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Abstract: In technical systems of the future the combination of 

local components from different technical disciplines with local 

information processing will increase. One example is a series 

hybrid vehicle. It consists of an auxiliary power unit. e.g.. an 

internal combustion engine. and a generator coupled to the crank 

shaft of the combustion engine. a battery and a drive unit with two 

electric motors. Each of these vehicle units has its own electronic 

control unit. Design and interplay of distributed intelligent 

aggregates in future technical systems will gain ever more 

importance. Parallelisation will be used not only for the purpose 

of reaching real time. but also for structuring purposes. The aim 

of mechatronics is the overall design of those systems. A toolset 

which supports the distributed HIL simulation as part of the 

mechatronic design cycle will be presented. 

1. Mechatronic Systems 

The mechatronic design cycle is characterized by taking into account and integrating 

mechanics, electronics, and information processing in the design process. For 

complex mechatronic systems a promising procedure is the decomposition of the 

entire system according to physically reasonable criteria. To describe the function of 

such combined subsystems we use the expression "mechatronic function" (Luckel 

1997). Each discipline contributes its own specific function to the mechatronic 

function. Many technical systems boast an inherent physical parallelism, their setup 

showing parallel structures. Maintenance of the inherent physical parallelism in the 

design process means the design of parallelized mechatronic functions. 

Therefore, such subsystems can be called Mechatronic Function Modules (in short: 

MFMs) (Honekamp 1997). An MFM consists of actuators, sensors, continuous and 

discrete information processing, and interfaces for mechanical coupling and 

information exchange. 

For the hybrid vehicle two subsystems are obvious: one subsystem for the 

generation of electric energy, the MFM "generate energy", and another for driving the 

vehicle wheels, the MFM "drive wheels". The mechatronic functions "generate 

energy" and "drive wheels" and their assigned subsystems of the hybrid vehicle are 
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only coupled via the battery. This characteristic allows the decoupling of the 

mechatronic functions. A mechanical coupling would complicate parallel decen

tralized control arrangements. An increasing control effort must be invested to 

develop a suitable decentralized control concept for these systems. 

generate energy 

drive wheels 

Figure 1. Functional decomposition of the series hybrid vehicle 

2. IPANEMA Toolset 

If you want to apply the MFM structuring approach on the realization, two features 

are required: 

- comfortable, well-designed modelling tools which allow to arrange the components 

from different disciplines in a flexible way. One of the approaches to a structuring of 

the modelling process is represented by the MOOMo concept (Mechatronic Object

oriented Modelling) (Wolf 1998). MOOMo allows to model systems on the basis of 

their respective discipline-specific physical model. For realization, the concept 

combines elements from object-orientation and from graph theory, thus providing the 

condition to integrate formalisms for the derivation of the mathematical model (Hahn 

1998); 

- a strategy to organize parallel processes within a system and a software library 

supported by tools that can be used to make up distributed real-time processing. The 

IPANEMA toolset described in the following is designed to support this procedure. 

In the mechatronic design cycle the step-by-step testing and realization of sub

systems (Hardware-in-the-Loop) take an important position. The term "Distributed 

Hardware-in-the-Loop Simulation" means that one or more parts of a system actually 

exist on a testbed and that the other parts of the system are simulated on a multi

processor hardware in real time. This requires a suitable hardware support with 

scalable and manageable hardware components for the tasks of computing and 

coupling real technical systems. 

The software must also correspond to the demands on scalability and manage

ability. This could be achieved through a functional decomposition of the software. 

One part is the coupling of real technical components, mandatory for digital control 
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and HIL. Another part is the computation, e.g., the solution of the system ODEs via 

numerical integration. Because of the application to different technical systems, a 

reusable infrastructure is important. An easy exchange of subsystems and coupling of 

different technical components must be possible and the supervision of real-time 

conditions guaranteed. Handling tasks that are not under hard real-time conditions 

will fall to administrative parts. There are special demands on the administrative tasks 

since they should be designed for parallel simulation. Important features are the 

simultaneous start and stop of the subsystem simulation and the simultaneous 

alteration of distributed parameters online. Data-logging of distributed variables is 

necessary for visualization and documentation purposes. 

All these points were taken into account in the design of the distributed simulation 

platform IPANEMA (Integration Platform for Networked Mechatronic Applications) 

(Honekamp 1998, Stolpe 1998). IPANEMA is a library and consists of simple 

elements for assembling complex mechatronic applications. Parallelized computing 

applications become more manageable by if only a few basic element types are 

assembled. Furthermore, the concept will be more transparent to application engineers 

who like to become familar with the concept. 

In order to make available defined interfaces and satisfactory portability, 

IPANEMA disposes of a software layer between the real-time operating system and 

the information processing of the mechatronic application. This software layer was 

introduced to encapsulate operating-system services against their application and vice 

versa. 

Physical Transport Medium 

Figure 2. Software layers for the distributed mechatronic application 

Additionally the application does not need to "know" specific details of the 

underlying basic services. This leads to a platform-independent application code and 

portability. The hardware supported up to now is a cluster of workstations with the 

operating systems Unix or NT, transputer networks with a hardware-encoded mini 

operating system and USAP (Power PC 604/transputer) networks (ETAS 1996). 

There are two different implementations on the USAP: one version uses the transputer 
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as the owner of the control flow and the PPC with a small operating system kernel on 

it as a coprocessor for the computational task. The other version was designed and 

implemented in the METRO project (Kleinjohann 99). Therefore the operating system 

PEACE (Process Execution And Communication Environment) on the PPC and the 

real-time communication system DREAMS (Distributed Real-Time Management 

System) on the transputer were used (METRO 1998). 

Because of the above-mentioned functional decomposition of the software, 

IPANEMA consists of the following objects: the first object is responsible for the 

processing of the application-relevant data. If implemented on a real-time hardware, 

such calculator processes are able to perform real-time data processing. These 

processes have interfaces among a set of such processes in order to exchange data 

needed for computation. The number of interfaces is determined by the particular 

application and therefore not standardized by the concept. 

The second object with the name adaptor is employed for the coupling of technical 

components. This means the coupling of real technical components to a calculator 

process or to a set of calculator processes. As discussed above, real-time ability is 

mandatory for adaptor processes. Both adaptors and calculators are quite busy in 

normal applications. Therefore it seems reasonable to install additional processes in 

order to support the real-time tasks wherever possible. For that purpose the assistant 

process class was created. This process is employed for the administration of the 

calculators and adaptors, e.g., to start and stop the simulation and to alter parameter 

values online. As each calculator/adaptor has its exclusively accessible assistant, 

another process class is needed to moderate the set of assistants. 

Figure 3 shows an architectural survey of the IPANEMA toolset with the objects 

mentioned. The objects are summed up in the IPANEMA library. 

IPANEMA toolset 

IIPanema Runtime Workbench 

I API for Visual Age, Mallab, Python I 

Library 

Parallel SubsySlem Generation 

I Periphery 10 Generalion 

User 

Graphical User Interface 

IPANEMAAPI 

~ ==========~~====~ 
Moderator Interface Object 

Assistant Assistant Assistant ~ 

Calculator Calculator Calculator ~ 

Adaptor Adaptor Interface Objects 

Real Technical System 

Figure 3. The Ipanema toolset 
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The moderator of the distributed simulation is the interface object to the user input 

level. On the user input level, we have an API to Visual Age, Matlab, and Python. A 

graphical user interface with comfortable plotting features is also part of the toolset. 

One important property of the moderator is net-transparency. If the user is willing to 

alter a system parameter or to trace variables during simulation, the moderator is able 

to determine the physical processor where the particular variable is stored. It is not the 

user's responsibility to know the physical residence of the particular variable. 

Also the adaptor could be seen as an interface object to the technical system. The 

entire information-processing unit is distributed to a set of calculatos and adaptors. 

This means that each calculator processes a part of the entire system. The adaptors are 

generated from 110 description objects by the tool ElBaCo (see chapter 4). The 

calculators and adaptors are located on the level of hard real-time conditions. The 

calculators are generated from O-DSS (Hahn 96) by a tool concatenation for 

distributed simulation-code generation. This tool is still under development and will 

be integrated into Visual-MOOMo. These are the basic components to manage a 

distributed simulation. 

3. Series Hybrid Vehicle 

Hybrid vehicles allow to combine the advantages of the conventional drive (high 

performance and operating range) with those of the electric one, e.g., the opportunity 

of emission-free operation and regenerative braking. Figure 4 shows the basic 

components of a series hybrid vehicle. The hybrid vehicle consists of two electric 

traction motors that directly drive the two rear wheels. These motors receive their 

energy either from a Nickel-Cadmium battery or from a generator driven by an 

internal combustion engine. This aggregate is called the Auxiliary Power Unit, or just 

APU. 

Spark· Ignition Engine 

( M e< · , edE ~· BE "l 1.8 I. 90 kW) 

AUXIliary Power Unit 

Thyristor·Controlled 

DC Motors Tandem Motor 

as Elec:trlc Brakes (Mannesmann'Sachs, 2 x 27 kW (perm.) 

Drive System 

2 x 30 kW (max.) 

2x650Nm 

Figure 4. Arrangement of the components on the testbed 
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On the left-hand side of Figure 4, you see a photo of the APU with the combustion 

engine on our testbed. It is a Mercedes-Benz 1.8 liter spark-ignition engine from the 

current C-Class. It has a maximum power of 90 kW at 6000 rpm. The maximum 

torque is 170 Nm. The generator is a permanent-magnet synchronous machine by 

Mannesmann-Sachs with 53 kW. For a compact construction the rotor of the 

generator is directly coupled to the crank shaft of the combustion engine. The right

hand side shows the drive system of our configuration with the tandem motor in the 

middle and the electric brakes. The tandem motor has a maximum power of 2x30 kW 

and a maximum torque of 2x650 Nm. The electric brakes are inserted to act like the 

real vehicle with inertia (W1iltermann 1998). 

The testbed control is implemented on the distributed real-time PPC hardware 

mentioned before (Stolpe 1998). Figure 5 shows the testbed configuration with the 

parallelized mechatronic functions "generate energy" and "drive wheels". Several 

more parallel functions can still be indicated, but for more clarity, only these two will 

be considered in the following. The parallel control flows of the mentioned 

mechatronic functions are shown in Figure 5, right hand. 

• • • 

"drive wheels" 

Drive System Managem. 

Electric Motor 

Torque Control 

Electric Motor 

Torque Control 

-{ ''generate energy" ) 

Energy Management 

Battery Management 

APU Management 

Generator 

Speed Control 

Electric- Electric· 
Mota Mota 

l\attery 

Internal 

Spark-Ignition Engine : ~ :" 
Throttle Control , ngo 

• • • 

Figure 5. Testbed configuration with parallel control flows and distributed HIL 

simulation with the IPANEMA objects 

The energy management can be divided into the auxiliary power unit management 

and the battery management. The former can be divided into the spark-ignition Engine 
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control and the permanent-magnet generator control. The drive system consists of the 

two electric motor controllers. 

In the vehicle the entire functionality will be realized by distributed controller 

units. The controllers working in parallel can be simulated on a parallelized hardware 

already at the design stage. For this and the realization of parallel mechatronic 

functions, the IPANEMA toolset can be used. 

The energy management with the auxiliary power unit management and the battery 

management is assigned to one calculator and two adaptors. The adaptors are coupled 

to the throttle unit and to the ECU of the internal combustion engine. The drive 

system management is also assigned to one calculator and one adaptor. This adaptor is 

responsible for the access to the electric motor control units. 

Already on the lowest control level, i.e., on the ECU level, you can find the speed 

control for the generator and the torque control of the electric motors. The task of this 

HIL simulation was the development of the APU management and the drive system 

management. Yet, this concept can also be applied to the development of the low

level control functions, e.g., the electric motor torque control. After testing and 

optimizing the drive system management the calculator with the developed control 

algorithm and the assigned adaptor could be ported to an ECU of their own. 

4. Coupling of Periphery Hardware 

The transition of a simple simulation to a Hardware-In-The-Loop simulation requires 

the embedding of real technical systems into the simulation environment. As a first 

step the drive system management and the electric motors with their corresponding 

controllers can be simulated completely. To link the technical process, one or several 

simulated subsystems can be extracted from the entire system and replaced by a real 

system. In this case, this means for the simulation platform IP ANEMA that a 

calculator process has to be replaced by an adaptor process. I-Iowever, this is only a 

simplified representation. In reality, the corresponding peripheral boards must of 

course be equipped for the measurement and excitation of the real process. 

With this additional hardware higher demands on the coupling process arise than 

on the calculator. Calculators could be generated automatically from the model 

description. For the generation of the adaptor code, additional information about the 

peripheral boards and the mounted technical process is required. These information 

are usually not included in the physical model description. Answers are required for 

the following questions: 

• Which peripheral board is employed? 

• Which connection of the board is employed? 

• To which physical quantity does the measured value correspond? 

In the IPANEMA toolset these informations are summed up in one or more hardware

coupling descriptions (HCD). 
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However, even further information is required for embedding into the IPANEMA 

topology. The main topics are the following: 

• Which channels to which calculators are necessary? 

• Which measured and controlled value is transmitted via which channel? 

These are the coupling informations, which are summarized in the process-coupling 

description (PCD). 

5. Element-based Compiler for Argument-depending Problems 

of Code Generation 

Since the adaptor code depends strongly on the inserted peripheral boards and, what is 

more, since these may change often, a flexible, fast, adaptable code generation is 

required. This demand is met by an instrument developed within the context of the 

METRO project. It is called ElBaCo. 

The name ElBaCo stands for element-based compiler for argument-depending 

problems of code generation (Oberschelp 1998). 

Customer tasks : 

~ Define syntax for user input 

Necessary lor : 

New Penphery-Board 

New Processor-Borad 

~ User input: Model interface to technical system 

N ecessa ry for : 

New HIL Simulation 

~ Set up rules for evaluation of user inputs 

in the defined syntax 

Necessary for : 

New Functionality 

New Periphery-Board 

New Processor-Borad 

Figure 6. The working method of EIBaCo 

• 

• 

• 

EIBaCo 

grammatical sections: 

Define block language 

Define valid structures 

Read in user input blocks 

Extract interface information 

Interpret information 

Evaluate rules 

generate C-Code 
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ElBaCo is a simple tool for the generation of ASCII source code. It uses a 

configurable block language which is assembled from predefined grammatical 

elements as input language. The relevant information is extracted by an interpreter 

from the input language and code created according to it. 

ElBaCo puts moderate demands on the computer hardware and the operating 

system and is easily portable onto different platforms since it was implemented 

completely in ANSI-C. It is a flexible compiler since its input language is adaptable. 

The syntax is defined by selection from fixed grammatical constructs and the 

definition of parameters, variables, and constants. These information are stored in a 

text file which represents the language specification. The interface information 

contained in the user input file is structured by the syntax and transformed to a data 

structure. The information in the data structure could be evaluated by an integrated 

interpreter and used for the generation of code. The syntax definition and the 

interpretative evaluation rules are written only once for the compilation tasks. The 

task is finished by an expert for the code to be generated. The user will only use the 

syntax definition and evaluation. See Figure 6 for the user tasks and the grammatical 

sections of ElBaCo. 

ElBaCo is implemented by means of a special instrument for the generation of 

compilers. This programming environment of the name ELI (Environment for 

Language Implementation) is a joint effort of the University of Paderborn, the 

University of Colorado (USA), and the James Cook university (Australia) (ELI 90). 

It offers complete solutions for commonly encounted language-implementation 

subtasks. ELI contains libraries of reusable specifications, allowing to elaborate high

quality implementations from simple problem descriptions. The environment is 

problem-oriented instead of tool-oriented, which is the common working method in 

other tools. The user describes the problem to be solved and then ELI automatically 

employs the tools and components needed for that particular problem. The compiler 

construction set is an integrated system, and as a result it generates a complete set of 
C modules that leads to an easy portability to different platforms. 

6. Conclusion 

The recognition and installation of parallel control flows are an essential starting point 

for the design of decentralized control concepts of mechatronic systems. Installation 

of those subsystems is often physically motivated. This was illustrated by the testbed 

of the series hybrid drive train. For the realization of the distributed HIL simulation, 

the IP ANEMA toolset was used. The user is supported by the flexible code

generating tool ElBaCo for the coupling of real components on the testbed, by an 

interpretative user interface and also by a comfortable graphical user interface. 
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