
DISTRIBUTED HIL SIMULATION FOR
THE DESIGN OF DECENTRALIZED

CONTROL STRUCTURES

Ralf Stolpe, Oliver Oberschelp

Abstract: In technical systems of the future the combination of

local components from different technical disciplines with local

information processing will increase. One example is a series

hybrid vehicle. It consists of an auxiliary power unit. e.g.. an

internal combustion engine. and a generator coupled to the crank

shaft of the combustion engine. a battery and a drive unit with two

electric motors. Each of these vehicle units has its own electronic

control unit. Design and interplay of distributed intelligent

aggregates in future technical systems will gain ever more

importance. Parallelisation will be used not only for the purpose

of reaching real time. but also for structuring purposes. The aim

of mechatronics is the overall design of those systems. A toolset

which supports the distributed HIL simulation as part of the

mechatronic design cycle will be presented.

1. Mechatronic Systems

The mechatronic design cycle is characterized by taking into account and integrating

mechanics, electronics, and information processing in the design process. For

complex mechatronic systems a promising procedure is the decomposition of the

entire system according to physically reasonable criteria. To describe the function of

such combined subsystems we use the expression "mechatronic function" (Luckel

1997). Each discipline contributes its own specific function to the mechatronic

function. Many technical systems boast an inherent physical parallelism, their setup

showing parallel structures. Maintenance of the inherent physical parallelism in the

design process means the design of parallelized mechatronic functions.

Therefore, such subsystems can be called Mechatronic Function Modules (in short:

MFMs) (Honekamp 1997). An MFM consists of actuators, sensors, continuous and

discrete information processing, and interfaces for mechanical coupling and

information exchange.

For the hybrid vehicle two subsystems are obvious: one subsystem for the

generation of electric energy, the MFM "generate energy", and another for driving the

vehicle wheels, the MFM "drive wheels". The mechatronic functions "generate

energy" and "drive wheels" and their assigned subsystems of the hybrid vehicle are

F. J. Rammig (ed.), Distributed and Parallel Embedded Systems

© Springer Science+Business Media New York 1999

98 Distributed HIL Simulation for the Design of Decentralized Control Structures

only coupled via the battery. This characteristic allows the decoupling of the

mechatronic functions. A mechanical coupling would complicate parallel decen

tralized control arrangements. An increasing control effort must be invested to

develop a suitable decentralized control concept for these systems.

generate energy

drive wheels

Figure 1. Functional decomposition of the series hybrid vehicle

2. IPANEMA Toolset

If you want to apply the MFM structuring approach on the realization, two features

are required:

- comfortable, well-designed modelling tools which allow to arrange the components

from different disciplines in a flexible way. One of the approaches to a structuring of

the modelling process is represented by the MOOMo concept (Mechatronic Object

oriented Modelling) (Wolf 1998). MOOMo allows to model systems on the basis of

their respective discipline-specific physical model. For realization, the concept

combines elements from object-orientation and from graph theory, thus providing the

condition to integrate formalisms for the derivation of the mathematical model (Hahn

1998);

- a strategy to organize parallel processes within a system and a software library

supported by tools that can be used to make up distributed real-time processing. The

IPANEMA toolset described in the following is designed to support this procedure.

In the mechatronic design cycle the step-by-step testing and realization of sub

systems (Hardware-in-the-Loop) take an important position. The term "Distributed

Hardware-in-the-Loop Simulation" means that one or more parts of a system actually

exist on a testbed and that the other parts of the system are simulated on a multi

processor hardware in real time. This requires a suitable hardware support with

scalable and manageable hardware components for the tasks of computing and

coupling real technical systems.

The software must also correspond to the demands on scalability and manage

ability. This could be achieved through a functional decomposition of the software.

One part is the coupling of real technical components, mandatory for digital control

Distributed HIL Simulation for the Design of Decentralized Control Structures 99

and HIL. Another part is the computation, e.g., the solution of the system ODEs via

numerical integration. Because of the application to different technical systems, a

reusable infrastructure is important. An easy exchange of subsystems and coupling of

different technical components must be possible and the supervision of real-time

conditions guaranteed. Handling tasks that are not under hard real-time conditions

will fall to administrative parts. There are special demands on the administrative tasks

since they should be designed for parallel simulation. Important features are the

simultaneous start and stop of the subsystem simulation and the simultaneous

alteration of distributed parameters online. Data-logging of distributed variables is

necessary for visualization and documentation purposes.

All these points were taken into account in the design of the distributed simulation

platform IPANEMA (Integration Platform for Networked Mechatronic Applications)

(Honekamp 1998, Stolpe 1998). IPANEMA is a library and consists of simple

elements for assembling complex mechatronic applications. Parallelized computing

applications become more manageable by if only a few basic element types are

assembled. Furthermore, the concept will be more transparent to application engineers

who like to become familar with the concept.

In order to make available defined interfaces and satisfactory portability,

IPANEMA disposes of a software layer between the real-time operating system and

the information processing of the mechatronic application. This software layer was

introduced to encapsulate operating-system services against their application and vice

versa.

Physical Transport Medium

Figure 2. Software layers for the distributed mechatronic application

Additionally the application does not need to "know" specific details of the

underlying basic services. This leads to a platform-independent application code and

portability. The hardware supported up to now is a cluster of workstations with the

operating systems Unix or NT, transputer networks with a hardware-encoded mini

operating system and USAP (Power PC 604/transputer) networks (ETAS 1996).

There are two different implementations on the USAP: one version uses the transputer

100 Distributed HIL Simulation for the Design of Decentralized Control Structures

as the owner of the control flow and the PPC with a small operating system kernel on

it as a coprocessor for the computational task. The other version was designed and

implemented in the METRO project (Kleinjohann 99). Therefore the operating system

PEACE (Process Execution And Communication Environment) on the PPC and the

real-time communication system DREAMS (Distributed Real-Time Management

System) on the transputer were used (METRO 1998).

Because of the above-mentioned functional decomposition of the software,

IPANEMA consists of the following objects: the first object is responsible for the

processing of the application-relevant data. If implemented on a real-time hardware,

such calculator processes are able to perform real-time data processing. These

processes have interfaces among a set of such processes in order to exchange data

needed for computation. The number of interfaces is determined by the particular

application and therefore not standardized by the concept.

The second object with the name adaptor is employed for the coupling of technical

components. This means the coupling of real technical components to a calculator

process or to a set of calculator processes. As discussed above, real-time ability is

mandatory for adaptor processes. Both adaptors and calculators are quite busy in

normal applications. Therefore it seems reasonable to install additional processes in

order to support the real-time tasks wherever possible. For that purpose the assistant

process class was created. This process is employed for the administration of the

calculators and adaptors, e.g., to start and stop the simulation and to alter parameter

values online. As each calculator/adaptor has its exclusively accessible assistant,

another process class is needed to moderate the set of assistants.

Figure 3 shows an architectural survey of the IPANEMA toolset with the objects

mentioned. The objects are summed up in the IPANEMA library.

IPANEMA toolset

IIPanema Runtime Workbench

I API for Visual Age, Mallab, Python I

Library

Parallel SubsySlem Generation

I Periphery 10 Generalion

User

Graphical User Interface

IPANEMAAPI

~ ==========~~====~
Moderator Interface Object

Assistant Assistant Assistant ~

Calculator Calculator Calculator ~

Adaptor Adaptor Interface Objects

Real Technical System

Figure 3. The Ipanema toolset

Distributed HIL Simulation for the Design of Decentralized Control Structures 101

The moderator of the distributed simulation is the interface object to the user input

level. On the user input level, we have an API to Visual Age, Matlab, and Python. A

graphical user interface with comfortable plotting features is also part of the toolset.

One important property of the moderator is net-transparency. If the user is willing to

alter a system parameter or to trace variables during simulation, the moderator is able

to determine the physical processor where the particular variable is stored. It is not the

user's responsibility to know the physical residence of the particular variable.

Also the adaptor could be seen as an interface object to the technical system. The

entire information-processing unit is distributed to a set of calculatos and adaptors.

This means that each calculator processes a part of the entire system. The adaptors are

generated from 110 description objects by the tool ElBaCo (see chapter 4). The

calculators and adaptors are located on the level of hard real-time conditions. The

calculators are generated from O-DSS (Hahn 96) by a tool concatenation for

distributed simulation-code generation. This tool is still under development and will

be integrated into Visual-MOOMo. These are the basic components to manage a

distributed simulation.

3. Series Hybrid Vehicle

Hybrid vehicles allow to combine the advantages of the conventional drive (high

performance and operating range) with those of the electric one, e.g., the opportunity

of emission-free operation and regenerative braking. Figure 4 shows the basic

components of a series hybrid vehicle. The hybrid vehicle consists of two electric

traction motors that directly drive the two rear wheels. These motors receive their

energy either from a Nickel-Cadmium battery or from a generator driven by an

internal combustion engine. This aggregate is called the Auxiliary Power Unit, or just

APU.

Spark· Ignition Engine

(M e< · , edE ~· BE "l 1.8 I. 90 kW)

AUXIliary Power Unit

Thyristor·Controlled

DC Motors Tandem Motor

as Elec:trlc Brakes (Mannesmann'Sachs, 2 x 27 kW (perm.)

Drive System

2 x 30 kW (max.)

2x650Nm

Figure 4. Arrangement of the components on the testbed

102 Distributed HIL Simulation for the Design of Decentralized Control Structures

On the left-hand side of Figure 4, you see a photo of the APU with the combustion

engine on our testbed. It is a Mercedes-Benz 1.8 liter spark-ignition engine from the

current C-Class. It has a maximum power of 90 kW at 6000 rpm. The maximum

torque is 170 Nm. The generator is a permanent-magnet synchronous machine by

Mannesmann-Sachs with 53 kW. For a compact construction the rotor of the

generator is directly coupled to the crank shaft of the combustion engine. The right

hand side shows the drive system of our configuration with the tandem motor in the

middle and the electric brakes. The tandem motor has a maximum power of 2x30 kW

and a maximum torque of 2x650 Nm. The electric brakes are inserted to act like the

real vehicle with inertia (W1iltermann 1998).

The testbed control is implemented on the distributed real-time PPC hardware

mentioned before (Stolpe 1998). Figure 5 shows the testbed configuration with the

parallelized mechatronic functions "generate energy" and "drive wheels". Several

more parallel functions can still be indicated, but for more clarity, only these two will

be considered in the following. The parallel control flows of the mentioned

mechatronic functions are shown in Figure 5, right hand.

• • •

"drive wheels"

Drive System Managem.

Electric Motor

Torque Control

Electric Motor

Torque Control

-{ ''generate energy")

Energy Management

Battery Management

APU Management

Generator

Speed Control

Electric- Electric·
Mota Mota

l\attery

Internal

Spark-Ignition Engine : ~ :"
Throttle Control , ngo

• • •

Figure 5. Testbed configuration with parallel control flows and distributed HIL

simulation with the IPANEMA objects

The energy management can be divided into the auxiliary power unit management

and the battery management. The former can be divided into the spark-ignition Engine

Distributed HIL Simulation for the Design of Decentralized Control Structures 103

control and the permanent-magnet generator control. The drive system consists of the

two electric motor controllers.

In the vehicle the entire functionality will be realized by distributed controller

units. The controllers working in parallel can be simulated on a parallelized hardware

already at the design stage. For this and the realization of parallel mechatronic

functions, the IPANEMA toolset can be used.

The energy management with the auxiliary power unit management and the battery

management is assigned to one calculator and two adaptors. The adaptors are coupled

to the throttle unit and to the ECU of the internal combustion engine. The drive

system management is also assigned to one calculator and one adaptor. This adaptor is

responsible for the access to the electric motor control units.

Already on the lowest control level, i.e., on the ECU level, you can find the speed

control for the generator and the torque control of the electric motors. The task of this

HIL simulation was the development of the APU management and the drive system

management. Yet, this concept can also be applied to the development of the low

level control functions, e.g., the electric motor torque control. After testing and

optimizing the drive system management the calculator with the developed control

algorithm and the assigned adaptor could be ported to an ECU of their own.

4. Coupling of Periphery Hardware

The transition of a simple simulation to a Hardware-In-The-Loop simulation requires

the embedding of real technical systems into the simulation environment. As a first

step the drive system management and the electric motors with their corresponding

controllers can be simulated completely. To link the technical process, one or several

simulated subsystems can be extracted from the entire system and replaced by a real

system. In this case, this means for the simulation platform IP ANEMA that a

calculator process has to be replaced by an adaptor process. I-Iowever, this is only a

simplified representation. In reality, the corresponding peripheral boards must of

course be equipped for the measurement and excitation of the real process.

With this additional hardware higher demands on the coupling process arise than

on the calculator. Calculators could be generated automatically from the model

description. For the generation of the adaptor code, additional information about the

peripheral boards and the mounted technical process is required. These information

are usually not included in the physical model description. Answers are required for

the following questions:

• Which peripheral board is employed?

• Which connection of the board is employed?

• To which physical quantity does the measured value correspond?

In the IPANEMA toolset these informations are summed up in one or more hardware

coupling descriptions (HCD).

104 Distributed HIL Simulation for the Design of Decentralized Control Structures

However, even further information is required for embedding into the IPANEMA

topology. The main topics are the following:

• Which channels to which calculators are necessary?

• Which measured and controlled value is transmitted via which channel?

These are the coupling informations, which are summarized in the process-coupling

description (PCD).

5. Element-based Compiler for Argument-depending Problems

of Code Generation

Since the adaptor code depends strongly on the inserted peripheral boards and, what is

more, since these may change often, a flexible, fast, adaptable code generation is

required. This demand is met by an instrument developed within the context of the

METRO project. It is called ElBaCo.

The name ElBaCo stands for element-based compiler for argument-depending

problems of code generation (Oberschelp 1998).

Customer tasks :

~ Define syntax for user input

Necessary lor :

New Penphery-Board

New Processor-Borad

~ User input: Model interface to technical system

N ecessa ry for :

New HIL Simulation

~ Set up rules for evaluation of user inputs

in the defined syntax

Necessary for :

New Functionality

New Periphery-Board

New Processor-Borad

Figure 6. The working method of EIBaCo

•

•

•

EIBaCo

grammatical sections:

Define block language

Define valid structures

Read in user input blocks

Extract interface information

Interpret information

Evaluate rules

generate C-Code

Distributed HIL Simulation for the Design of Decentralized Control Structures 105

ElBaCo is a simple tool for the generation of ASCII source code. It uses a

configurable block language which is assembled from predefined grammatical

elements as input language. The relevant information is extracted by an interpreter

from the input language and code created according to it.

ElBaCo puts moderate demands on the computer hardware and the operating

system and is easily portable onto different platforms since it was implemented

completely in ANSI-C. It is a flexible compiler since its input language is adaptable.

The syntax is defined by selection from fixed grammatical constructs and the

definition of parameters, variables, and constants. These information are stored in a

text file which represents the language specification. The interface information

contained in the user input file is structured by the syntax and transformed to a data

structure. The information in the data structure could be evaluated by an integrated

interpreter and used for the generation of code. The syntax definition and the

interpretative evaluation rules are written only once for the compilation tasks. The

task is finished by an expert for the code to be generated. The user will only use the

syntax definition and evaluation. See Figure 6 for the user tasks and the grammatical

sections of ElBaCo.

ElBaCo is implemented by means of a special instrument for the generation of

compilers. This programming environment of the name ELI (Environment for

Language Implementation) is a joint effort of the University of Paderborn, the

University of Colorado (USA), and the James Cook university (Australia) (ELI 90).

It offers complete solutions for commonly encounted language-implementation

subtasks. ELI contains libraries of reusable specifications, allowing to elaborate high

quality implementations from simple problem descriptions. The environment is

problem-oriented instead of tool-oriented, which is the common working method in

other tools. The user describes the problem to be solved and then ELI automatically

employs the tools and components needed for that particular problem. The compiler

construction set is an integrated system, and as a result it generates a complete set of
C modules that leads to an easy portability to different platforms.

6. Conclusion

The recognition and installation of parallel control flows are an essential starting point

for the design of decentralized control concepts of mechatronic systems. Installation

of those subsystems is often physically motivated. This was illustrated by the testbed

of the series hybrid drive train. For the realization of the distributed HIL simulation,

the IP ANEMA toolset was used. The user is supported by the flexible code

generating tool ElBaCo for the coupling of real components on the testbed, by an

interpretative user interface and also by a comfortable graphical user interface.

106 Distributed HIL Simulation for the Design of Decentralized Control Structures

References

dSPACE GmbH. 1991. DSP-CITpro Hardware. Paderborn, Germany.

ETAS GmbH & Co. KG. 1996. USAP Transputer Module. ETAS PC604-2000 V2

Documentation. Stuttgart, Germany.

Hahn M., Liickel 1., Naumann R., Rasche R. "Ein Objektmodell fiir den Mechatronikentwurf."

ASIM'98. 12. Symposium Simulationstechnik (Ziirich, Switzerland., Sept. 15-18, 1998).

Hahn M., Meier-Noe U. 1996. "Classification in the Object-Oriented Modelling Language

Objective-DSS, Exemplified by Vehicle Suspensions." International Symposium on

Computer-Aided Control. IEEE. (Dearborn, MI, USA, Sept. 15-17, 1996).

Honekamp U. 1998. IPANEMA - Verteilte Echtzeit-Informationsverarbeitung in mechatro

nischen Systemen. Diss., Mechatronics Laboratory Paderborn, Germany.

Jaker K.-P., Klingebiel P., Lefarth U., Liickel J., Richert 1., Rutz R. 1991. "Tool Integration by

Way of a Computer-Aided Mechatronics Laboratory (CAMeL)." 5th IFACIIMACS

Symposium on CADCS 91 (Swansea, UK, 1991).

Kleinjohann B., Rammig F., Schmitfranz B.-H., SchrOder-Preikschat W., Stolpe R., Walter

mann P. 1999: "Parallel Computing for the Design and the Implementation of Mechatronic

Systems: Lessons Learned from the METRO Project." 3rd International HEINZ NIXDORF

SYMPOSIUM on Mechatronics and Advanced Motion Control (Paderborn, Germany, May

27 - 28,1999).

Liickel J., Wallaschek 1. 1997. "Functional Modelling and Simulation in Mechanical Design

and Mechatronics." 2nd MATHMOD (Vienna, Austria, Feb. 5-7,1997).

Honekamp U., Stolpe R., Naumann R., Liickel 1. 1997. "Structuring Approach for Complex

Mechatronic Systems." 30th ISATA Conference (Florence, Italy, June 16-19, 1997).

METRO 1998. "Einsatz massiv paralleler Rechner beim Entwurf und der Realisierung

komplexer mechatronischer Systeme." AbschluBbericht BMBF Verbundprojekt METRO.

Daimler-Benz AG, ETAS GmbH, GMD-FIRST, Mannesmann-Sachs AG, TU Chemnitz

(IfM), Uni-GH Paderborn (C-LAB, MLaP, HNI).

Oberschelp O. 1998. "Design and Implementation of a Flexible Code Generator to Couple

Technical Processes in Hardware-in-the-Loop Simulations" (in German). Internal Paper,

University of Paderborn, Mechatronics Laboratory Paderborn, Germany.

Stolpe R., Zanella M.C. 1998. "A Distributed Hardware-in-the-Loop Simulation Environment

in Use on a Testbed of a Series Hybrid Drive." ESM 98, 12th European Simulation

Multiconference (Manchester, UK, June 16-19, 1998).

Stolpe R. 1997. "Verteilte Simulation und Realisierung mechatronischer Systeme am Beispiel

einer hybriden Roboterregelung". PEARL 97, Workshop iiber Realzeitsysteme (Boppard,

Germany, Nov. 27-28, 1997).

ELI 1990. Ubersetzerbau, Band 3.3. Handbuch der Informatik, R. Oldenburg Verlag, Miinchenl

Wien,1990.

Waltermann P., Neuendorf N. 1998. "A Testbed for the Design and the Optimisation of a Series

Hybrid Drive Train". International Conference on Combustion Engines and Hybrid Vehicles

(London, UK, April 28-30, 1998).

Wolf M. 1998. "Visual MOOMo - A Graphical Object-Oriented Modelling Environment for

the Design of Mechatronic Systems". MECHATRONICS 98, 6th UK Mechatronics Forum

International Conference (Mount Billingden, Sweden, Sept. 9-11, 1998).

