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Abstract: A connected dominating set (CDS) for a graph
�✂✁☎✄✝✆✟✞✡✠

is a subset
✄☞☛

of
✄

, such that each node in
✄✍✌✎✄☞☛

is adjacent

to some node in
✄☞☛

, and
✄☞☛

induces a connected subgraph. CDSs

have been proposed as a virtual backbone for routing in wireless

ad hoc networks. However, it is NP-hard to find a minimum con-

nected dominating set (MCDS). An approximation algorithm for

MCDS in general graphs has been proposed in the literature with

performance guarantee of ✏✒✑✔✓✖✕✘✗ where ✗ is the maximal nodal

degree [1]. This algorithm has been implemented in distributed

manner in wireless networks [2]–[4]. This distributed implementa-

tion suffers from high time and message complexity, and the per-

formance ratio remains ✏✙✑✚✓✖✕✘✗ . Another distributed algorithm

has been developed in [5], with performance ratio of ✛ ✁✢✜✣✠ . Both

algorithms require two-hop neighborhood knowledge and a mes-

sage length of ✤ ✁ ✗ ✠ . On the other hand, wireless ad hoc networks

have a unique geometric nature, which can be modeled as a unit-

disk graph (UDG), and thus admits heuristics with better perfor-

mance guarantee. In this paper we propose two destributed heuris-

tics with constant performance ratios. The time and message com-

plexity for any of these algorithms is ✥ ✁✢✜✣✠ , and ✥ ✁✢✜ ✓✧✦✩★ ✜✣✠ , re-

spectively. Both of these algorithms require only single-hop neigh-

borhood knowledge, and a message length of ✥ ✁✫✪✬✠ .
Index Terms: Ad hoc networks, connected dominating set, indepen-

dent set, leader election, spanning tree.

I. INTRODUCTION

Wireless ad hoc networks can be flexibly and quickly de-

ployed for many applications such as automated battlefield op-
erations, search and rescue, and disaster relief. Unlike wired

networks or cellular networks, no physical backbone infrastruc-

ture is installed in wireless ad hoc networks. A communication

session is achieved either through a single-hop radio transmis-

sion if the communication parties are close enough, or through
relaying by intermediate nodes otherwise. In this paper, we as-

sume that all nodes in a wireless ad hoc network are distributed

in a two-dimensional plane and have an equal maximum trans-

mission range of one unit. Each node has a unique ID. Schedul-

ing of transmission is the responsibility of the MAC layer. The
topology of such wireless ad hoc network can be modeled as

a unit-disk graph (UDG) [6], a geometric graph in which there

is an edge between two nodes if and only if their distance is at

most one (see Fig. 1).

Although a wireless ad hoc network has no physical back-

bone infrastructure, a virtual backbone can be formed by nodes

in a connected dominating set (CDS) of the corresponding UDG
[2]–[4]. In general, a dominating set (DS) of a graph
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Fig. 1. Modeling the topology of wireless ad hoc networks by unit-disk
graphs.

✁✱✄✲✆✳✞✴✠
is a subset

✄✡☛✶✵✷✄
such that each node in

✄✔✌✸✄✡☛
is adja-

cent to some node in
✄✡☛

, and a connected dominating set (CDS)

is a dominating set that also induces a connected subgraph. A

(connected) dominating set of a wireless ad hoc network is a

(connected) dominating set of the corresponding UDG. A vir-
tual backbone, also referred to as a spine, plays a very important

role in routing, where the number of nodes responsible for rout-

ing can be reduced to the number of nodes in the CDS. The

virtual backbone also plays an important role for broadcasting

and connectivity management in wireless ad hoc networks [2].
Broadcasting responsibility can be reduced to the nodes in the

CDS instead of all the nodes in the graph. To reduce the com-

munication overhead, to increase the convergence speed, and to

simplify the connectivity management, it is desirable to find a

minimum connected dominating set (MCDS) of a given set of
nodes.

The MCDS in general graphs has been studied in [1]. An
approximation preserving reduction from the set-cover problem

[7] to MCDS was given in [1], which implied that for any fixed✹✻✺✎✼✽✺ ✪
, no polynomial-time algorithm can find a connected

dominating set in general graphs within
✁✾✪✒✌ ✼ ✠❀✿❁✁ ✗ ✠ times

the MCDS unless ❂❄❃ ✵❆❅✂❇✘❈❊❉❋✞❍●■✜✶❏✝❑▼▲ ◆✳❖❀▲ ◆✟❖◗P❙❘☎❚
[8], where✗ is the maximum degree and

✿
is the harmonic function. Two

greedy heuristics with performance guarantee of ❯ ✿❱✁ ✗ ✠ ✑☞❯ and❲ ✜ ✗❋✑✷✏ respectively were also given in [1]. To find an MCDS

in a UDG is still NP-hard [6]. A
✪ ✹

-approximation centralized

algorithm for MCDS in UDG was first proposed in [9].

In this paper we concentrate on the construction of an CDS
in UDG. The construction of the CDS should be distributed and

simple. Since the networking nodes in wireless ad hoc networks

are very limited in resources, a virtual backbone should not only

be “thinner,” but should also be constructed with low communi-

cation and computation costs. In addition, the communication
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and computation❨ costs should be scalable as the wireless ad hoc
networks are typically deployed with large network size.

To achieve a performance ratio within a small constant fac-

tor, we take advantage of the property of the maximal indepen-

dent set (MIS), where the approximation ratio of any heuris-
tic for constructing an MIS in a UDG is at most ❩ . An MIS❬

is an independent DS, i.e., all pairwise nodes in
❬

are non-

adjacent. Thus the construction of an MIS is a construction of

a DS with approximation ratio of ❩ . In this paper we propose

a distributed heuristic for constructing the MIS. Before starting
the construction process each node is assigned a unique rank.

We use two approaches for rank assignment. In the first (ID-

Based) approach the rank of each node is its own ID. The time

and message complexity for this approach are both linear. In the

second (Level-Based) approach, an arbitrary spanning tree (ST)❇
is constructed before the rank assignment, then the rank of

each node is the ordered pair (level, ID), where level is the num-

ber of hops to the root in
❇

. The time and message complexity of

the Level-Based approach is ✥ ✁❭✜✣✠
and ✥ ✁❭✜ ✓✖✦❪★ ✜✣✠ respectively.

In this paper we propose two distributed heuristics for con-
structing the CDS. The first heuristic uses the ID-Based ap-

proach for rank assignment. This approximation algorithm has

a constant factor of
✪ ❯ . The second heuristic uses the Level-

Based approach for rank assignment, and has a constant factor

of ❫ . The second algorithm is a distributed implementation of
the centralized approximation algorithm in [9], which has a per-

formance ratio of
✪ ✹

. In our analysis, we show a tighter perfor-

mance ratio of ❫ , instead of
✪ ✹

. This algorithm uses the breadth

first spanning (BFS) tree as a building block for the construction
of an CDS. The distributed construction of any BFS tree has a

time and message complexity of ✥ ✁✢✜✶❴✬✠
. In our implementation,

we reduce this complexity overhead by replacing the BFS tree

with an arbitrary spanning tree. The message complexity of this

implementation is reduced to ✥ ✁✢✜ ✓✧✦✩★ ✜✣✠ , and the time complex-
ity is reduced to ✥ ✁❭✜✣✠

, while still maintaining a ratio of ❫ . This

complexity is dominated by the leader election procedure.

The remainder of this paper is organized as follows. In Sec-

tion II, we review related work . In Section III, we discuss the

properties of the maximal independent set (MIS), and provide
two approaches of the MIS construction. In Section IV we pro-

pose a distributed construction for the CDS with a performance

factor of
✪ ❯ . In Section V we give a distributed implementation

of the MCDS heuristic in [9], then we prove a tighter perfor-

mance ratio of ❫ . Finally, we conclude this paper in Section VI.

II. LITERATURE REVIEW

Distributed approximation algorithms for MCDS in wireless
ad hoc networks were first developed in a series of papers [2]–

[4]. These algorithms provided distributed implementations of

the greedy heuristics given in [1]. The CDS is referred to in

these papers as a spine, and functions as a virtual backbone. The

primary task of the spine is the route computation and mainte-
nance. Nodes in the spine maintain up to date information about

their domains (neighbors of the CDS nodes), and are used to

exchange such information between each other to store global

information of the network. The advantage of this strategy is

the storage of global information in fewer nodes than the num-

ber of nodes in the network, which reduces the access overhead
for this information, and reduces the update overhead. Accord-

ing to this strategy, it is highly desirable to reduce the size of

the CDS in order to minimize the access and update overhead.

The spine is not necessarily used to route packets in the network,

even though it can be used to provide a temporary backup routes
for fault tolerance.

We notice that these algorithms lack mechanisms to bridge
two consecutive stages. Specifically, individual nodes have no

way to tell when the next stage should begin. Furthermore,

these approximation algorithms suffer from high performance

ratio, and high implementation complexities, ✥ ✁❭✜✶❴❵✠
time and

messages. The construction of the MCDS requires ❯ -hop neigh-
borhood knowledge, which means larger message size, frequent

updates, slower convergence speed, and more memory.

In [5], a distributed algorithm was proposed for the construc-

tion of an approximation MCDS. This algorithm runs in two

phases. In the first phase, each node first broadcasts to its neigh-

bors the entire set of IDs of its neighboring nodes, and after re-
ceiving this adjacency information from all neighbors it declares

itself as dominator if and only if it has two nonadjacent neigh-

bors. These dominators form the initial CDS ❛ . In the second

phase, a node ❜ in ❛ is considered as locally redundant if it has

either a neighbor in ❛ with larger ID which dominates all other
neighbors of ❜ , or two adjacent neighbors with larger IDs which

together dominate all other neighbors of ❜ . The algorithm then

removes all locally redundant nodes from ❛ .

As indicated in [5], the theoretical performance of this algo-

rithm in terms of the number of nodes in the output CDS remains

unspecified. In this paper, we provide an instance showing a per-

formance factor of ✛ ✁✢✜✣✠
. Consider the instance when an even

number of nodes
✜

are evenly distributed over the two horizon-

tal sides of a unit-square. Each horizontal side has exactly ❝
nodes, and each node has exactly ❝ neighbors, one in the op-

posite horizontal side and the rest on the same horizontal side.

Any MCDS consists of a pair of nodes lying in a vertical seg-
ment. However, the CDS output by the algorithm in [5] consists

of all nodes. Indeed, for each node ❜ , the unique neighbor ly-

ing in the opposite horizontal side is not adjacent to all other

neighbors of ❜ . Thus, the initial CDS ❛ constructed by the first

phase consists of all nodes. In addition, no single neighbor of a
node ❜ can dominate all other neighbors of ❜ . Furthermore, if

a pair of neighbors of ❜ are adjacent, they must lie in the same

horizontal side as ❜ ✆ and therefore neither of them is adjacent to

the unique neighbor of ❜ lying in the opposite horizontal side.

Thus, the second phase can’t reduce the size of the initial CDS.
Consequently, the output CDS still consists of all nodes, and the

performance ratio for this algorithm is ✛ ✁❭✜✣✠
, exactly

✜❡❞ ❯ .

It is claimed in [5] that the total message complexity is✥ ✁❭✜ ✗ ✠
and the time complexity at each node is ✥❋❢☎✗ ❴❤❣

. A

more accurate message complexity is ✛ ✁ ❝ ✠
where ❝ is the

number of edges in the UDG, as each edge contributes two mes-

sages in the first phase. However, the ✥ ❢ ✗ ❴❤❣
time complexity is

not correct. In fact, in order to decide whether it is locally redun-

dant in the second phase, a node ❜ in the initial CDS may have

to examine as many as ✥ ❢ ✗ ❴ ❣
pairs of neighbors, and for each

pair of neighbors, as much as ✥ ✁ ✗ ✠
time may be taken to find

out whether such pair of neighbors together dominates all other



ALZOUBI et al.: DISTRIBUTED HEURISTICS FOR CONNECTED DOMINATING SETS... 3

neighbors✐ of ❜ . Therefore, the time complexity at each node
may be as high as ✥❋❢❥✗✸❦ ❣ , instead of ✥❋❢❥✗ ❴❤❣ . Note that ❝ and✗ can be as many as ✥ ❢ ✜✶❴ ❣ and ✥ ✁✢✜✣✠ respectively. Thus, the

message complexity and the time complexity of the distributed

algorithm in [5] are ✥❧❢ ✜✶❴❵❣ and ✥♠❢ ✜ ❦ ❣ respectively.

In the context of clustering and broadcasting, Stojmenovic et
al. [10] presented a distributed construction of the CDS. The

CDS consists of two types of nodes: The cluster-heads and the

border-nodes. The cluster-heads form an MIS. Several algo-

rithms for MIS were described in [10], which can be generalized

to the following framework:

♥ Each node has a unique rank parameter such as the ID
only [11], [12], an ordered pair of degree and ID [13], an

order pair of degree and location [10]. The ranks of all

nodes give rise to a total ordering of all nodes.♥ Initially, each node which has the lowest rank among
all neighbors broadcasts a message declaring itself as a

cluster-head. Note that such node does exist.♥ Whenever a node receives a message for the first time

from a cluster-head, it broadcasts a message giving up the

opportunity as a cluster-head.♥ Whenever a node has received the giving-up messages

from all of its neighbors with lower ranks, if there is any,

it broadcasts a message declaring itself as a cluster-head.

After a node learns the status of all neighbors, it joins the

cluster centered at the neighboring cluster-head with the lowest

rank by broadcasting the rank of such cluster head. The border-
nodes are those which are adjacent to some node from a different

cluster.

The implementation cost of these algorithms given in [10] de-

pends on the choice of the rank. If the rank is ID only, which
remains unchanged throughout the process, both the time com-

plexity and the message complexity of this algorithm are ✛ ✁♦✜✣✠ .
If the rank involves the degree, which would change dynami-

cally throughout the process, a significant amount of time and

messages have to be devoted to rank updating and synchroniza-
tion. The algorithms in [10] didn’t provide these implementation

details. But we believe that ✥ ❢ ✜✶❴ ❣ messages and time may be

required for rank updating and synchronization. Regardless of

the choice of the rank, all algorithms in [10] have ✛ ✁❭✜✣✠ approx-

imation factor. Such inefficiency stems from the non-selective
inclusion of all border-nodes.

A centralized heuristic with constant performance ratio of
✪ ✹

was developed for a UDG in [9], but centralized heuristics are

not practical for wireless ad hoc networks. Also the performance
ratio can be shown to have a tighter bound of ❫ instead of the

given ratio of
✪ ✹

. A key component of this heuristic is the BFS

tree. The distributed implementation of this component is a bot-

tleneck in the message complexity, as it may use ✥ ❢ ✜✶❴ ❣ mes-

sages.

III. DISTRIBUTED CONSTRUCTION FOR MIS

The minimum dominating set (MDS) in a UDG admits a

polynomial-time approximation scheme (PTAS) [14]. In other

words, for any fixed
✼q♣❁✹

, there exists a polynomial-time (in

the size of the nodes and
✼
) algorithm which computes a DS of

size at most
✪ ✑ ✼ times the minimum. The PTAS for MDS in a

UDG is based on a sophisticated use of the shifting strategy [15]

that was previously employed, among other results, for obtain-

ing PTASs for various optimization problems in planar graphs

[16]. However, this PTAS is not suitable for distributed imple-

mentation in wireless ad hoc networks, due to its implementa-
tion complexity.

An alternative approach is to construct an MIS. In general,

an independent set (IS) of a graph
�r✭s✁✱✄✲✆✳✞✡✠

is a subset of

pairwise non-adjacent nodes in
✄

, and a maximal independent

set (MIS) is an independent set such that any other node is adja-
cent to some node in the MIS. Obviously, any MIS is also a DS,

and conversely, any independent DS must be an MIS. An MIS

should intuitively have a small size as the nodes in an indepen-

dent set are “sparsely” distributed with certain distance between

any pair of nodes. Indeed, the size of any MIS in a UDG is at
most five times of the size of the MDS, as each node is adjacent

to at most five independent nodes [9].

In a general graph, an MIS can be constructed in the follow-

ing simple way: Initially all nodes are unmarked (white). While
there is some unmarked nodes, select an arbitrary unmarked

node t , mark it black and mark all its neighbors gray. When

all nodes are marked, all black nodes form an MIS. In a wire-

less ad hoc network each node has a unique rank parameter used

in the construction process. In this paper we consider two ap-
proaches for rank assignment. In the first (ID-Based) approach,

the rank of each node is simply its ID. A node with the lowest

ID among all its neighbors has the lowest rank. In the second

(Level-Based) approach, the rank of a node is an ordered pair of

the node’s level and ID. To define the rank in the Level-Based
approach, we first apply the distributed leader election algorithm

in [17], ✥ ✁❭✜✣✠ time complexity and ✥ ✁❭✜ ✓✧✦✩★ ✜✣✠ message com-

plexity, to construct a rooted spanning tree
❇

rooted at a nodet . After such construction is completed, each node identifies its

tree level with respect to
❇

(i.e., its graph distance in
❇

from the
root) as follows: The root first announces its level

✹
. Each other

node, upon receiving the level announcement message from its

parent in
❇

, obtains its own level by increasing the level of its

parent by one, and then announces this level. Each node also

records the levels of its neighbors in the UDG.
When a leaf node has determined its level, it transmits a

LEVEL-COMPLETE message to its parent. Each internal node

will wait till it receives this LEVEL-COMPLETE message from

each of its children and then forward it up the tree toward the

root. When the root receives the LEVEL-COMPLETE message
from all its children, each node knows the levels and IDs of its

own and its neighbors. The rank of each node is then given by

the ordered pair of level and ID of a node. The ranks of all nodes

are sorted in the lexicographic order. Thus the root, which is at

level 0, has the lowest rank.
The following principles can be used for distributed construc-

tion of the MIS:♥ Initially each node has the status candidate.♥ Any node which has the lowest rank among all neighbors

marks itself black and declares itself as a dominator by

broadcasting a DOMINATOR message.♥ Whenever a node receives a DOMINATOR message for

the first time, it marks itself gray and declares itself as a
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Fig. 2. ✉◗✈ lie in a sector of at most ✇②①④③ degree within the coverage range
of node ⑤②✈ .

dominatee by broadcasting a DOMINATEE message.♥ Whenever a node has received the DOMINATEE mes-
sages from all of its neighbors with lower ranks, if there is

any, it marks itself black and declares itself as a dominator

by broadcasting a DOMINATOR message.

If the Level-Based approach is used for rank assignment, and

a reporting of the MIS completion is necessary, a reporting pro-
cess can be performed as follow: When a leaf node is marked, it

transmits an MIS-COMPLETE message to its parent. Each in-

ternal node will wait till it receives this MIS-COMPLETE mes-

sage from each of its children and then forward it up the tree

toward the root.
Obviously, the time complexity for either approach is ✥ ✁✢✜✣✠ .

The message complexity is ✥ ✁✢✜✣✠ for the ID-Based approach,

and ✥ ✁❭✜ ✓✖✦❪★ ✜✣✠ for the Level-Based approach. Next, we bound

the number of black nodes in terms of the size of an MCDS,

denoted by ⑥②⑦⑨⑧ . Intuitively, the nodes in an independent set are
“sparsely” distributed with certain distance between any pair of

nodes. Indeed, it is well-known that in a UDG each node is

adjacent to at most five independent nodes. This immediately

implies that the size of any independent set is at most ❩❶⑩✩⑥②⑦◗⑧ .
Next, we show a stronger bound on the size of any independent
set.

Lemma 1: The size of any maximal independent set in a
UDG

�❷✭❍✁☎✄✝✆✟✞✡✠
is at most ❸❹⑩❺⑥②⑦⑨⑧❻✑ ✪ , where ⑥②⑦◗⑧ is the size of

MCDS.

Proof: Let ❛ be any maximal independent set of
✄

. Let✥✙❃ ❇ be any MCDS, and choose an arbitrary spanning tree
❇

of ✥✙❃ ❇ . Pick an arbitrary node in ✥✙❃ ❇ as the root of
❇

. Lett❪❼ ✆ t ❴ ✆ ⑩❽⑩❤⑩ ✆ t✩❾➀❿❺➁ be an arbitrary preorder traversal of
❇

. Let ❛✲❼
be the set of nodes in ❛ that are adjacent to t ❼ . For any ❯➃➂➄ ➂➅⑥②⑦⑨⑧ , let ❛✝➆ be the set of nodes in ❛ that are adjacent tot ➆ but none of t❪❼ ✆ t ❴ ✆ ⑩❤⑩❽⑩ ✆ t ➆✢➇ ❼ . Then ❛➈❼ ✆ ❛ ❴ ✆ ⑩❽⑩❽⑩ ✆ ❛✝❾➀❿④➁ form a

partition of ❛ . From the above discussion, ➉ ❛✲❼❙➉➊➂➋❩ . For any❯➌➂ ➄ ➂➋⑥②⑦◗⑧ , at least one node in t ❼ ✆ t ❴ ✆ ⑩❽⑩❤⑩ ✆ t❙➆❭➇ ❼ is adjacent

to t❙➆ . Thus ❛✝➆ lie in a sector of at most ❯❙❸ ✹ degree within the

coverage range of node t❙➆ (see Fig. 2). This implies that ➉ ❛✝➆✳➉◗➂❸ . Therefore,

➉ ❛➍➉ ✭
❾➀❿❺➁➎
➆✖➏ ❼ ➉ ❛➊➆②➉❊➂✷❩➐✑➑❸

✁ ⑥②⑦⑨⑧ ✌✷✪❵✠✝✭ ❸✽⑩❽⑥②⑦⑨⑧✶✑ ✪✩➒

This completes the proof. ➓

By definition, any pair of nodes in an MIS are separated by at
least two hops. However, a subset of nodes in an MIS ❛ may be

three hops away from its complementary subset in ❛ . This case

may appear when an ID-Based approach is used for rank assign-

ment. In the next theorem, we show that the MIS constructed by

using the Level-Based approach for rank assignment guarantees
that the distance between any pair of complementary subsets is

exactly two hops.

Theorem 1: Let ❛ be the set of MIS nodes constructed by

using the Level-Based approach for rank assignment. The dis-

tance between any pair of complementary subsets of ❛ is exactly

two hops.

Proof: Let ❛ ✭→➔ ❜❻➆↔➣ ✪ ➂ ➄ ➂✚↕❻➙ where ❜❻➆ is the
➄ ➁❭➛

node

which is marked black. For any
✪ ➂➑➜q➂➝↕ , let

✿✡➞
be the graph

over
➔ ❜ ➆ ➣ ✪ ➂ ➄ ➂➌➜◗➙ in which a pair of nodes is connected by

an edge if and only if their graph distance in
�

is two. We prove

by induction on ➜ that
✿✡➞

is connected. Since
✿ ❼ consists of

a single vertex, it is connected trivially. Assume that
✿✡➞ ➇ ❼ is

connected for some ➜➠➟♠❯ . When the node ❜ ➞ is marked black,
its parent in

❇
must be already marked gray. Thus, there is some

node ❜➡➆ with
✪ ➂ ➄➢✺ ➜ which is adjacent to ❜ ➞ ’s parent in

❇
.

So
✁ ❜❻➆ ✆ ❜ ➞❵✠ is an edge in

✿✡➞
. As

✿✡➞ ➇ ❼ is connected, so must

be
✿✡➞

. Therefore,
✿☞➞

is connected for any
✪ ➂➤➜➥➂➦↕ . The

connectedness of
✿✂➧

then implies that the bipartite separation
of ❛ is exactly two. ➓

IV. ID-BASED APPROACH FOR CDS

A. Overview of the Algorithm

The construction of the CDS in this section uses the MIS

generated by the ID-Based approach for rank assignment. A

variation of this algorithm was proposed in [18], but the Level-
Based approach was used for rank assignment. Thus, the perfor-

mance ratio was ❫ instead of
✪ ❯ . In this section the distributed

algorithm for CDS consists of three procedures: Leader Elec-

tion, MIS Construction, and Dominating Tree Construction. The

Leader Election procedure elects a node e.g., with the smallest
ID, as the leader. The distributed algorithm in [17] for leader

election can be adopted. This algorithm has a message com-

plexity of ✥ ✁✢✜ ✓✧✦✩★ ✜✣✠ . When the leader is found, it broadcasts

its identity to all the nodes in the network.

When a node receives the leader’s identity, it starts the MIS
construction procedure, which is described in the previous sec-

tion, and using the ID-Based approach for rank assignment.

Each node will either be colored with black (as a dominator)

or gray (as a dominatee). The leader will also select a black
node as the root of the dominating tree as follows: If the leader

is marked black, it selects itself as the root of the tree, otherwise

it selects one of the black neighbors to be the root.

The Dominating Tree Construction procedure is initiated by

the root to construct a tree containing all black nodes in addition
to some gray nodes. All nodes in this dominating tree form an

CDS. The root joins the dominating tree first, then it sends an in-

vitation message to all black nodes within ✏ -hop distance to join

the tree. When a node receives an invitation message, and all its

neighbors have been marked either black or gray, it responds to
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the message.➨ When each black node joins the dominating tree, it
will also send an invitation to all black nodes within ✏ -hop dis-

tance to join the tree. This invitation will be relayed through the

gray nodes within ❯ -hops distance. Each black node will join

the tree when it receives the invitation for the first time together

with the gray nodes which relays the invitation to itself. This
process should be repeated until all black nodes are in the tree.

B. Implementation Detail

Two types of messages will be used by all nodes: INVITE and

JOIN. An INVITE message is initiated by a black node upon

joining the dominating tree and relayed by gray nodes to solicit
other black nodes to join the dominating tree. It is a broadcast

message which consists of two fields: ➩❵➫ ✜✶➭ ➫❵➯ ❈❪❅ which repre-

sents the ID of the sender, and ➲◗⑥②⑦ which represents the number

of hops by which this message has been relayed. Since an in-

vitation is targeted for black nodes within 3-hop distance, the
field ➲⑨⑥②⑦ can only have three different values:

✹ ✆❽✪
or ❯ . A JOIN

message is initiated by a black node upon receiving the first in-

vitation and sent in the reverse direction along the path in which

the first invitation came along. It is a unicast message which

consists of the two fields: ➩❵➫ ✜✶➭ ➫❵➯ ❈➳❅ which represents the ID
of the sender, and ➯➵➫❵➸❽➫ ➄ t❊➫❵➯ ❈➳❅ which represents the ID of the

receiver.

A gray node will not relay each INVITE or JOIN message

it receives. Instead, for INVITE messages it only transmits at

most one message on behalf of all black neighbors and at most
one message on behalf of all ❯ -hop distance black nodes; for

JOIN messages it transmits at most once. To achieve this, each

gray node maintains two local variables:
➄ ✜ t ➄ ⑧✾➫❵➯ and ➸④⑥✬❜ ✜ ⑧✾➫❵➯ .

The variable ➸④⑥✬❜ ✜ ⑧✾➫❵➯ can have three different values:
✹ ✆❽✪

or ❯ .

It is initialized to
✹
. If it has transmitted an INVITE message ini-

tiated from a black neighbor, it will be set to 1. If the node has

transmitted an INVITE message initiated from a black neighbor

two hops away, it will be set to 2. The variable
➄ ✜ t ➄ ⑧✾➫❵➯ is ini-

tialized to null, and will hold the ID of the sender of the first

received INVITE message with ➲⑨⑥②⑦ ✭ ✹
or
✪

through the whole
construction process.

The dominating tree is initially empty. The root will be the

first one to join the tree. When a black node joins the dominating

tree, it will first send an INVITE message with ➲⑨⑥②⑦ ✭ ✹
. When a

gray node receives an INVITE message, it will ignore the mes-
sage if it is COMPLETE, or if either in the received INVITE

message ➲⑨⑥②⑦ ✭ ❯ or its local variable ➸④⑥✬❜ ✜ ⑧✾➫❤➯ ✭➺✪
. Other-

wise, if its local variable ➸④⑥✬❜ ✜ ⑧✾➫❵➯ ✭ ✹
, it sets the local variables➸④⑥✬❜ ✜ ⑧✾➫❵➯ ✭ ➲◗⑥②⑦➻✑ ✪

and
➄ ✜ t ➄ ⑧✾➫❤➯ ✭ ➩❵➫ ✜✶➭ ➫❤➯ ❈➳❅ , modifies the IN-

VITE message by resetting the ➩❵➫ ✜✶➭ ➫❵➯ ❈❪❅ field in the message
with its own ID and incrementing ➲◗⑥②⑦ by one, and then trans-

mits the INVITE message. If its local variable ➸④⑥✬❜ ✜ ⑧✾➫❵➯ ✭ ❯ ,

and the variable ➲⑨⑥②⑦ ✭ ✹
in the INVITE message, it sets the

local variable ➸❽⑥✬❜ ✜ ⑧✾➫❵➯ ✭ ➲⑨⑥②⑦➼✑ ✪
, modifies the INVITE mes-

sage by resetting the ➩❵➫ ✜✶➭ ➫❤➯ ❈➳❅ field in the message with its
own ID and incrementing ➲⑨⑥②⑦ by one, and then transmits the

INVITE message. However, if its local variable ➸❽⑥✬❜ ✜ ⑧✾➫❵➯ ✭ ❯ ,

and the variable ➲⑨⑥②⑦ ✭➋✪
in the INVITE message, the message

is ignored.

When a black node not in the dominating tree receives an

INVITE message for the first time, it puts the sender of the re-
ceived INVITE message as its parent, then sends back a JOIN

message in which the field ➩❤➫ ✜✶➭ ➫❵➯ ❈➳❅ is set to its own ID and

the field ➯✬➫✬➸④➫ ➄ t❊➫❤➯ ❈➳❅ is set to the value of ➩❵➫ ✜✶➭ ➫❵➯ ❈➳❅ in the re-

ceived INVITE message, and finally sends out a new INVITE

message. When a node, gray or black, receives a JOIN message
addressed to itself, it puts the sender of the JOIN message as its

child. In addition, when a gray node receives a JOIN message

addressed to itself for the first time, it also puts the node whose

ID is stored in its local variable
➄ ✜ t ➄ ⑧✾➫❵➯ as its parent, and then

sends a JOIN message in which the field ➩❵➫ ✜✶➭ ➫❵➯ ❈❪❅ is set to
its own ID and the field ➯➵➫✬➸④➫ ➄ t➳➫❵➯ ❈❪❅ is set to the local variable➄ ✜ t ➄ ⑧✾➫❵➯ .

The construction of the dominating tree is completed when all

black nodes have joined the dominating tree. A reporting pro-

cess if necessary, can be performed by constructing a spanning
tree rooted at the leader to notify the leader of the completion.

A gray node reports a COMPLETE message to its parent in the

spanning tree if it has received a COMPLETE message from

each child in the spanning tree. A black node reports a COM-
PLETE message to its parent in the spanning tree if it has re-

ceived a COMPLETE message from each child in the spanning

tree and itself has joined the dominating tree.

C. Analyses of the Algorithm

The next theorem proves the correctness of the algorithm, an-
alyzes its performance ratio and the message/time complexity.

Theorem 2: At the end of the third phase, all nodes in the
dominating tree form an CDS with size at most

✪ ❯❙⑥②⑦◗⑧↔✑✚✏ . In

addition, the algorithm has ✥ ✁❭✜ ✓✧✦✩★ ✜✣✠ message complexity and✥ ✁❭✜✣✠
time complexity.

Proof: First we claim that all black nodes will eventually

join the dominating tree. Suppose to the contrary that some

black nodes are outside the dominating tree. Let t be a closest

black node to the dominating tree. Then the distance between t
and the dominating tree is at most three hops. Therefore, t will
receive an INVITE message initiated from some black node in

the dominating tree, and would then join the dominating tree,

which is a contradiction. Second we notice that when each black

node other than the root joins dominating tree, it brings together

at most gray nodes to join the dominating tree at the same time.
As the number of black nodes is at most ❸➻⑩❥⑥②⑦⑨⑧➳✑ ✪

from Lemma

1, the number of nodes in the dominating tree is at most

✏✙⑩ ✁✾✪ ✑ ✁ ❸➳⑥②⑦◗⑧ ✠✫✠✝✭❍✪ ❯✩⑥②⑦◗⑧➽✑➑✏ ➒
The procedure Leader Election has ✥ ✁✢✜ ✓✧✦✩★ ✜✣✠ message com-

plexity and ✥ ✁✢✜✣✠
time complexity. The procedure MIS Con-

struction has ✥ ✁✢✜✣✠
message complexity and ✥ ✁✱✜✣✠

time com-

plexity. In the procedure Dominating Tree Construction, each

black nodes sends exactly one INVITE message and one JOIN

message; each gray node sends at most two INVITE messages,

and at most one JOIN message. If the report process is im-
plemented, an additional COMPLETE message is sent by each

node. Thus the third procedure has ✥ ✁✱✜✣✠
message complex-

ity and ✥ ✁✱✜✣✠
time complexity. Therefore, the algorithm has✥ ✁❭✜ ✓✧✦✩★ ✜✣✠ message complexity and ✥ ✁❭✜✣✠

time complexity,

which is dominated by the Leader Election procedure. ➓
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Fig. 3. State transition diagram.

V. LEVEL-BASED APPROACH FOR CDS

The construction of the CDS in this section uses the MIS gen-

erated by the Level-Based approach for rank assignment. This

algorithm can be divided into three phases: The Leader Elec-

tion Phase, the Level Calculation Phase, and the Color Marking
Phase. The distributed algorithm in [17] for leader election can

be adopted. This algorithm has ✥ ✁❭✜ ✓✧✦✩★ ✜✣✠ message complex-

ity, and ✥ ✁✢✜✣✠ time complexity. After the construction of the

spanning tree is completed, and when the root receives LEVEL-

COMPLETE messages from all its children, each node knows
the level numbers of all its neighbors. The pair (level, ID) of

a node defines the rank of this node. The ranks of all nodes

are sorted in the lexicographic order. Thus the leader, which

is at level 0, has the lowest rank. In the Color Marking Phase

all nodes are initially unmarked (white), and will eventually get
marked either black or gray. Two types of messages are used by

the nodes during this phase, the DOMINATOR message and the

DOMINATEE message. The DOMINATOR message is sent by

a node after it marks itself black, and the DOMINATEE mes-

sage is sent by a node after it marks itself gray. Both messages
contain the sender’s ID. The algorithm can be described as a

color markup process. Initially, the root marks itself black, and

then broadcasts to its neighbors a DOMINATOR message. All

other nodes act according to the following principles.♥ Whenever a white node receives a DOMINATOR mes-

sage from a white neighbor for the first time , it marks

itself gray and broadcasts the DOMINATEE message.♥ When a white node has received a DOMINATEE message
from each of its neighbors of lower rank, it marks itself

black and broadcasts the DOMINATOR message.♥ When a gray node receives a DOMINATOR message

for the first time from one of its children in
❇

, which

has never sent a DOMINATEE message, it remarks itself
black and broadcasts the DOMINATOR message.

Fig. 3 shows the state transition diagram of this phase. Even-

tually each node will be either black (a dominator) or gray (dom-
inatee). A reporting process, if necessary, can be performed to

notify the root of the completion. When a leaf node has deter-

mined its status, it transmits a report COMPLETE message to

its parent. Each internal node will wait till it receives this re-

port COMPLETE message from each of its children and then

forward it up the tree to the root. When the root receives the
report COMPLETE message from all its children then the tree

is completed.

Theorem 3: The size of any CDS in a UDG
�➾✭➾✁☎✄✝✆✟✞✡✠

generated by the above algorithm is at most ❫✙⑩❽⑥②⑦◗⑧✣✑ ✪
.

Proof: The black nodes can be classified into two types:
Those which are marked black from white, and those which are

first marked gray from white and then remarked black from gray.

Let ↕ be the number of levels of the BFS tree. For each level
✹ ➂➚ ➂✷↕ ✌➪✪

, let
❬❻➶

denote the black nodes of the first type at level➚
, and ❃ ➶ denote the black nodes of the second type at level

➚
.

Then
❬➽➹

consists only of the leader, and
❬ ❼ ✭ ❃ ➹✽✭ ❃ ➧ ➇ ❼ ✭❧➘

.

In addition, for each
✪ ➂ ➚ ➂✚↕ ✌ ❯ , each node in ❃ ➶ is the parent

of some node in
❬❻➶❥➴ ❼ ✆ and thus ➉ ❃ ➶ ➉➷➂❧➉ ❬❻➶❥➴ ❼ ➉ . Therefore,➬➬➬➬➬

➧ ➇ ❼➮➶ ➏ ➹ ❃
➶ ➬➬➬➬➬
✭
➧ ➇ ❼➎ ➶ ➏ ➹ ➉ ❃

➶ ➉ ✭
➧ ➇ ❴➎ ➶ ➏ ❼ ➉ ❃

➶ ➉

➂
➧ ➇ ❴➎ ➶ ➏ ❼ ➉

❬❻➶➀➴ ❼ ➉ ✭
➧ ➇ ❼➎ ➶ ➏ ➹ ➉

❬❻➶ ➉ ✌✷✪✘✭ ➬➬➬➬➬
➧ ➇ ❼➮➶ ➏ ➹

❬➡➶ ➬➬➬➬➬
✌✷✪✩➒

On the other hand, all nodes in ➱
➧ ➇ ❼➶ ➏ ➹ ❬ ➶ are independent, and

thus from Lemma 1, ➬➬➬➬➬
➧ ➇ ❼➮➶ ➏ ➹

❬ ➶ ➬➬➬➬➬ ➂✷❸❪⑥②⑦⑨⑧➽✑ ✪✩➒

This implies that the total number of black nodes is at most➬➬➬➬➬
➧ ➇ ❼➮➶ ➏ ➹

❬❻➶ ➬➬➬➬➬ ✑
➬➬➬➬➬
➧ ➇ ❼➮➶ ➏ ➹ ❃

➶ ➬➬➬➬➬ ➂✚❯ ✁ ❸❪⑥②⑦⑨⑧➽✑ ✪❵✠➊✌✃✪✘✭ ❫✩⑥②⑦◗⑧✶✑ ✪✩➒

Therefore, the approximation ratio of the above algorithm is at

most ❫ . ➓
Fig. 4 illustrates the algorithm for color marking phase. In the

graph, the IDs of the nodes are labelled beside the nodes, and

node 0 is the leader elected in the first (leader election) phase.

The solid lines represent the edges in the ST tree, and the dashed

lines represent all other edges in the UDG. The ordering of the
nodes by rank is given by 0, 4, 12, 2, 5, 8, 10, 3, 6, 9, 11, 1, 7.

A possible execution scenario is shown in Fig. 4(a)–(f), which

is explained below.

1. Node 0 marks itself black and sends out a DOMINATOR

message (see Fig. 4(a)).

2. Upon receiving the DOMINATOR message from node 0,

nodes 4 and 12 mark themselves gray, and then send out

the DOMINATEE messages (see Fig. 4(b)).
3. Upon receiving the DOMINATEE message from node 4,

node 2 marks itself black and send out a DOMINATOR

message, as all its low-ranked neighbors (node 4 only)

have been marked gray; and node 8 has to wait for node

5, since node 5 has a lower rank. Similarly, upon receiving
the DOMINATEE message from node 12, node 5 marks it

black and sends out a DOMINATOR message; and node

10 has to wait for node 5 (see Fig. 4(c)).

4. Upon receiving the DOMINATOR message from node 2,

node 3 marks itself gray and send out a DOMINATEE
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Fig. 4. An example of the algorithm for color marking.

message; and node 4 remarks itself black and sends out a

DOMINATOR message. Upon receiving the DOMINA-
TOR message from node 5, nodes 8, 9, 10 and 11 mark

themselves gray and send out DOMINATEE messages;

node 12 remarks itself black and sends out a DOMINA-

TOR message (see Fig. 4(d)).

5. Upon receiving the DOMINATEE messages from nodes
3 and 8, node 6 marks itself black and sends out a DOM-

INATOR message, as all its low-ranked neighbors (nodes

3, 8) have been marked gray (see Fig. 4(e)).

6. Upon receiving the DOMINATOR message from node 6,

nodes 1 and 7 mark themselves gray and send out DOM-
INATEE messages; node 8 remarks itself black and sends

out a DOMINATOR message (see Fig. 4(f)).

A. Correctness and Performance Analysis

The next theorem proves the correctness of the algorithm, an-

alyzes its performance ratio and its time and message complex-

ity.

Theorem 4: At the end of the third phase, all black nodes

form an CDS with size at most ❫✩⑥②⑦◗⑧❡✑ ✪
. In addition, the mes-

sage complexity of the algorithm is ✥ ✁❭✜ ✓✧✦✩★ ✜✣✠ , and the time

Table 1. Performance comparison.

[2]–[4] [5] [10] This paper

Approx. factor ❐❶❒✖❮Ï❰❺Ð❻Ñ❀Ò ❐➍❒✖Ñ❀Ò ❐➍❒✖Ñ❀Ò Ó➊Ô➍Õ✫✇
Msg. complexity ❐➠Ö✖Ñ❀×②Ø ❐ÙÖÚÑ❊×✟Ø ❐❶❒ÚÑ❀Ò – ❐➠Ö✧Ñ❊×✟Ø ❐➍❒✖Ñ➊❮Ï❰❺Ð⑨Ñ❊Ò
Time complexity ❐➠Ö✖Ñ × Ø ❐ÙÖ♦ÛÝÜ②Ø ❐❶❒ÚÑ❀Ò – ❐➠Ö✧Ñ × Ø ❐✂❒✧Ñ❀Ò
Ngh. knowledge two-hop two-hop single-hop single-hop

complexity is ✥ ✁✢✜✣✠
.

Proof: Obviously, all black nodes form a DS, as all nodes

are either marked gray or black and each gray node is adjacent
to at least one black node. To show that all black nodes are

connected, it is sufficient to prove that between any black node

and the root, there is a “black” path, i.e., a path consisting of

only black nodes. We prove it by contradiction. Assume to the

contrary and let ❜➽❼ be such a black node that is marked black
at the earliest time. Then ❜ ❼ must be of the first type, i.e., ❜ ❼
marks itself black from white. Let ❜ ❴ be parent of ❜ ❼ . Then by

the time ❜✶❼ marks itself black, ❜ ❴ is already marked gray. Let❜ ❦ be the black node whose DOMINATOR message causes ❜ ❴
to mark itself gray from white. Then ❜ ❦ is marked black earlier
than ❜ ❼ . From the selection of ❜ ❼ , there is a black path from❜ ❦ to the root. On the other hand, ❜ ❴ will eventually mark itself

black, upon receiving the DOMINATOR message either from❜ ❼ or some other child which has never sent a DOMINATEE

message previously. By concatenating the path ❜ ❼ ❜ ❴ ❜ ❦ and the
black path from ❜ ❦ to the root, we obtain a black path from ❜➽❼
to the root, which is a contradiction. To prove the performance

ratio follow the proof of theorem 3. Now we count the total

number of messages. The message complexity of the first phase

is ✥ ✁✢✜ ✓✧✦✩★ ✜✣✠ . The message complexity of the second phase is✥ ✁❭✜✣✠
. The message complexity of the third phase is also ✥ ✁✢✜✣✠

,

as each gray node or black node of the first type sends exactly

one message and each black node of the second type sends two

messages. Thus the total message complexity of the algorithm
is ✥ ✁❭✜ ✓✧✦✩★ ✜✣✠ . The time complexity for the first phase is ✥ ✁✢✜✣✠
[17]. It is obvious also that the time complexity for the second

and the third phase is ✥ ✁❭✜✣✠
. ➓

VI. CONCLUSION

In this paper, we investigated three known distributed approx-

imation algorithms for MCDS. And then we presented our own
algorithms. In the ID-Based algorithm with approximation fac-

tor of
✪ ❯ , each node only maintains knowledge about its own ID

and the IDs of all its neighbors. In the Level-Based algorithm

with approximation factor of ❫ , each node maintains knowledge

about its own ID and level, and the IDs and levels of all its neigh-
bors. The performance comparison of these algorithms is listed

in Table 1. From this table, we can conclude that our algorithms

outperform the existing algorithms.

Finally, we appreciate the valuable comments from the re-

viewers.
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