ ‖A∞xk − 1n ⊗ x∗‖
+ βcA2 ‖Inp −A∞‖ ‖xk − xk−1‖
+ αcA2c2B ‖Inp −A∞‖ ‖yk − B∞yk‖B .

Proof. First, note that A∞A = A∞. Following the xk-

update of ABm in Eq. (3a) and using the one-step contraction

property of A from Lemma 1, we have:
∥∥xk+1 −A∞xk+1

∥∥
A

=
∥∥Axk −Dαyk +Dβ(xk − xk−1)

−A∞
(
Axk −Dαyk +Dβ(xk − xk−1)

)∥∥
A,

≤ σA ‖xk −A∞xk‖A + α cA2 ‖Inp −A∞‖ ‖yk‖
+ β cA2 ‖Inp −A∞‖ ‖xk − xk−1‖ ,

and the proof follows from Lemma 5.

Next, we derive a bound for ‖A∞xk+1 − 1n ⊗ x∗‖, which

can be interpreted as the optimality gap between the network

accumulation state, A∞xk, and the global minimizer, 1n⊗x∗.

Lemma 7. The following inequality holds, ∀k, when

0 < π⊤
r diag(α)πc <

2
nl

:

‖A∞xk+1 − 1n ⊗ x∗‖
≤ α

(
π⊤

r πc

)
nlc2A ‖xk −A∞xk‖A

+ λ ‖A∞xk − 1n ⊗ x∗‖
+ β‖A∞‖‖xk − xk−1‖
+ αc2B‖A∞‖ ‖yk − B∞yk‖B , (13)

where λ = max
{∣∣1− µnπ⊤

r diag(α)πc

∣∣ ,
∣∣1− lnπ⊤

r diag(α)πc

∣∣} .

Proof. Recall the xk-update of ABm in Eq. (3a), we have that

‖A∞xk+1 − 1n ⊗ x∗‖
=
∥∥A∞

(
Axk −Dαyk +Dβ(xk − xk−1)

)
− 1n ⊗ x∗∥∥ ,

=
∥∥A∞

(
Axk −Dαyk + (Dα −Dα)B∞yk

+Dβ(xk − xk−1)
)
− 1n ⊗ x∗∥∥,

≤‖A∞xk −A∞DαB∞∇f (xk)− (1n ⊗ Ip)x
∗‖

+ β‖A∞‖‖xk − xk−1‖
+ αc2B‖A∞‖ ‖yk − B∞yk‖B , (14)

where in the last inequality, we use B∞yk = B∞∇f (xk)
adapted from Lemma 2. Since the last two terms in Eq. (14)

match the last two terms in Eq. (13), what is left is to bound

the first term. Before we proceed, define

x̃k , (π⊤
r ⊗ Ip)xk,

∇f ((1n ⊗ Ip)x̃k) ,
[
∇f1(x̃k)

⊤, · · · ,∇fn(x̃k)
⊤]⊤ ,

and note that

A∞DαB∞

=(1n ⊗ Ip)
(
π⊤

r ⊗ Ip
)
(diag(α)⊗ Ip) (πc ⊗ Ip)

(
1⊤
n ⊗ Ip

)

=
(
π⊤

r diag(α)πc

)
(1n ⊗ Ip)

(
1⊤
n ⊗ Ip

)
.

Now we bound the first term in Eq. (14). We have

‖A∞xk −A∞DαB∞∇f(xk)− (1n ⊗ Ip)x
∗‖

=
∥∥∥ (1n ⊗ Ip)

(
x̃k − (π⊤

r diag(α)πc)(1
⊤

n ⊗ Ip)∇f(xk)− x
∗
)∥∥∥,

≤
∥∥∥(1n ⊗ Ip)

(
x̃k − n(π⊤

r diag(α)πc)∇F (x̃k)− x
∗
)∥∥∥

+ π
⊤

r diag(α)πc

∥∥∥(1n ⊗ Ip)
(
n∇F (x̃k)− (1⊤

n ⊗ Ip)∇f(xk)
)∥∥∥ ,

, s1 + s2,
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and we bound s1 and s2 next. Using Lemma 3, we have that

if 0 < π⊤
r diag(α)πc <

2
nl

,

s1 =
√
n
∥∥x̃k − n(π⊤

r diag(α)πc)∇F (x̃k)− x∗∥∥ ,
≤ √

nλ ‖x̃k − x∗‖ ,
= λ ‖A∞xk − 1n ⊗ x∗‖ , (15)

where λ = max
{∣∣1− µnπ⊤

r diag(α)πc

∣∣ ,
∣∣1− lnπ⊤

r diag(α)πc

∣∣} .

We next bound s2. Since ∇F (x̃k) =
1
n
(1⊤

n ⊗ Ip)∇f(x̃k),

s2 ≤
(
π⊤

r diag(α)πc

)
n ‖∇f ((1n ⊗ Ip)x̃k)−∇f(xk)‖ ,

≤
(
π⊤

r diag(α)πc

)
nlc2A ‖xk −A∞xk‖A ,

≤ α
(
π⊤

r πc

)
nlc2A ‖xk −A∞xk‖A , (16)

and the lemma follows from Eqs. (15), (16), and (14).

The next step is to bound the state difference, ‖xk+1 − xk‖.

Lemma 8. The following inequality holds, ∀k:

‖xk+1 − xk‖
≤

(
c2A ‖A − Inp‖+ αc2Al ‖B∞‖

)
‖xk −A∞xk‖A

+ αl ‖B∞‖ ‖A∞xk − 1n ⊗ x∗‖
+ β ‖xk − xk−1‖+ αc2B‖yk − B∞yk‖B.

Proof. Note that AA∞ = A∞ and hence AA∞ − A∞ is a
zero matrix. Following the xk-update of ABm, we have:

‖xk+1 − xk‖

= ‖Axk −Dαyk +Dβ(xk − xk−1)− xk‖ ,

= ‖(A− Inp)(xk −A∞xk)−Dαyk +Dβ(xk − xk−1)‖ ,

≤ c2A ‖A − Inp‖ ‖xk −A∞xk‖A + β ‖xk − xk−1‖+ α ‖yk‖ ,

and the proof follows from Lemma 5.

The final step in formulating the LTI system is to

write ‖yk+1 − B∞yk+1‖, the biased gradient estimation error,

in terms of the other three quantities. We call this biased

to make a distinction with the unbiased gradient estimation

error: ‖yk+1 −W∞yk+1‖, where W is doubly-stochastic.

Lemma 9. The following inequality holds, ∀k:

‖yk+1 − B∞yk+1‖
=
(
c2AcB2 l ‖Inp − B∞‖ ‖A − Inp‖

+ αc2AcB2 l
2 ‖Inp − B∞‖ ‖B∞‖

)
‖xk −A∞xk‖A

+ αcB2 l
2 ‖Inp − B∞‖ ‖B∞‖ ‖A∞xk − 1n ⊗ x∗‖

+ βcB2 l ‖Inp − B∞‖ ‖xk − xk−1‖
+
(
σB + αcB2c2B l ‖Inp − B∞‖

)
‖yk − B∞yk‖B .

Proof. Note that B∞B = B∞. From Eq. (3b), we have:

‖yk+1 − B∞yk+1‖B
=

∥∥Byk +∇f(xk+1)−∇f(xk)

− B∞
(
yk +∇f(xk+1)−∇f(xk)

)∥∥
B

≤ σB‖y(k)− B∞y(k)‖B + cB2l ‖Inp − B∞‖ ‖xk+1 − xk‖2,
where in the inequality above we use the contraction property

of B from Lemma 1. The proof follows by applying the result

of Lemma 8 to the inequality above.

With the help of the Lemmas 6-9, we now present the main

result of this paper, i.e., the ABm algorithm converges to the

global minimizer at a global R-linear rate.

Theorem 1. Let 0 < π⊤
r diag(α)πc <

2
nl

, then the following

LTI inequality holds entry-wise:

tk+1 ≤ Jα,βtk, (17)

where tk ∈ R
4 and Jα,β ∈ R

4×4 are respectively given by:

tk =




‖xk −A∞xk‖A

‖A∞xk − 1n ⊗ x∗‖

‖xk − xk−1‖

‖yk − B∞yk‖B



,

Jα,β =




σA + a1α a2α βa3 a4α

a5α λ βa6 a7α

a8 + a9α a10α β a11α

a12 + a13α a14α βa15 σB + a16α



,

and the constants ai’s in the above expression are

a1 = cA2c2Al ‖Inp −A∞‖ ‖B∞‖ ,

a2 = cA2l ‖Inp −A∞‖ ‖B∞‖ ,

a3 = cA2 ‖Inp −A∞‖ ,

a4 = cA2c2B ‖Inp −A∞‖ ,

a5 = nc2A

(
π

⊤

r πc

)
l,

a6 = ‖A∞‖,

a7 = c2B‖A∞‖,

a8 = c2A ‖A − Inp‖ ,

a9 = c2Al ‖B∞‖ ,

a10 = l ‖B∞‖ ,

a11 = c2B,

a12 = cB2c2Al ‖Inp − B∞‖ ‖A − Inp‖ ,

a13 = cB2c2Al
2
‖Inp − B∞‖ ‖B∞‖ ,

a14 = cB2l
2
‖Inp − B∞‖ ‖B∞‖ ,

a15 = cB2l ‖Inp − B∞‖ ,

a16 = cB2c2Bl ‖Inp −B∞‖ .

When the largest step-size, α, satisfies

0 < α < min

{
1

nlπ⊤
r πc

,
δ3 − δ1a8

a9δ1 + a10δ2 + a11δ4
,

(1− σB)δ4 − δ1a12

a13δ1 + a14δ2 + a14δ4
,

(1− σB)δ4 − δ1a12

a13δ1 + a14δ2 + a14δ4

}
(18)

and when the largest momentum parameter, β, satisfies

0 ≤ β < min

{
δ1(1− σA)− (a1δ1 + a2δ2 + a4δ4)α

a3δ3
,

(
δ2µ[πr]min[πc]min − (a5δ1 + a7δ4)

)
α

a6δ3
,

δ3 − δ1a8 − (a9δ1 + a10δ2 + a11δ4)α

δ3
,

(1− σB)δ4 − δ1a12 − (a13δ1 + a14δ2 + a14δ4)α

a15δ3

}
, (19)
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where δ1, δ2, δ3, δ4 are arbitrary constants such that




δ1 < max
{

δ3
a8

,
(1−σB)δ4

a12

}
,

δ2 > a5δ1+a7δ4
µ[πr ]min[πc]min

,

δ3 > 0,

δ4 > 0,

then ρ(Jα,β) < 1 and thus ‖xk − 1n ⊗x∗‖ converges to zero

linearly at the rate of O(ρ(Jα,β))
k.

Proof. It is straightforward to verify Eq. (17) by combining

Lemmas 6-9. The next step is to find the range of α and β
such that ρ(Jα,β) < 1. In the light of Lemma 4, we solve

for a positive vector δ = [δ1, δ2, δ3, δ4]
⊤ and the range of α

and β such that the following inequality holds:

Jα,βδ < δ,

which is equivalent to the following four conditions:

a3δ3β < δ1(1− σA)− (a1δ1 + a2δ2 + a4δ4)α, (20)

a6δ3β < δ2 − δ2λ− (a5δ1 + a7δ4)α, (21)

δ3β < δ3 − δ1a8 − (a9δ1 + a10δ2 + a11δ4)α, (22)

a15δ3β < (1− σB)δ4 − δ1a12 − (a13δ1 + a14δ2 + a14δ4)α. (23)

Recall λ in Lemma 7, when α < 1
nlπ⊤

r πc
, we have

λ = 1− µnπ⊤
r diag(α)πc ≤ 1− µn[πr]min[πc]minα.

Therefore, the third condition in Eq. (21) is satisfied when

a6δ3β < δ2µn[πr]min[πc]minα− (a5δ1 + a7δ4)α. (24)

For the right hand side of the Eq. (20), (24), (22) and (23) to

be positive, each one of these equations needs to satisfy the

conditions we give below.

Eq. (20) : α <
δ1(1− σA)

a1δ1 + a2δ2 + a4δ4
, (25)

Eq. (24) : δ2 >
a5δ1 + a7δ4

µ[πr]min[πc]min
, (26)

Eq. (22) :





δ1 < δ3
a8

,

α < δ3−δ1a8

a9δ1+a10δ2+a11δ4
.

(27)

Eq. (23) :





δ1 <
(1−σB)δ4

a12
,

α <
(1−σB)δ4−δ1a12

a13δ1+a14δ2+a14δ4
.

(28)

We first choose arbitrary positive constants, δ3 and δ4, then

pick δ1 satisfying Eqs. (27) and (28), and finally choose δ2
according to Eq. (26). Note that δ1, δ2, δ3, and δ4 are chosen

to ensure that the upper bounds on α are all positive. Sub-

sequently, from Eqs. (25), (27), and (28), together with the

requirement that α < 1
nlπ⊤

r πc
, we obtain the upper bound on

the largest step-size, α. Finally, the original four conditions in

Eqs. (20), (24), (22) and (23) lead to an upper bound on β,

and the theorem follows.

Remark 1: In Theorem 1, we have established the R-linear

rate of ABm when the largest step-size, α, and the largest

momentum parameter, β, respectively follow the upper bounds

described in Eq. (18) and Eq. (19). Note that δ1, δ2, δ3, δ4
therein are tunable parameters and only depend on the network

topology and the objective functions. The upper bounds for α

and β may not be computable for arbitrary directed graphs as

the contraction coefficients, σA, σB, and the norm equivalence

constants may be unknown. However, when the graph is

undirected, we can obtain computable bounds for α and β, as

developed in [32, 38] for example. The upper bound on β also

implies that if the step-sizes are relatively large, only small

momentum parameters can be picked to ensure stability.

Remark 2: The nonidentical step-sizes in gradient tracking

methods [31, 32] have previously been studied in [31, 47–49].

These works rely on some notion of heterogeneity among the

step-sizes, defined respectively as the relative deviation of the

step-sizes from their average,
‖(I−W )α‖

‖Wα‖ , in [31, 48], and as

the ratio of the largest to the smallest step-size, [α]max/[α]min,

in [47, 49]. The authors then show that when the hetero-

geneity is sufficiently small and when the largest step-size

follows a bound that is a function of the heterogeneity,

the proposed algorithms converge to the global minimizer.

It is worth noting that sufficiently small step-sizes do not

guarantee sufficiently small heterogeneity in both of the above

definitions. In contrast, the upper bound on the largest step-

size in this paper, Eq. (18), is independent of any notion of

heterogeneity and only depends on the objective functions and

the network topology. Each agent therefore locally picks a

sufficiently small step-size without any coordination. Based on

the discussion in Section III, our approach thus improves the

analysis in [31, 47–49]. Besides, Eq. (18) allows the existence

of zero step-sizes among the agents as long as the largest step-

size is positive and is sufficiently small.

Remark 3: To show that ABm has an R-linear rate for

sufficiently small α and β, one can alternatively use matrix

perturbation analysis as in [37] (Theorem 1). However, it does

not provide explicit upper bounds on α and β in closed form.

V. AVERAGE-CONSENSUS FROM ABm
In this section, we show that ABm subsumes a novel

average-consensus algorithm over strongly-connected directed

graphs. To show this, we choose the objective functions as

f̃i(x) =
1
2‖x− υi‖2, ∀i.

Clearly, the minimization of F̃ =
∑n

i=1 f̃i is now achieved

at x∗ = 1
n

∑n
i=1 υi. The ABm algorithm, Eq. (3), thus

naturally leads to the following average-consensus algorithm,

termed as ABm-C, with ∇f(xk+1) −∇f(xk) = xk+1 − xk;

for the sake of simplicity, we choose αi = α, βi = β, ∀i:
xk+1 = (A+ βI)xk − αyk − βxk−1,

yk+1 = (A+ βI − I)xk + (B − αI)yk − βxk−1.

Its local implementation at each agent i is given by:

xi
k+1 =

∑

j∈Ni\i
aijx

j
k + (aii + β)xi

k − αyi
k − βxi

k−1,

yi
k+1 =

∑

j∈Ni\i
aijx

j
k + (aii + β − 1)xi

k

+
∑

j∈Ni\i
bijy

j
k + (bii − α)yi

k − βxi
k−1,

where xi
0 = υi and y0

i = 0, ∀i.
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From the analysis of ABm, an R-linear convergence

of ABm-C to the average of υi’s is clear from Theorem 1. It

may be possible to make concrete rate statements by studying

the spectral radius of the following system matrix:




xk+1

yk+1

xk


 =




A+ βI −αI −βI

A+ βI − I B − αI −βI

I 0 0







xk

yk

xk−1


 .

(29)

However, this analysis is beyond the scope of this paper. We

note that when β = 0, the above equations still converge to the

average of υi’s according to Theorem 1. What is surprising is

that, with β = 0, ABm-C reduces to


 xk+1

yk+1


 =


 A −αI

A− I B − αI




 xk

yk


 , (30)

which is surplus consensus [18], after a state transformation

with diag (I,−I); in fact, any state transformation of the

form diag(I, Ĩ) applies here as long as Ĩ is diagonal (to respect

the graph topology) and invertible. More importantly, com-

pared with surplus consensus [18], ABm-C uses information

from the past iterations. This history information is in fact the

momentum from a distributed optimization perspective, which

may lead to accelerated convergence as we will numerically

show in Section VI.

Following this discussion, choosing the local functions

as f̃i’s in [31, 32], or in ADD-OPT [33, 34], or in FROST [35,

36], we get average-consensus with only DS, CS, or RS

weights. The protocol that results directly from AB is surplus

consensus, while the one resulting directly from FROST was

presented in [46]. With the analysis provided in Section III,

we see that the algorithm in [46] is in fact related to surplus

consensus after a state transformation. Clearly, accelerated

average-consensus based exclusively on either row- or column-

stochastic weights can be abstracted from the discussion

herein, after adding a momentum term.

VI. NUMERICAL EXPERIMENTS

We now provide numerical experiments to illustrate the

theoretical findings described in this paper. To this aim, we

use two different graphs: an undirected graph, G1, and a

directed graph, G2. Both graphs have n = 500 agents and are

generated using nearest neighbor rules and then we add less

than 0.05% random links. The number of edges in all cases

is less 4% of the total possible edges. Since the graphs are

randomly generated across experiments, two sample graphs

are shown in Fig. 1, without the self-edges and random links

for visual clarity. We generate DS weights using the Laplacian

method: W = I − 1
maxi degi +1L, where L is the graph

Laplacian and degi is the degree of node i. Additionally,

we generate RS and CS weights with the uniform weighting

strategy: aij =
1

|N in
j
| and bij =

1
|N out

j
| , ∀i, j. We note that both

weighting strategies are applicable to undirected graphs, while

only the uniform strategy can be used over directed graphs.

-6 -4 -2 0 2 4

-6

-4

-2

0

2

4

6

Fig. 1: (Left) Undirected graph, G1. (Right) Directed graph, G2.

A. Logistic Regression

We first consider distributed logistic regression: each agent i
has access to mi training data, (cij , yij) ∈ R

p × {−1,+1},

where cij contains p features of the jth training data at agent i,
and yij is the corresponding binary label. The agents cooper-

atively minimize F =
∑n

i=1 fi(b, c), to find b ∈ R
p, c ∈ R,

with each private loss function being

fi(b, c) =

mi∑

j=1

ln
[
1 + exp

(
−
(
b
⊤
cij + c

)
yij

)]
+

λ

2
‖b‖22,

where λ
2 ‖b‖22 is a regularization term used to prevent over-

fitting of the data. The feature vectors, cij’s, are ran-

domly generated from a Gaussian distribution with zero

mean and the binary labels are randomly generated from a

Bernoulli distribution. We plot the average of residuals at

each agent, 1
n

∑n
i=1 ‖xi(k) − x∗‖2, and first compare the

performance of the following over undirected graphs in Fig. 2

(Left): (i) ABm with RS and CS weights; (ii) ABm with

DS weights; (iii) distributed optimization based on gradient

tracking from [31, 32, 34], with DS weights; (iv) EXTRA

from [26]; and, (v) centralized gradient descent.

0 500 1000 1500 2000 2500 3000
10-20

10-15

10-10

10-5

100

105 Logistic classification: Undirected graphs

0 500 1000 1500 2000
10-20

10-15

10-10

10-5

100

105 Logistic classification: Directed graphs

Fig. 2: Logistic regression over undirected (Left) and directed graph (Right).

Next, we compare the performance similarly over directed

graphs in Fig. 2 (Right). Here, the algorithms with doubly-

stochastic weights [26, 31, 32, 34] are not applicable, and

instead we compare ABm with AB [37], ADD-OPT/Push-

DIGing [33, 34], and centralized gradient descent. The weight

matrices are chosen as we discussed before and the algorithm

parameters are hand-tuned for best performance (except for

gradient descent where the optimal step-size is given by α =
2

µ+l
). We note that momentum improves the convergence

when compared to applicable algorithms without momentum,

while ADD-OPT/Push-DIGing are much slower because of

the eigenvector estimation, see Section III for details.
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Fig. 3: Performance comparison over undirected graph, G1, as a function of the condition numbers.
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Fig. 4: Performance comparison over directed graph, G2, as a function of the condition numbers.

B. Distributed Quadratic Programming

We now compare the performance of the aforementioned al-

gorithms over different condition numbers of the global objec-

tive function, chosen to be quadratic, i.e., F =
∑

i x
⊤Qix+

b⊤
i x, where Qi ∈ R

p×p is diagonal and positive-definite. The

condition number Q of F is given by the ratio of the largest

to the smallest eigenvalue of Q ,
∑n

i=1 Qi. We first provide

the performance comparison over undirected graphs in Fig. 3,

and then provide the results over directed graphs in Fig. 4.

In all of these experiments, we have hand-tuned the algorithm

parameters for best performance.

For small condition numbers, we note that gradient descent

is quite fast and the distributed algorithms suffer from a

relatively slower fusion over the graphs. Recall that the optimal

convergence rate of gradient decent is O((Q−1
Q+1 )

k). When the

condition number is large, gradient descent is quite conserva-

tive allowing fusion to catch up. Finally, we note that ABm,

with momentum, outperforms the centralized gradient descent

when the condition number is large. This observation is con-

sistent with the existing literature, see e.g., [50, 51, 53–55].

C. ABm and Average-Consensus

We now provide numerical analysis and simulations to show

that ABm-C, in Eq. (29), possibly achieves acceleration when

compared with surplus-consensus, in Eq. (30). To explain our

choice of α and β, we first note that the power limit of the

system matrix in Eq. (30), denoted as H, is [18]:

lim
k→∞

Hk = H∞ =


 W∞ −W∞

0np×np 0np×np


 ,

where W∞ = ( 1
n
1n1

⊤
n ) ⊗ Ip. It is straightforward to show

that Hk −H∞ = (H−H∞)
k
. Similarly, for the augmented

system matrix, H̃, in Eq. (29), we observe that

lim
k→∞

H̃k = H̃∞ =




W∞ −W∞ 0np×np

0np×np 0np×np 0np×np

W∞ −W∞ 0np×np


 ,

and it can be verified that H̃k − H̃∞ = (H̃ − H̃∞)k. We

therefore use grid search [60] to choose the optimal α∗

in H and the optimal α̃∗ and β̃∗ in H̃, which respectively

minimize ρ(H − H∞) and ρ(H̃ − H̃∞). Numerically, we

observe that it may be possible for the minimum of ρ(H̃−H̃∞)
to be smaller than that of ρ (H−H∞). The convergence speed

comparison between ABm-C and surplus consensus [18] is

shown in Fig 5 over a directed graph, G2.

0 500 1000 1500 2000
10-15

10-10

10-5

100

105

Fig. 5: Average-consensus via ABm-C (with momentum) and surplus con-
sensus (without momentum) implemented over a directed graph.
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VII. CONCLUSIONS

In this paper, we provide a framework for distributed opti-

mization that removes the need for doubly-stochastic weights

and thus is naturally applicable to both undirected and directed

graphs. Using a state transformation based on the non-1n

eigenvector, we show that the underlying algorithm, AB, based

on a simultaneous application of both RS and CS weights,

lies at the heart of several algorithms studied earlier that rely

on eigenvector estimation when using only CS (or only RS)

weights. We then propose the distributed heavy-ball method,

termed as ABm, that combines AB with a heavy-ball (type)

momentum term. To the best of our knowledge, this paper

is the first to use a momentum term based on the heavy-

ball method in distributed optimization. We show that ABm
subsumes a novel average-consensus algorithm as a special

case that unifies earlier attempts over directed graphs, with

potential acceleration due to the momentum term.
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