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Abstract

Hypothesis Testing (HT) is one of the central topics of study in statistics. Tradi-

tionally, it is assumed that the data on which the hypothesis test is to be performed is

available unaltered to the decision maker or detector that performs the hypothesis test.

However, this is seldom observed in practice, and often the data is observed remotely,

and needs to be communicated to the detector over a noisy communication channel,

such as a wired or a wireless communication network. The performance of a hypothesis

test obviously depends on how accurately the observed data is communicated to the

detector, i.e., less distortion of the data implies better performance. However, in many

situations less distortion also implies reduced privacy (security) for the observer as

there is the threat of leaking sensitive information to the detector (external eavesdrop-

per). The privacy (security) threat is increasingly becoming an important concern due

to the availability of affordable large scale computing resources.

In this dissertation, we study HT in a distributed setting, in which the data is

observed at a remote node, referred to as observer, and communicated over a noisy

channel to the detector, which has access to its own correlated side-information. Con-

sidering a hypothesis test on the joint distribution of the observer’s data and detector’s

side information, we first study the optimal trade-off between the type I and type II

error-exponents, i.e., the trade-off between the asymptotic exponential rate of decay

of the type I and type II error probabilities with respect to the number of observed

data samples, and establish single-letter inner bounds on this trade-off. Of special

interest is the asymmetric case of characterizing the optimal type II error-exponent for

a fixed non-zero constraint on the type I error probability, for which we obtain exact

single-letter characterization in some special cases. We also investigate the aspects of

data privacy in the above setting with a rate-limited noiseless channel by exploring

the trade-off between rate, type II error-exponent and privacy. Finally, considering

an eavesdropper with access to correlated side-information, we study the trade-off be-

tween rate, type II error-exponent and security when the detector and eavesdropper

are connected to the observer via a noisy broadcast channel.
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Chapter 1

Introduction

Given data samples, hypothesis testing (HT) deals with the problem of ascertaining

the true assumption or hypothesis about the data from among a set of hypotheses.

Such tests have traditionally assumed the availability of the data at a single place, for

example, in the case of a statistician performing the test on empirical data available

from an experiment. Among the various statistical problems encountered in science,

the problem of ascertaining the true probability distribution of the data arises quite

frequently. Given n samples of data Xn, drawn independent and identically distributed

(i.i.d.) from alphabet X according to distribution PX or QX , the problem of identifying

the true underlying distribution is a binary HT problem with the null and alternate

hypothesis given by

H0 : X
n ∼ PXn :=

n
∏

i=1

PX , (1.1)

and H1 : X
n ∼ QXn :=

n
∏

i=1

QX , (1.2)

respectively. Let H and Ĥ denote the r.v.’s corresponding to the true hypothesis and

the decision of the HT, respectively, with support Ĥ = H := {0, 1}. The detector that

performs the HT is specified by a decision rule (possibly stochastic) g(n) : X n 7→ Ĥ
with output Ĥ, where 0 and 1 denotes the decision H0 and H1, respectively. There

are two kinds of errors possible in this test, namely, the error that the detector decides

in favour of H1 given that the true distribution is PX and the error that the detector

decides in favour of H0 given that the true distribution is QX . The first kind of error is

known in the literature as the type I error, while the second one is known as the type

II error. Denoting an arbitrary stochastic decision rule that specifies g(n) by PĤ|Xn ,

12



Chapter 1. Introduction 13

the type I and type II error probabilities can be written1 as

ᾱ(n)
(

g(n)
)

:= PĤ(1) :=
∑

xn∈Xn

PXn(xn) PĤ|Xn(1|xn),

and

β̄(n)
(

g(n)
)

:= QĤ(0) :=
∑

xn∈Xn

QXn(xn) PĤ|Xn(0|xn),

respectively. Obviously, there is a trade-off between the type I and type II error

probabilities. For ǫ ∈ [0, 1], let

β(n)(ǫ) =

{

min
g(n)

β̄(n)
(

g(n)
)

s.t. ᾱ(n)
(

g(n)
)

≤ ǫ

}

, (1.3)

denote the minimum type II error probability that can be achieved for a given con-

straint ǫ on the type I error probability. The optimal performance in HT is first

characterized in the seminal paper of Neyman and Pearson [1], where the well-known

Neyman-Pearson (NP) test that achieves the optimal trade-off between the type I and

type II error probabilities was proposed. For a discrete alphabet X n, the NP test is

given by

PĤ|Xn(0|xn) =



























1 if log
(

PXn (xn)
QXn (xn)

)

> θ,

p0 if log
(

PXn (xn)
QXn (xn)

)

= θ,

0 if log
(

PXn (xn)
QXn (xn)

)

< θ,

(1.4)

for some θ ∈ R. For any ǫ ∈ [0, 1], there exists a NP test that achieves a type I-type II

error probability pair
(

ǫ, β(n)(ǫ)
)

, for some unique θ ∈ R and p0 chosen such that

ǫ = PXn

(

log

(

PXn(xn)

QXn(xn)

)

> θ

)

+ p0 PXn

(

log

(

PXn(xn)

QXn(xn)

)

= θ

)

. (1.5)

It is also well known that both the type I and type II error probabilities can be

simultaneously made to decay to zero exponentially as n tends to infinity [2], provided

1We will consider discrete alphabets with finite support in this thesis unless specified otherwise.
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that PX 6= QX . Given this, the performance of HT can be analyzed in the following

regimes:

(i) Stein’s regime

The goal here is to characterize the optimal type II error-exponent for a given con-

straint ǫ on the type I error probability2, i.e. to characterize lim infn→∞ −1
n log(β(n)(ǫ))

for all ǫ ∈ [0, 1].

(ii) Chernoff’s regime

The objective here is to characterize the maximum value of type II error-exponent

for a given constraint κ on the type I error-exponent, i.e., maximize

lim infn→∞ −1
n log

(

β̄(n)(g(n))
)

over g(n) such that ᾱ(n)(g(n)) ≤ e−nκ for sufficiently

large n.

In the Stein’s regime, the maximum value of the type II error-exponent is charac-

terized by the now ubiquitous Chernoff-Stein’s lemma [3] [4] as

lim
n→∞

1

n
log(βn(ǫ)) = D(PX ||QX), (1.6)

where D(PX ||QX) is the Kullback-Leibler (KL) divergence between probability distri-

butions PX and QX defined as

D(PX ||QX) :=
∑

x∈X
PX(x) log

(

PX(x)

QX(x)

)

. (1.7)

As is evident from (1.6), the optimal achievable type II error-exponent is independent

of ǫ. This property is referred to as the strong converse for HT in the literature. On

the other hand, the optimal trade-off between the type I and type II error-exponents

is established in [5] and [2]. This trade-off can also be stated in terms of the Legendre-

Fenchel transform of the log-moment generating function (Log-MGF) of the random

variable (r.v.) log
(

PX(X)
QX(X)

)

[6, Theorem 15.1].

The situation however becomes much more complicated when the samples are not

directly accessible to the detector, e.g., post data compression or if the data is to be

2This is the more commonly used convention, but one may also consider the dual problem of
maximizing the type I error-exponent for a given constraint on the type II error probability.
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communicated from a remote node over a wireless network to the detector. With the

explosion of data generation and consumption in today’s world, data is often generated

at multiple nodes that are geographically separated. Even if the data is generated at a

single node, the sheer size of the data may necessitate distributed storage at different

locations. For example, consider the data flow in social networks today. Data is

generated by different users in a distributed manner, which is then stored for later

use in servers that may be geographically separated. Sensor networks provide another

example that involves distributed data generation. Data is gathered at multiple remote

sensors or nodes and transmitted over noisy links to another node for further processing.

Cloud computing and the Internet of things (IoT) are future emerging technological

applications that demand distributed storage and processing. Machine learning is yet

another example where distributed statistical inference plays a key role in a variety of

contexts like anomaly or fraud detection. In such distributed scenarios, the problem

of identifying the joint statistics of data leads naturally to the problem of distributed

HT over noisy channels, which is one of the central topics of study in this thesis.

While exchange of data among participants is necessary to perform distributed sta-

tistical inference, there are other inherent challenges associated with communicating

data over a public network. With adversarial cyber-attacks becoming frequent, the

protection of sensitive data is no longer a luxury but a necessity for corporate and

governmental institutions as well as individuals. There are basically two kinds of ad-

versarial attacks, passive and active. In the former, the adversary just eavesdrops

or taps onto public data exchanged between two parties and draws inferences about

the data. In the active mode, the adversary, in addition to eavesdropping, may also

potentially distort the signals in order to disrupt the communication or mislead the le-

gitimate receiver to draw incorrect inferences. Traditionally, secure communication in

the presence of a passive adversary is ensured by using cryptographic techniques whose

success rely on the limited computational power available to the adversary. In such

cryptographic techniques, the two legitimate parties involved in the communication are

assumed to have access to a private key or a random source from which both parties

can generate a common key, using which encryption and decryption is then done at

the sender and receiver, respectively. The security of the communication depends on
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the fact that it is computationally (almost) impossible for the adversary to decrypt

the messages without the key. Information theoretic security provides another notion

of measuring the robustness of communication that does not assume any limitation

on the computational power of the adversary. Here, as before, in order to have prov-

able security, the legitimate receiver must have access to some additional resource that

is not available to the adversary like a shared secret key, a better channel or better

side-information (correlated with the message) relative to the adversary.

While attacks from external third parties is a major challenge to be dealt with, at-

tacks threatening the privacy of the data are not necessarily carried out by third party

intruders or eavesdroppers. There are many cases in which the legitimate receiver of

the information is also a potential adversary. This is the case for personal informa-

tion collected by various companies or governmental agencies, that are being used for

purposes outside their initial intentions. For example, various financial transactions of

a consumer (through a bank, an online seller, etc.) can be used for advertising par-

ticular products, or health-related consumption information, from medical purchases

to unhealthy eating patterns, can be used by insurance companies for setting differen-

tial premiums. Similarly, posts on social media, or location information provided to a

mobile app can be exploited by employers to track activities of their employees. Data

privacy is increasingly becoming another dominant theme in today’s inter-connected

world.

In general, any disclosure of personal data to legitimate entities to receive some util-

ity in return, e.g., in the form of better services or increased social connectivity, come

at the expense of a possible loss of privacy, which may have unintended and poten-

tially adverse effects to users in the future. By revealing no information at all, perfect

privacy can be achieved; however, at the cost of zero utility. With the increasing com-

putational power of data mining and machine learning algorithms, companies are able

to store and process an increasing amount of data collected from individual consumers,

enabling them to provide increasingly personalized services, which are often attractive

to consumers, who may not be completely aware of the privacy implications. We of-

ten do not read the fine print before allowing apps or online services to collect, often

times, seemingly irrelevant information for the service they offer. Therefore, privacy
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and utility are increasingly becoming contradictory objectives.

It is essential to note at this point that the problem of privacy against legitimate

receivers of data is fundamentally different from that of information security. While

conventional cryptographic protocols are used to protect the information flow (between

a sender and a receiver) from a malicious adversary, the problem of privacy is due to

the very nature of this information flow. In other words, the legitimate receiver is

a potential adversary in the context of privacy, and in most cases the privacy leak-

age occurs through unintended parallel channels through statistical inference attacks.

Therefore, encryption of data is irrelevant in this context, since the concern of privacy

still exists once data is decrypted by the legitimate receiver.

The privacy problem arises in many applications. The basic idea behind most ex-

isting privacy-preserving mechanisms is to distort the original data prior to sharing

it. This distortion may be obtained by perturbing data, lowering data precision, ag-

gregating data, etc. The underlying idea in all these approaches is that the data is

distorted in such a way that while receiving certain amount of utility, the leakage of

private information is kept as low as possible. It is clear that the trade-off between

utility and privacy depends on the system at hand. While the metric of utility usually

accompanies the system model, there is no standard way of measuring data privacy in

the literature. As a result, there exists several metrics such as differential privacy, mu-

tual information leakage, total variation distance, average distortion, etc., to quantify

the leakage of privacy in the literature [7]. The choice of the privacy measure employed

depends on the application at hand and the kind of privacy guarantees required.

1.1 Objectives

In this dissertation, we first study a distributed HT problem over a noisy channel

from the point of view of type I and type II error-exponents trade-off. This system

model will be introduced in detail in Chapter 2. Herein, two separate nodes, one

referred to as the observer and the other as detector, each observe correlated data that

is i.i.d. across samples. The observer communicates its observations to the detector

over a noisy channel, in order that the detector perform a hypothesis test on the
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joint distribution of its own observations with that of the observer. This model is an

extension of the one sided compression model studied in the classic paper of Ahlswede

and Csiszar [4], where the rate-limited error-free channel is replaced by a noisy one.

Our aim is to obtain computable single-letter bounds on the trade-off between the two

error-exponents, and identify special cases where an optimal characterization exists.

Towards this, we first study a corner point of this trade-off that corresponds to the

asymmetric case of maximizing the type II error-exponent in the Stein’s regime (or

zero type I error-exponent), and later consider the general symmetric trade-off in the

Chernoff’s regime. We subsequently introduce an additional privacy constraint and

analyze the trade-off between the communication rate, type II error-exponent and

privacy in the Stein’s regime for the case of a rate-limited noiseless channel. We

also consider a distributed HT problem in the presence of an eavesdropper with the

requirement that the observer’s data is kept as secure as possible from the eavesdropper,

and analyze the trade-off between the rate, error-exponent and security achieved in the

Stein’s regime.

1.2 Outline and Contributions

This dissertation is divided into six chapters. In the following, we outline the content

and results of each chapter, as well as the corresponding publications.

Chapter 2

In Chapter 2, we introduce the system model for distributed HT over a noisy channel

problem mentioned above, and obtain two lower bounds on the optimal type II error-

exponent in the Stein’s regime, one using a separation based scheme that performs

separate hypothesis testing and channel coding, and the other using a joint scheme

that uses hybrid coding for communication between the observer and the detector.

Optimal single-letter characterization of the type II error-exponent is established for

the special case of testing against conditional independence (TACI) of the observer’s

observations from those of the detector, given some additional side-information at
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the detector. The content of this chapter has been published or is under review for

publication in:

• Sreejith Sreekumar and Deniz Gündüz, “Distributed hypothesis testing over dis-

crete memoryless channels”, arXiv:1802.07665 [cs.IT], Revised for IEEE Trans-

actions on Information Theory.

• Sreejith Sreekumar and Deniz Gündüz, “Distributed hypothesis testing over

noisy channels”, IEEE International Symposium on Information Theory (ISIT),

Aachen, Germany, June 2017.

• Sreejith Sreekumar and Deniz Gündüz, “Hypothesis testing over a noisy chan-

nel”, IEEE International Symposium on Information Theory (ISIT), Paris, France,

July 2019.

Chapter 3

In Chapter 3, we generalize the setting studied in Chapter 2 to that of the trade-off

between both the type I and type II error-exponents. The content of this chapter is

under review for possible publication in:

• Sreejith Sreekumar and Deniz Gündüz, “Distributed hypothesis testing over a

noisy channel: Error-exponents trade-off”, arXiv:1908.07521 [stat.OT], Submit-

ted to IEEE Transactions on Information Theory.

Chapter 4

In Chapter 4, we consider the distributed HT problem studied in Chapter 2 with

an additional privacy constraint. We focus on the case of a rate-limited noiseless

channel and obtain an inner bound on the trade-off between communication rate,

type II error-exponent and privacy in the Stein’s regime, and identify scenarios where

optimal single-letter characterizations can be established. The results in this chapter

have been published or is under review for publication in:
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• Sreejith Sreekumar, Asaf Cohen and Deniz Gündüz, “Distributed hypothesis test-

ing under privacy constraints”, in IEEE Information Theory Workshop (ITW),

Guangzhou, China, November 2018.

• Sreejith Sreekumar, Asaf Cohen and Deniz Gündüz, “Privacy-aware distributed

hypothesis testing”, arXiv:1807.02764 [cs.IT], Submitted to IEEE Transactions

on Information Theory.

Chapter 5

In Chapter 5, we consider the same setting as in Chapter 2, but with an additional

eavesdropper, against whom the observer’s observations need to be protected. Consid-

ering a broadcast channel connecting the observer to the detector and eavesdropper,

the trade-off between rate, type II error-exponent and security achieved is studied.

The results in this chapter have been partially published in:

• Sreejith Sreekumar and Deniz Gündüz, “Testing against conditional indepen-

dence under security constraints”, in IEEE International Symposium on Infor-

mation Theory (ISIT), Vail, USA, June 2018.

Chapter 6

Finally, in Chapter 6 we provide the conclusions of the research presented in this

dissertation, and discuss potential research directions that can be considered in the

future, as well as some open questions.



Chapter 2

Distributed HT over a Noisy

Channel: Stein’s regime

2.1 Overview

In this chapter, we study a distributed binary HT problem involving two parties, an

observer and a detector. The observer observes a discrete memoryless source and com-

municates its observations to the detector over a discrete memoryless channel (DMC).

The detector observes another discrete memoryless source correlated with that at the

observer, and performs a binary HT on the joint distribution of the two sources using

its own observations and the information received from the observer. The trade-off be-

tween the type I error probability and the type II error-exponent of the HT is explored.

Single-letter lower bounds on the optimal type II error-exponent are obtained by using

three different coding schemes, a separate HT and channel coding (SHTCC) scheme, a

local decision scheme, and a joint HT and channel coding (JHTCC) scheme based on

hybrid coding. Exact single-letter characterization of the same is established for the

special case of testing against conditional independence (TACI), and it is shown to be

achieved by the SHTCC scheme. To the best of our knowledge, the trade-off between

type I and type II error-exponents in distributed HT over a noisy channel, of which

the trade-off studied in this chapter is a corner point, has not been explored before.

2.2 Introduction

In modern communication networks like in sensor networks, cloud computing and

Internet of things (IoT), data is gathered at multiple remote nodes, referred to as

21
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Figure 2.1: Distributed HT over a DMC.

observers, and transmitted over noisy links to another node for further processing.

Often, there is some prior statistical knowledge available about the data, for example,

that the joint probability distribution of the data belongs to a certain prescribed set. In

such scenarios, it is of interest to identify the true underlying probability distribution,

and this naturally leads to the problem of distributed HT over noisy channels. The

simplest case of such a scenario is depicted in Fig. 2.1, where there is a single observer

and two possibilities for the joint distribution of the data. The observer observes k

i.i.d. data samples Uk, and communicates its observation to the detector by n uses of

the DMC, characterized by the conditional distribution PY |X . The detector performs a

binary hypothesis test on the joint distribution of the data (Uk, V k) to decide between

them, based on the channel outputs Y n as well as its own observations V k. The null

and the alternate hypothesis of the hypothesis test are given1 by

H0 : (U
k, V k) ∼

k
∏

i=1

PUV , (2.1a)

and

H1 : (U
k, V k) ∼

k
∏

i=1

QUV , (2.1b)

respectively. Our goal is to characterize the optimal exponential rate of decay of

the type II error probability asymptotically, known as the type II error-exponent

(henceforth, also referred to as error-exponent) for a prescribed constraint on the type

I error probability for the above hypothesis test.

1Although a r.v. is specified together with its probability distribution, here, we abuse the notation
for ease of exposition, and denote the observations at the observer and detector under both the null and
alternate hypothesis by (Un, V n), with probability distribution

∏n

i=1 PUV and
∏n

i=1QUV , respectively.
This terminology is used throughout the thesis, except in Chapter 3.
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2.3 Previous Work and Our Contributions

The study of distributed statistical inference under communication constraints was

conceived by Berger in [8]. In [8], and in the follow up literature summarized below,

communication from the observers to the detector are assumed to be over rate-limited

error-free channel. Some of the fundamental results in this setting for the case of

a single observer was established by Ahlswede and Csiszár in [4]. They obtained a

tight single-letter characterization of the optimal error-exponent for a special case

of HT known as testing against independence (TAI), in which, QUV = PU × PV .

Furthermore, the authors established a lower bound on the optimal error-exponent

for the general HT case, and proved a strong converse result, which states that the

optimal achievable error-exponent is independent of the constraint on the type I error

probability. A tighter lower bound for the general HT problem is established by Han [9],

which recovers the corresponding lower bound in [4]. Han also considered complete

data compression in a related setting where either U , or V , or both (also referred to as

two-sided compression setting) are compressed and communicated to the detector using

a message set of size two. It is shown that, asymptotically, the optimal error-exponent

achieved in these three settings are equal. In contrast, a single-letter characterization

of the optimal error-exponent for even the TAI with two-sided compression and general

rate constraints remains open till date. Shalaby et al. [10] extended the complete data

compression result of Han to show that the optimal error-exponent is not improved

even if the rate constraint is relaxed to that of zero-rate compression (sub-exponential

message set with respect to blocklength k). Shimokawa et al. [11] obtained a tighter

lower bound on the optimal error-exponent for general HT by considering quantization

and binning at the encoder along with a minimum empirical-entropy decoder. Rahman

and Wagner [12] studied the setting with multiple observers, in which, they showed

that for the case of a single-observer, the quantize-bin-test scheme achieves the optimal

error-exponent for testing against conditional independence (TACI), in which, V =

(E,Z) and QUEZ = PUZPE|Z . Extensions of the distributed HT problem has also

been considered in several other interesting scenarios involving multiple detectors [13],

multiple observers [14], interactive HT [15, 16], collaborative HT [17], HT with lossy

source reconstruction [18], HT over a multi-hop relay network [19], etc., in which, the
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authors obtain a single-letter characterization of the optimal error-exponent in some

special cases.

In contrast, HT in distributed settings that involve communication over noisy chan-

nels has not been considered until now. In noiseless rate-limited settings, the encoder

can reliably communicate its observation subject to a rate constraint. However, this

is no longer the case in noisy settings, which complicates the study of error-exponents

in HT. Since the capacity of the channel PY |X , denoted by C(PY |X), quantifies the

maximum rate of reliable communication over the channel, it is reasonable to expect

that it plays a role in the characterization of the optimal error-exponent similar to

the rate-constraint R in the noiseless setting. Another measure of the noisiness of

the channel is the so-called reliability function E(R,PY |X) [20], which is defined as

the maximum achievable exponential decay rate of the probability of error (asymp-

totically) with respect to the blocklength for message rate of R. It appears natural

that the reliability function plays a role in the characterization of the achievable error-

exponent for distributed HT over a noisy channel. Indeed, in Theorem 2.2 given below,

we provide a lower bound on the optimal error-exponent that depends on the expur-

gated exponent at rate R, Ex(R,PY |X), which is a lower bound on E(R,PY |X) [21].

However, surprisingly, it will turn out that the reliability function does not play a role

in the characterization of the error-exponent for TACI in the regime of vanishing type

I error probability constraint.

The goal of this chapter is to study the best attainable error-exponent for distributed

HT over a DMC with a single observer and obtain a computable characterization

of the same. Although a complete solution is not to be expected for this problem

(since even the corresponding noiseless case is still open), the aim is to provide an

achievable scheme for the general problem, and to identify special cases in which a

tight characterization can be obtained. In the sequel, we first introduce a separation

based scheme that performs independent hypothesis testing and channel coding, which

we refer to as the separate hypothesis testing and channel coding (SHTCC) scheme.

This scheme combines the Shimokawa-Han-Amari scheme [11], which is the best known

coding scheme till date for distributed HT over a rate-limited noiseless channel, with

the channel coding scheme that achieves the expurgated exponent [21] [20] of the
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channel along with the best channel coding error-exponent for a single special message.

The channel coding scheme is based on the Borade-Nakiboğlu-Zheng unequal error-

protection scheme [22]. As we show later, the SHTCC scheme achieves the optimal

error-exponent for TACI.

Our second scheme is a zero-rate compression scheme referred to as the local decision

scheme, in which, the observer makes a tentative guess on the true hypothesis based

on its own observation, and communicates its one bit decision to the detector. It is

shown in [23] that the local decision scheme achieves the optimal error-exponent for

HT over a noisy channel, when the detector does not have access to side-information

V k. Although the above mentioned separation based schemes are attractive due to

their modular design, joint source channel coding (JSCC) schemes are known to out-

perform separation based schemes in several different contexts, for example, the error

exponent for reliable transmission of a source over a DMC [24], reliable transmission

of correlated sources over a multiple-access channel [25], etc., to name a few. While in

separation based schemes coding is usually performed by first quantizing the observed

source sequence to an index, and transmitting the channel codeword corresponding

to that index (independent of the source sequence), JSCC schemes allow the channel

codeword to be dependent on the source sequence, in addition to the quantization

index. Motivated by this, we propose a third scheme, referred to as the joint HT and

channel coding (JHTCC) scheme, based on hybrid coding [26] for the communication

between the observer and the detector.

The main contributions in this chapter can be summarized as follows.

(i) We propose three different coding schemes (namely, SHTCC, local decision and

JHTCC) for distributed HT over a DMC, and analyze the error-exponents achieved

by these schemes.

(ii) We obtain an exact single-letter characterization of the optimal error-exponent

for the special case of TACI with a vanishing type I error probability constraint,

and show that it is achievable by the SHTCC scheme.
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The rest of the chapter is organized as follows. In Section 2.4, we introduce the

notations, detailed system model and definitions. Following this, we introduce the

main results in Section 2.5 and 2.6. The achievable schemes are presented in Section

2.5 and the optimality results for special cases are discussed in Section 2.6. The proofs

of the results are presented immediately after the statement or in Appendix A. Finally,

Section 2.7 concludes the chapter.

2.4 Preliminaries

2.4.1 Notations

Random variables (r.v.’s) are denoted by capital letters (e.g., X), their realizations

by the corresponding lower case letters (e.g., x), and their support by calligraphic

letters (e.g., X ). The cardinality of a finite set X is denoted by |X |. X − Y − Z

denotes that X, Y and Z form a Markov chain. For m ∈ Z+, Xm denotes the sequence

X1, . . . , Xm. Following the notation in [20], for a probability distribution PX on r.v. X,

TmPX
and Tm[PX ]δ

(or Tm[X]δ
) denote the set of sequences xm ∈ Xm of type ( or empirical

distribution) PX and the set of strongly 2 PX -typical sequences, respectively. The

set of all possible types of sequences of length m with alphabet X is denoted by T m
X ,

and ∪m∈Z+T m
X is denoted by TX . Similar notations apply for pair’s and other larger

combinations of r.v.’s, e.g., TmPXY
Tm[PXY ]δ

, T m
XY , TXY , etc.. The standard information

theoretic quantities like Kullback-Leibler (KL) divergence between distributions PX

and QX , the entropy of X with distribution PX , the conditional entropy of X given

Y and the mutual information between X and Y with joint distribution PXY , are

denoted by D(PX ||QX), HPX
(X), HPXY

(X|Y ) and IPXY
(X;Y ), respectively. When

the distribution of the r.v.’s involved are clear from the context, the last three quantities

are denoted simply by H(X), H(X|Y ) and I(X;Y ), respectively. Given realizations

Xm = xm and Y m = ym, He(x
m|ym) denotes the conditional empirical entropy defined

2The set of strongly PX -typical sequences, Tm
[PX ]δ

, is the set of sequences xm ∈ Xm such that

| 1
m

∑m

i=1 ✶(xi = x)− PX(x)| ≤ δ, ∀x ∈ X , and in addition no x ∈ X with PX(x) = 0 occurs in xm.
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as

He(x
m|ym) := HP

X̃Ỹ
(X̃|Ỹ ), (2.2)

where PX̃Ỹ denote the joint type of (xm, ym), and := represents equality by definition

(throughout this chapter). For a ∈ R+, [a] denotes the set of integers {1, 2, . . . , ⌈a⌉}.
All logarithms considered in this chapter are with respect to the base e. For any set G,
Gc denotes the set complement. ak

(k)−−→ b represents limk→∞ ak = b. Similar notations

are used for inequalities that hold asymptotically, e.g., , ak
(k)

≥ b denotes limk→∞ ak ≥ b.

P(E) denotes the probability of event E . For functions f1 : A 7→ B and f2 : B 7→ C,
f2 ◦ f1 denotes function composition. Finally, ✶(·) denotes the indicator function, and

O(·) and o(·) denote the standard asymptotic notation.

2.4.2 Problem formulation

All the r.v.’s considered in this chapter are discrete with finite support. Unless

specified otherwise, we will denote the probability distribution of a r.v. Z under the null

and alternate hypothesis by PZ and QZ , respectively. Let k, n ∈ Z+ be arbitrary. As

shown in Fig. 2.1, the encoder (at the observer) observes Uk, and transmits codeword

Xn = f (k,n)(Uk), where f (k,n) : Uk 7→ X n represents the encoding function (possibly

stochastic). Let τ := n
k denote the bandwidth ratio. The channel output Y n is given

by the probability law

PY n|Xn(yn|xn) =
n
∏

j=1

PY |X(yj |xj), (2.3)

i.e., the channels between the observers and the detector are independent of each other

and memoryless. Depending on the received symbols Y n and its own observations V k,

the detector makes a decision between the two hypotheses H0 and H1 given in (2.1).

Let H ∈ {0, 1} denote the actual hypothesis and Ĥ ∈ {0, 1} denote the output of the

hypothesis test, where 0 and 1 denote H0 and H1, respectively, and A(k,n) ⊆ Yn × Vk

denote the acceptance region for H0. Then, the decision rule g(k,n) : Yn ×Vk 7→ {0, 1}
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is given by

g(k,n)
(

yn, vk
)

= 1− ✶

((

yn, vk
)

∈ A(k,n)

)

.

Let

α
(

k, n, f (k,n), g(k,n)
)

:= 1− PY nV k

(

A(k,n)

)

,

and β
(

k, n, f (k,n), g(k,n)
)

:= QY nV k

(

A(k,n)

)

,

denote the type I and type II error probabilities for the encoding function f (k,n) and

decision rule g(k,n), respectively.

Definition 2.1. An error-exponent κ is (τ, ǫ) achievable if there exists a sequence

of integers k, corresponding sequences of encoding function f (k,nk) and decision rules

g(k,nk) such that nk ≤ τk, ∀ k,

lim inf
k→∞

−1

k
log
(

β
(

k, nk, f
(k,nk), g(k,nk)

))

≥ κ, (2.4a)

and lim sup
k→∞

α
(

k, nk, f
(k,nk), g(k,nk)

)

≤ ǫ. (2.4b)

For (τ, ǫ) ∈ R+ × [0, 1], let

κ(τ, ǫ) := sup{κ′ : κ′ is (τ, ǫ) achievable}. (2.5)

We are interested in obtaining a computable characterization of κ(τ, ǫ).

As mentioned in Chapter 1, it is well known that the Neyman-Pearson (NP) test

gives the optimal trade-off between the type I and type II error probabilities, and hence,

also between the error-exponents in HT. It follows that the optimal error-exponent

for distributed HT over a DMC is achieved when the channel-input Xn is generated

correlated with Uk according to some optimal conditional distribution PXn|Uk , and the

optimal NP test is performed on the data available (both received and observed) at the

detector. It can be shown similar to [4, Theorem 1] that the optimal error-exponent

for vanishing type I error probability constraint is characterized by the multi-letter
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expression given by

lim
ǫ→0

κ(τ, ǫ) = sup
P
Xn|Uk∈PXn|Uk ,

k,n≤τk

1

k
D (PY nV k ||QY nV k) . (2.6)

However, the above expression is intractable as it does not single-letterize in general.

Moreover, the encoder and the detector for such a scheme would be computationally

complex to implement from a practical viewpoint. Also, analysis of such a scheme

is prohibitively complex as it involves optimization over large dimensional probability

simplexes, when k and n are large. In the next section, we establish three different

single-letter lower bounds on κ(τ, ǫ) by using the SHTCC, local decision and JHTCC

schemes, respectively. These schemes will be explained in detail in the sections below,

but we summarize them briefly here. The SHTCC scheme is a separation based scheme

that performs separate HT and channel coding. The local decision scheme is basically a

one bit scheme that performs a local HT at the observer based on Uk and communicates

its decision to the detector, which makes the final decision based on the information

received from the observer and its own side-information. Finally, the JHTCC scheme

utilizes hybrid coding [26] for communication between the observer and the detector,

thus performing joint HT and channel coding.

2.5 Achievable schemes

In [11], Shimokawa et al. obtained a lower bound on the optimal error-exponent

for distributed HT over a rate-limited noiseless channel by using a coding scheme

that involves quantization and binning at the encoder. In this scheme, the type3 of

the observed sequence Uk = uk is transmitted by the encoder to the detector, which is

useful to improve the performance of the hypothesis test. In fact, in order to achieve the

error-exponent proposed in [11], it is sufficient to send a message indicating whether Uk

is typical or not, rather than sending the exact type of Uk. Although it is not possible

to get perfect reliability for messages transmitted over a noisy channel, intuitively, it is

desirable to protect the typicality information about the observed sequence as reliably

3Since the number of types is polynomial in the blocklength, these can be communicated error-free
at asymptotically zero-rate.
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as possible. Based on this intuition, we next propose the SHTCC scheme that performs

independent HT and channel coding and protects the message indicating whether Uk

is typical or not, as reliably as possible.

2.5.1 SHTCC Scheme:

In the SHTCC scheme, the encoding and decoding functions are restricted to be

of the form f (k,n) = f
(k,n)
c ◦ f (k)s and g(k,n) = g

(k)
s ◦ g(k,n)c , respectively. The source

encoder f
(k)
s : Uk 7→ M = {0, 1, · · · , ⌈ekR⌉} generates an index M = f

(k)
s (Uk) and the

channel encoder f
(k,n)
c : M 7→ C̃ = {Xn(j), j ∈ [0 : ⌈ekR⌉]} generates the channel-

input codeword Xn = f
(k,n)
c (M). Note that the rate of this coding scheme is kR

n = R
τ

bits per channel use. The channel decoder g
(k,n)
c : Yn 7→ M maps the channel-output

Y n into an index M̂ = g
(k,n)
c (Y n), and g

(k)
s : M × Vk 7→ {0, 1} outputs the result

of the HT as Ĥ = g
(k)
s (M̂, V k). Note that f

(k,n)
c depends on Uk only through the

output of f
(k)
s (Uk) and g

(k,n)
c depends on V k only through Y n. Hence, the scheme is

modular in the sense that (f
(k,n)
c , g

(k,n)
c ) can be designed independent of (f

(k)
s , g

(k)
s ).

In other words, any good channel coding scheme may be used in conjunction with a

good compression scheme. If Uk is not typical according to PU , f
(k)
s outputs a special

message, referred to as the error message, denoted by M = 0, to inform the detector

to declare Ĥ = 1. There is obviously a trade-off between the reliability of the error

message and the other messages in channel coding. The best known reliability for

protecting a single special message when the other messages M ∈ [enR] of rate R,

referred to as ordinary messages, are required to be communicated reliably is given by

the red-alert exponent in [22]. The red-alert exponent is defined as

Em(R,PY |X) := max
PSX : S=X ,
I(X;Y |S)=R,
S−X−Y

∑

s∈S
PS(s) D

(

PY |S=s||PY |X=s

)

. (2.7)

Borade et al.’s scheme uses an appropriately generated codebook along with a two-

stage decoding procedure. The first stage is a joint-typicality decoder to decide whether

Xn(0) is transmitted, while the second stage is amaximum-likelihood decoder to decode

the ordinary message if the output of the first stage is not zero, i.e., M̂ 6= 0. On the

other hand, it is well-known that if the rate of the messages is R, a channel coding
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error-exponent equal to Ex(R,PY |X) is achievable, where

Ex(R,PY |X)

:= max
PX

max
ρ≥1







−ρ R− ρ log





∑

x,x̃

PX(x)PX(x̃)

(

∑

y

√

PY |X(y|x)PY |X(y|x̃)
) 1

ρ











,

(2.8)

is the expurgated exponent at rate R [21] [20]. Let

Em(PSX , PY |X) :=
∑

s∈S
PS(s) D

(

PY |S=s||PY |X=s

)

, (2.9)

where, S = X and S −X − Y , and

Ex(R,PSX , PY |X)

:= max
ρ≥1

{

− ρ R− ρ log

(

∑

s,x,x̃

PS(s)PX|S(x|s)PX|S(x̃|s)




∑

y

√

PY |X(y|x)PY |X(y|x̃)
) 1

ρ





}

. (2.10)

Although Borade et al.’s scheme is concerned only with the reliability of the special

message, it is not hard to see using the technique of random-coding that for a fixed

distribution PSX , there exists a codebook C̃, and encoder and decoder as in Borade et

al.’s scheme, such that the rate is 0 ≤ R ≤ I(X;Y |S) and the special message achieves

a reliability equal to Em(PSX , PY |X), while the ordinary messages achieve a reliability

equal to Ex(R,PSX , PY |X). Note that Em(PSX , PY |X) and Ex(R,PSX , PY |X) denote

Borade et al.’s red-alert exponent and the expurgated exponent with fixed distribution

PSX , respectively, and that both are inter-dependent through PSX . Thus, varying

PSX provides a trade-off between the reliability for the ordinary messages and the

special message. We will use Borade et al.’s scheme for channel coding in the SHTCC

scheme, such that the error message and the other messages correspond to the special

and ordinary messages, respectively. The SHTCC scheme will be described in detail in

Appendix A.1. We next state a lower bound on the optimal error-exponent κ(τ, ǫ) that

is achieved by the SHTCC scheme. For brevity, we will use the shorter notations C,
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Em(PSX) and Ex(R,PSX) instead of C(PY |X), Em(PSX , PY |X) and Ex(R,PSX , PY |X),

respectively.

Theorem 2.2. For τ ≥ 0, κ(τ, ǫ) ≥ κs(τ), ∀ ǫ ∈ (0, 1], where

κs(τ)

:= sup
(PW |U ,PSX ,R)

∈ B(τ,PY |X)

min
{

E1(PW |U ), E2(PW |U , PSX , τ), E3(PW |U , PSX , τ),

E4(PW |U , PSX , τ)
}

, (2.11)

where

B
(

τ, PY |X
)

:=











(PW |U , PSX , R) : PUVWSXY (PW |U , PSX) := PUV PW |UPSXPY |X ,

S = X , IP (U ;W |V ) ≤ R < τIP (X;Y |S)











, (2.12)

E1(PW |U ) := min
P
ŨṼ W̃

∈T1(PUW ,PV W )
D(PŨ Ṽ W̃ ||QUVW ), (2.13)

E2(PW |U , PSX , R)

:=



























min
P
ŨṼ W̃

∈T2(PUW ,PV ) D(PŨ Ṽ W̃ ||QUVW ) +R

−IP (U ;W |V ), if IP (U ;W ) > R,

∞, otherwise,

(2.14)

E3(PW |U , PSX , R, τ)

:=











































min
P
ŨṼ W̃

∈T3(PUW ,PV ) D(PŨ Ṽ W̃ ||QUVW ) +R

−IP (U ;W |V ) + τEx
(

R
τ , PSX

)

, if IP (U ;W ) > R,

min
P
ŨṼ W̃

∈T3(PUW ,PV ) D(PŨ Ṽ W̃ ||QUVW ) + IP (V ;W )

+τEx
(

R
τ , PSX

)

, otherwise,

(2.15)

E4(PW |U , PSX , R, τ)

:=











D(PV ||QV ) +R− IP (U ;W |V ) + τEm (PSX) , if IP (U ;W ) > R,

D(PV ||QV ) + IP (V ;W ) + τEm (PSX) , otherwise,

(2.16)
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QUVW := QUV PW |U ,

T1(PUW , PVW ) := {PŨ Ṽ W̃ ∈ TUVW : PŨW̃ = PUW , PṼ W̃ = PVW },

T2(PUW , PV ) := {PŨ Ṽ W̃ ∈ TUVW : PŨW̃ = PUW , PṼ = PV , H(W̃ |Ṽ ) ≥ HP (W |V )},

T3(PUW , PV ) := {PŨ Ṽ W̃ ∈ TUVW : PŨW̃ = PUW , PṼ = PV }.

The proof of Theorem 2.2 is given in Appendix A.1. Although the expression κs(τ)

in Theorem 2.2 appears complicated, the terms E1(PW |U ) to E4(PW |U , PSX , R, τ) can

be understood to correspond to distinct events that can possibly lead to a type II

error. Note that E1(PW |U ) and E2(PW |U , PSX , R) are the same terms appearing in the

error-exponent achieved by the Shimokawa et al.’s scheme [11] for the noiseless chan-

nel setting, while E3(PW |U , PSX , R, τ) and E4(PW |U , PSX , R, τ) are additional terms

introduced due to the noisiness of the channel. E3(PW |U , PSX , R, τ) corresponds to the

event that Uk is PU -typical, an error occurs at the channel decoder and the detector

decides Ĥ = 0, whereas E4(PW |U , PSX , R, τ) is due to the event that Uk is not PU -

typical, an error occurs at the channel decoder and the detector decides Ĥ = 0. Note

that, in general, Em(PSX) can take the value of ∞ and when this happens, the term

τEm (PSX) becomes undefined for τ = 0. In this case, we define τEm (PSX) := 0.

Remark 2.3. In the SHTCC scheme, although we use Borade et al.’s scheme for

channel coding, that is concerned specifically with the protection of a special message

when the ordinary message rate is R, any other channel coding scheme with the same

rate can be employed. For instance, the ordinary message can be transmitted with an

error-exponent equal to the reliability function E(R,PY |X) [20] of the channel PY |X

at rate R, while the special message achieves the maximum reliability possible subject

to this constraint. However, it should be noted that a computable characterization of

neither E(R,PY |X) (for all values of R) nor the associated best reliability achievable

for a single message is known in general.

2.5.2 Local Decision Scheme (Zero-Rate Compression Scheme)

The SHTCC scheme described above is a two stage scheme in which the observer

communicates a compressed version W k of Uk using a channel code of rate R
τ bits per
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channel use, where R ≤ τC, while the detector makes the decision on the hypothesis

using an estimate of W k and side-information V k. Now, suppose the observer makes

the decision about the hypothesis locally using Uk and transmits its 1 bit decision to

the detector using a channel code for two messages, while the detector makes the final

decision based on its estimate of the 1 bit message and V k. The encoder f (k,n) = f
(k,n)
c ◦

f
(k)
s and decoder g(k,n) = g

(k)
s ◦ g(k,n)c are thus specified by maps f

(k)
s : Uk 7→ {0, 1},

f
(k,n)
c : {0, 1} 7→ X n, g

(k,n)
c : Yn 7→ {0, 1} and g

(k)
s : {0, 1} × Vk 7→ {0, 1}. We refer

to this scheme as the local decision scheme. Observe that the rate of communication

over the channel for this scheme is R = 1
n bits per channel use, which tends to zero

asymptotically.

We will next obtain a lower bound on κ(τ, ǫ) using the local decision scheme. Let

β0 := β0(PU , PV , QUV ) := min
P
ŨṼ

:
P
Ũ
=PU , PṼ

=PV

D(PŨ Ṽ ||QUV ), (2.17)

and Ec := Ec(PY |X) := D(PY |X=a||PY |X=b), (2.18)

where a and b denote channel input symbols that satisfy

(a, b) = argmax
(x,x′)∈X×X

D(PY |X=x||PY |X=x′). (2.19)

Note that β0 denotes the optimal error-exponent for distributed HT over a noiseless

channel, when the communication rate-constraint is zero [9] [10]. We define

κ0(τ) :=











D(PV ||QV ) , if τ = 0,

min (β0, τEc +D(PV ||QV )) , otherwise,
(2.20)

We have the following result.

Proposition 2.4. For τ ≥ 0, κ(τ, ǫ) ≥ κ0(τ), ∀ ǫ ∈ (0, 1].

Proof. Let k ∈ Z+ and nk = ⌊τk⌋. For τ = 0, Proposition 2.4 follows from Stein’s

lemma [4] applied to i.i.d. sequence V k available at the detector. Assume τ > 0. Fix

δ > 0 (a small number). We define the functions f
(k)
s and f

(k,nk)
c for the encoder f (k,nk)
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as follows:

f (k)s (uk) =











0, if Puk ∈ T k[PU ]δ
,

1, otherwise,

(2.21)

and

f (k,nk)
c

(

f (k)s (uk)
)

=











an, if f
(k)
s (uk) = 0,

bn, otherwise.

(2.22)

Here, ank and bnk denote the codewords formed by repeating the symbols a and b from

the channel input alphabet X , which are defined in (2.19). Let the functions g
(k)
s and

g
(k,nk)
c of the decision rule g(k,nk) be defined by

g(k,nk)
c (ynk) =











0, if ynk ∈ Tnk

[PY |X=a]δ
,

1, otherwise,

and

g(k)s

(

vk, g(k,nk)
c (ynk)

)

=











0, if Pvk ∈ T k[PV ]δ
and g

(k,nk)
c (ynk) = 0,

1, otherwise.

By the law of large numbers, the type I error probability tends to zero asymptotically,

since

lim
k→∞

P(Uk ∈ T k[PU ]δ
|H = 0) = 1,

lim
k→∞

P(V k ∈ T k[PV ]δ
|H = 0) = 1,

and lim
k→∞

P(Y nk ∈ Tnk

[PY |X=a]δ
|H = 0) = 1.

A type II error occurs only under the following two events:

Ê1 := {Uk ∈ T k[PU ]δ
, V k ∈ T k[PV ]δ

and Y nk ∈ Tnk

[PY |X=a]δ
},

Ê2 := {Uk /∈ T k[PU ]δ
, V k ∈ T k[PV ]δ

and Y nk ∈ Tnk

[PY |X=a]δ
}.

It follows from the zero-rate compression result in [9] that for sufficiently large k,

P(Ê1|H = 1) ≤ e−k(β0−O(δ)) (2.23)



Chapter 2. Distributed HT over a Noisy Channel: Stein’s Regime 36

Also, for sufficiently large k, we can write

P(Ê2|H = 1) ≤ P(V k ∈ T k[PV ]δ
|H = 1) P

(

Y nk ∈ Tnk

[PY |X=a]δ
|Uk /∈ T k[PU ]δ

)

= P(V k ∈ T k[PV ]δ
|H = 1) P

(

Y nk ∈ Tnk

[PY |X=a]δ
|Xnk = bnk

)

≤ e−k(D(PV ||QV )−O(δ)) · e−nk(Ec−O(δ)). (2.24)

Here, (2.24) follows from Lemma 2.2 and Lemma 2.6 in [20]. By the union bound, it

follows that

β(k, nk, f
(k,nk), g(k,nk)) ≤ P(Ê1|H = 1) + P(Ê2|H = 1),

from which it follows that,

κ(τ, ǫ) ≥ min (β0, τEc)−O(δ), ∀ ǫ ∈ (0, 1).

The result follows since δ > 0 is arbitrary.

The local decision scheme would be particularly useful when the communication

channel is very noisy, so that reliable communication is not possible at any positive

rate. In [23], it is shown that a local decision-like scheme achieves the optimal error-

exponent for HT over a DMC, i.e., when the detector has no side-information. More-

over, it is also proved that optimal error-exponent is not improved if the type I error

probability constraint is relaxed; and hence, strong converse holds. In the limiting case

of zero channel capacity, i.e., C(PY |X) = 0, it is intuitive to expect that communication

from the observer to the detector does not improve the achievable error-exponent for

distributed HT. In Appendix A.3, we show that this is indeed the case in a strong con-

verse sense, i.e., the optimal error-exponent depends only on the side-information V k,

and is given by D(PV ||QV ), for any constraint ǫ ∈ (0, 1) on the type I error probability.

This is in contrast to the zero-rate compression case considered in [9], where one bit

of communication between the observer and detector can achieve a strictly positive

error-exponent, in general.
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Remark 2.5. As D(PV ||QV ) characterizes the optimal error-exponent when the chan-

nel has zero capacity, the error-exponent is zero when PV = QV . In fact, zero capacity

for a DMC implies a stronger condition that it is not possible to transmit even a single

bit reliably (asymptotically). Hence, PV = QV along with C(PY |X) = 0 implies that

the minimum sum of type I and type II error probabilities achievable is equal to 1,

which is the same as that achievable by randomly making a decision on the hypothe-

ses. However, for a more general channel, e.g., a non-stationary memoryless channel

{∏n
i=1 PYi|Xi

}∞n=1 such that the maximum mutual information rate 1
n

∑n
i=1C(PYi|Xi

),

is of the order Θ
(

1√
n

)

bits, Θ(
√
n) bits can be transmitted at arbitrarily small proba-

bility of error (asymptotically). Hence, for such channels (and PV = QV ), it is possible

to drive the sum of type I and type II error probabilities arbitrarily close to zero even

though the capacity is zero.

The SHTCC and local decision schemes introduced above are schemes that perform

independent HT and channel coding, i.e., the channel encoder f
(k,n)
c neglects Uk given

the output M of source encoder f
(k)
s , and g

(k)
s neglects Y n given the output of the

channel decoder g
(k,n)
c . The following scheme ameliorates these restrictions and uses

hybrid coding to perform joint HT and channel coding.

2.5.3 JHTCC Scheme

Hybrid coding is a form of JSCC introduced in [26] for the lossy transmission of

sources over noisy networks. As the name suggests, hybrid coding is a combination of

the digital and analog (uncoded) transmission schemes. For simplicity 4, we assume

that k = n (τ = 1). In hybrid coding, the source Un is first mapped to one of the

codewords W̄n within a compression codebook. Then, a symbol-by-symbol function

(deterministic) of the W̄n and Un is transmitted as the channel codeword Xn. This

procedure is reversed at the decoder, in which, the decoder first attempts to obtain an

4For the case τ 6= 1, as mentioned in [26], we can consider hybrid coding over super symbols Uk∗

and Xn∗

, where k∗ and n∗ are some integers satisfying the constraint n∗ ≤ τk∗. This amounts to
enlarging the source and side-information r.v.’s alphabets, and thus results in a harder optimization
problem over the conditional probability distributions PW̄ |Uk∗

S and PXn∗

|Uk∗

SW̄ given in Theorem
2.6. However, we omit its description since the technique is standard and only adds notational clutter.
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estimate ˆ̄Wn of W̄n using the channel output Y n and its own correlated side informa-

tion V n. Then, the reconstruction Ûn of the source is obtained as a symbol-by-symbol

function of the reconstructed codeword, Y n and V n. In this subsection, we propose a

lower bound on the optimal error-exponent that is achieved by a scheme that utilizes

hybrid coding for the communication between the observer and the detector, which

we refer to as the JHTCC scheme. Post estimation of ˆ̄Wn, the detector performs

the hypothesis test using ˆ̄Wn, Y n and V n, instead of estimating Ûn as is done in

JSCC problems. We will in fact consider a slightly generalized form of hybrid coding

in that the encoder and detector is allowed to perform “time-sharing” according to

a sequence Sn that is known a priori to both parties. Also, the input Xn is allowed

to be generated according to an arbitrary memoryless stochastic function instead of

a deterministic function. The JHTCC scheme is described in detail in Appendix A.2.

Next, we state a lower bound on κ(τ, ǫ) that is achieved by the JHTCC scheme.

Theorem 2.6. κ(1, ǫ) ≥ κh, ∀ ǫ ∈ (0, 1], where

κh := sup
b ∈ Bh

min
{

E′
1(PS , PW̄ |US , PX|USW̄ ), E′

2(PS , PW̄ |US , PX|USW̄ ),

E′
3(PS , PW̄ |US , PX′|US , PX|USW̄ )

}

, (2.25)

Bh :=











b =
(

PS , PW̄ |US , PX′|US , PX|USW̄
)

: IP̂ (U ; W̄ |S) < IP̂ (W̄ ;Y, V |S), X ′ = X ,

P̂UV SW̄X′XY

(

PS , PW̄ |US , PX′|US , PX|USW̄
)

:= PUV PSPW̄ |USPX′|USPX|USW̄PY |X











,

E′
1

(

PS , PW̄ |US , PX|USW̄
)

:= min
P
ŨṼ S̃W̃ Ỹ

∈T ′
1(P̂USW̄ ,P̂V SW̄Y )

D
(

PŨ Ṽ S̃W̃ Ỹ ||Q̂UV SW̄Y

)

,

(2.26)

E′
2

(

PS , PW̄ |US , PX|USW̄
)

:= min
P
ŨṼ S̃W̃ Ỹ

∈T ′
2(P̂USW̄ ,P̂V SW̄Y )

D
(

PŨ Ṽ S̃W̃ Ỹ ||Q̂UV SW̄Y

)

+ IP̂ (W̄ ;V, Y |S)− IP̂ (U ; W̄ |S), (2.27)

E′
3

(

PS , PW̄ |US , PX′|US , PX|USW̄
)

:= D(P̂V SY ||Q̌V SY ) + IP̂ (W̄ ;V, Y |S)

− IP̂ (U ; W̄ |S), (2.28)

Q̂UV SW̄X′XY (PS , PW̄ |US , PX′|US , PX|USW̄ ) := QUV PSPW̄ |USPX′|USPX|USW̄PY |X ,

(2.29)
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Q̌UV SX′XY (PS , PX′|US) := QUV PSPX′|US✶(X = X ′)PY |X ,

T ′
1 (P̂USW̄ , P̂V SW̄Y ) := {PŨ Ṽ S̃W̃ Ỹ ∈ TUVSWY : PŨ S̃W̃ = P̂USW̄ , PṼ S̃W̃ Ỹ = P̂V SW̄Y },

T ′
2 (P̂USW̄ , P̂V SW̄Y ) := {PŨ Ṽ S̃W̃ Ỹ ∈ TUVSWY : PŨ S̃W̃ = P̂USW̄ , PṼ S̃Ỹ = P̂V SY ,

H(W̃ |Ṽ, S̃, Ỹ ) ≥ HP̂ (W̄ |V, S, Y )}.

The proof of Theorem 2.6 is given in Appendix A.2. The different factors inside the

minimum in (2.25) can be intuitively understood to be related to the various events

that could possibly lead to a type 2 error. More specifically, let the event that the

encoder is unsuccessful in finding a codeword W̄n in the quantization codebook that

is typical with Un be referred to as the encoding error, and the event that a wrong

codeword ˆ̄Wn (unintended by the encoder) is reconstructed at the detector be referred

to as the decoding error. Then, E′
1(PS , PW̄ |US , PX|USW̄ ) is related to the event that

neither the encoding nor the decoding error occurs, while E′
2(PS , PW̄ |US , PX|USW̄ ) and

E′
3(PS , PW̄ |US , PX′|US , PX|USW̄ ) are related to the events that only the decoding error

and both the encoding and decoding errors occur, respectively. From Theorem 2.2,

Theorem 2.6 and Proposition 2.4, we have the following corollary.

Corollary 2.7.

κ(1, ǫ) ≥ max (κh, κ0(1), κs(1)) , ∀ǫ ∈ (0, 1], (2.30)

where κh, κ0(1) and κs(1) refer to the lower bound on the error-exponent achieved by

the JHTCC (Theorem 2.6), local decision (Proposition 2.4) and SHTCC (Theorem

2.2) schemes, respectively.

Thus far, we obtained lower bounds on the optimal error-exponent for distributed HT

over a DMC. However, obtaining tight computable outer bounds is a challenging open

problem, and consequently, an exact computable characterization of the optimal error-

exponent is unknown (even when the communication channel is noiseless). However,

as we show in the next section, the problem does admit single-letter characterization

for TACI.
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2.6 Optimality result for TACI

Recall that for TACI, V = (E,Z) and the joint distribution under the null and the

alternate hypotheses are given by PUEZ and QUEZ = PUZPE|Z , respectively. Let

κ(τ) = lim
ǫ→0

κ(τ, ǫ). (2.31)

We will drop the subscript P from information theoretic quantities like mutual infor-

mation, entropy, etc., as there is no ambiguity on the joint distribution involved, e.g.,

IP (U ;W ) will be denoted by I(U ;W ). The following result holds.

Proposition 2.8. For TACI over a DMC PY |X ,

κ(τ) = sup











I(E;W |Z) : ∃ W s.t. I(U ;W |Z) ≤ τC(PY |X),

(Z,E)− U −W, |W| ≤ |U|+ 1.











, τ ≥ 0. (2.32)

Proof. For the proof of achievability, we will show that κs(τ) when specialized to TACI

recovers (2.32). Let µ > 0 be a arbitrarily small positive number, and

B′ (τ, PY |X
)

:=











(PW |U , PSX , Rm) : S = X , PUEZWSXY (PW |U , PSX) := PUEZPW |UPSXPY |X ,

I(U ;W |Z) ≤ Rm := τI(X;Y |S)− µ < τI(X;Y |S)











.

(2.33)

Note that B′(τ, PY |X) ⊆ B(τ, PY |X) since I(U ;W |E,Z) ≤ I(U ;W |Z), which holds due

to the Markov chain (Z,E) − U −W . Now, consider (PW |U , PSX , Rm) ∈ B′(τ, PY |X).

Then, we have

E1(PW |U ) = min
P
ŨẼZ̃W̃

∈T1(PUW ,PEZW )
D(PŨẼZ̃W̃ ||PZPU |ZPE|ZPW |U )

≥ min
P
ŨẼZ̃W̃

∈T1(PUW ,PEZW )
D(PẼZ̃W̃ ||PZPE|ZPW |Z) (2.34)

= I(E;W |Z),
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where (2.34) follows from the log-sum inequality [20]. Also,

E2

(

PW |U , PSX , Rm
)

≥ Rm − I(U ;W |E,Z)

≥ I(U ;W |Z)− I(U ;W |E,Z) = I(E;W |Z),

min
P
ŨẼZ̃W̃

∈T3(PUW ,PEZ) D(PŨẼZ̃W̃ ||PZPU |ZPE|ZPW |U ) +Rm − I(U ;W |E,Z)

+ τEx

(

Rm
τ
, PSX

)

≥ I(U ;W |Z)− I(U ;W |E,Z) = I(E;W |Z), (2.35)

min
P
ŨẼZ̃W̃

∈T3(PUW ,PEZ) D(PŨẼZ̃W̃ ||PZPU |ZPE|ZPW |U ) + I(E,Z;W ) + τEx

(

Rm
τ
, PSX

)

≥ I(E;W |Z), (2.36)

D(PEZ ||PEZ) +Rm − I(U ;W |E,Z) + τEm (PSX)

≥ I(U ;W |Z)− I(U ;W |E,Z) = I(E;W |Z), (2.37)

D(PEZ ||PEZ) + I(E,Z;W ) + τEm (PSX) ≥ I(E;W |Z), (2.38)

where in (2.35)-(2.38), we used the non-negativity of KL-divergence, Ex(·, ·) and Em(·).
Thus, from (2.35)-(2.38), it follows that

E3(PW |U , PSX , Rm, τ) ≥ I(E;W |Z), (2.39)

and E4(PW |U , PSX , Rm, τ) ≥ I(E;W |Z). (2.40)

Denoting B(τ, PY |X) and B′(τ, PY |X) by B and B′, respectively, we obtain

κ(τ, ǫ)

≥ sup
(PW |U ,PSX ,Rm)∈B

min
{

E1(PW |U ), E2(PW |U , PSX , Rm), E3(PW |U , PSX , Rm, τ),

E4(PW |U , PSX , Rm, τ)
}

≥ sup
(PW |U ,PSX ,Rm)∈B

I(E;W |Z)

≥ sup
(PW |U ,PSX ,Rm)∈B′

I(E;W |Z) (2.41)

= sup
PW |U :I(W ;U |Z)≤τC(PY |X)−µ

I(E;W |Z), (2.42)
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where (2.41) follows from the fact that B′ ⊆ B; and (2.42) follows by maximizing

over all PSX and noting that sup
PXS

I(X;Y |S) = C(PY |X). The proof of achievability

is complete by noting that µ > 0 is arbitrary and I(E;W |Z) and I(U ;W |Z) are

continuous functions of PW |U .

Converse: For any sequence of encoding functions f (k,nk), acceptance regions A(k,nk)

for H0 such that nk ≤ τk and

lim sup
k→∞

α
(

k, nk, f
(k,nk), g(k,nk)

)

= 0, (2.43)

we have similar to [4, Theorem 1 (b)], that

lim sup
k→∞

−1

k
log
(

β
(

k, nk, f
(k,nk), g(k,nk)

))

≤ lim sup
k→∞

1

k
D (PY nkEkZk ||QY nkEkZk) (2.44)

= lim sup
n→∞

1

k
I(Y nk ;Ek|Zk) (2.45)

= H(E|Z)− lim inf
k→∞

1

k
H(Ek|Y nk , Zk), (2.46)

where (2.45) follows since QY nkEkZk = PY nkZkPEk|Zk . Now, let T be a r.v. uniformly

distributed over [k] and independent of all the other r.v.’s (Uk, Ek, Zk, Xnk , Y nk).

Define an auxiliary r.v. W := (WT , T ), where Wi := (Y nk , Ei−1, Zi−1, Zki+1), i ∈ [k].

Then, the last term can be single-letterized as follows.

H(Ek|Y nk , Zk) =
∑k

i=1
H(Ei|Ei−1, Y nk , Zk)

=
∑k

i=1
H(Ei|Zi,Wi)

= kH(ET |ZT ,WT , T )

= kH(E|Z,W ). (2.47)

Substituting (2.47) in (2.46), we obtain

lim sup
k→∞

−1

k
log
(

β
(

k, nk, f
(k,nk)
1 , g(k,nk)

))

≤ I(E;W |Z). (2.48)
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Next, note that the data processing inequality applied to the Markov chain (Zk, Ek)−
Uk −Xn − Y n yields I(Uk;Y nk) ≤ I(Xnk ;Y nk) which implies that

I(Uk;Y nk)− I(Uk;Zk) ≤ I(Xnk ;Y nk). (2.49)

The R.H.S. of (2.49) can be upper bounded due to the memoryless nature of the

channel as

I(Xnk ;Y nk) ≤ nkmax
PX

I(X;Y ) = nkC(PY |X), (2.50)

while the left hand side (L.H.S.) can be simplified as follows.

I(Uk;Y nk)− I(Uk;Zk) = I(Uk;Y nk |Zk) (2.51)

=
∑k

i=1
I(Y nk ;Ui|U i−1, Zk)

=
∑k

i=1
I(Y nk , U i−1, Zi−1, Zki+1;Ui|Zi) (2.52)

=
∑k

i=1
I(Y nk , U i−1, Zi−1, Zki+1, E

i−1;Ui|Zi) (2.53)

≥
∑k

i=1
I(Y nk , Zi−1, Zki+1, E

i−1;Ui|Zi)

=
∑k

i=1
I(Wi;Ui|Zi) = kI(WT ;UT |ZT , T )

= kI(WT , T ;UT |ZT ) (2.54)

= kI(W ;U |Z).

Here, (2.51) follows due to Zk−Uk−Y nk ; (2.52) follows since the sequences (Uk, Zk) are

memoryless; (2.53) follows since Ei−1−(Y nk , U i−1, Zi−1, Zki+1)−Ui ; (2.54) follows from
the fact that T is independent of all the other r.v.’s. Finally, note that (E,Z)−U −W
holds and that the cardinality bound on W follows by standard arguments based on

Caratheodory’s theorem. This completes the proof of the converse, and hence of the

proposition.

As the above result shows, TACI is an instance of distributed HT over a DMC, in

which, the optimal error-exponent is equal to that achieved over a noiseless channel

of the same capacity. Hence, a noisy channel does not always degrade the achievable

error-exponent. Also, notice that a separation based coding scheme that performs
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independent HT and channel coding is sufficient to achieve the optimal error-exponent

for TACI. The investigation of a single-letter characterization of the optimal error-

exponent for TACI over a DMC is inspired from an analogous result for TACI over

a noiseless channel. It would be interesting to explore whether the noisiness of the

channel enables obtaining computable characterizations of the error-exponent for some

other special cases of the problem.

2.7 Conclusions

In this chapter, we have studied the error-exponent achievable in a distributed HT

problem over a DMC with side information available at the detector. We obtained

single-letter lower bounds on the optimal error-exponent for general HT, and exact

single-letter characterization for TACI. It is interesting to note from our results that

the reliability function of the channel does not play a role in the characterization of

the optimal error-exponent for TACI, and only the channel capacity matters. While

a strong converse holds for distributed HT over a rate-limited noiseless channel [4], it

remains an open question whether this property holds for noisy channels. As a first

step, it is shown in [23] that this is indeed the case for HT over a DMC with no side-

information. While we did not discuss the complexity of the schemes considered in this

chapter, it is an important factor that needs to be taken into account in any practical

implementation of these schemes. In this regard, it is evident that the local decision,

SHTCC and JHTCC schemes are in increasing order of complexity.



Chapter 3

Distributed HT over a Noisy

Channel: Chernoff’s regime

3.1 Overview

In this chapter, we study the trade-off between both the type I and type II error

exponents in the setting studied in Chapter 2. We will establish two inner bounds

on this trade-off. The first inner bound is obtained using a combination of a type-

based quantize-bin scheme and Borade et al.’s unequal error protection scheme, while

the second inner bound is established using a novel type-based hybrid coding scheme.

These bounds extend the achievability result of Han and Kobayashi obtained for the

special case of a rate-limited noiseless channel to a noisy channel. For the special case

of testing for the marginal distribution of the observer’s observations with no side-

information at the detector, we establish a single-letter characterization of the optimal

trade-off between the two error-exponents. Our results imply that a “separation”

holds in this case, in the sense that the optimal trade-off between the error-exponents

is achieved by a scheme that performs independent HT and channel coding.

3.2 Introduction

Consider the distributed HT setting depicted in Fig. 3.1, which corresponds to the

same system model in Chapter 2, but with a slightly different notation1. The k data

samples observed by the observer, denoted by uk, are communicated to the detector

over a noisy DMC PY |X . Based on its own observations, denoted by vk, and the channel

1This is done to avoid notational clutter and simplify the statement of the results in this chapter.

45
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Figure 3.1: Distributed HT over a noisy channel.

output yn, the detector performs the following hypothesis test on the joint probability

distribution that generated (uk, vk):

H0 :
k
∏

i=1

PUV (u, v), ∀ (u, v) ∈ U × V , (3.1a)

H1 :

k
∏

i=1

PŪ V̄ (u, v), ∀ (u, v) ∈ U × V . (3.1b)

Here, PUV and PŪ V̄ denote the joint probability distribution2 from which the data

is generated under the null and alternate hypothesis, respectively. Our goal is to

characterize the performance of the above hypothesis test as measured by the type I

and type II error exponents (see Definition 3.1 below).

3.3 Previous Work and Our Contributions

While the centralized setting in which all the data is available at a single location is

well understood, thanks to [1–3,5], the optimal characterization of the error-exponents

in distributed settings remain open except for some special cases. In the setting in Fig.

3.1 with a rate-limited noiseless channel, the trade-off between the communication

rate, type I and type II error-exponents is explored in [27], where the authors establish

an inner bound using a type-based quantization scheme. This problem is revisited

recently in [28], where an inner bound is obtained using the technique of structured

binning and analogy to the channel detection problem. The trade-off between the

error-exponents has also been explored from an information-geometric perspective in

the zero-rate compression scenario [29] [30], which provide further insights into the

2Note that the notation in this chapter is different from the other chapters in this thesis, as we
study the trade-off between the error-exponents in the Chernoff regime as opposed to Stein’s regime.
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geometric properties of the optimal trade-off between the two error-exponents. While

the above works focus on the asymptotic performance in distributed HT, a NP like test

for zero-rate multiterminal HT is proposed in [31], which in addition to achieving the

optimal trade-off between the two exponents, also achieves the optimal second order

asymptotic performance among all symmetric (type-based) encoding schemes.

The main contributions in this chapter can be summarized as follows:

(i) In Theorem 3.7, we establish a single-letter characterization of the optimal trade-

off between the type I and type II error-exponents3 for the special case where

the side-information vk is absent and the hypothesis test is on the marginal

distribution of uk, referred to henceforth as the non-distributed setting.

(ii) We obtain an inner bound (Theorem 3.9) on the trade-off between the error-

exponents in the distributed setting by using a SHTCC scheme that is a combi-

nation of a type-based quantize-bin strategy and unequal error-protection scheme

in [22]. This result recovers the inner bound obtained in [27] for the case of a

rate-limited noiseless channel, and the lower bound on the type II error-exponent

in the Stein’s regime, established in Theorem 2.2.

(iii) We obtain a second inner bound (Theorem 3.14) on the error-exponents trade-off

by using a JHTCC scheme that is based on hybrid coding. This bound is at least

as tight as that achieved by the SHTCC scheme in the Stein’s regime.

The problem studied here has been investigated recently in [32], where an inner bound

on the error-exponents is obtained using a combination of a type-based quantization

scheme and unequal error protection scheme of [33] with two special messages. Our

schemes differ from that in [32] in the following aspects: (i) In the SHTCC scheme,

the encoder employs binning subsequent to quantization and Borade et al.’s unequal

error protection with a single special message (in place of [33]); (ii) In the JHTCC

scheme, the encoder uses a hybrid coding scheme that transmits the channel codeword

generated as a function of the quantization codeword as well as the sequence uk.

3A corner point of this trade-off, namely the optimal T2EE for a fixed non-zero constraint on the
type I error probability, is established in [23].
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The rest of the chapter is organized as follows. The problem formulation and defi-

nitions are introduced in Section 3.3.2. The main results are presented in Section 3.4

and 3.5. The proofs of the results are presented immediately after their statement or

in Appendix B. Finally, Section 3.6 concludes the chapter.

3.3.1 Notations

The distribution of a r.v. X is denoted by PX . Sets are denoted by calligraphic

letters, e.g., the alphabet of a r.v. X is denoted by X . The cartesian product of

sets X and Y is denoted by X × Y. The n-fold cartesian product of a set X is

represented by X n. The set of probability distributions on X is denoted by PX . We

will extensively use the method of types [20]. Accordingly, the type (or empirical

distribution) of a sequence xn ∈ X n is denoted by Pxn or PX̃ , where X̃ denotes a

r.v. with distribution equal to the empirical distribution of xn. The type class of

PX̃ , i.e., the set of sequences of length n with type PX̃ is denoted by Tn(PX̃) or

Tn(X̃). The set of all possible types of sequences of length n with alphabet X is

denoted by Tn(X ). Similar notations will be used for pairs and larger combinations

of sequences, e.g., the joint type of (xn, yn) is denoted by Pxnyn or PX̃Ỹ , where X̃Ỹ

is a r.v. with distribution Pxnyn . By abuse of notation, PX̃ ∈ F , F ⊆ PX , will

also be denoted by X̃ ∈ F , e.g., PX̃ ∈ Tn(X ) by X̃ ∈ Tn(X ). For a given xn ∈
Tn(PX̃), the conditional type class of xn for a conditional type PỸ |X̃ , i.e., the set of

yn ∈ Tn(PỸ ) such that (xn, yn) ∈ Tn(PX̃Ỹ ), is denoted by Tn(PỸ |X̃ , x
n). The Shannon

entropy of X, the mutual information between X and Y , and the KL divergence

between X and X̂ with same support X are denoted by H(X), I(X;Y ) and D(X||X̂)

(or D(PX ||PX̂)), respectively. The conditional divergence between two distributions

PX1|X2
and PX̄1|X̄2

(defined on same alphabets) is denoted by D
(

PX1|X2
||PX̄1|X̄2

∣

∣PX2

)

or D
(

X1|X2||X̄1|X̄2

∣

∣X2

)

where,

D
(

PX1|X2
||PX̄1|X̄2

∣

∣PX2

)

:= D
(

X1|X2||X̄1|X̄2

∣

∣X2

)

:=
∑

x2∈X2

PX2(x2)D
(

PX1|X2=x2 ||PX̄1|X̄2=x2

)

.
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When X2 = X̄2, the notation above is further simplified to D
(

PX1|X2
||PX̄1|X2

)

or

D
(

X1|X2||X̄1|X2

)

. The set of r-divergent sequences from X is denoted by J r
n (X),

i.e.,

J r
n (X) = {xn ∈ X n : D(Pxn ||PX) ≤ r}.

The limiting inequalities limk→∞ ak = b, limk→∞ ak ≥ b, etc. are denoted by ak
(k)−−→

b, ak
(k)

≥ bk, etc., respectively. Probabilistic events are denoted by calligraphic letters,

e.g., E , and its probability by P(E). The complement of E is denoted by Ec. Finally,

the indicator function is denoted by ✶(·) and the standard asymptotic notations of

Big-o, Big-omega and Little-o are represented by O(·), Ω(·) and o(·), respectively.

3.3.2 Problem formulation

All r.v.’s considered in this chapter are discrete with finite support unless specified

otherwise, and all logarithms are with respect to the natural base e. Let k, n ∈ Z+.

The encoder observes source sequence uk, and transmits codeword xn = f (k,n)(uk),

where f (k,n) : Uk 7→ X n represents the encoding function (possibly stochastic) of the

observer. The channel output yn of the DMC PY |X given input xn is generated accord-

ing to the probability law given in (2.3). Depending on the received symbols yn and

side-information vk observed at the detector, the detector makes a decision between the

two hypotheses H0 and H1 given in (3.1). Let PUkV kXnY n := PUkV kPXn|UkPY n|Xn and

PŪkV̄ kX̄nȲ n := PŪkV̄ kPX̄n|ŪkPȲ n|X̄n denote the probability distribution of the source

sequence, side-information, channel input and channel output under the null and alter-

nate hypothesis, respectively, where PXn|Uk(xn|uk) = PX̄n|Ūk(xn|uk) = P(f (k,n)(uk) =

xn) for all (uk, xn) ∈ Uk × X n, and PȲ n|X̄n := PY n|Xn . Let H ∈ {0, 1} denote the

actual hypothesis and Ĥ ∈ {0, 1} denote the output of the hypothesis test, where 0

and 1 denote H0 and H1, respectively. Let Ak,n ⊆ Vk × Yn denote the acceptance

region for H0. Then, the decision rule g(k,n) : Vk × Yn 7→ {0, 1} is given by

g(k,n)
(

vk, yn
)

= 1− ✶

(

(vk, yn) ∈ Ak,n

)

.



Chapter 3. Distributed HT over a Noisy Channel: Chernoff’s Regime 50

Let

α
(

k, n, f (k,n), g(k,n)
)

:= 1− PV kY n (Ak,n) ,

and β
(

k, n, f (k,n), g(k,n)
)

:= PV̄ kȲ n (Ak,n) ,

denote the type I and type II error probabilities for the encoding function f (k,n) and

decision rule g(k,n), respectively. The following definition formally states the error-

exponents trade-off we aim to characterize.

Definition 3.1. Let τ ∈ (0,∞). An exponent pair (κα, κβ) is τ -achievable if there

exists sequences of integers k and nk, corresponding sequence of encoding functions

f (k,nk) and decoding functions g(nk), and k0 ∈ Z+ such that

nk ≤ τk, ∀ k ≥ k0, (3.2a)

α
(

k, nk, f
(k,nk), g(k,nk)

)

≤ e−kκα , ∀ k ≥ k0, (3.2b)

and lim inf
k→∞

−1

k
log
(

β
(

k, nk, f
(k,nk), g(k,nk)

))

≥ κβ . (3.2c)

Let

κ(τ, κα) := sup{κβ : (κα, κβ) is τ -achievable}.

For a fixed τ ∈ (0,∞), we are interested in characterizing the boundary of the set of

all τ -achievable (κα, κβ) tuples defined as

R := {(κα, κ(τ, κα)) : κα ∈ (0,∞]}.

Towards this, we will first obtain a single-letter characterization of R in the non-

distributed setting. This characterization will be subsequently used to obtain an inner

bound on R in the distributed setting.
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3.4 HT: Error exponents trade-off

In the non-distributed setting, the hypothesis test in (3.1) specializes to the following

test:

H0 :
k
∏

i=1

PU (u), ∀ u ∈ U , (3.3a)

H1 :
k
∏

i=1

PŪ (u), ∀ u ∈ U . (3.3b)

For brevity, we will denote the r.v. with distribution PY |X=x by Yx and the corre-

sponding probability distribution by PYx for all x ∈ X . Let us define

κ0 := κ0(τ, PU , PŪ , PY |X) := min (D(PŪ ||PU ), τEc) ,

where,

Ec := Ec(PY |X) := D(PYa ||PYb), (3.4)

and (a, b) := argmax
(x,x′)∈X×X

D(PYx ||PYx′ ). (3.5)

It follows by interchanging PU and PŪ in Theorem 2 [23] that, we may restrict the

range of κα within the interval (0, κ0] since κ(τ, κα) = 0 for κα ≥ κ0. Hence, R can be

redefined as R = {(κα, κ(τ, κα)) : κα ∈ (0, κ0]}.

In order to state our single-letter characterization of R, we need some concepts

regarding the log moment generating function (Log-MGF) of a r.v., which we briefly

review below. For a given function f : Z 7→ R and a probability distribution PZ on Z,

the log-MGF of Z with respect to f , denoted by ψZ,f (λ) is given by

ψZ,f (λ) := ψPZ ,f (λ) := log
(

EPZ

(

eλf(Z)
))

.

Let

ψ∗
Z,f (θ) := ψ∗

PZ ,f
(θ) := sup

λ∈R
θλ− ψZ,f (λ). (3.6)
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The following simple facts are straightforward to verify.

Lemma 3.1. [6, Theorem 13.2, Theorem 13.3]

(i) ψZ,f (0) = 0 and ψ′
Z,f (0) = EPZ

(f(Z)), where ψ′
Z,f (λ) denotes the derivative of

ψZ,f (λ) with respect to λ.

(ii) ψZ,f (λ) is a strictly convex function in λ.

(iii) ψ∗
Z,f (θ) is strictly convex and strictly positive in θ except ψ∗

Z,f (E(Z)) = 0.

We will assume4 that

Assumption 3.2. PU ≪ PŪ , PŪ ≪ PU and PY |X is such that PYx ≪ PYx′ , ∀ (x, x′) ∈
X × X .

When uk is observed directly at the detector, a single-letter characterization of the

optimal trade-off between the error-exponents is obtained in [2]. Below, we state an

equivalent form of this characterization that is given in [6].

Theorem 3.3. [6, Theorem 15.1] When uk is observed directly at the detector, then

for the HT given in (3.3),

R =
{(

ψ∗
U,fU

(θ), ψ∗
U,fU

(θ)− θ
)

: θ ∈ I(U, Ū)
}

,

where, fU : U 7→ R+ is defined as

fU (u) := log

(

PŪ (u)

PU (u)

)

, (3.7)

and I(PU , PŪ ) :=
(

− D(PU ||PŪ ), D(PŪ ||PU )
]

. The decision rule that achieves the

exponent pair
(

ψ∗
U,fU

(θ), ψ∗
U,fU

(θ)− θ
)

is the NP test [1] given by

g
(k)
θ,U (u

k) = ✶

(

k
∑

i=1

log

(

PŪ (ui)

PU (ui)

)

≥ kθ

)

. (3.8)

4This technical condition ensures that for functions f and distributions P that we consider below,
ψP,f (λ) <∞, ∀ λ ∈ R.
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To prove the main result, a strong converse result that follows from [6, Theorem

12.5] will turn out to be handy. We state it below for completeness. For the scenario

where uk is observed directly at the detector, let us denote the type I and type II

error probabilities achieved by a decision rule (possibly stochastic) ḡ(k) : Uk 7→ {0, 1}
by α′(ḡ(k)) and β′(ḡ(k)), respectively. The following single-shot result provides a lower

bound on a weighted sum of the type I and type II error probabilities5.

Theorem 3.4. [6, Theorem 12.5] For any k ∈ Z+ and any decision rule ḡ(k) as

defined above,

α′
(

ḡ(k)
)

+ γβ′
(

ḡ(k)
)

≥ PUk

(

log

(

PUk(Uk)

PŪk(Uk)

)

≤ log γ

)

, ∀ γ > 0,

where, α′(ḡ(k)) and β′(ḡ(k)) denote the type I and type II error probabilities for decision

rule ḡ(k).

We will also require a slight generalization of Theorem 3.3 for the case when the

data samples are drawn from a product of finite non-identical distributions, i.e., the

samples are independent, but not necessarily identically distributed. For an arbitrary

given joint distribution PX0X1 ∈ P(X × X ), let {(xn0 , xn1 )}n∈Z+ denote a given pair of

sequences such that

Pxn0 xn1 (x, x
′)

(n)−−→ PX0X1(x, x
′), ∀ (x, x′) ∈ X × X . (3.9)

Consider the following HT:

H0 : Y
n ∼

n
∏

i=1

PYx0i , (3.10a)

H1 : Y
n ∼

n
∏

i=1

PYx1i . (3.10b)

For a given decision rule g(n)(yn) = 1− ✶ (Y n ∈ An) with acceptance region An ⊆ Yn

for H0, let ᾱ
(

n, g(n), xn0 , x
n
1

)

and β̄
(

n, g(n), xn0 , x
n
1

)

denote the type I and type II error

5Note that α denotes the complement of the type I error probability in [6, Theorem 12.5], whereas
we use α′ to denote the type I error probability.
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probabilities, respectively, where

ᾱ
(

n, g(n), xn0 , x
n
1

)

:= 1−
n
∏

i=1

PYx0i (An) ,

and β̄
(

n, g(n), xn0 , x
n
1

)

:=

n
∏

i=1

PYx1i (An) .

Definition 3.5. For a given joint distribution PX0X1 and a pair of infinite sequences

{(xn0 , xn1 )}n∈Z+ such that (3.9) holds, an exponent pair (κα, κβ) is achievable for the

HT in (3.10) if there exists a sequence of decision rules {g(n)}n∈Z+ and n0 ∈ Z+ such

that

ᾱ
(

n, g(n), xn0 , x
n
1

)

≤ e−nκα , ∀ n ≥ n0, (3.11a)

and lim inf
n→∞

− 1

n
log
(

β̄
(

n, g(n), xn0 , x
n
1

))

≥ κβ . (3.11b)

As will become evident later, the performance of the HT in (3.10) depends on

{(xn0 , xn1 )}n∈Z+ only through PX0X1 . Let

κ̄c(κα, PX0X1) := sup{κβ : (κα, κβ) is achievable for HT in (3.10)}.

and RN (PX0X1) := {(κα, κ̄c(κα, PX0X1)) : κα ∈ (0, κ∗α]}.

where κ∗α is the smallest number such that κ̄(κ∗α, PX0X1) = 0. The following proposi-

tion provides a single-letter characterization of RN (PX0X1), and will be used later for

obtaining a single-letter characterization of R in Theorem 3.7.

Proposition 3.6.

RN (PX0X1) =

{

(

EPX0X1

(

ψ∗
YX0

,h̃X0,X1

(θ)
)

, EPX0X1

(

ψ∗
YX0

,h̃X0,X1

(θ)
)

− θ
)

,

θ ∈ I(PX0X1 , PY |X)

}

,

where, for each (x, x′) ∈ X × X , h̃x,x′ : Y 7→ R is given by

h̃x,x′(y) := log

(

PYx′ (y)

PYx(y)

)

, (3.12)
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and

I(PX0X1 , PY |X) :=
(

−D(PYX0
||PYX1

|PX0X1), D(PYX1
||PYX0

|PX0X1)
]

,

D(PYX0
||PYX1

|PX0X1) :=
∑

(x0,x1)∈X×X
PX0X1(x0, x1)D(PYx0 ||PYx1 ),

D(PYX1
||PYX0

|PX0X1) :=
∑

(x0,x1)∈X×X
PX0X1(x0, x1)D(PYx1 ||PYx0 ).

The decision rule that achieves the exponent pair
(

EPX0X1

(

ψ∗
YX0

,h̃X0,X1

(θ)

)

, EPX0X1

(

ψ∗
YX0

,h̃X0,X1

(θ)

)

− θ

)

is the NP test given by

g
(n)
θ,Y(y

n) = ✶

(

n
∑

i=1

log

(

PYx1i (yi)

PYx0i (yi)

)

≥ nθ

)

. (3.13)

Proof. The proof is given in Appendix B.1.

The next theorem provides a single-letter characterization of κ(τ, κα) and thereby

of R.

Theorem 3.7.

κ(τ, κα) = sup{κβ : (κα, κβ) ∈ R∗}

where

R∗ :=
⋃

PX0X1
∈

PX×X

⋃

(θ0,θ1) ∈
I(PU ,PŪ )×I(PX0X1

,PY |X)

(ζ0(θ0, θ1, PX0X1), ζ1(θ0, θ1, PX0X1)) ,

ζ0(θ0, θ1, PX0X1) := min
{

ψ∗
U,fU

(θ0), τEPX0X1

(

ψ∗
YX0

,h̃X0,X1

(θ1)
)}

,

ζ1(θ0, θ1, PX0X1) := min
{

ψ∗
U,fU

(θ0)− θ0, τ
(

EPX0X1

(

ψ∗
YX0

,h̃X0,X1

(θ1)
)

− θ1

)}

,

where fU and h̃x,x′, (x, x
′) ∈ X × X are defined in (3.7) and (3.12), respectively.

To provide some intuition about the terms appearing in ζ0(·) and ζ1(·) above, note
that ψ∗

U,fU
(θ0) and ψ

∗
U,fU

(θ0) − θ0 are the same as the terms that appear in Theorem

3.3 which characterizes the error-exponent trade-off when uk is directly available at the
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detector. On the other hand, the second term within the minimum in ζ0(·) and ζ1(·)
are additional factors introduced due to the noisiness of the communication channel.

Proof of Theorem 3.7. Achievability: Fix PX0X1 ∈ PX×X . Let nk = ⌊τk⌋, and xnk
0

and xnk
1 be two arbitrary sequences from the set X nk such that (3.9) holds. Let

θ0 ∈ I(PU , PŪ ) and θ1 ∈ I(PX0X1 , PY |X). The achievability scheme is as follows:

The encoder first locally performs the NP test g
(k)
θ,U given in (3.8) on the observed

samples uk with θ = θ0, and outputs the channel input codeword f (k,nk)(uk) according

to the following rule:

f (k,nk)(uk) =











xnk
0 , if g

(k)
θ0,U (u

k) = 0,

xnk
1 , otherwise.

Based on the observed samples ynk , the detector outputs the decision of the HT ac-

cording to the decision rule g(nk) = g
(nk)
θ1,Y defined in (3.13). Let

A(nk)
θ1

=

{

ynk ∈ Ynk :

nk
∑

i=1

log

(

PY |X=x1i(yi)

PY |X=x0i(yi)

)

< nkθ1

}

. (3.14)

The type I error error probability can be upper bounded for sufficiently large k (and

nk) as follows:

α
(

k, nk, f
(k,nk), g(nk)

)

≤ P
(

g
(k)
θ0,U (U

k) = 1
)

PY nk |Xnk=x
nk
1

(

Ynk\A(nk)
θ1

)

+ P
(

g
(k)
θ0,U (U

k) = 0
)

PY nk |Xnk=x
nk
0

(

Ynk\A(nk)
θ1

)

≤ P
(

g
(k)
θ0,U (U

k) = 1
)

+ PY nk |Xnk=x
nk
0

(

Ynk\A(nk)
θ1

)

≤ e
−k

(

ψ∗
U,fU

(θ0)−δ
)

+ e
−nk

(

EPX0X1

(

ψ∗
YX0

,h̃X0,X1

(θ1)

)

−δ
)

, (3.15)

where δ > 0 is an arbitrary small, but fixed number. Similarly, the type II error

probability can be upper bounded as follows:

β
(

k, nk, f
(k,nk), g(nk)

)
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≤ P
(

g
(k)
θ0,U (Ū

k) = 0
)

PY nk |Xnk=x
nk
0

(

A(nk)
θ1

)

+ P
(

g
(k)
θ0,U (Ū

k) = 1
)

PY nk |Xnk=x
nk
1

(

A(nk)
θ1

)

≤ P
(

g
(k)
θ0,U (Ū

k) = 0
)

+ PY nk |Xnk=x
nk
1

(

A(nk)
θ1

)

≤ e
−k

(

ψ∗
Ū,fU

(θ0)−δ
)

+ e
−nk

(

EPX0X1

(

ψ∗
YX1

,h̃X0,X1

(θ1)

)

−δ
)

= e
−k

(

ψ∗
U,fU

(θ0)−θ0−δ
)

+ e
−nk

(

EPX0X1

(

ψ∗
YX0

,h̃X0,X1

(θ1)

)

−θ1−δ
)

. (3.16)

It follows from (3.15) and (3.16), respectively, that,

lim inf
k→∞

−1

k
log
(

α
(

k, nk, f
(k,nk), g(nk)

))

≥ min
(

ψ∗
U,fU

(θ0), EPX0X1

(

ψ∗
YX0

,h̃X0,X1

(θ1)
))

− δ

= ζ0(θ0, θ1, PX0X1)− δ,

and

lim inf
k→∞

−1

k
log
(

β
(

k, nk, f
(k,nk), g(nk)

))

≥ min
(

ψ∗
U,fU

(θ0)− θ0, EPX0X1

(

ψ∗
YX0

,h̃X0,X1

(θ1)
)

− θ1

)

− δ

= ζ1(θ0, θ1, PX0X1)− δ.

Since δ is arbitrary, it follows by varying PX0X1 ∈ PX×X , θ0 ∈ I(PU , PŪ ) and θ1 ∈
I(PX0X1 , PY |X) that

κ(τ, κα) ≥ sup{κα : (κα, κβ) ∈ R∗}.

This completes the proof of achievability.

Converse: From the proof of the converse part of Theorem 3.3, it follows that for

θ0 ∈ I(PU , PŪ ),

R ⊆
⋃

θ0∈I(PU ,PŪ )

(

ψ∗
U,fU

(θ0), ψ
∗
U,fU

(θ0)− θ0
)

. (3.17)
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Also, note that for any encoding function f (k,nk) and decoding function g(nk) with

decision region A(nk) ⊆ Ynk , we have

α
(

k, nk, f
(k,nk), g(nk)

)

=
∑

uk∈Uk

PU (u
k)

∑

xnk∈Xnk

PXnk |Uk=uk(x
nk)PY nk |Xnk=xnk (Ynk\Ank)

≥ PY nk |Xnk=x̄
nk
0
(Ynk\Ank), (3.18)

for some x̄nk
0 ∈ X nk that depends on Ank . Similarly,

β
(

k, nk, f
(k,nk), g(nk)

)

=
∑

uk∈Uk

PŪ (u
k)

∑

xnk∈Xnk

PXnk |Uk=uk(x
nk)PY nk |Xnk=xnk (Ank)

≥ PY nk |Xnk=x̄
nk
1
(Ank), (3.19)

for some x̄nk
1 ∈ X nk (depends onAnk). Let P̄X0X1 denote the joint type of the sequences

(x̄n0 , x̄
n
1 ). Note that the R.H.S. of (3.18) and (3.19) correspond to the type I and type

II error probabilities of the HT given in (3.10) with n = nk, x
nk
0 = x̄nk

0 and xnk
1 = x̄nk

1

. Then, it follows from the converse part of the proof of Lemma 3.6 that if for some

θ1 ∈ I(P̄X0X1 , PY |X) and all sufficiently large nk, it holds that,

α
(

k, nk, f
(k,nk), g(nk)

)

< e
−nk

(

EP̄X0X1

(

ψ∗
YX0

,h̃X0,X1

(θ1)

))

, (3.20)

then

lim sup
k→∞

−1

k
log
(

β
(

k, nk, f
(k,nk), g(nk)

))

≤ τ
(

EP̄X0X1

(

ψ∗
YX0

,h̃X0,X1

(θ1)− θ1

))

.

(3.21)

From (3.20) and (3.21), we have

R ⊆
⋃

PX0X1
∈PX×X

⋃

θ1∈I(PX0X1
,PY |X)

(

τEPX0X1

(

ψ∗
PYX0

,h̃X0,X1

(θ1)

)

,

τ

(

EPX0X1

(

ψ∗
PYX0

,h̃X0,X1

(θ1)

)

− θ1

))

. (3.22)
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It follows from (3.17) and (3.22) that (κα, κβ) ∈ R only if there exists some PX0X1 and

(θ0, θ1) ∈ I(PU , PŪ )× I(PX0X1 , PY |X) such that

κα ≤ min
{

ψ∗
U,fU

(θ0), τEPX0X1

(

ψ∗
YX0

,h̃X0,X1

(θ1)
)}

,

and κβ ≤ min
{

ψ∗
U,fU

(θ0)− θ0, τ
(

EPX0X1

(

ψ∗
YX0

,h̃X0,X1

(θ1)
)

− θ1

)}

,

from which it follows that κ(τ, κα) ≤ sup{κβ : (κα, κβ) ∈ R∗}. This completes the

proof.

Remark 3.8. The optimal T2EE for a fixed constraint on the type I error probability

can be recovered by taking limit θ0 → −D(PU ||PŪ ) and θ1 → −D(PYX0
||PYX1

|PX0X1).

In this case,

ζ0

(

−D(PU ||PŪ ),−D(PYX0
||PYX1

|PX0X1), PX0X1

)

= 0

and

ζ1

(

−D(PU ||PŪ ),−D(PYX0
||PYX1

|PX0X1), PX0X1

)

= min
{

D(PU ||PŪ ), D(PYX0
||PYX1

|PX0X1)
}

.

Maximizing the second argument over all possible PX0X1 yields,

max
PX0X1

∈PX×X

D(PYX0
||PYX1

|PX0X1) = Ec. (3.23)

Hence, limκα→0 κ(τ, κα) = κ0, which is equal to the optimal T2EE established in

Theorem 2 [23]. Note that Ec < ∞ under the assumption PYx << PYx′ , ∀ (x, x′) ∈
X × X .

3.5 Distributed HT: Error-exponents trade-off

In [27, Theorem 1], Han and Kobayashi obtained an inner bound on R in the dis-

tributed setting, where the communication channel is rate-limited and noiseless. At

a high level, their coding scheme involved a type-based quantization of sequences uk,
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whose type Puk lies within a distance (in terms of KL divergence) equal to the desired

type I error-exponent κα from PU . The index of the codeword within the quantization

codebook is revealed to the detector which takes the decision on the hypothesis based

on the received index and side-information vk. On the other hand, it is well-known

from [11] that by performing binning subsequent to quantization and decoding using

the side-information vk can help reduce the communication rate to the detector. This

enables better quantization of uk and higher error-exponent in channel coding. How-

ever, these benefits come at a cost, as binning introduces additional errors that affect

the type I and type II error probability. More specifically, a binning error occurs when

the detector decodes the incorrect quantization codeword from the correctly decoded

bin-index.

In this section, we will obtain inner bounds on R using a generalization of the

SHTCC and JHTCC schemes in Chapter 2. In this chapter, we will refer to these

generalized schemes also as SHTCC and JHTCC scheme, respectively.

3.5.1 SHTCC scheme:

The SHTCC scheme is a combination of a generalization of the Shimokawa-Han-

Amari (SHA) scheme [11] and the Borade-Nakiboğlu-Zheng unequal error-protection

scheme [22]. More specifically, the scheme involves

(i) quantization and binning of sequences uk whose type Puk is within a distance of

κα (in terms of KL-divergence) from PU (instead of just the dominant type PU

as is done in the SHA scheme), and using the side-information vk to decode for

the quantization codeword from the (decoded) bin-index at the detector.

(ii) unequal error-protection channel coding scheme in [22] for protecting a special

message which informs the detector that Puk is at a distance greater than κα

from PU .

Before, we state the inner bound onR achieved by the SHTCC scheme, some definitions

are required. Let S denote a r.v. with support S = X , such that S − X − Y and
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PSXY = PSXPY |X . For x ∈ X , we define

rx(y) := log

(

PY |X=x(y)

PY |S=x(y)

)

, (3.24)

and

Em(PSX , θ) =
∑

s∈S
PS(s)ψ

∗
PY |S=s,rs

(θ). (3.25)

Let Ω denote the set of all continuous mappings from PU to PW|U , where W is an

arbitrary finite set. Let

θL(PSX) :=
∑

s∈S
PS(s)D

(

PY |S=s||PY |X=s

)

, (3.26)

θU (PSX) :=
∑

s∈S
PS(s)D

(

PY |X=s||PY |S=s
)

, (3.27)

Θ(PSX) := (−θL(PSX), θU (PSX)), (3.28)

L(κα, τ)

:=











(ω,R, PSX , θ) ∈ Ω× R+ × PSX ×Θ(PSX) : ζq(κα, ω)− ρ(κα, ω) ≤ R <

τI(X;Y |S), min

(

τEm(PSX , θ), τEx

(

R

τ
, PSX

)

, Eb(κα, ω,R)

)

≥ κα











,

L̂(κα, ω)

:=
{

Û V̂ Ŵ : D(Û V̂ Ŵ ||UVW ) ≤ κα, PW |U = PŴ |Û = ω(PÛ ), V − U −W
}

,

(3.29)

Eb(κα, ω,R) :=











R− ζq(κα, ω) + ρ(κα, ω) if 0 ≤ R < ζq(κα, ω),

∞ otherwise,

ζq(κα, ω) := max
ÛŴ : ∃V̂,

Û V̂ Ŵ∈L̂(κα,ω)

I(Û ; Ŵ ),

ρ(κα, ω) := min
V̂ Ŵ : ∃Û,

Û V̂ Ŵ∈L̂(κα,ω)

I(V̂ ; Ŵ ),

E1(κα, ω) := min
Ũ Ṽ W̃∈T1(κα,ω)

D(Ũ Ṽ W̃ ||Ū V̄ W̄ ),
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E2(κα, ω,R) :=















min
Ũ Ṽ W̃∈T2(κα,ω)

D(Ũ Ṽ W̃ ||Ū V̄ W̄ ) + Eb(κα, ω,R), if R < ζq(κα, ω),

∞, otherwise,

E3(κα, ω,R, PSX , τ)

:=















































min
Ũ Ṽ W̃∈T3(κα,ω)

D(Ũ Ṽ W̃ ||Ū V̄ W̄ ) + Eb(κα, ω,R)

+τEx
(

R
τ , PSX

)

, if R < ζq(κα, ω),

min
Ũ Ṽ W̃∈T3(κα,ω)

D(Ũ Ṽ W̃ ||Ū V̄ W̄ ) + ρ(κα, ω)

+τEx
(

R
τ , PSX

)

, otherwise,

E4(κα, ω,R, PSX , θ, τ)

:=















































min
V̂ :Û V̂ Ŵ∈L̂(κα,ω)

D(V̂ ||V̄ ) + Eb(κα, ω,R)

+τ (Em(PSX , θ)− θ) , if R < ζq(κα, ω),

min
V̂ :Û V̂ Ŵ∈L̂(κα,ω)

D(V̂ ||V̄ ) + ρ(κα, ω)

+τ (Em(PSX , θ)− θ) , otherwise,

where,

PW̄ |Ū := PW̃ |Ũ , V̄ − Ū − W̄,

T1(κα, ω) :=







Ũ Ṽ W̃ : PŨW̃ = PÛŴ , PṼ W̃ = PV̂ Ŵ

for some Û V̂ Ŵ ∈ L̂(κα, ω)







,

T2(κα, ω) :=







Ũ Ṽ W̃ : PŨW̃ = PÛŴ , PṼ = PV̂ , H(W̃ |Ṽ ) ≥ H(Ŵ |V̂ )

for some Û V̂ Ŵ ∈ L̂(κα, ω)







,

and T3(κα, ω) :=







Ũ Ṽ W̃ : PŨW̃ = PÛŴ , PṼ = PV̂

for some Û V̂ Ŵ ∈ L̂(κα, ω)







.

We have the following lower bound for κ(τ, κα).

Theorem 3.9. κ(τ, κα) ≥ κ∗s(τ, κα), where

κ∗s(τ, κα) := max
(ω,R,PSX ,θ)
∈L(κα,τ)

min
{

E1(κα, ω), E2(κα, ω,R), E3(κα, ω,R, PSX , τ),



Chapter 3. Distributed HT over a Noisy Channel: Chernoff’s Regime 63

E4(κα, ω,R, PSX , θ, τ)
}

. (3.30)

The proof of Theorem 3.9 is presented in Appendix B.2. As a corollary, Theorem

3.9 recovers the lower bound for κ(τ, κα) obtained in [27] for the case of a rate-limited

noiseless channel by

1. setting Ex
(

R
τ , PSX

)

, Em(PSX , θ) and Em(PSX , θ) − θ to ∞, which holds when

the channel is noiseless.

2. maximizing over the set {(ω,R, PSX , θ) ∈ Ω×R+ ×PSX ×Θ(PSX) : ζq(κα, ω) ≤
R < τI(X;Y |S)} ⊆ L(κα, τ, PY |X) in (3.30).

Then, note that the terms E2(κα, ω,R), E3(κα, ω,R, PSX , τ) and E4(κα, ω,R, PSX , θ, τ)

all equal ∞, and thus the inner bound in Theorem 3.9 reduces to that given in [27, The-

orem 1].

Remark 3.10. Since the lower bound on κ(τ, κα) in Theorem 3.9 is not necessar-

ily concave, a tighter bound can be obtained using the technique of “time-sharing”

similar to [27, Theorem 3]. We omit its description as it is cumbersome, although

straightforward.

The terms E1(·), E2(·), E3(·) and E4(·) can be interpreted similarly to that done

for Theorem 2.2. More specifically, E1(·), which is identical to the lower bound on

the error-exponent obtained in [27, Theorem 1] for the noiseless channel setting, corre-

sponds to the event when there is no error in the encoding or decoding operation. On

the other hand, E2(·) correponds to the factor introduced due to a binning error event.

Finally, E3(·) and E4(·) correspond to the factors introduced due to the erroneous

decoding of the ordinary message and the special message in Borade et al.’s unequal

error protection scheme (used for channel coding), respectively.

Specializing the lower bound in Theorem 3.9 to the case of TAI, we obtain the

following.
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Corollary 3.11. Let PŪ V̄ = PUPV . Then,

κ(τ, κα) ≥ max
(ω,R,PSX ,θ)∈

L∗(κα,τ)

min
{

EI1(κα, ω), E
I
2(κα, ω,R, PSX , τ), E

I
3(κα, ω,R, PSX , θ, τ)

}

,

where

L∗(κα, τ) :=











(ω,R, PSX , θ) ∈ Ω× R+ × PSX ×Θ(PSX) : ζq(κα, ω) ≤ R <

τI(X;Y |S), min

(

τEm(PSX , θ), τEx

(

R

τ
, PSX

))

≥ κα











,

EI1(κα, ω) := min
V̂ Ŵ :Û V̂ Ŵ∈L̂(κα,ω)

[

I(V̂ ; Ŵ ) +D(V̂ ||V )
]

,

EI2(κα, ω,R, PSX , τ) := min
V̂ :Û V̂ Ŵ∈L̂(κα,ω)

D(V̂ ||V ) + ρ(κα, ω) + τEx

(

R

τ
, PSX

)

,

EI3(κα, ω, PSX , θ, τ) := min
V̂ :Û V̂ Ŵ∈L̂(κα,ω)

D(V̂ ||V ) + ρ(κα, ω) + τ (Em(PSX , θ)− θ) ,

and L̂(κα, ω) is as defined in (3.29).

Proof. Note that L∗(κα, τ) ⊆ L(κα, τ). Then, for any ω ∈ L∗(κα, τ) and any Ũ Ṽ W̃ ∈
T1(κα, ω),

D(Ũ Ṽ W̃ ||Ū V̄ W̄ ) = D(ŨW̃ ||ŪW̄ ) +D(Ṽ |ŨW̃ ||V̄ |ŪW̄ )

= D(Ũ ||Ū) +D(Ṽ |ŨW̃ ||V̄ )

≥ D(Ũ ||Ū) +D(Ṽ |W̃ ||V̄ ) (3.31)

= D(Û ||Ū) +D(V̂ |Ŵ ||V̄ ) (3.32)

= D(Û ||U) + I(V̂ ; Ŵ ) +D(V̂ ||V ),

where, in (3.31), we used the data processing (DPI) inequality for KL-divergence, and

in (3.32), we used the fact that for Ũ Ṽ W̃ ∈ T1(κα, ω), PŨW̃ = PÛŴ and PṼ W̃ = PV̂ Ŵ

for some Û V̂ Ŵ ∈ L̂(κα, ω). Minimizing over all Û V̂ Ŵ ∈ L̂(κα, ω) yields that

E1(κα, ω) = min
Ũ Ṽ W̃∈T1(κα,ω)

D(Ũ Ṽ W̃ ||Ū V̄ W̄ )

≥ min
Û V̂ Ŵ∈L̂(κα,ω)

[

I(V̂ ; Ŵ ) +D(V̂ ||V )
]

= EI1(κα, ω).
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Since ζq(κα, ω) ≤ R, we have that E2(κα, ω,R) = ∞,

E3(κα, ω,R, PSX , τ)

= min
Ũ Ṽ W̃∈T2(κα,ω)

D(Ũ Ṽ W̃ ||Ū V̄ W̄ ) + ρ(κα, ω) + τEx

(

R

τ
, PSX

)

≥ min
V̂ :Û V̂ Ŵ∈L̂(κα,ω)

D(V̂ ||V ) + ρ(κα, ω) + τEx

(

R

τ
, PSX

)

(3.33)

= EI2(κα, ω,R, PSX , τ),

and

E4(κα, ω,R, PSX , θ, τ)

:= min
V̂ :Û V̂ Ŵ∈L̂(κα,ω)

D(V̂ ||V̄ ) + ρ(κα, ω) + τ (Em(PSX , θ)− θ)

≥ min
V̂ :Û V̂ Ŵ∈L̂(κα,ω)

D(V̂ ||V ) + ρ(κα, ω) + τ (Em(PSX , θ)− θ) (3.34)

= EI3(κα, ω, PSX , θ, τ),

where, to obtain (3.33) and (3.34), we used DPI for KL-divergence. This completes

the proof.

Corollary 3.12.

lim
κα→0

κ∗s(τ, κα) = κs(τ),

where κs(τ) is the lower bound on the type II error-exponent for a fixed type I error

probability constraint established in Theorem 2.2.

Proof. The result follows by noting that

L̂(0, ω) = {UVW,PW |U = ω(PU ), V − U −W},

ζq(0, ω) = I(U ;W ),

ρ(0, ω) = I(V ;W ),
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and the fact that Em(PSX , θ), Ex
(

R
τ , PSX

)

, Eb(κα, ω,R), and Em(PSX , θ)− θ for θ ∈
Θ(PSX), are all greater than or equal to zero.

The optimal T2EE for testing against independence in the Stein’s regime (i.e. when

κα → 0) can be recovered from Corollary 3.11 by taking the limit κα → 0.

Corollary 3.13. Let PŪ V̄ = PUPV . Then,

lim
κα→0

κ(τ, κα) = max
W :W−U−V
I(U ;W )≤τC

I(V ;W ).

Proof. Note that

L̂(0, ω) := {UVW : PW |U = ω(PU ), V − U −W},

and

L∗(0, τ) :=











(ω,R, PSX , θ) ∈ Ω× R+ × PSX ×Θ(PSX) :

I(U ;W ) ≤ R < τI(X;Y |S), PW |U = ω(PU )











(3.35)

Hence,

EI1(0, ω) ≥ min
Û V̂ Ŵ∈L̂(0,ω)

I(V̂ ; Ŵ ) = I(V ;W ), (3.36)

for some V − U −W such that PW |U = ω(PU ). Also, we have

ρ(0, ω) = I(V ;W ),

EI2(0, ω,R, PSX , τ) ≥ ρ(0, ω), (3.37)

EI3(0, ω, PSX , θ, τ) ≥ ρ(0, ω). (3.38)

From (3.36)-(3.38), the result follows.



Chapter 3. Distributed HT over a Noisy Channel: Chernoff’s Regime 67

3.5.2 JHTCC scheme

It is well known that joint source channel coding schemes outperforms separation

based coding schemes in the context of reliable communication over a noisy channel

[24–26]. Here, we obtain an inner bound on R using a generalization of the JHTCC

scheme in Chapter 2.

For simplicity, we will assume that k = n, i.e., τ = 1. Let Ω′ denote the set of all

continuous mappings from PU ×PS to PW ′|US , where W ′ is an arbitrary finite set. Let

Lh(κα) :=
{

(

PS , ω
′(·, PS), PX|USW ′ , PX′|US

)

∈ PS × Ω′ × PX|USW ′ × PX|US :

E′
b(κα, ω

′, PS , PX|USW ′) > κα

}

,

L̂h(κα, ω′, PS , PX|USW ′)

:=











Û V̂ Ŵ Ŷ S : D(Û V̂ Ŵ Ŷ ||UVW ′Y |S) ≤ κα, PSUVW ′XY :=

PSPUV PW ′|USPX|USW ′PY |X , PW ′|US = PŴ |ÛS = ω′(PÛ , PS)











,

E′
b(κα, ω

′, PS , PX|USW ′) := ρ′(κα, ω
′, PS , PX|USW ′)− ζ ′q(κα, ω

′, PS),

ζ ′q(κα, ω
′, PS) := max

ÛŴS: ∃ V̂ Ŷ,

Û V̂ Ŵ Ŷ S ∈
L̂h(κα,ω

′,PS ,PX|USW ′ )

I(Û ; Ŵ |S),

ρ′(κα, ω
′, PS , PX|USW ′) := min

V̂ Ŵ Ŷ S: ∃ Û,

Û V̂ Ŵ Ŷ S ∈
L̂h(κα,ω

′,PS ,PX|USW ′ )

I(Ŷ, V̂ ; Ŵ |S),

E′
1(κα, ω

′) := min
Ũ Ṽ W̃ Ỹ S ∈ T ′

1 (κα,ω
′)
D(Ũ Ṽ W̃ Ỹ ||Ū V̄ W̄ ′Ȳ |S),

E′
2(κα, ω

′, PS , PX|USW ′)

:= min
Ũ Ṽ W̃ Ỹ S ∈

T ′
2 (κα,ω

′,PS ,PX|USW ′ )

D(Ũ Ṽ W̃ Ỹ ||Ū V̄ W̄ ′Ȳ |S) + E′
b(κα, ω

′, PS , PX|USW ′),

E′
3(κα, ω

′, PS , PX|USW ′ , PX′|US)

:= min
V̂ Ŷ S:Û V̂ Ŵ Ŷ S ∈

L̂h(κα,ω
′,PS ,PX|USW ′ )

D(V̂ Ŷ ||V̄ Y̌ |S) + E′
b(κα, ω

′, PS , PX|USW ′),

PSŪV̄ W̄ ′X̄Ȳ := PSPŪ V̄ PW̄ ′|ŪSPX̄|ŪSW̄ ′PȲ |X̄ ,
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PW̄ ′|ŪS := PW̃ |ŨS , PX̄|ŪSW̄ ′ := PX|USW ′ , PȲ |X̄ := PY |X ,

PSŪV̄ X′Y̌ := PSPŪ V̄ PX′|USPY̌ |X′ , PY̌ |X′ := PY |X ,

T ′
1 (κα, ω

′, PS , PX|USW ′)

:=











Ũ Ṽ W̃ Ỹ S : PŨW̃S = PÛŴS , PṼ W̃ Ỹ S = PV̂ Ŵ Ŷ S ,

for some Û V̂ Ŵ Ŷ S ∈ L̂h(κα, ω′, PS , PX|USW ′)











,

T ′
2 (κα, ω

′, PS , PX|USW ′)

:=











Ũ Ṽ W̃ Ỹ S : PŨW̃S = PÛŴS , PṼ Ỹ S = PV̂ Ŷ S , H(W̃ |Ṽ, Ỹ, S) ≥

H(Ŵ |V̂, Ŷ, S) for some Û V̂ Ŵ Ŷ S ∈ L̂h(κα, ω′, PS , PX|USW ′)











.

Then, we have the following result.

Theorem 3.14.

κ(1, κα) ≥ κ∗h(κα), where

κ∗h(κα) := max
(PS ,ω

′,PX|USW ′ ,PX′|US)

∈ Lh(κα)

min
{

E′
1(κα, ω

′), E′
2(κα, ω

′, PS , PX|USW ′),

E′
3(κα, ω

′, PS , PX|USW ′ , PX′|US)
}

.

The proof of Theorem 3.14 is given in Appendix B.3. It is easy to see that Theorem

3.14 recovers the lower bound on the type II error-exponent in the Stein’s regime

established in Theorem 2.6 as we show next.

Corollary 3.15.

lim
κα→0

κ∗h(κα) = κh,

where κh is as given in Theorem 2.6.

Proof. The result follows by noting that

L̂h(0, ω′, PS , PX|USW ′)
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:=











UVW ′Y S : PSUVW ′XY := PSPUV PW ′|USPX|USW ′PY |X ,

PW ′|US = ω′(PU , PS)











ζ ′q(0, ω
′, PS) := I(U ;W ′|S),

ρ(0, ω′, PS , PX|USW ′) := I(Y, V ;W ′|S),

Lh(0) := {
(

PS , ω
′(·, PS), PX|USW ′ , PX′|US

)

∈ PS × Ω′ × PX|USW ′ × PX|US :

I(U ;W ′|S) < I(Y, V ;W ′|S)},

and E′
b(0, ω

′, PS , PX|USW ′) := I(Y, V ;W ′|S)− I(U ;W ′|S).

3.6 Conclusions

In this chapter, we studied the trade-off between the exponents of the type I and type

II error probabilities for distributed HT over a noisy channel with side-information at

the detector. In the non-distributed setting, we obtained a single-letter characterization

of the optimal trade-off between the error-exponents. The direct part of the proof shows

that the optimal trade-off is achieved by a scheme, in which the observer performs an

appropriate NP test locally and communicates the decision of the test to the detector

using a suitable channel code, while the detector performs an appropriate NP test on

the channel output. This implies that “separation” holds, in the sense that, there

is no loss in optimality incurred by separating the tasks of HT and channel coding.

For the distributed setting, we obtained inner bounds on the error-exponents trade-off

using the SHTCC and JHTCC schemes. The latter bound is at least as good as the

former when the type I error-exponent is zero. Exploring whether joint schemes offer

strict advantage over separation based schemes is something worth investigating in the

future. It would also be interesting to explore the trade-off between the error-exponents

in a related setting, where the side-information also needs to be communicated to the

detector over a noisy communication channel.



Chapter 4

Privacy-aware Distributed HT

4.1 Overview

In this chapter, we consider the distributed HT problem studied in Chapter 2, but

with an additional privacy constraint. We focus on the case of a rate-limited noiseless

communication channel between the observer and the detector. Thus, while the goal

of the observer is to maximize the type II error-exponent of the test for a given type

I error probability constraint, it also wants to keep a private part of its observations

as oblivious to the detector as possible. Considering both equivocation and average

distortion as possible measures of privacy, the trade-off between the communication

rate from the observer to the detector, the type II error exponent, and privacy is stud-

ied. For the general HT problem, we establish single-letter inner bounds on both the

rate-error exponent-equivocation and rate-error exponent-distortion trade-offs. Subse-

quently, single-letter characterizations for both trade-offs are obtained (i) for TACI;

and (ii) when the communication rate constraint over the channel is zero. Finally,

we show by providing a counterexample that, the strong converse which holds for dis-

tributed HT without a privacy constraint, does not hold when a privacy constraint is

imposed. This implies that, in general, the rate-error exponent-equivocation and rate-

error exponent-distortion trade-offs are not independent of the type I error probability

constraint.

70
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4.2 Introduction

Data inference and privacy are often contradicting objectives. In many multi-agent

system, each agent/user reveals information about its data to a remote service, appli-

cation or authority, which in turn, provides certain utility to the users based on their

data. Many emerging networked systems can be thought of in this context, from social

networks to smart grids and communication networks. While obtaining the promised

utility is the main goal of the users, privacy of data that is shared is becoming increas-

ingly important. Thus, it is critical that users reveal only the information relevant

for obtaining the desired utility, while maximum possible privacy is retained for their

sensitive information.

In distributed learning applications, typically the goal is to learn the joint probabil-

ity distribution of data available at different locations. In such a scenario, the nodes

communicate their observations to the detector, which then applies HT on the under-

lying joint distribution of the data based on its own observations and those received

from other nodes. However, with the efficient data mining and machine learning algo-

rithms available today, the detector can illegitimately infer some unintended private

information from the data provided to it exclusively for HT purposes. Such threats are

becoming increasingly imminent as large amounts of seemingly irrelevant yet sensitive

data are collected from users, such as in medical research [34], social networks [35],

online shopping [36] and smart grids [37]. Therefore, there is an inherent trade-off

between the utility acquired by sharing data and the associated privacy leakage.

In this chapter, we consider the distributed HT problem studied in Chapter 2 for the

case of a rate-limited noiseless communication channel, but with an additional privacy

constraint. The detector performs a binary HT as given in (2.1). The performance

of the HT is measured by the type II error exponent (or error-exponent henceforth)

in the Stein’s regime. While the goal is to maximize the performance of the HT,

the observer also wants to maintain a certain level of privacy against the detector for

some latent private data that is correlated with its observations. We are interested in

characterizing the trade-off between the communication rate, error-exponent and the

amount of information leakage of private data.
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4.3 Previous Work and Our Contributions

Data privacy has been a hot topic of research in the past decade, spanning across

multiple disciplines in computer and computational sciences. Several practical schemes

have been proposed that deal with the protection or violation of data privacy in dif-

ferent contexts, e.g., see [38–43]. More relevant to the current setting, HT under

mutual information and maximal leakage privacy constraints have been studied in [44]

and [45], respectively, where the encoder uses a memoryless privacy mechanism to con-

vey a noisy version of its observed data to the detector. The detector performs HT on

the probability distribution of the observer’s data, and the optimal privacy mechanism

that maximizes the error-exponent while satisfying the privacy constraint is analyzed.

Recently, a distributed version of this problem has been studied in [46], where the

encoder applies a privacy mechanism to its observed data prior to further coding for

compression, and the goal at the detector is to perform a HT on the joint distribu-

tion of its own observations with those of the observer. In contrast with [44], [45]

and [46], we study distributed HT with a privacy constraint, but without considering

a separate privacy mechanism at the encoder. In Section 4.4, we will further discuss

the differences between the system model considered here and that of [46].

It is important to note here that the data privacy problem is fundamentally different

from that of data security against an eavesdropper or an adversary. In data security,

sensitive data is to be protected against an external malicious agent distinct from the

legitimate parties in the system. The techniques for guaranteeing data security usually

involve either cryptographic methods in which the legitimate parties are assumed to

have additional resources unavailable to the adversary (e.g., a shared private key) or

the availability of better communication channel conditions (e.g., using wiretap codes).

However, in data privacy problems, the sensitive data is to be protected from the same

legitimate party that receives the messages and provides the utility; and hence, the

above mentioned techniques for guaranteeing data security are not applicable. Another

model frequently used in the context of information-theoretic security assumes the

availability of different side-information at the legitimate receiver and the eavesdropper

[47, 48]. A distributed HT problem with security constraints formulated along these
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lines is studied in [49], where the authors propose an inner bound on the rate-error

exponent-equivocation trade-off. While our model is closely related to that in [49]

when the side-information at the detector and eavesdropper coincide, there are some

important differences which will be highlighted in Section 4.4.3.

Many different privacy measures have been considered in the literature to quantify

the amount of private information leakage, such as k-anonymity [50], differential pri-

vacy [51], mutual information leakage [52–54], maximal leakage [55], and total variation

distance [56] to count a few; see [7] for a detailed survey. Among these, mutual informa-

tion between the private and revealed information (or, equivalently, the equivocation of

private information given the revealed information) is perhaps the most commonly used

measure in the information theoretic studies of privacy. It is well known that a neces-

sary and sufficient condition to guarantee statistical independence between two random

variables is to have zero mutual information between them. Furthermore, the average

information leakage measured using an arbitrary privacy measure is upper bounded by

a constant multiplicative factor of that measured by mutual information [53]. It is also

shown in [52] that a differentially private scheme is not necessarily private when the in-

formation leakage is measured by mutual information. This is done by constructing an

example that is differentially private, yet the mutual information leakage is arbitrarily

high. Mutual information based measures have also been used in cryptographic secu-

rity studies. For example, the notion of semantic security defined in [57] is shown to

be equivalent to a measure based on mutual information in [58]. A rate-distortion ap-

proach to privacy is first explored by Yamamoto in [59] for a rate-constrained noiseless

channel, where, in addition to a distortion constraint for legitimate data, a minimum

distortion requirement is enforced for the private part. Recently, there have been sev-

eral works that have used distortion as a security or privacy metric in several different

contexts, such as side-information privacy in discriminatory lossy source coding [60]

and rate distortion theory of secrecy systems [61], [62]. Distortion based measures have

also been considered in steganography, for instance, in the context of watermarking

systems in the presence of an attacker [63], [64]. In such systems, the goal of the

encoder is to embed the watermark within the host data (covertext) such that the

distortion between the covertext and the watermarked version (stegotext) is below a
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certain threshold, while the aim of the attacker is to corrupt the stegotext to a per-

missible level of additional distortion such that correct decoding of the watermark is

inhibited. That is, low distortion on the stegotext is treated as “uncorrupted” data,

while high distortion is considered to be corrupted data.

In this chapter, we will consider both equivocation and average distortion as mea-

sures of privacy. In [65], error-exponent of a HT adversary is considered as a privacy

measure. This can be considered as the opposite setting to ours, in the sense that,

while the goal here is to increase the error-exponent under a privacy leakage con-

straint, the goal in [65] is to reduce the error-exponent under a constraint on possible

transformations that can be applied on the data.

The amount of private information leakage that can be tolerated depends on the

specific application at hand. While it may be possible to tolerate a moderate amount

of information leakage in applications like online shopping or social networks, it may

no longer be the case in matters related to information sharing among government

agencies or corporations. While it is obvious that maximum privacy can be attained

by revealing no information, this typically comes at the cost of zero utility. On the

other hand, maximum utility can be achieved by revealing all the information, but at

the cost of minimum privacy. Characterizing the optimal trade-off between the utility

and the minimum privacy leakage between these two extremes is a fundamental and

challenging research problem.

Main Contributions

The main contributions in this chapter are as follows.

(i) In Section 4.5, Theorem 4.4 (resp. Theorem 4.5), we establish a single-letter

inner bound on the rate-error exponent-equivocation (resp. rate-error exponent-

distortion) trade-off for distributed HT with a privacy constraint. The distortion

and equivocation privacy constraints we consider, that is given in (4.5) and (4.6),

respectively, are slightly stronger than what is usually considered in the literature

(stated in (4.7) and (4.8), respectively).
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(ii) Exact characterizations are obtained for some important special cases in Section

4.6. More specifically, a single-letter characterization of the optimal rate-error

exponent-equivocation (resp. rate-error exponent-distortion) trade-off is estab-

lished for:

(a) TACI with a privacy constraint (for vanishing type I error probability con-

straint) in Section 4.6.1, Proposition 4.6 (resp. Proposition 4.7),

(b) distributed HT with a privacy constraint for zero-rate compression (R = 0)

in Section 4.6.2, Proposition 4.11 (resp. Proposition 4.10).

Since the optimal trade-offs in Propositions 4.10 and 4.11 are independent of the

constraint on the type I error probability, they are strong converse results in the

context of HT.

(iii) Finally, in Section 4.7, we provide a counterexample showing that for positive

rate R > 0, the strong converse result does not hold in general for TAI with a

privacy constraint.

The organization of this chapter is as follows. Basic notations are introduced in

Section 4.4.1. The problem formulation and associated definitions are given in Section

4.4.2. Main results are presented in Sections 4.5 to 4.7. The proofs of the results

are presented either in Appendix C or immediately after the statement of the result.

Finally, Section 4.8 concludes the chapter with some interesting avenues for future

research.

4.4 Preliminaries

4.4.1 Notations

X ⊥ Y denotes statistical independence of r.v.’s X and Y .
(n)−−→ denotes asymptotic

limit with respect to n, e.g., an
(n)−−→ 0 means that the sequence an tends to zero

asymptotically with n. Similar notations apply for asymptotic inequalities, e.g. an
(n)

≥
bn, means that an ≥ bn for sufficiently large n. P(E) denotes the probability of event E .
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Encoder Detector

Figure 4.1: Distributed HT with a privacy constraint.

For positive real m, we define [m] := {1, . . . , ⌈m⌉}. For an arbitrary set A, we denote

its complement by Ac, and for A ⊆ Rn, we denote its interior and closure by int(A)

and cl(A) (with respect to the Euclidean metric), respectively. Whenever the range of

the summation is not specified, this will mean summation over the entire support, e.g.,
∑

u denotes
∑

u∈U , unless specified otherwise. Throughout this chapter, the base of

the logarithms is taken to be e. For a ∈ R, a+ denotes max{0, a}. For two probability

distributions P and Q defined on a common support X , P << Q will mean that P

is absolutely continuous with respect to Q. Finally, O(·), o(·) and Ω(·) denotes the

standard asymptotic notation of Big-O, Little-O and Big-Ω, respectively.

4.4.2 Problem formulation

Consider the HT setup illustrated in Fig. 4.1, where (Un, V n, Sn) denote n indepen-

dent and identically distributed (i.i.d.) copies of triplet of r.v.’s (U, V, S). The encoder

(observer) observes Un and sends the message index M := f (n)(Un), M ∈ M, to the

detector over an error-free channel using some encoding function (possibly stochastic)

f (n) : Un 7→ M. Given its own observation V n, the detector performs the HT given

in (2.1). Let H and Ĥ denote the r.v.’s corresponding to the true hypothesis and the

output of the HT, respectively, with support H = Ĥ = {0, 1}, where 0 denotes the null

hypothesis and 1 the alternate hypothesis. Let g(n) : M × Vn 7→ Ĥ := {0, 1} denote

the decision rule (possibly stochastic) at the detector with output Ĥ.

The type I and type 2 error probability for an (f (n), g(n)) pair are then given by

ᾱ
(

f (n), g(n)
)

:= P(Ĥ = 1|H = 0) = PĤ(1),
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and

β̄
(

f (n), g(n)
)

:= P(Ĥ = 0|H = 1) = QĤ(0),

respectively, where

PĤ(1) =
∑

un,m,vn

[

n
∏

i=1

PUV (ui, vi)

]

PM |Un(m|un) PĤ|MV n(1|m, vn),

and QĤ(0) =
∑

un,m,vn

[

n
∏

i=1

QUV (ui, vi)

]

PM |Un(m|un) PĤ|MV n(0|m, vn).

The performance of HT is measured by the error-exponent achieved by the test in

the Stein’s regime, i.e., lim infn→∞− 1
n log

(

β(f (n), ǫ)
)

, ǫ ∈ (0, 1), where

β
(

f (n), ǫ
)

:= inf
g(n)

β̄
(

f (n), g(n)
)

, (4.1)

such that ᾱ
(

f (n), g(n)
)

≤ ǫ.

Although the goal of the detector is to maximize the error-exponent achieved for the

HT, it is also curious about the latent r.v. Sn that is correlated with the source Un. Sn

is referred to as the private part of Un, which is distributed i.i.d. according to the joint

distribution PSUV and QSUV under the null and alternate hypothesis, respectively. It

is desired to keep the private part as concealed as possible from the detector. We

consider two measures of privacy for Sn at the detector. The first is the equivocation

defined as H(Sn|M,V n). The second one is the average distortion between Sn and

its reconstruction Ŝn at the detector, measured according to an arbitrary bounded

additive distortion metric d : S × Ŝ 7→ [0, Dm] with multi-letter distortion defined as

d(sn, ŝn) :=
n
∑

i=1

d(si, ŝi). (4.2)

The goal is to ensure that the error-exponent for HT is maximized, while satisfying the

constraints on the type I error probability ǫ and the privacy of Sn. In the sequel, we

study the trade-off between the rate, error-exponent (henceforth also referred to simply



Chapter 4. Privacy-Aware Distributed HT 78

as the error exponent) and privacy achieved in the above setting. Before delving into

that, a few definitions are in order.

Definition 4.1. For a given type I error probability constraint ǫ, a rate-error exponent-

distortion tuple (R, κ,∆0,∆1) is achievable, if there exists a sequence of encoding and

decoding functions f (n) : Un 7→ M, and g(n) : M×Vn 7→ Ĥ such that

lim sup
n→∞

log(|M|)
n

≤ R, (4.3)

lim inf
n→∞

− log
(

β(f (n), ǫ)
)

n
≥ κ, (4.4)

and for any γ > 0, there exists an n0 ∈ Z+ such that

inf
g
(n)
r

E
[

d
(

Sn, Ŝn
)

|H = i
]

≥ n∆i − γ, ∀ n ≥ n0, i = 0, 1, (4.5)

where Ŝn = g
(n)
r (M,V n), and g

(n)
r : [enR]× Vn 7→ Ŝn denotes an arbitrary reconstruc-

tion map (possibly stochastic) at the detector. The rate-error exponent-distortion

region Rd(ǫ) is the closure of the set of all such achievable (R, κ,∆0,∆1) tuples for a

given ǫ.

Definition 4.2. For a given type I error probability constraint ǫ, a rate-error exponent-

equivocation (R, κ,Λ0,Λ1) tuple is achievable, if there exists a sequence of encoding

and decoding functions f (n) : Un 7→ M and g(n) : [enR]× Vn 7→ Ĥ such that (4.3) and

(4.4) are satisfied, and for any γ > 0, there exists a n0 ∈ Z+ such that

H(Sn|M,V n, H = i) ≥ nΛi − γ, ∀ n ≥ n0, i ∈ {0, 1}. (4.6)

The rate-error exponent-equivocation region Re(ǫ) is the closure of the set of all such

achievable (R, κ,Λ0,Λ1) tuples for a given ǫ.

Note that the privacy measures considered in (4.5) and (4.6) are stronger than

lim inf
n→∞

inf
g
(n)
r

E

[

1

n
d
(

Sn, Ŝn
)

|H = i

]

≥ ∆i, i = 0, 1, (4.7)

and lim inf
n→∞

1

n
H(Sn|M,V n, H = i) ≥ Λi, i = 0, 1, (4.8)
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respectively. To see this for the equivocation privacy measure, note that if

H(Sn|M,V n, H = i) = nΛ∗
i − na, i = 0, 1, for some a ∈ (0, 1), then an equivocation

pair (Λ∗
0,Λ

∗
1) is achievable under the constraint given in (4.8), while it is not achievable

under the constraint given in (4.6).

4.4.3 Relation to Previous Work

Before stating our results, we briefly highlight the differences between our system

model and the ones studied in [46] and [49]. In [46], the observer applies a privacy

mechanism to the data before releasing it to the transmitter, which performs further

encoding prior to transmission to the detector. More specifically, the observer checks

if Un ∈ Tn[PU ]δ
and if successful, sends the output of a memoryless privacy mechanism

applied to Un, to the transmitter. Otherwise, it outputs a n-length zero-sequence. The

privacy mechanism plays the role of randomizing the data (or adding noise) in order to

achieve the desired privacy. This model is similar in spirit to the earlier works in [44]

and [45], and the two stage encoding essentially results in a separation between the

problem of coding for privacy and coding for compression. Similar privacy mechanisms

that randomizes the data has also been used in other works that study utility-privacy

trade-off like [66]. In our model, the tasks of coding for privacy and compression

are done jointly (without a separate privacy mechanism) by utilizing all the available

data samples Un. Also, while we consider the equivocation (and average distortion)

between the revealed information and the private part as the privacy measure, in [46],

the mutual information between the observer’s observations and the output of the

memoryless mechanism is the privacy measure. Thus, for testing against independence

in their model, a perfect privacy condition Λ0 = 0 would imply that the error-exponent

is also zero, since the output of the memoryless mechanism has to be independent of

the observer’s observations (under both hypotheses). However, as we show in Example

4.12 later, a positive error-exponent is achievable while guaranteeing perfect privacy

in our model.

On the other hand, the difference between our model with equivocation as the pri-

vacy measure, and the security problem studied in [49] arises from the difference in



Chapter 4. Privacy-Aware Distributed HT 80

the privacy constraint imposed. More specifically, while in [49], the goal is to keep Un

private from an illegitimate eavesdropper, the objective here is to keep a r.v. Sn that

is correlated with Un private from the detector. Moreover, we consider the stronger

privacy constraint given in (4.6) as opposed to (4.8) which is considered in [49]. To

satisfy this stronger privacy constraint on Sn, we require that the aposteriori probabil-

ity distribution of Sn given the observations (M,V n) at the detector is close in some

sense to a desired “target” memoryless distribution. To achieve this, we use a novel

stochastic encoding scheme to induce the necessary randomness for Sn at the detector.

Another difference is that the marginal distributions of Un and the side-information at

the eavesdropper are assumed to be the same under the null and alternate hypotheses

in [49], which is not the case here.

Next, we state some supporting results that will be useful later for proving the main

results.

4.4.4 Supporting Results

Let

g(n)(m, vn) = ✶ ((m, vn) ∈ Ac
n) (4.9)

denote the deterministic detector with acceptance region An ⊆ [enR]× Vn for H0 and

Ac
n for H1. Then, the type I and type II error probabilities are given by

ᾱ
(

f (n), g(n)
)

:= PMV n(Ac
n) = E (✶(M,V n) ∈ Ac

n|H = 0), (4.10)

β̄
(

f (n), g(n)
)

:= QMV n(An) = E (✶(M,V n) ∈ An|H = 1). (4.11)

Lemma 4.1. Any error-exponent that is achievable is also achievable by a determin-

istic detector of the form given in (4.9) for some An ⊆ [enR]× Vn, where An and Ac
n

denote the acceptance regions for H0 and H1, respectively.

The proof of Lemma 4.1 is given in Appendix C.1 for completeness. Due to Lemma

4.1, henceforth we restrict our attention to deterministic g(n). The next result shows
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that without loss of generality (w.l.o.g), it is also sufficient to consider g
(n)
r (in Definition

4.2) to be a deterministic function of the form

g(n)r = {φ̄i(m, vn)}ni=1, (4.12)

for the minimization in (4.5), where φ̄i : M × Vn 7→ Ŝ, i ∈ [n], denotes an arbitrary

deterministic function.

Lemma 4.2. The infimum in (4.5) is achieved by a deterministic function g
(n)
r as

given in (4.12), and hence it is sufficient to restrict our attention to such deterministic

g
(n)
r .

The proof of Lemma 4.2 is given in Appendix C.2. Next, we state some lemmas that

will be handy for upper bounding the amount of privacy leakage in the proofs of the

main results stated below. The following one is a well known result proved in [20] that

upper bounds the difference in entropy of two r.v.’s (with a common support) in terms

of the total variation distance between their probability distributions.

Definition 4.3. The total variation between probability distributions PX and QX

defined on the same support X is defined as

||PX −QX || =
1

2

∑

x∈X
|PX(x)−QX(x)|.

Lemma 4.3. [20, Lemma 2.7] Let PX and QX be distributions defined on a common

support X and let ρ := ||PX −QX ||. Then,

|HPX
−HQX

| ≤ −2ρ log

(

2ρ

|X |

)

.

Next, we state some properties of total variation distance that will be used later.

Property 4.4.1. [61] Let P , Q and Φ be probability distributions defined on the

same alphabet and sigma algebra (X ,Σ).

(a) Let δ > 0 and let f(x) be a function with bounded range of width b > 0. Then

‖P −Q‖ < δ ⇒ |EP f(X)− EQf(X)| < δb.
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(b) ‖P −Q‖ ≤ ‖P − Φ‖+ ‖Φ−Q‖.

(c) Let PXPY |X and QXPY |X be two joint distributions induced by input distribu-

tions PX and QX by passing through a common channel PY |X . Then ‖PXPY |X −
QXPY |X‖ = ‖PX −QX‖.

(d) Let PX and QX be marginal distributions of PXY and QXY . Then,

‖PX −QX‖ ≤ ‖PXY −QXY ‖.

The next lemma will be handy in proving Theorem 4.4, Theorem 4.5, Proposition

4.10 and the counter-example for strong converse presented in Section 4.7.

Lemma 4.4. Let (Xn, Y n) denote n i.i.d. copies of r.v.’s (X,Y ), and PXnY n =
∏n
i=1 PXY and QXnY n =

∏n
i=1QXY denote two joint probability distributions on (Xn, Y n).

For δ > 0, define

IX(x
n, δ) := ✶

(

xn /∈ Tn[PX ]δ

)

. (4.13)

If PX 6= QX , then for δ > 0 sufficiently small, there exists δ̄ > 0 and n0(δ, |X |, |Y|) ∈
Z+ such that for all n ≥ n0(δ, |X |, |Y|),

‖QY n −QY n|IX(Xn,δ)=1‖ ≤ e−nδ̄. (4.14)

If PX = QX , then for any δ > 0, there exists δ̄ > 0 and n0(δ, |X |, |Y|) ∈ Z+ such that

for all n ≥ n0(δ, |X |, |Y|),

‖QY n −QY n|IX(Xn,δ)=0‖ ≤ e−nδ̄, (4.15)

Also, for any δ > 0, there exists δ̄ > 0 and n0(δ, |X |, |Y|) ∈ Z+ such that for all

n ≥ n0(δ, |X |, |Y|),

‖PY n − PY n|IX(Xn,δ)=0‖ ≤ e−nδ̄. (4.16)

Proof. The proof is presented in Appendix C.3.
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In the next section, we establish an inner bound on Re(ǫ) and Rd(ǫ) defined in

Definitions 4.2 and 4.1, respectively.

4.5 Main Results

The following two theorems are the main results of this chapter providing inner

bounds for Re(ǫ) and Rd(ǫ), respectively.

Theorem 4.4. For ǫ ∈ (0, 1), (R, κ,Λ0,Λ1) ∈ Re(ǫ) if there exists an auxiliary r.v.

W , such that (V, S)− U −W , and

R ≥ IP (W ;U |V ), (4.17)

κ ≤ κ∗(PW |U , R), (4.18)

Λ0 ≤ HP (S|W,V ), (4.19)

Λ1 ≤ ✶ (PU = QU ) HQ(S|W,V ) + ✶ (PU 6= QU ) HQ(S|V ), (4.20)

where

κ∗(PW |U , R) := min
{

E1(PW |U ), E2(R,PW |U )
}

,

E1(PW |U ) := min
P
ŨṼ W̃

∈T1(PUW ,PV W )
D(PŨ Ṽ W̃ ||QUV PW |U ), (4.21)

E2(R,PW |U ) (4.22)

:=



























min
P
ŨṼ W̃

∈T2(PUW ,PV ) D(PŨ Ṽ W̃ ||QUV PW |U )

+(R− IP (U ;W |V )), if IP (U ;W ) > R,

∞, otherwise,

(4.23)

T1(PUW , PVW ) := {PŨ Ṽ W̃ ∈ T (U × V ×W) : PŨW̃ = PUW , PṼ W̃ = PVW },

T2(PUW , PV ) := {PŨ Ṽ W̃ ∈ T (U × V ×W) : PŨW̃ = PUW , PṼ = PV ,

HP (W |V ) ≤ H(W̃ |Ṽ )},

PSUVW := PSUV PW |U and QSUVW := QSUV PW |U .
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The proof of Theorem 4.4 is given in Apppendix C.4 along with the proof of Theorem

4.5 below. Notice that the rate-error exponent trade-off derived in [11] is recovered

when the privacy constraint in Theorem 4.4 is relaxed. To provide some intuition to

the factors E1(·) and E2(·) appearing in the characterization of the error-exponent

above, E1(·) corresponds to the event when there is no error at the encoder or decoder,

while E2(·) corresponds to the event when there is a binning error at the decoder.

We next state an inner bound for Rd(ǫ).

Theorem 4.5. For a given bounded additive distortion measure d(·, ·) and ǫ ∈ (0, 1),

(R, κ,∆0,∆1) ∈ Rd(ǫ) if there exist an auxiliary r.v. W and deterministic functions

φ : W ×V 7→ Ŝ and φ′ : V 7→ Ŝ, such that (V, S)− U −W and (4.17), (4.18),

∆0 ≤ min
φ(·,·)

EP [d (S, φ(W,V ))] , (4.24)

and ∆1 ≤ ✶ (PU = QU ) min
φ(·,·)

EQ [d (S, φ(W,V ))]

+ ✶ (PU 6= QU ) min
φ′(·)

EQ
[

d
(

S, φ′(V )
)]

, (4.25)

are satisfied, where PSUVW and QSUVW are as defined in Theorem 4.4.

While the rate-error exponent trade-off in Theorem 4.4 and Theorem 4.5 is the

same as that achieved by the Shimokawa-Han-Amari (SHA) scheme [11], the coding

strategy is different due to the requirement of the privacy constraint. As mentioned

above, in order to obtain a single-letter lower bound for the achievable distortion

(and achievable equivocation) of the private part at the detector, it is required that

the aposteriori probability distribution of Sn given the observations (M,V n) at the

detector is close in some sense to a desired “target” memoryless distribution. For

this purpose, we use stochastic encoding to induce the necessary randomness for Sn

at the detector. The coding scheme achieving this is inspired from [67] and to our

knowledge has not been used before in the context of distributed HT. The analysis

of the type I and type II error probabilities and the privacy achieved by our scheme

is novel and involves the application of the well-known channel resolvability or soft-

covering lemma [68–70]. Properties of the total variation distance between probability

distributions mentioned in Property 4.4.1 play a key role in this analysis. The analysis
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also reveals the interesting fact that the coding schemes in Theorem 4.4 and Theorem

4.5, although quite different from the SHA scheme, achieves the same lower bound on

the error-exponent.

Theorems 4.4 and 4.5 provide single-letter inner bounds on Rd(ǫ) and Re(ǫ), re-

spectively. A complete computable characterization of these regions would require a

matching converse. This is a hard problem, since such a characterization is not avail-

able even for the distributed HT problem in general, without a privacy constraint

(see [4]). However, it is known that a single-letter characterization of the rate-error

exponent region exists for the special case of TACI [12]. In the next section, we show

that TACI with a privacy constraint also admits a single-letter characterization, in

addition to other optimality results.

4.6 Optimality Results for Special cases

4.6.1 TACI with a Privacy Constraint

Assume that the detector observes two discrete memoryless sources Y n and Zn, i.e.,

V n = (Y n, Zn). Recall that in TACI, the detector tests for the conditional indepen-

dence of U and Y , given Z. Thus, the joint distribution of the r.v.’s under the null

and alternate hypothesis are given by

H0 : PSUY Z := PS|UY ZPU |ZPY |UZPZ , (4.26a)

and

H1 : QSUY Z := QS|UY ZPU |ZPY |ZPZ , (4.26b)

respectively.

Let Re andRd denote the rate-error exponent-equivocation and rate-error exponent-

distortion regions, respectively, for the case of vanishing type I error probability con-

straint, i.e.,

Re := lim
ǫ→0

Re(ǫ) and Rd := lim
ǫ→0

Rd(ǫ).
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Assume that the privacy constraint under the alternate hypothesis is inactive. Thus, we

are interested in characterizing the set of all tuples (R, κ,Λ0,Λ1) ∈ Re and (R, κ,∆0,∆1) ∈
Rd, where

Λ1 ≤ Λmin := HQ(S|U, Y, Z),

and ∆1 ≤ ∆min := min
φ(u,y,z)

EQ [d (S, φ(U, Y, Z))] . (4.27)

Note that Λmin and ∆min correspond to the equivocation and average distortion of Sn

at the detector, respectively, when Un is available directly at the detector under the

alternate hypothesis.

The above assumption is motivated by scenarios, in which, the encoder is more

eager to protect Sn when there is a correlation between its own observation and that

of the decoder. Consider the following example of user privacy in the context of online

shopping, in which the encoder and detector correspond to a consumer and an online

shopping portal, respectively. A consumer would like to share some information about

his/her shopping behaviour, e.g., shopping history and preferences, with the shopping

portal in order to get better deals and recommendations on relevant products. The

shopping portal would like to determine whether the consumer belongs to its target

age group (e.g., below 30 years old) before sending special offers to this customer.

Assuming that the shopping patterns of the users within and outside the target age

groups are independent, the shopping portal performs an independence test to check

if the consumer’s shared data is correlated with the data of its own customers. If the

consumer is indeed within the target age group, the shopping portal would like to gather

more information about this potential customer, particular interests, more accurate age

estimation, etc.; while the user is reluctant to provide any further information. In this

example, Un, Sn and Y n corresponds to shopping behaviour, more information about

the customer, and customers data available to the shopping portal, respectively.

For the above mentioned case, we have the following results.
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Proposition 4.6. For the HT given in (4.26), (R, κ,Λ0,Λmin) ∈ Re if and only if

there exists an auxiliary r.v. W , |W| ≤ |U|+ 2, such that (Z, Y, S)− U −W , and

κ ≤ IP (W ;Y |Z), (4.28)

R ≥ IP (W ;U |Z), (4.29)

Λ0 ≤ HP (S|W,Z, Y ), (4.30)

for some joint distribution of the form PSUY ZW := PSUY ZPW |U .

Proof. For TACI, the inner bound in Theorem 4.4 yields that for ǫ ∈ (0, 1), (R, κ,Λ0,Λ1) ∈
Re(ǫ) if there exists an auxiliary r.v. W , such that (Y, Z, S)− U −W , and

R ≥ IP (W ;U |Y, Z), (4.31)

κ ≤ κ∗(PW |U , R), (4.32)

Λ0 ≤ HP (S|W,Y, Z), (4.33)

Λ1 ≤ HQ(S|W,Y, Z), (4.34)

where

κ∗(PW |U , R) := min
{

E1(PW |U ), E2(R,PW |U )
}

,

E1(PW |U ) := min
P
ŨỸ Z̃W̃

∈T1(PUW ,PY ZW )
D(PŨ Ỹ Z̃W̃ ||QUY ZPW |U ), (4.35)

E2(R,PW |U )

:=



























min
P
ŨỸ Z̃W̃

∈T2(PUW ,PY Z) D(PŨ Ỹ Z̃W̃ ||QUY ZPW |U )

+ (R− IP (U ;W |Y, Z)), if IP (U ;W ) > R,

∞, otherwise,

(4.36)

T1(PUW , PY ZW ) := {PŨ Ỹ Z̃W̃ ∈ T (U × Y × Z ×W) : PŨW̃ = PUW , PỸ Z̃W̃ = PY ZW },

T2(PUW , PY Z) := {PŨ Ỹ Z̃W̃ ∈ T (U × Y × Z ×W) : PŨW̃ = PUW ,

PỸ Z̃ = PY Z , HP (W |Y, Z) ≤ H(W̃ |Ỹ Z̃)},

PSUY ZW := PSUY ZPW |U , QSUY ZW := QS|Y ZPU |ZPY |ZPZPW |U .
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Note that since (Y, Z, S)− U −W , we have

IP (W ;U) ≥ IP (W ;U |Z) ≥ IP (W ;U |Y, Z). (4.37)

Let B′ := {PW |U : IP (U ;W |Z) ≤ R}. Then, for PW |U ∈ B′, we have,

E1(R,PW |U ) = min
P
ŨỸ Z̃W̃

∈T1(PUW ,PY ZW )
D(PŨ Ỹ Z̃W̃ ||QUY ZPW |U ) = IP (Y ;W |Z),

E2(R,PW |U ) ≥ IP (U ;W |Z)− IP (U ;W |Y, Z) = IP (Y ;W |Z).

Hence,

κ∗(PW |U , R) ≥ IP (Y ;W |Z). (4.38)

By noting that Λmin ≤ HQ(S|W,Y, Z) (by the data processing inequality), we have

shown that for Λ1 ≤ Λmin, (R, κ,Λ0,Λ1) ∈ Re if (4.28)-(4.30) are satisfied. This

completes the proof of achievability.

Converse: Let (R, κ,Λ0,Λ1) ∈ Re. Let T be a r.v. uniformly distributed over

[n] and independent of all the other r.v.’s (Un, Y n, Zn,M). Define an auxiliary r.v.

W := (WT , T ), where Wi := (M,Y i−1, Zi−1, Zni+1), i ∈ [n]. Then, for any γ′ > 0 and

sufficiently large n, we have

n(R+ γ′) ≥ HP (M) ≥ HP (M |Zn) ≥ IP (M ;Un|Zn)

=
∑n

i=1
IP (M ;Ui|U i−1, Zn)

=
∑n

i=1
IP (M,U i−1, Zi−1, Zni+1;Ui|Zi) (4.39)

=
∑n

i=1
IP (M,U i−1, Zi−1, Zni+1, Y

i−1;Ui|Zi) (4.40)

≥
∑n

i=1
IP (M,Zi−1, Zni+1, Y

i−1;Ui|Zi)

=
∑n

i=1
IP (Wi;Ui|Zi) = nIP (WT ;UT |ZT , T )

= nIP (WT , T ;UT |ZT ) (4.41)

= nIP (W ;U |Z). (4.42)

Here, (4.39) follows since the sequences (Un, Zn) are memoryless; (4.40) follows since
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Y i−1 − (M,U i−1, Zi−1, Zni+1)− Ui ; (4.41) follows from the fact that T is independent

of all the other r.v.’s.

The equivocation of source Sn under the null hypothesis can be bounded as follows.

H(Sn|M,Y n, Zn, H = 0) =
∑n

i=1
H(Si|M,Si−1, Y n, Zn, H = 0)

≤
∑n

i=1
H(Si|M,Y i−1, Yi, Z

i−1, Zi, Z
n
i+1, H = 0)

=
∑n

i=1
H(Si|Wi, Yi, Zi, H = 0)

= nH(ST |WT , YT , ZT , T,H = 0)

= nHP (S|W,Y, Z), (4.43)

where PSUY ZW = PSUY ZPW |U for some conditional distribution PW |U .

Finally, we prove the upper bound on κ. For any encoding function f (n) and decision

region An ⊆ M×Yn ×Zn for H0 such that ǫn → 0, we have,

D (PMY nZn ||QMY nZn)

≥ PMY nZn(An) log

(

PMY nZn(An)

QMY nZn(An)

)

+ PMY nZn(Ac
n) log

(

PMY nZn(Ac
n)

QMY nZn(Ac
n)

)

(4.44)

≥ −H(ǫn)− (1− ǫn) log
(

β
(

f (n), ǫn

))

.

Here, (4.44) follows from the log-sum inequality [20]. Thus,

lim sup
n→∞

− log (β (fn, 0))

n
≤ lim sup

n→∞

1

n
D (PMY nZn ||QMY nZn)

= lim sup
n→∞

1

n
IP (M ;Y n|Zn) (4.45)

= HP (Y |Z)− lim inf
n→∞

1

n
HP (Y

n|M,Zn), (4.46)

where (4.45) follows since QMY nZn = PMZnPY n|Zn . The last term can be single-

letterized as follows:

HP (Y
n|M,Zn) =

∑n

i=1
HP (Yi|Y i−1,M,Zn)

=
∑n

i=1
HP (Yi|Zi,Wi)

= nHP (YT |ZT ,WT , T )
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= nHP (Y |Z,W ). (4.47)

Substituting (4.47) in (4.46), we obtain

κ ≤ IP (Y ;W |Z). (4.48)

Also, note that (Z, Y ) − U − W holds. This completes the proof of the converse.

The proof of the cardinality bound on W follows using standard arguments based on

the Fenchel-Eggleston-Carathéodory’s theorem and is given in Appendix C.5. This

completes the proof of the theorem.

Next, we state the result for TACI with a distortion privacy constraint, where the

distortion is measured using an arbitrary distortion measure d(·, ·). Let ∆min :=

minφ(u,y,z) EQ [d (S, φ(U, Y, Z))].

Proposition 4.7. For the HT given in (4.26), (R, κ,∆0,∆min) ∈ Rd if and only if there

exist an auxiliary r.v. W , |W| ≤ |U|+2, and a deterministic function φ : W×Y×Z 7→ Ŝ
such that

R ≥ IP (W ;U |Z), (4.49)

κ ≤ IP (W ;Y |Z), (4.50)

∆0 ≤ min
φ(·,·,·)

EP [d (S, φ(W,Y, Z))] , (4.51)

for some PSUY ZW as defined in Proposition 4.6.

Proof. The proof of achievability follows from Theorem 4.5, similarly to the way Propo-

sition 4.6 is obtained from Theorem 4.4. Hence, only differences will be highlighted.

Similar to the inequality Λmin ≤ HQ(S|U, Y, Z) in the proof of Proposition 4.6, we need

to prove the inequality ∆min ≤ EQ [d (S, φ(W,Y, Z))], where QSUY ZW := QSUY ZPW |U
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for some conditional distribution PW |U . This can be shown as follows.

min
φ(·,·,·)

EQ [d (S, φ(W,Y, Z))]

=
∑

u,y,z

QUY Z(u, y, z)
∑

w

PW |U (w|u) min
φ(w,y,z)

∑

s

QS|UY Z(s|u, y, z) d(s, φ(w, y, z))

≥
∑

u,y,z

QUY Z(u, y, z)
∑

w,s

PW |U (w|u) QS|UY Z(s|u, y, z) d(s, φ∗(u, y, z)) (4.52)

≥
∑

u,y,z

QUY Z(u, y, z) min
φ(u,y,z)

∑

w,s

PW |U (w|u) QS|UY Z(s|u, y, z) d(s, φ(u, y, z))

=
∑

u,y,z

QUY Z(u, y, z) min
φ(u,y,z)

∑

s

QS|UY Z(s|u, y, z) d(s, φ(u, y, z))

= min
φ(·,·,·)

EQ [d (S, φ(U, Y, Z))] := ∆min,

where, in (4.52), φ∗(u, y, z) is chosen such that

φ∗(u, y, z) := argmin
φ(w,y,z),w∈W

∑

s

QS|UY Z(s|u, y, z) d(s, φ(w, y, z)).

Converse: Let W = (WT , T ) denote the auxiliary r.v. defined in the converse of

Proposition 4.6. Inequalities (4.49) and (4.50) follow similarly as obtained in Proposi-

tion 4.6. We prove (4.51). Defining φ̃(M,Y n, Zn, i) := φ̄i(M,Y n, Zn), we have that,

min
g
(n)
r

E
[

d
(

Sn, Ŝn
) ∣

∣

∣H = 0
]

= min
{φ̃(m,yn,zn,i)}ni=1

E

[

n
∑

i=1

d
(

Si, φ̃(M,Y n, Zn, i)
) ∣

∣

∣H = 0

]

(4.53)

= min
{φ̃(·,·,·,·,·)}ni=1

E

[

n
∑

i=1

d
(

Si, φ̃(Wi, Zi, Yi, Y
n
i+1, i)

) ∣

∣

∣H = 0

]

≤ min
{φ(wi,zi,yi,i)}

E

[

n
∑

i=1

d (Si, φ(Wi, Zi, Yi, i))
∣

∣

∣
H = 0

]

= n min
{φ(·,·,·,·)}

E
[

E
[

d (ST , φ(WT , ZT , YT , T ))
∣

∣T
]

∣

∣

∣H = 0
]

= n min
{φ(·,·,·,·)}

E
[

d (ST , φ(WT , ZT , YT , T ))
∣

∣

∣H = 0
]

= n min
{φ(w,z,y)}

E
[

d (S, φ(W,Z, Y ))
∣

∣

∣H = 0
]

.
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In (4.53), we used the fact that (C.1) holds for any arbitrary joint distribution on the

r.v.’s (Sn, Un,M, Y n, Zn) in place of P̃
(0)
SnUnMY nZn . Hence, any ∆0 satisfying (4.5)

satisfies

∆0 ≤ min
{φ(w,z,y)}

EP [d (S, φ(W,Z, Y ))] .

This completes the proof of the converse. The proof of the cardinality bound on

W follows using standard arguments based on the Fenchel-Eggleston-Carathéodory’s

theorem and is given in Appendix C.5. This completes the proof of the theorem.

A more general version of Proposition 4.6 and Proposition 4.7 is claimed in [71]

as Theorem 7 and Theorem 8, respectively, in which a privacy constraint under the

alternate hypothesis is also imposed. However, we have identified a mistake in the

converse proof; and hence, a single-letter characterization for this general problem

remains open.

Remark 4.8. When QS|UY Z = QS|Y Z , a tight single-letter characterization of Re and

Rd exists even if the privacy constraint is active under the alternate hypothesis. This

is due to the fact that given Y n and Zn, M is independent of Sn under the alternate

hypothesis. In this case, (R, κ,Λ0,Λ1) ∈ Re if and only if there exists an auxiliary r.v.

W , such that (Z, Y, S)− U −W , and

κ ≤ IP (W ;Y |Z), (4.54)

R ≥ IP (W ;U |Z), (4.55)

Λ0 ≤ HP (S|W,Z, Y ), (4.56)

Λ1 ≤ HQ(S|Z, Y ), (4.57)

for some PSUY ZW as in Proposition 4.6. Similarly, we have that (R, κ,∆0,∆1) ∈ Rd if

and only if there exist an auxiliary r.v. W and a deterministic function φ : W×Y×Z 7→
Ŝ such that (4.54), (4.55),

∆0 ≤ min
φ(·,·,·)

EP [d (S, φ(W,Y, Z))] , (4.58)

∆1 ≤ min
φ(·,·,·)

EQ [d (S, φ(Y, Z))] , (4.59)
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are satisfied for some PSUY ZW as in Proposition 4.6.

The computation of the trade-off given in Proposition 4.6 is challenging in spite of

the cardinality bound on the auxiliary r.v. W as closed form solutions do not exist in

general. Below, we provide an example where such a solution does exist.

Example 4.9. Let V = U = S = {0, 1}, V = Y , Z = constant, V − S − U , PU (0) =

QU (0) = 0.5, PS|U (0|0) = PS|U (1|1) = QS|U (0|0) = QS|U (1|1) = 1 − q, PV |S(0|0) =

PV |S(1|1) = 1 − p and QV |S(0|0) = QV |S(1|1) = 0.5. Then, (R, κ,Λ0, 0) ∈ Re if there

exists r ∈ [0, 0.5] such that

R ≥ 1− hb(r), (4.60)

κ ≤ 1− hb((r ∗ q) ∗ p), (4.61)

Λ0 ≤ hb(p) + hb(q ∗ r)− hb(p ∗ (q ∗ r)), (4.62)

where, for a, b ∈ R, a ∗ b := (1− a) · b+ (1− b) · a, and hb : [0, 1] 7→ [0, 1] is the binary

entropy function given by

hb(t) = −(1− t) log(1− t)− t log(t).

The above characterization1 is exact for q = 0, i.e., (R, κ,Λ0, 0) ∈ Re only if there

exists r ∈ [0, 0.5] such that (4.60)-(4.62) are satisfied.

Proof. Achievability: Taking W = {0, 1}, and PW |U (0|0) = PW |U (1|1) = 1 − r, the

constraints defining the trade-off given in Proposition 4.6 simplifies to

I(U ;W ) = 1− hb(r),

I(V ;W ) = 1− hb((r ∗ q) ∗ p)

H(S|V,W ) = H(S|W )− I(S;V |W )

= H(S|W ) +H(V |S)−H(V |W )

= hb(r ∗ q) + hb(p)− hb(p ∗ (q ∗ r)).
1Numerical computation shows that the characterization given in (4.60)-(4.62) is exact even when

q ∈ (0, 1).
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Figure 4.2: (R, κ,Λ0) trade-off at the boundary of Re in Example 4.9 (Axes units
are in bits)

Converse: On the other hand, if q = 0, note that S = U . Hence, the same constraints

can be bounded as follows:

I(U ;W ) = 1−H(U |W ),

I(V ;W ) = 1−H(V |W ) ≤ 1− hb
(

h−1
b (H(U |W )) ∗ p

)

(4.63)

H(U |V,W ) = H(U |W ) +H(V |U)−H(V |W )

≤ hb(p) +H(U |W )− hb
(

h−1
b (H(U |W )) ∗ p

)

, (4.64)

where, h−1
b : [0, 1] 7→ [0, 0.5] is the inverse of the binary entropy function. Here, the

inequality in (4.63) and (4.64) follows by an application of Mrs. Gerber’s lemma [72],

since V = U ⊕ Np under the null hypothesis and Np ∼ Ber(p) is independent of U

and W . Also, Λmin = 0 since S = U . Noting that H(U |W ) ∈ [0, 1], and defining

r := h−1
b (H(U |W )) ∈ [0, 0.5], the result follows.

Fig. 4.2 depicts the curve
(

1− hb(r), 1− hb(p ∗ (q ∗ r)), hb(p) + hb(r ∗ q)−
hb(p ∗ (r ∗ q))

)

for q = 0 and p ∈ {0.15, 0.25, 0.35}, as r is varied in the range [0, 0.5].
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Figure 4.3: Projection of Fig. 4.2 in the R− κ plane and κ− Λ0 plane (Axes units
are in bits)

The projection of this curve on the R− κ and κ− Λ0 plane is shown in Fig. 4.3a and

Fig. 4.3b, respectively, for q ∈ {0, 0.1} and the same values of p. As expected, the

error-exponent κ increases with rate R while the equivocation Λ0 decreases with κ at

the boundary of Re.

Proposition 4.6 (resp. Proposition 4.7) provide a characterization of Re (resp. Rd)

under the condition of vanishing type I error probability constraint. Consequently,

the converse part of these results are weak converse results in the context of HT. In

the next subsection, we establish the optimal error exponent-privacy trade-off for the

special case of zero-rate compression. This trade-off is independent of the type I error

probability constraint ǫ ∈ (0, 1), and hence a strong converse result.

4.6.2 Zero-rate compression

Assume the following zero-rate constraint on the communication between the ob-

server and the detector,

lim
n→∞

log(|M|)
n

= 0. (4.65)
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Note that (4.65) does not imply that |M| = 0, i.e., nothing can be transmitted, but that

the message set cardinality can grow at most sub-exponentially in n. Such a scenario

is motivated practically by low power or low bandwidth constrained applications in

which communication is costly. Considering the HT given in (2.1), Proposition 4.10

and Proposition 4.11 stated below provide an optimal single-letter characterization

of Rd(ǫ) and Re(ǫ) in this case. While the coding schemes in the achievability part

of these results are inspired from that in [9], the analysis of privacy achieved at the

detector is new. Lemma 4.4 serves as a crucial tool for this purpose. We next state

the results. Let

∆max
0 := min

φ′(·)
EP
[

d
(

S, φ′(V )
)]

, (4.66a)

and ∆max
1 := min

φ′(·)
EQ
[

d
(

S, φ′(V )
)]

, (4.66b)

where φ′ : V 7→ Ŝ denotes a deterministic function.

Proposition 4.10. For ǫ ∈ (0, 1), (0, κ,∆0,∆1) ∈ Rd(ǫ) if and only if it satisfies,

κ ≤ min
P
ŨṼ

∈T1(PU ,PV )
D(PŨ Ṽ ||QUV ), (4.67)

∆0 ≤ ∆max
0 , (4.68)

∆1 ≤ ∆max
1 , (4.69)

where

T1(PU , PV ) = {PŨ Ṽ ∈ T (U × V) : PŨ = PU , PṼ = PV }.

Proof. First, we prove that (0, κ,∆0,∆1) satisfying (4.67)-(4.69) is achievable. While

the encoding and decoding scheme is the same as that in [9], we mention it for the

sake of completeness.

Encoding: The encoder sends the message M = 1 if Un ∈ Tn[PU ]δ
, δ > 0, and M = 0

otherwise.

Decoding: The detector declares Ĥ = 0 ifM = 1 and V n ∈ Tn[PV ]δ
, δ > 0. Otherwise,

Ĥ = 1 is declared.
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We analyze the type I and type II error probabilities for the above scheme. Note

that for any δ > 0, the weak law of large numbers implies that

P(Un ∈ Tn[PU ]δ
∩ V n ∈ Tn[PV ]δ

)|H = 0) = P(M = 1 ∩ V n ∈ Tn[PV ]δ
)|H = 0)

(n)−−→ 1.

Hence, the type I error probability tends to zero, asymptotically. The type II error

can be written as follows.

β(f (n), g(n)) = P(Un ∈ Tn[PU ]δ
∩ V n ∈ Tn[PV ]δ

)|H = 1)

=
∑

un∈Tn
[PU ]δ

,

vn∈T[PV ]δ

QUnV n(un, vn) ≤ (n+ 1)|U||V|e−n(κ
∗−O(δ)) = e

−n
(

κ∗− |U||V| log(n+1)
n

−O(δ)
)

,

where

κ∗ = min
P
ŨṼ

∈T1(PU ,PV )
D(PŨ Ṽ ||QUV ).

Next, we lower bound the average distortion for Sn achieved by this scheme at the

detector. Defining

IU (U
n, δ) := ✶

(

Un /∈ Tn[PU ]δ

)

, (4.70)

ρ
(n)
0 (δ) := ‖PSnV n − PSnV n|IU (Un,δ)=0‖, (4.71)

and ρ
(n)
1 (δ) := ‖QSnV n −QSnV n|IU (Un,δ)=1‖, (4.72)

we can write

∣

∣

∣ min
{φ̄i(m,vn)}ni=1

E
[

d
(

Sn, Ŝn
)

|H = 0
]

− nmin
φ′(v)

EP
[

d
(

S, φ′(V )
)]

∣

∣

∣

=
∣

∣

∣ min
{φ̄i(m,vn)}ni=1

E
[

d
(

Sn, Ŝn
)

|H = 0
]

− min
{φ′i(vn)}ni=1

E
[

d
(

Sn, Ŝn
)

|H = 0
] ∣

∣

∣

≤
∣

∣

∣
min

{φ̄i(m,vn)}ni=1

E
[

d
(

Sn, Ŝn
)

|H = 0
]

− P (M = 1|H = 0)
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min
{φ′i(vn)}ni=1

E
[

d
(

Sn, Ŝn
)

|M = 1, H = 0
] ∣

∣

∣

+ P (M = 0|H = 0) min
{φ′i(vn)}ni=1

E
[

d
(

Sn, Ŝn
)

|M = 0, H = 0
]

≤
∣

∣

∣ min
{φ̄i(m,vn)}ni=1

E
[

d
(

Sn, Ŝn
)

|H = 0
]

− min
{φ′i(vn)}ni=1

E
[

d
(

Sn, Ŝn
)

|M = 1, H = 0
] ∣

∣

∣

+ P (M = 0|H = 0)

[

min
{φ′i(vn)}ni=1

E
[

d
(

Sn, Ŝn
)

|M = 1, H = 0
]

+ min
{φ′i(vn)}ni=1

E
[

d
(

Sn, Ŝn
)

|M = 0, H = 0
]

]

≤
∣

∣

∣
min

{φ̄i(m,vn)}ni=1

E
[

d
(

Sn, Ŝn
)

|H = 0
]

− min
{φ′i(vn)}ni=1

E
[

d
(

Sn, Ŝn
)

|IU (Un, δ) = 0, H = 0
] ∣

∣

∣

+ P (IU (U
n, δ) = 1|H = 0)

[

min
{φ′i(vn)}ni=1

E
[

d
(

Sn, Ŝn
)

|M = 1, H = 0
]

+

min
{φ′i(vn)}ni=1

E
[

d
(

Sn, Ŝn
)

|M = 0, H = 0
]

]

≤ nDmρ
(n)
0 (δ) + 2 e−nΩ(δ)nDm (4.73)

(n)−−→ 0, (4.74)

where, (4.73) follows from Property 4.4.1(a), and (4.74) follows from (4.16). Similarly,

it can be shown using (4.15) that if QU = PU , then

∣

∣

∣ min
{φ̄i(m,vn)}ni=1

E
[

d
(

Sn, Ŝn
)

|H = 1
]

− min
{φ′i(vn)}ni=1

E
[

d
(

Sn, Ŝn
)

|H = 1
] ∣

∣

∣

(n)−−→ 0. (4.75)

On the other hand, if QU 6= PU and δ is small enough, we have

P (M = 0|H = 1) = P (IU (U
n, δ) = 1|H = 1) ≥ 1− e−n(D(PU ||QU )−O(δ)) (n)−−→ 1. (4.76)

Hence, we can write for δ small enough,

∣

∣

∣ min
{φ̄i(m,vn)}ni=1

E
[

d
(

Sn, Ŝn
)

|H = 1
]

− nmin
φ′(v)

EQ
[

d
(

S, φ′(V )
)]

∣

∣

∣

=
∣

∣

∣
min

{φ̄i(m,vn)}ni=1

E
[

d
(

Sn, Ŝn
)

|H = 1
]

− min
{φ′i(vn)}ni=1

E
[

d
(

Sn, Ŝn
)

|H = 1
] ∣

∣

∣

≤
∣

∣

∣ min
{φ̄i(m,vn)}ni=1

E
[

d
(

Sn, Ŝn
)

|H = 1
]

− P (M = 0|H = 0)
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min
{φ′i(vn)}ni=1

E
[

d
(

Sn, Ŝn
)

|M = 0, H = 1
] ∣

∣

∣

+ P (M = 1|H = 1) min
{φ′i(vn)}ni=1

E
[

d
(

Sn, Ŝn
)

|M = 1, H = 1
]

≤
∣

∣

∣ min
{φ̄i(m,vn)}ni=1

E
[

d
(

Sn, Ŝn
)

|H = 1
]

− min
{φ′i(vn)}ni=1

E
[

d
(

Sn, Ŝn
)

|M = 0, H = 1
] ∣

∣

∣

+ P (M = 1|H = 1)

[

min
{φ′i(vn)}ni=1

E
[

d
(

Sn, Ŝn
)

|M = 1, H = 1
]

+

min
{φ′i(vn)}ni=1

E
[

d
(

Sn, Ŝn
)

|M = 0, H = 1
]

]

≤
∣

∣

∣
min

{φ̄i(m,vn)}ni=1

E
[

d
(

Sn, Ŝn
)

|H = 1
]

− min
{φ′i(vn)}ni=1

E
[

d
(

Sn, Ŝn
)

|IU (Un, δ) = 1, H = 1
] ∣

∣

∣

+ P (IU (U
n, δ) = 0|H = 1)

[

min
{φ′i(vn)}ni=1

E
[

d
(

Sn, Ŝn
)

|M = 1, H = 1
]

+ min
{φ′i(vn)}ni=1

E
[

d
(

Sn, Ŝn
)

|M = 0, H = 1
]

]

≤ nDmρ
(n)
1 (δ) + 2 e−n(D(PU ||QU )−O(δ))nDm (4.77)

(n)−−→ 0, (4.78)

This completes the proof of the achievability.

We next prove the converse. Note that by the strong converse result in [10], the

R.H.S of (4.67) is an upper bound on the achievable error-exponent for all ǫ ∈ (0, 1)

even without a privacy constraint (hence, also with a privacy constraint). Also,

min
g
(n)
r

E
[

d
(

Sn, Ŝn
)

|H = 0
]

≤ min
{φ′i(vn)}ni=1

n
∑

i=1

EPSnV n

[

d
(

Si, φ
′
i(V

n)
)]

(4.79)

= min
{φ′(v)}

EP
[

d(S, φ′(V ))
]

.

Here, (4.79) follows from the fact that the detector can always reconstruct Ŝi as a

function of V n. Similarly,

min
g
(n)
r

E
[

d
(

Sn, Ŝn
)

|H = 1
]

≤ min
{φ′(v)}

EQ
[

d(S, φ′(V ))
]

.

Hence, any achievable Λ0 and Λ1 has to satisfy (4.68) and (4.69), respectively. This

completes the proof.
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The following Proposition is the analogous result to Proposition 4.10 when the pri-

vacy measure is equivocation.

Proposition 4.11. For ǫ ∈ (0, 1), (0, κ,Λ0,Λ1) ∈ Re(ǫ) if and only if it satisfies (4.67)

and

Λ0 ≤ HP (S|V ), (4.80)

Λ1 ≤ HQ(S|V ). (4.81)

Proof. For proving the achievablity part, the encoding and decoding scheme is the same

as in Proposition 4.10. Hence, the analysis of the error-exponent given in Proposition

4.10 holds. To lower bound the equivocation of Sn at the detector, defining IU (U
n, δ),

ρ
(n)
0 (δ) and ρ

(n)
1 (δ) as in (4.70)-(4.72), we can write

|nHP (S|V )−H(Sn|M,V n, H = 0)|

= |H(Sn|V n, H = 0)−H(Sn|M,V n, H = 0)|

≤ |H(Sn, V n|H = 0)−H(Sn, V n|M,H = 0)|

≤ |H(Sn, V n|H = 0)− P (M = 1|H = 0) H(Sn, V n|M = 1, H = 0)|

+ P (M = 0|H = 0)H(Sn, V n|M = 0, H = 0)

≤ |H(Sn, V n|H = 0)−H(Sn, V n|M = 1, H = 0)|

+ P (M = 0|H = 0) (H(Sn, V n|M = 1, H = 0) +H(Sn, V n|M = 0, H = 0))

≤ |H(Sn, V n|H = 0)−H(Sn, V n|IU (Un, δ) = 0, H = 0)|

+ P (IU (U
n, δ) = 1|H = 0) (H(Sn, V n|M = 1, H = 0) +H(Sn, V n|M = 0, H = 0))

(n)

≤ −2ρ
(n)
0 (δ) log

(

ρ
(n)
0 (δ)

|S|n|V|n

)

+ 2 e−nΩ(δ) log (|S|n|V|n) (4.82)

(n)−−→ 0, (4.83)

where, (4.82) follows due to Lemma 4.3, [20, Lemma 2.12] and the fact that entropy

of a r.v. is bounded by the logarithm of cardinality of its support; and, (4.83) follows

from (4.16) in Lemma 4.4 since δ > 0. In a similar way, it can be shown using (4.15)
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that if QU = PU , then

|H(Sn|V n, H = 1)−H(Sn|M,V n, H = 1)| (n)−−→ 0. (4.84)

On the other hand, if QU 6= PU and δ is small enough, we can write,

|nHQ(S|V )−H(Sn|M,V n, H = 1)|

= |H(Sn|V n, H = 1)−H(Sn|M,V n, H = 1)|

≤ |H(Sn, V n|H = 1)−H(Sn, V n|M,H = 1)|

≤ |H(Sn, V n|H = 1)−H(Sn, V n|M = 0, H = 1)|

+ P (IU (U
n, δ) = 0|H = 1) (H(Sn, V n|M = 0, H = 1) +H(Sn, V n|M = 1, H = 1))

≤ −2ρ
(n)
1 (δ) log

(

ρ
(n)
1 (δ)

|S|n|V|n

)

+ 2 e−n(D(PU ||QU )−O(δ)) log (|S|n|V|n) , (4.85)

where (4.85) follows from Lemma 4.3 and (4.76). It follows from (4.14) in Lemma 4.4

that for δ > 0 sufficiently small, ρ
(n)
1 (δ) ≤ e−nδ̄ for some δ̄ > 0, thus implying that the

R.H.S. of (4.85) tends to zero. This completes the proof of achievability.

The converse trivially follows from the results in [9] and [10] that the R.H.S of (4.67)

is the optimal error-exponent achievable for all values of ǫ ∈ (0, 1) even when there is

no privacy constraint, and the following inequality

H(Sn|M,V n, H = j) ≤ H(Sn|V n, H = j), j = 0, 1. (4.86)

This concludes the proof of the Proposition.

In Section 4.4.2, we mentioned that it is possible to achieve a positive error-exponent

with perfect privacy in our model. Here, we provide an example of TAI with an

equivocation privacy constraint under both hypothesis, and show that perfect privacy

is possible. Recall that TAI is a special case of TACI, in which, Z = constant, and

hence, the null and alternate hypothesis are given by

H0 : (U
n, Y n) ∼

n
∏

i=1

PUY ,
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and H1 : (U
n, Y n) ∼

n
∏

i=1

PUPY .

Example 4.12. Let S = U = {0, 1, 2, 3}, Y = {0, 1},

PSU = 0.125 ·

















1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

















, PY |U =

















1 0

0 1

1 0

0 1

















,

PSUY := PSUPY |U and QSUY := PSUPY , where PY =
∑

u∈U PU (u)PY |U (y|u). Then,

we have HQ(S|Y ) = HP (S) = HP (U) = 2 bits. Also, noting that under the null

hypothesis, Y = U mod 2, HP (S|Y ) = 2 bits. It follows from the inner bound given by

equations (4.31)-(4.34), and, (4.37) and (4.38) that (R, κ,Λ0,Λ1) ∈ Re(ǫ), ǫ ∈ (0, 1) if

R ≥ IP (W ;U),

κ ≤ IP (W ;Y ),

Λ0 ≤ HP (S|W,Y ),

Λ1 ≤ HQ(S|W,Y ) = HQ(S|W ),

where PSUYW := PSUY PW |U and QSUYW := QSUY PW |U for some conditional distri-

bution PW |U . If we set W := U mod 2, then we have IP (U ;W ) = 1 bit, IP (Y ;W ) =

HP (Y ) = 1 bit, HP (S|W,Y ) = HP (S|Y ) = 2 bits, and HQ(S|W ) = HP (S|Y ) = 2

bits. Thus, by revealing only W to the detector, it is possible to achieve a positive

error-exponent while ensuring maximum privacy under both the null and alternate

hypothesis, i.e., the tuple (1, 1, 2, 2) ∈ Re(ǫ), ∀ ǫ ∈ (0, 1).

4.7 A Counterexample to the Strong Converse

Ahlswede and Csiszár obtained a strong converse result for the distributed HT prob-

lem without a privacy constraint in [4], where they showed that for any positive rate

R, the optimal achievable error-exponent is independent of the type I error probability

constraint ǫ. Here, we explore whether a similar result holds in our model, in which,
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an additional privacy constraint is imposed. We will show through a counterexample

that this is not the case in general. The basic idea used in the counterexample is a

“time-sharing” argument which is used to construct from a given coding scheme that

achieves the optimal rate-error-exponent-equivocation trade-off under a vanishing type

I error probability constraint, a new coding scheme that satisfies the given type I error

probability constraint ǫ∗ and the same error-exponent as before, yet achieves a higher

equivocation for Sn at the detector. This concept has been used previously in other

contexts, e.g., in the characterization of the first-order maximal channel coding rate of

additive white gaussian noise (AWGN) channel in the finite block-length regime [73],

and subsequently in the characterization of the second order maximal coding rate in

the same setting [74]. However, we will provide a self-contained proof of the counterex-

ample by utilizing Lemma 4.4 for this purpose.

Assume that the joint distribution PSUV is such that HP (S|U, V ) < HP (S|V ). Prov-

ing the strong converse amounts to showing that any (R, κ,Λ0,Λ1) ∈ Re(ǫ) for some

ǫ ∈ (0, 1) also belongs to Re. Consider TAI problem with an equivocation privacy

constraint, in which, R ≥ HP (U) and Λ1 ≤ Λmin. Then, from the optimal single-

letter characterization of Re given in Proposition 4.6, it follows by taking W = U

that (HP (U), IP (V ;U), HP (S|V,U),Λmin) ∈ Re. Note that IP (V ;U) is the maximum

error-exponent achievable for any type I error probability constraint ǫ ∈ (0, 1), even

when Un is observed directly at the detector. Thus, for vanishing type I error proba-

bility constraint ǫ→ 0 and κ = IP (V ;U), the term HP (S|V,U) denotes the maximum

achievable equivocation for Sn under the null hypothesis. From the proof of Proposi-

tion 4.6, it follows that the coding scheme for achieving this tuple is as follows.

1. Quantize Un to codewords in CU = {un(j), j ∈ [2n(HP (U)+δ′)], un(j) ∈ Tn[PU ]δ
},

i.e., if Un = un ∈ Tn[PU ]δ
, send M = j, where j is the index of un in CU , else, send

M = 0.

2. At the detector, if M = 0, declare Ĥ = 1. Else, if M 6= 0, declare Ĥ = 0 if

(Un(M), V n) ∈ Tn[PUV ]δ′
, δ′ > δ and Ĥ = 1, otherwise.

The type I error probability of the above scheme tends to zero asymptotically with n.

Now, for a fixed ǫ∗ > 0, consider a modification of this coding scheme as follows.
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1. If Un = un ∈ Tn[PU ]δ
, send M = j with probability 1 − ǫ∗, where j is the index

of un in CU , and with probability ǫ∗, send M = 0. If Un = un /∈ Tn[PU ]δ
, send

M = 0.

2. At the detector, if M = 0, declare Ĥ = 1. Else, if M 6= 0, declare Ĥ = 0 if

(Un(M), V n) ∈ Tn[PUV ]δ′
, δ′ > δ and Ĥ = 1, otherwise.

It is easy to see that for this modified coding scheme, the type I error probability

is asymptotically equal to ǫ∗, while the error-exponent remains the same as I(V ;U)

since the probability of declaring Ĥ = 0 is decreased. Recalling that IU (u
n, δ) :=

✶

(

un /∈ Tn[PU ]δ

)

, we also have

1

n
H(Sn|M,V n, H = 0)

= (1− γn)(1− ǫ∗)
1

n
H (Sn|Un, V n, IU (U

n, δ) = 0, H = 0)

+ (1− γn) ǫ
∗ 1

n
H (Sn|M = 0, V n, IU (U

n, δ) = 0, H = 0)

+ γn
1

n
H(Sn|M = 0, V n, IU (U

n, δ) = 1, H = 0)

≥ (1− γn)(1− ǫ∗)
(

HP (S|U, V )− γ′′n
)

+ (1− γn) ǫ
∗ 1

n
H (Sn|M = 0, V n, IU (U

n, δ) = 0, H = 0)

+ γn
1

n
H(Sn|M = 0, V n, IU (U

n, δ) = 1, H = 0) (4.87)

> (1− γn)(1− ǫ∗)
(

HP (S|U, V )− γ′′n
)

+ (1− γn) ǫ
∗
(

HP (S|U, V )− γ′n
n

)

+ γn
1

n
H(Sn|M = 0, V n, H = 0, IU (U

n, δ) = 1) (4.88)

= (1− γn)(1− ǫ∗)
(

HP (S|U, V )− γ′′n
)

+ (1− γn) ǫ
∗
(

HP (S|U, V )− γ′n
n

)

+ γ′′′n (4.89)

= (1− γn)HP (S|U, V )− γ̄n, (4.90)

where, {γ′′n}n∈Z+ denotes some sequence of positive numbers such that γ′′n
(n)−−→ 0,

γn := P
(

Un /∈ TnP[U ]δ

)

≤ e−nΩ(δ) (n)−−→ 0, (4.91)

γ′n := −2ρ∗n log

(

2ρ∗n
|S|n

)

,
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ρ∗n := ‖PSnV n|IU (Un,δ)=0,M=0 − PSnV n‖ = ‖PSnV n|IU (Un,δ)=0 − PSnV n‖,

γ′′′n :=
γn
n
H(Sn|M = 0, V n, , H = 0, IU (U

n, δ) = 1)
(n)−−→ 0, (4.92)

and γ̄n := (1− γn)(1− ǫ∗)γ′′n + (1− γn) ǫ
∗ γ

′
n

n
− γ′′′n .

Equation (4.87) follows similarly to the proof of Theorem 1 in [75]. Equation (4.88) is

obtained as follows.

1

n
H (Sn|M = 0, V n, H = 0, IU (U

n, δ = 0))

≥ 1

n
H (Sn|V n, H = 0)− γ′n

n
(4.93)

> HP (S|U, V )− γ′n
n
. (4.94)

Here, (4.93) is obtained by an application of Lemma 4.3; and (4.94) is due to the

assumption that HP (S|U, V ) < HP (S|V ).

It follows from Lemma 4.4 that ρ∗n
(n)−−→ 0, which in turn implies that

γ′n
n

(n)−−→ 0. (4.95)

From (4.91), (4.92) and (4.95), we have that γ̄n
(n)−−→ 0. Hence, equation (4.90) im-

plies that (HP (U), IP (V ;U),Λ∗
0,Λmin) ∈ Re(ǫ

∗) for some Λ∗
0 > HP (S|U, V ). Since

(HP (U), IP (V ;U),Λ∗
0,Λmin) /∈ Re, this implies that in general, the strong converse

does not hold for HT with an equivocation privacy constraint. The same counterex-

ample can be used in a similar manner to show that the strong converse does not hold

for HT with an average distortion privacy constraint either.

4.8 Conclusions

In this chapter, we studied a distributed HT problem under a privacy constraint, with

equivocation and average distortion as the measures of privacy. We established a single-

letter inner bound on the rate-error exponent-equivocation and rate-error exponent-

distortion trade-offs. We also obtained an exact single-letter characterization of the
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optimal rate-error exponent-equivocation and rate-error exponent-distortion trade-offs

for two special cases, when the communication rate over the channel is zero, and for

TACI under a privacy constraint. It is interesting to note that the strong converse

for distributed HT does not hold when there is an additional privacy constraint in the

system. Extending these results to the case where the communication channel between

the observer and detector is noisy is an interesting avenue for future research.



Chapter 5

Distributed HT under a Security

Constraint

5.1 Overview

In this chapter, we consider a distributed HT problem under security constraints

involving three parties, an observer, a detector and an eavesdropper. The observer

communicates its observations to the detector which performs TACI of its observa-

tions from that of the observer, given some additional correlated side information.

Two different scenarios are explored depending on the communication channel between

the three parties; (i) noiseless channel setting, in which the communication channel

between the observer and the detector is a rate-limited noiseless channel, which the

eavesdropper also has perfect access to, (ii) noisy channel setting, in which the com-

munication channel from the observer to the detector and eavesdropper is a discrete

memoryless noisy broadcast channel. Additionally, the eavesdropper has access to

side-information different from the detector in general. The objective is to maximize

the type II error-exponent (or error-exponent) in the Stein’s regime, while keeping

the observer’s observations as secure from the eavesdropper as possible. With average

distortion between the observer’s observation and eavesdropper’s reconstruction as a

measure of secrecy, the trade-off between error-exponent and distortion at the eaves-

dropper is explored. In the noiseless channel setting, a single-letter inner bound on the

rate-error exponent-distortion trade-off is obtained, that is tight when the less noisy

condition on side-information at the detector holds. In the noisy channel setting, a

single-letter inner bound on the above trade-off is established using a hybrid coding

scheme.

107
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5.2 Introduction

Data inference and security (or secrecy) are often contradicting objectives in todays

interconnected world, neither of which can be compromised. In a distributed setting

such as that considered in Chapter 2, it is obvious that the utility gained depends on

the communication between the observer and the detector. In practice, communication

usually happens over a public channel such as a wireless network. This makes the

data vulnerable to external third party attacks such as eavesdropping and adversarial

jamming. Clearly, there is a trade-off between the two conflicting requirements of

utility and secrecy. In this chapter, we study the trade-off between HT performance and

security in the distributed setting studied in Chapter 2 with an additional eavesdropper,

which we refer to as the distributed HT under a security constraint problem.

5.3 Previous Work and Our Contributions

The information theoretic study of secrecy aspects in communication systems dates

back to the works of Shannon, where he introduced the Shannon Cipher System (SCS)

[76]. It comprises of a data source which is to be communicated reliably (at an arbitrary

small probability of error) by the transmitter to a legitimate receiver, such that the

data is also kept secure against an eavesdropper. The legitimate parties involved in

the communication, i.e., the transmitter and the receiver, share a private resource

called a key that is used for encryption at the transmitter and decryption at the

receiver. Shannon showed that for the SCS, the minimum amount of secret key rate

RK necessary for reliable communication while ensuring perfect secrecy, i.e., keeping

the source samples completely oblivious to the eavesdropper, is equal to the entropy of

the source. An important point to note here is that the eavesdropper is assumed to be

all powerful, i.e., it is unlimited in resources like time, space and computational power,

and that it knows the statistical properties of the system and also the codes used for the

communication, except for the realization of the key and the source samples. Thus, the

eavesdropper is free to choose its strategy based on its knowledge of the system and its

own observations, and the system should ensure security under the worst case situation
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when the eavesdropper always chooses the optimal strategy given the information it

has.

Several measures have been used to quantify data security. The usage of equivocation

of the message as a measure of secrecy in a communication setting first appears in

Wyner’s landmark chapter on wiretap channels [77]. Equivocation is also used as a

secrecy measure in subsequent works, e.g., for the secure transmission of messages over

a broadcast channel [78], secure lossy compression of a source with a private and public

part [79], secure lossless and lossy compression with side-information [47] [80] [81],

and secure transmission of a source over a noisy channel with side information at

the receiver [82]. A rate-distortion approach to secrecy is first explored in the work

of Yamamoto for the case of a noiseless channel with rate constraint R, where in

addition to a distortion constraint D at the legitimate receiver, it is also desired to

enforce a certain amount of distortion ∆ at the eavesdropper [59]. Yamamoto provided

a complete characterization of the set of all admissible (R,D,∆) tuples when the

distortion at the legitimate receiver and eavesdropper are measured using arbitrary

additive distortion measures. This approach is extended to the SCS with rate-limited

channels in [83], where inner and outer bounds are established for the set of achievable

(R,RK , D,∆) tuples, in addition to a complete characterization of the (R,RK , D,Λ)

region for general noisy channels, where Λ denotes the equivocation of the source

at the eavesdropper and RK denotes the secret key rate. Recently, the complete

characterization of the (R,RK , D,∆) trade-off is established for the SCS with rate-

limited noiseless channel in [61]. Moreover, it is also shown that equivocation is a

special case of the distortion based approach to secrecy with log-loss distortion measure

and causal disclosure of the source to the eavesdropper (see [61] and [84] for more

details). As mentioned in Chapter 4, other models apart from the SCS have also been

considered in the information-theoretic security literature such as the availability of

different side-information at the legitimate receiver and the eavesdropper. A single-

letter characterization of the (R,D,Λ) (rate-distortion-equivocation) trade-off in such a

setting where communication between the source and the legitimate receiver happens

over a rate-limited noiseless channel is obtained in [81]. On the other hand, when

the communication channel from the transmitter to the receiver and eavesdropper
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is a noisy broadcast channel, inner bounds on this trade-off are established in [82].

Analogous results with average distortion as the secrecy measure are obtained in [67]

and [85], respectively. As already mentioned in Chapter 4, distributed HT under an

equivocation secrecy constraint has also been considered previously in the noiseless

channel setting [49], where an inner bound on the rate-error exponent-equivocation

trade-off is established.

In this chapter, we study distributed HT under security constraints in the setting

shown in Fig. 5.1. We focus on TACI with the type II error-exponent (or error-

exponent henceforth) in Stein’s regime as the performance measure of the HT, and

average distortion at the eavesdropper as the secrecy measure. The contributions in

this chapter are as follows:

1. We obtain a single-letter inner bound on the rate-error exponent-distortion trade-

off in the noiseless channel setting. This inner bound is shown to match with a

trivial outer bound under the so-called less noisy condition on the side-information

at the detector, thus establishing its tightness in that case.

2. In the noisy channel setting, we obtain a single-letter inner bound on the rate-

error exponent-distortion trade-off using a hybrid coding scheme for the commu-

nication between the observer and the detector.

The organization of the chapter is as follows. In section 5.4, we introduce the detailed

system model and definitions along with the supporting lemmas. The main results are

stated in Section 5.5. The detailed proofs are deferred to Appendix D. Finally, Section

5.6 concludes the chapter.

5.4 Problem formulation

Consider the setup shown in Fig.5.1, which consists of a single observer connected

to the detector via a public channel and an eavesdropper that eavesdrops onto the

channel. The i.i.d. observations Un at the observer are encoded and transmitted to

the detector over a public channel, that is also observed by the eavesdropper. Given
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Figure 5.1: Distributed HT under security constraints.

its own i.i.d. observations V n and side-information Zn, the detector performs TACI

with the null and alternate hypothesis given by

H0 : (U
n, V n, Zn) ∼

n
∏

i=1

PUV Z ,

and H1 : (U
n, V n, Zn) ∼

n
∏

i=1

PZPU |ZPV |Z ,

respectively. The eavesdropper is interested in the reconstruction Ûn, such that the

average distortion between Un and Ûn is minimized for a given distortion measure

da : U × Û 7→ [0, Da] with multi-letter distortion given by

da(u
n, ûn) =

n
∑

i=1

da(ui, ûi). (5.1)

It is assumed that the eavesdropper also observes an i.i.d. side information En (corre-

lated with Un) and has causal access1 to samples Bi−1 for estimating Ûi, where B
n is

the output of a discrete memoryless channel PB|U with input Un. We consider two dis-

tinct scenarios: (i) the public channel is a noiseless channel with communication rate

constraint R which the eavesdropper has perfect access to, and (ii) the channel from

the observer to the detector and eavesdropper is a noisy discrete memoryless broadcast

channel PY J |X with outputs Y n and Jn given input Xn, where Y n is observed by the

1This assumption known as causal disclosure makes the notion of distortion as a measure of secrecy
more robust [61].
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detector and Zn by the eavesdropper. As mentioned above, the scenarios (i) and (ii)

will be referred to as the noiseless channel and noisy channel setting, respectively.

To summarize the problem formulation, our system model in the noiseless channel

setting comprises of:

• A given discrete joint probability distribution of the sources, side-informations

and causal disclosure PUV ZEB and samples (Un, V n, Zn, En, Bn) generated i.i.d.

according to
∏n
i=1 PUV ZEB.

• Encoder f (n) : Un 7→ M̄ with output M̄ = f (n)(Un) (possibly stochastic), where

M̄ is a set of indices.

• Decoder g(n) : M̄ × Zn × Vn 7→ {0, 1}, where 0 and 1 indicate H0 and H1,

respectively.

• Eavesdropper decoder g
(n)
a , where g

(n)
a is chosen from the set of conditional dis-

tributions of the form {PÛi|M̄,En,Bi−1}ni=1.

• Bounded additive distortion measure at the eavesdropper da(·, ·).

On the other hand, the system model in the noisy channel setting is similar to above,

but with the following differences:

• Encoder2 f (n) : Un 7→ X n with output Xn = f(Un) (possibly stochastic).

• A discrete memoryless broadcast channel PY J |X with input Xn and outputs

(Y n, Zn) generated according to
∏n
i=1 PY J |X .

• Decoder g(n) : Yn × Zn × Vn 7→ {0, 1}, where 0 and 1 indicate H0 and H1,

respectively.

• Eavesdropper decoder g
(n)
a , where g

(n)
a is chosen from the set of conditional dis-

tributions of the form {PÛi|Jn,En,Bi−1}ni=1.

Some more definitions are in order. This is provided below for the noiseless channel

setting. The corresponding definitions for the noisy channel setting can be obtained

2 For simplicity, we take the bandwidth ratio to be unity in the noisy channel setting.
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in a straightforward manner by replacing M̄ by Y n or Jn as appropriate. Let An ⊆
M̄×Zn×Vn and Ac

n := M̄×Zn×Vn \ An denote the acceptance region for H0 and

H1, respectively. The detector is then given by g(n)(m̄, zn, vn) = ✶ ((m̄, zn, vn) ∈ Ac
n).

Let ᾱ
(

f (n), g(n)
)

:= PM̄ZnV n(Ac
n) and β̄

(

f (n), g(n)
)

:= PM̄Zn × PV n|Zn(An) denote

the type I and type II error probabilities for the encoder f (n) and decision rule g(n),

respectively. Let β
(

f (n), ǫ
)

denote the minimum type II error probability achievable

for a given type I error probability constraint ǫ as defined in (4.1).

Definition 5.1. For a given type I error probability constraint ǫ, a rate-error exponent-

distortion3 tuple (R, κ,∆) is achievable in the noiseless setting if there exists a sequence

of encoding and decoding functions (f (n), g(n)) such that

lim sup
n→∞

log(|M̄|)
n

≤ R, (5.2)

lim inf
n→∞

− log
(

β(f (n), ǫ)
)

n
≥ κ, (5.3)

and for any γ > 0, there exists an n0 ∈ Z+ such that

inf
g
(n)
a

E
[

da

(

Un, Ûn
)]

≥ n∆− γ, ∀ n ≥ n0. (5.4)

The rate-error exponent-distortion region R̄∗
d(ǫ) for a given type I error probability

constraint ǫ is the closure of the region of all such achievable (R, κ,∆) tuples.

As already mentioned in Chapter 4, the average distortion constraint given in (5.4)

is stronger than a constraint of the form

lim inf
n→∞

inf
g
(n)
a

E

[

1

n
da

(

Un, Ûn
)

|H = i

]

≥ ∆. (5.5)

The corresponding definition in the noisy channel setting is as follows.

Definition 5.2. An error exponent-distortion pair (κ,∆) is achievable in the noisy

setting if there exists a sequence of encoding and decoding functions (f (n), g(n)) such

3It is well known that the equivocation measure of secrecy given by 1
n
H(Un|M̄,En) in the noiseless

setting and by 1
n
H(Un|Jn, En) in the noisy setting are special cases of the average distortion measure

given in (5.5) in the noiseless and noisy setting, respectively, when the distortion measure is log-loss
and the source is causally disclosed to the eavesdropper [61]. Accordingly, setting B = U and taking
da(u, û) = − log(û(u)) in the above problem formulation results in equivocation secrecy measure.



Chapter 5. Distributed HT under a Security Constraint 114

 

Helper 

Encoder

Legitimate 

Receiver

Eavesdropper

Channel

 

Main 
Encoder 

Figure 5.2: Equivalent rate-distortion problem in the presence of a helper and
eavesdropper.

that (5.3) and (5.4) are satisfied. The error exponent-distortion region R̄d(ǫ) for a

given type I error probability constraint ǫ is the closure of the region of all achievable

(κ,∆) tuples.

Our objective is to provide a computable characterization of R̄∗
d(ǫ) and R̄d(ǫ) as

ǫ → 0, which we denote by R̄∗
d and R̄d, respectively. Using similar methods as in [4],

the problem of characterizing R̄∗
d or R̄d can be recast as a lossless source coding problem

in the presence of a helper and an eavesdropper, depicted in Fig. 5.2. In here, the

helper communicates its observations Un to the legitimate receiver through a noiseless

channel with rate constraint R such that it assists in reducing the compression rate

Rs of source V
n to be reconstructed losslessly, while simultaneously also ensuring that

the average distortion constraint at the eavesdropper is satisfied. Let R∗
s denote the

closure of the set of all achievable (R,Rs,∆) tuples. Then, the following equivalence

holds:

(R, κ,∆) ∈ R̄∗
d ⇔ (R,H(V |Z)− κ,∆) ∈ R∗

s. (5.6)

Let Rs denote the closure of the set of all achievable (Rs,∆) pairs for the equivalent

lossless source coding problem depicted in Fig. 5.2 with the noiseless channel replaced

by the broadcast channel PY J |X . Then, similar to (5.6), we have the equivalence

(κ, ∆) ∈ R̄d ⇔ (H(V |Z)− κ, ∆) ∈ Rs. (5.7)
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For proving our results, we will in fact consider a more general rate distortion problem

in the presence of a helper and an eavesdropper. The problem is to characterize the

minimum achievable compression rate Rs in Fig. 5.2 such that the average distortion

at the legitimate receiver is below a specified value D while simultaneously ensuring

that the average distortion of U at the eavesdropper is above a specified value ∆.

More specifically, the system should ensure that (5.2) and (5.4) are satisfied and for

sufficiently large n,

E(dl(V
n, V̂ n)) ≤ D, (5.8)

where dl : V×V̂ 7→ [0, Dl] is some additive distortion measure at the legitimate receiver

with multi-letter distortion given by

dl(v
n, v̂n) =

1

n

n
∑

i=1

dl(vi, v̂i). (5.9)

Denote the set of all such achievable (R,Rs, D,∆) and (Rs, D,∆) tuples in the noiseless

and noisy channel setting by R∗
g and Rg, respectively. The lossless source coding

problem mentioned above is a special case of this problem with hamming distortion

measure dl(v, v̂) = ✶(v = v̂) and average distortion constraint D = 0.

In section 5.5, we establish single-letter inner bounds to R̄∗
d and R̄d via that of R∗

s

and Rs using the equivalences in eqns. (5.6) and (5.7). The following lemmas will be

useful for our analysis.

Lemma 5.1. [67, Lemma.2] For a probability distribution PY ZX with r.v.’s Y and Z

defined on the same alphabet and 0 < δ < 1, if P(Y 6= Z) ≤ δ, we have

‖PY X − PZX‖ ≤ δ. (5.10)

Lemma 5.2. [70, Corollary VII.8] Given a joint distribution PWZXY , let CnW be a ran-

dom codebook of sequences Wn(m1), m1 ∈ [1 : 2nR1 ] each drawn independently accord-

ing to
∏n
i=1 PW , and CnZ denote the codebook composed of sequences Zn(m1,m2), m1 ∈

[1 : 2nR1 ], m2 ∈ [1 : 2nR2 ] each drawn independently according to the distribution
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∏n
i=1 PZ|W (.|Wi(m1)). Let

PM1M2XnY k(m1,m2, x
n, yk) :=

1

2n(R1+R2)

n
∏

i=1

PX|WZ(xi|Wi(m1), Zi(m1,m2))

k
∏

j=1

PY |XWZ(yj |xj ,Wj(m1), Zj(m1,m2)),

P ′
M1XnY k(m1, x

n, yk) :=
1

2nR1

n
∏

i=1

PX|W (xi|Wi(m1))
k
∏

j=1

PY |XW (yj |xj ,Wj(m1)),

and P ′′
XnY k(x

n, yk) :=
n
∏

i=1

PX(xi)
k
∏

j=1

PY |X(yj |xj).

If

R1 > I(W ;X), (5.11)

R2 > I(W,Z;X)−H(W ), (5.12)

and R1 +R2 > I(W,Z;X), (5.13)

then there exists γ2 > 0 such that

E
[

‖PXnY k − P ′′
XnY k‖

]

≤ exp(−γ2n)
(n)−−→ 0, (5.14)

for any ζ ′ < min
(

R2−I(Z;X|W )
I(Y ;Z|X,W ) ,

R1−I(X;W )
I(Y ;W |X)

)

and k ≤ ζ ′n.

In particular, if R2 > I(X;Z|W ) (and R1 > 0), then there exists γ1 > 0 such that,

ECn
Z

[

‖PM1XnY k − P ′
M1XnY k‖

]

≤ exp(−γ1n)
(n)−−→ 0, (5.15)

for any ζ < R2−I(Z;X|W )
I(Y ;Z|X,W ) and k ≤ ζn.

Next, we present the results.
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5.5 Main Results

Theorem 5.3. (R, κ,∆) ∈ R̄∗
d if there exists auxiliary r.v.’s W1 and W2 such that

R ≥ I(W2;U |Z), (5.16)

κ ≤ I(W2;V |Z), (5.17)

∆ ≤ min{ζs, ζp}min
φ′′(·)

E (da (U, φ(E))) + (ζs −min{ζs, ζp}) min
φ′(·,·)

E (da (U, φ(E,W1))) ,

+ (1− ζs) min
φ(·,·)

E (da (U, φ(E,W2))) , (5.18)

where

ζp = min

(

[I(W1;Z)− I(W1;E)]+

I(W1;B|E)
, 1

)

, (5.19)

and ζs = min

(

[I(W2;Z|W1)− I(W2;E|W1)]
+

I(B;W2|W1, E)
, 1

)

, (5.20)

for some joint distribution PUPW2|UPW1|W2
PZEV B|U . Here, φ : E × W2 7→ Û , φ′ :

E ×W1 7→ Û and φ′′ : E 7→ Û denotes arbitrary deterministic functions.

Proof. The proof is given in Appendix D.1.

We also have the following trivial outer-bound for R̄∗
d when B = constant.

Proposition 5.4. (R, κ,∆) ∈ R̄∗
d only if there exists an auxiliary r.v. W2 such that

(5.16) and (5.17) are satisfied, and

∆ ≤ min
φ′′(·)

E (da (U, φ(E))) , (5.21)

for some joint distribution PUPW2|UPZEV |U .

Proof. Equations (5.16) and (5.17) follows from the converse of Proposition 2.8, when

the noisy communication channel between the observer and the detector is replaced

by a noiseless channel of rate constraint R. Eqn. (5.21) follows by noting that the

distortion at the eavesdropper cannot be higher than that obtained by a symbol by
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symbol reconstruction Ûi = φ′′(Ei) using only En and ignoring the message M̄ from

the helper.

Definition 5.5. Side-information Z is said to be strictly less noisy than E if for all

r.v.’s W satisfying the Markov chain W − U − (Z,E), I(Z;W ) > I(E;W ).

Corollary 5.6. For strictly less noisy side-information Z compared to E at the le-

gitimate receiver and B = constant, (R, κ,∆) ∈ R̄∗
d if and only if there exists an

auxiliary r.v. W2 such that (5.16), (5.17) and (5.21) are satisfied for some distribution

PUPW2|UPZEV |U .

Proof. For achievability, consider Theorem 5.3 and note that for strictly less noisy case

with B =constant, I(Z;W1) > I(E;W1), I(Z;W2|W1) > I(E;W2|W1), I(W1;B|E) =

0 and I(W2;B|W1, E) = 0. This implies that ζp = 1, ζs = 1, thus proving the

achievability. The converse follows trivially from Proposition 5.4.

The counterpart of the above results in the noisy channel setting is given below.

Theorem 5.7. (κ,∆) ∈ R̄d(ǫ), ǫ ∈ (0, 1] if there exists auxiliary r.v.’s W1 and W2

such that

I(W2;U) ≤ I(W1,W2;Y, Z), (5.22)

κ ≤ I(V ;W2, Y |Z), (5.23)

∆ ≤ min{ζ ′s, ζ ′p} min
φ′′(·,·)

E (da (U, φ(J,E))) +
(

ζ ′s −min{ζ ′s, ζ ′p}
)

min
φ(·,·,·)

E (da (U, φ(J,E,W1))) + (1− ζ ′s) min
φ(·,·,·)

E (da (U, φ(J,E,W2))) , (5.24)

where

ζ ′p = min

(

[I(W1;Y, Z)− I(W1; J,E)]+

I(W1;B|J,E)
, 1

)

, (5.25)

ζ ′s = min

(

[r′s − I(W2; J,E|W1)]
+

I(B;W2|W1, J, E)
, 1

)

, (5.26)

and r′s = min (I(W2;Y, Z|W1), I(W1,W2;Y, Z)− I(W1;U)) , (5.27)

for some distribution PUPW2|UPW1|W2
PX|W1W2UPY J |XPZEV B|U , and φ : J ×E×W2 7→

Û , φ′ : J × E ×W1 7→ Û and φ′′ : J × E 7→ Û are arbitrary deterministic functions.
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The proof of Theorem 5.7 is provided in Appendix D.2.

5.6 Conclusions

In this chapter, we studied TACI under security constraints. In the noiseless channel

setting with average distortion as the measure of secrecy at the eavesdropper, we

obtained an inner bound on the rate-error exponent-distortion trade-off using a coding

scheme that is a combination of superposition coding and binning. This bound is tight

when the side information at the legitimate receiver is less noisy compared to that of

the eavesdropper. In the noisy channel setting, we established inner bounds on the

error exponent-distortion trade-off by using superposition hybrid coding.
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Conclusions

Distributed HT is a central topic of study at the intersection of information theory

and statistics. Understanding the fundamental limits of performance of distributed

HT under communication constraints is not merely of theoretical interest, but has far

reaching practical implications in several areas such as remote sensing, radar communi-

cations, military communications, etc. On the other hand, it is important to take into

account the aspects of data security and privacy in distributed settings as computa-

tional power is becoming increasingly common and affordable to a potential adversary.

Understanding the trade-off between the performance in distributed HT, data privacy

and security is the ultimate goal of this dissertation.

In this dissertation, we have focused on the simplest case of binary HT to explore

the above mentioned trade-offs. Our basic system model is an extension of the one

studied in [4] and [9], in which the rate-limited noiseless channel between the observer

and the detector is replaced by a noisy DMC. In Chapter 2, we studied the asymmetric

scenario of maximizing the type II error-exponent in the Stein’s regime, while in Chap-

ter 3, we studied the trade-off between the type I and type II error-exponents in the

Chernoff’s regime. Optimal single-letter characterization of the type II error-exponent

were obtained in the Stein’s regime for the special case of TACI, which revealed the

interesting fact that the optimal type II error-exponent depends on the DMC only via

its capacity. This is surprising as one would expect that the noisy channel degrades the

performance of the HT compared to that of a noiseless channel of the same capacity,

and that the reliability function of the channel would play a role in the characteriza-

tion of the error-exponents in HT. We also obtained single-letter inner bounds on the

optimal type II error-exponent for the case of general HT, one using the SHTCC that

performs independent HT and channel coding, and the other using the JHTCC scheme

that uses hybrid coding for the communication between the observer and the detector.

120
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In Chapter 3, we extended the SHTCC and JHTCC schemes to obtain inner bounds

on the trade-off between both the type I and type II error-exponents. An interesting

question for future research would be to investigate if computable characterizations can

be obtained for some special cases of HT other than those considered in this thesis.

Towards this goal, it would be worthwhile to explore if tighter converse bounds can be

obtained using novel tools.

In Chapter 4, we introduced the aspect of privacy in the distributed HT problem

studied in Chapters 2 and 3, when the channel is rate-limited and noiseless. With

equivocation and average distortion as privacy measures, we established a single-letter

characterization of the optimal trade-off between communication rate, type II error-

exponent and privacy for TACI and zero-rate communication scenarios, and established

a single-letter inner bound on this trade-off in the general case. The above mentioned

instances of HT where single-letter characterization is obtained are inspired from the

analogous results for distributed HT over rate-limited channels without a privacy con-

straint. The privacy constraints we imposed are slightly stronger than that usually

encountered in the literature based on normalized equivocation or normalized average

distortion. Although our general problem formulation considered privacy constraints

under both the null and alternate hypotheses, the optimal single-letter characteriza-

tion of the rate-error exponent-privacy trade-off for TACI is obtained when the privacy

constraint under the alternate hypothesis is inactive. This is due to the fact that in

the converse part of the proof of this result, the auxiliary r.v. identification in the

single-letterization step for upper bounding the equivocation (or average distortion)

do not match under both hypotheses. We also showed via a counterexample that the

strong converse which holds for distributed HT without a privacy constraint, does not

hold when a privacy constraint is imposed. This is an interesting observation as we

are not aware of any other instance in the distributed HT literature where a strong

converse does not hold.

In Chapter 5, we studied distributed HT over a rate-limited noiseless channel un-

der security constraints with average distortion as the security measure. The goal

therein is to maximize the type II error-exponent in the Stein’s regime such that the

observer’s observations are protected against an eavesdropper that has either perfect
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or noisy access to the message received by the detector, in addition to correlated side-

information. We also made the assumption of noisy causal disclosure of the observer’s

observations to the eavesdropper, which is known to make the average distortion as

a measure of security more robust. The results in this chapter generalize analogous

results with equivocation as a security measure, as it is well-known that normalized

equivocation is a special case of average distortion with the log-loss distortion measure

under the assumption of perfect causal disclosure of the observer’s data samples to the

eavesdropper.

Research Challenges

In this thesis, we studied a distributed HT problem under certain constraints like

privacy and security. For these problems, we were able to answer some interesting

questions. However, there are still a large number of open questions worth investigating

both from a theoretical or practical implementation point of view among the topics

studied in this dissertation.

One important question that is of theoretical interest is to investigate whether the

strong converse holds for the distributed HT over a noisy channel problem considered

in Chapter 2. In [23], we were able to show that the strong converse does indeed hold

for a special case, when there is no side-information at the detector, and the hypothesis

test is on the marginal distribution of the observer’s observations. The key tool used

for proving this result is the blowing-up lemma of Ahlswede, Gács and Korner [86],

which is also a key component in the proof of the strong converse for distributed HT

over a rate-limited noiseless channel given in [4]. However, the blowing-up lemma does

not appear to be sufficient for proving the strong converse when the channel is noisy.

The change of measure technique proposed in [87] and the hypercontractivity based

method proposed in [88] are some promising techniques that could shed further light

in this direction.

Another interesting direction of research is to investigate better achievable schemes

and novel tools that could result in tighter converse bounds in distributed HT problems.
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Any breakthrough or improvement in this direction is hugely significant as it can lead

to a better understanding of the trade-off’s in the distributed settings studied so far.

It is well known that joint source-channel coding strictly outperforms separation

based schemes in multi-terminal communication problems, such as the transmission of

correlated sources over a multiple access channel [25]. Also, it is well known that for

the transmission of an i.i.d. data source over a DMC, the error exponent achieved by

a joint source channel coding scheme is strictly better in general than that achieved

by a scheme which performs separate source compression and channel coding [24]. It

is an open question whether joint schemes can strictly outperform separation based

schemes with regard to the error-exponents trade-off. For TACI, it follows from the

achievability scheme in Proposition 2.8 that a separation based scheme achieves the

optimal type II error-exponent (Stein’s regime). Hence, joint schemes do not offer any

advantage compared to separation based schemes in this case. However, in general,

we conjecture that joint schemes can achieve a strictly better error-exponent than

separation based schemes, and it would be worth investigating specific toy examples

for which this claim can be shown to hold.

For the various settings considered in this thesis, the alphabets of the r.v.’s are

assumed to be finite, and hence the proof of most of the results rely heavily on the

method of types [20]. An interesting direction of research is to consider more general

alphabets that have a countable or uncountable support. Of special interest is the

Gaussian setting in which the distributions of the r.v.’s involved are jointly Gaussian.

Some of the results in this thesis, particularly those related to TACI, are expected to

hold in the Gaussian setting via the standard discretization argument (see Remark

3.8 [72]) with the discretization interval not decreasing too fast with the number of

samples. However, establishing this and extending the results beyond the Gaussian

setting is yet another interesting avenue for further research.

In conclusion, we hope that the research work presented in this dissertation has

contributed towards a better understanding of distributed statistical inference problems

under communication and privacy/security constraints, and has posed some interesting

questions for future research in this area.
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Appendix A

Proofs for Chapter 2

A.1 Proof of Theorem 2.2

The proof outline is as follows. We first describe the encoding and decoding opera-

tions of the SHTCC scheme. The random coding method is used to analyze the type

I and type II error probabilities achieved by this scheme, averaged over the ensemble

of randomly generated codebooks. By the standard expurgation technique [21] (e.g.,

removing “worst” codebooks in the ensemble with the highest type I error probability

such that the total probability of the removed codebooks lies in the interval (0.5, 1)),

this guarantees the existence of at least one deterministic codebook that achieves type

I and type II error probabilities of the same order, i.e., within a constant multiplica-

tive factor. Since, in our scheme below, the type I error probability averaged over the

random code ensemble vanishes asymptotically with the the number of samples k, the

same holds for the codebook obtained after expurgation. Moreover, the error-exponent

is not affected by a constant multiplicative factor on the type II error probability, and

thus, this codebook asymptotically achieves the same type I error probability and

error-exponent as the average.

For brevity, in the proof below, we denote the information theoretic quantities like

IP (U ;W ), T k[PUW ]δ
, etc., that are computed with respect to joint distribution PUVWSXY

given in (A.1) below by I(U ;W ), T k[UW ]δ
, etc.

Codebook Generation: Let k ∈ Z+ and n = ⌊τk⌋. Fix a finite alphabet W, a positive

number (small) δ > 0, and distributions PW |U and PSX . Let δ′ := δ
2 , δ̂ := |U|δ, δ̃ :=

2δ, δ̄ := δ′

|V| , δ̌ := |W|δ̃ and

PUVWSXY (PW |U , PSX) := PUV PW |UPSXPY |X . (A.1)

132
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Let µ = O(δ) (subject to constraints that will be specified below) and R be such that

I(U ;W |V ) + 2µ ≤ R ≤ τI(X;Y |S)− µ. (A.2)

Denoting M ′
k := ek(I(U :W )+µ), the source codebook C used by the source encoder f

(k)
s

is obtained by generating M ′
k sequences wk(j), j ∈ [M ′

k], independently at random

according to the distribution
∏k
i=1 PW (wi), where

PW (w) =
∑

u∈U
PW |U (w|u)PU (u), ∀ w ∈ W.

The channel codebook C̃ used by f
(k,n)
c is obtained as follows. The codeword length n

is divided into |S| = |X | blocks, where the length of the first block is ⌈PS(s1)n⌉, the
second block is ⌈PS(s2)n⌉, so on so forth, and the length of the last block is chosen

such that the total length is n. The codeword xn(0) = sn corresponding to M = 0 is

obtained by repeating the letter si in block i. The remaining
⌈

ekR
⌉

ordinary codewords

xn(m), m ∈
[

ekR
]

, are obtained by blockwise i.i.d. random coding, i.e., the symbols in

the ith block of each codeword are generated i.i.d. according to PX|S=si . The sequence

sn is revealed to the detector.

Encoding : If I(U ;W )+µ > R, i.e., the number of codewords in the source codebook

is larger than the number of codewords in the channel codebook, the encoder performs

uniform random binning on the sequences wk(i), i ∈ [M ′
k] in C, i.e., for each codeword

in C, it selects an index uniformly at random from the set [ekR]. Denote the bin

index selected for wk(i) by fB(i). If the observed sequence Uk = uk is typical, i.e.,

uk ∈ T k[U ]δ′
, the source encoder f

(k)
s first looks for a sequence wk(j) in C such that

(uk, wk(j)) ∈ T k[UW ]δ
. If there exist multiple such codewords, it chooses an index

j among them uniformly at random, and outputs the bin-index M = m = fB(j),

m ∈ [ekR] or M = m = j depending on whether I(U ;W ) + µ > R, or otherwise. If

uk /∈ T k[U ]δ′
or such an index j does not exist, f

(k)
s outputs the error message M = 0.

The channel encoder f
(k,n)
c transmits the codeword xn(m) from codebook C̃.

Decoding : At the decoder, g
(k,n)
c outputs M̂ = 0 if for some 1 ≤ i ≤ |S|, the channel

outputs corresponding to the ith block does not belong to Tn[PY |S=si
]δ
. Otherwise, M̂
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is set as the index of the codeword corresponding to the maximum-likelihood candi-

date among the ordinary codewords. If M̂ = 0, H1 is declared. Else, given the side

information sequence V k = vk and estimated bin-index M̂ = m̂, g
(k,n)
s searches for a

typical sequence ŵk = wk(ĵ) ∈ T k[W ]
δ̂
, in codebook C such that

ĵ = argmin
l: fB(l)=m̂,

wk(l)∈Tk
[W ]

δ̂

He(w
k(l)|vk), if I(U ;W ) + µ > R,

ĵ = m̂, otherwise.

The decoder declares Ĥ = 0 if (ŵk, vk) ∈ T k[WV ]
δ̃
. Else, Ĥ = 1 is declared.

We next analyze the type I and type II error probabilities achieved by the above

scheme.

Analysis of Type I error: A type I error occurs only if one of the following events

happen.

ETE =
{

(Uk, V k) /∈ T k[UV ]δ̄

}

EEE =
{

∄ j ∈
[

M ′
k

]

: (Uk,W k(j)) ∈ T k[UW ]δ

}

EME =
{

(V k,W k(J)) /∈ T k[VW ]
δ̃

}

EDE =

{

∃ l ∈
[

M ′
k

]

, l 6= J : fB(l) = fB(J), W
k(l) ∈ T k[W ]

δ̂
, He(W

k(l)|V k) ≤

He(W
k(J)|V k)

}

ECD =
{

g(k,n)c (Y n) 6=M
}

P(ETE |H = 0) tends to 0 asymptotically by the weak law of large numbers. Conditioned

on EcTE , Uk ∈ T[U ]δ′
and by the covering lemma [20, Lemma 9.1], it is well known that

for µ = O(δ) chosen appropriately, P(EEE |EcTE) tends to 0 doubly exponentially with

k. Given EcEE ∩ EcTE holds, it follows from the Markov chain relation V − U −W and

the Markov lemma [72], that P(EME |EcTE ∩ EcEE) tends to zero as k → ∞. Next, we

consider P(EDE). Given that EcME ∩EcEE ∩EcTE holds, note that for k sufficiently large,
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He(W
k(J)|V k) ≤ H(W |V ) +O(δ). Thus, we have (for sufficiently large k)

P(EDE | V k = vk,W k(J) = wk, EcME ∩ EcEE ∩ EcTE)

≤
M ′

k
∑

l=1,
l 6=J

∑

w̃k∈Tk
[W ]

δ̂
:

He(w̃k|vk)
≤He(wk|vk)

P
(

fB(l) = fB(J), W k(l) = w̃k| V k = vk,W k(J) = wk,

EcME ∩ EcEE ∩ EcTE
)

=

M ′
k

∑

l=1,
l 6=J

∑

w̃k∈Tk
[W ]

δ̂
:

He(w̃k|vk)≤He(wk|vk)

P(W k(l) = w̃k| V k = vk,W k(J) = wk, EcME ∩ EcEE ∩ EcTE)
1

ekR

≤
M ′

k
∑

l=1,
l 6=J

∑

w̃k∈Tk
[W ]

δ̂
:

He(w̃k|vk)≤He(wk|vk)

2 · e−kRe−k(H(W )−O(δ)) (A.3)

≤
M ′

k
∑

l=1,
l 6=J

(k + 1)|V||W| ek(H(W |V )+O(δ)) · 2 · e−kRe−k(H(W )−O(δ)) (A.4)

≤ e−k(R−I(U ;W |V )−δ(k)1 ), (A.5)

where

δ
(k)
1 = µ+O(δ) +

1

k
|V||W| log(k + 1) +

log(2)

k
.

To obtain (A.3), we used the fact that

P(W k(l) = w̃k| EcME ∩ EcEE ∩ EcTE ,W k(J) = wk, V k = vk) ≤ 2 · P(W k(l) = w̃k).

(A.6)

This follows similarly to (A.28), which is discussed in the type II error analysis section

below. In order to obtain the expression in (A.4), we first summed over the types

PW̃ of sequences within the typical set T k[W ]δ
that have empirical entropy less than

He(w
k|vk); and used the facts that the number of sequences within such a type is

upper bounded by ek(H(W |V )+γ1(k)), and the total number of types is upper bounded

by (k + 1)|V||W| [20]. Summing over all (wk, vk) ∈ T k[VW ]
δ̃
, we obtain (for sufficiently
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large k) that

P(EDE |EcME ∩ EcEE ∩ EcTE)

≤
∑

(wk,vk)∈Tk
[WV ]

δ̃

P(W k(J) = wk, V k = vk|EcME ∩ EcEE ∩ EcTE) e−k(R−I(U ;W |V )−δ(k)1 )

≤ e−k(R−I(U ;W |V )−δ(k)1 ) ≤ e−k
µ
2 , (A.7)

where, (A.7) follows from (A.2) by choosing µ = O(δ) appropriately.

Finally, we consider the event ECD. Denoting by ECT , the event that the channel

outputs corresponding to the ith block does not belong to Tn[PY |S=si
]δ
for some 1 ≤ i ≤

|S|, it follows from the weak law of large numbers and the union bound, that

P(ECT |EcEE)
(k)−−→ 0. (A.8)

Also, it follows from [20, Exercise 10.18, 10.24] that for sufficiently large n (depending

on µ, τ, |X | and |Y|),

P (ECD|EcEE ∩ EcCT ) ≤ e−nEx(
R
τ
+ µ

2τ
,PSX). (A.9)

This implies that the probability that an error occurs at the channel decoder g
(k,n)
c

tends to 0 as n → ∞ since Ex(
R
τ + µ

2τ , PSX) > 0 for R ≤ τI(X;Y |S) − µ. Thus, if

I(U ;W |V ) + µ ≤ R ≤ τI(X;Y |S) − µ, the probability of the events causing type I

error tends to zero asymptotically.

Analysis of Type II error: First, note that a type II error occurs only if V k ∈
T k[V ]δ̌

, and hence, we can restrict the type II error analysis to only such V k. Denote

the event that a type II error happens by D0. Let

E0 =
{

Uk /∈ T k[U ]δ′

}

. (A.10)

Then, the type II error probability can be written as

β
(

k, n, f (k,n), g(k,n)
)



Appendix A. Proofs for Chapter 2 137

=
∑

(uk,vk)∈Uk×Vk

P(Uk = uk, V k = vk|H = 1) P(D0|Uk = uk, V k = vk). (A.11)

Let ENE := EcEE ∩ Ec0 . The last term in (A.11) can be upper bounded as follows.

P(D0|Uk = uk, V k = vk)

= P(ENE |Uk = uk, V k = vk) P(D0|Uk = uk, V k = vk, ENE)

+ P(EcNE |Uk = uk, V k = vk) P(D0|Uk = uk, V k = vk, EcNE)

≤ P(D0|Uk = uk, V k = vk, ENE) + P(D0|Uk = uk, V k = vk, EcNE).

Thus, we have

β
(

k, n, f (k,n), g(k,n)
)

≤
∑

(uk,vk)

∈ Uk×Vk

P(Uk = uk, V k = vk|H = 1)
[

P(D0|Uk = uk, V k = vk, ENE)

+ P(D0|Uk = uk, V k = vk, EcNE)
]

. (A.12)

First, we assume that ENE holds. Then,

P(D0| Uk = uk, V k = vk, ENE)

=

M ′
k

∑

j=1

ekR
∑

m=1

P(J = j, fB(J) = m| Uk = uk, V k = vk, ENE)

P(D0|Uk = uk, V k = vk, J = j, fB(J) = m, ENE). (A.13)

By the symmetry of the codebook generation, encoding and decoding procedure, the

term P(D0|Uk = uk, V k = vk, J = j, fB(J) = m, ENE) in (A.13) is independent of the

value of J and fB(J). Hence, w.l.o.g. assuming J = 1 and fB(J) = 1, we can write

P(D0| Uk = uk, V k = vk, ENE)

=

M ′
k

∑

j=1

ekR
∑

m=1

P(J = j, fB(J) = m| Uk = uk, V k = vk, ENE)

P(D0|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)
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= P(D0|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)

=
∑

wk∈Wk

P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)

P(D0|Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE). (A.14)

Given ENE holds, D0 may occur in three possible ways: (i) when M̂ 6= 0, i.e., EcCT
occurs, the channel decoder makes an error and the codeword retrieved from the bin

is jointly typical with V k; (ii) when an unintended wrong codeword is retrieved from

the correct bin that is jointly typical with V k; and (iii) when there is no error at the

channel decoder and the correct codeword is retrieved from the bin, that is also jointly

typical with V k. We refer to the event in case (i) as the channel error event ECE , and
the one in case (ii) as the binning error event EBE . More specifically,

ECE = {EcCT and M̂ = g(k,n)c (Y n) 6=M}, (A.15)

and

EBE =
{

∃ l ∈
[

M ′
k

]

, l 6= J, fB(l) = M̂, W k(l)) ∈ T k[W ]
δ̂
, (V k,W k(l)) ∈ T k[VW ]

δ̃

}

.

(A.16)

Define the following events

F = {Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE}, (A.17)

F1 = {Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE , ECE}, (A.18)

F2 = {Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE , EcCE}, (A.19)

F21 = {Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE , EcCE , EBE}, (A.20)

F22 = {Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE , EcCE , EcBE}. (A.21)

The last term in (A.14) can be expressed as follows.

P(D0|F) = P(ECE |F) P(D0|F1) + P(EcCE |F) P(D0|F2),
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where

P(D0|F2) = P(EBE |F2) P(D0|F21) + P(EcBE |F2) P(D0|F22). (A.22)

It follows from (A.9) that for sufficiently large k,

P(ECE |F) ≤ e−nEx(
R
τ
+ µ

2τ
,PSX) = e−kτEx(

R
τ
+ µ

2τ
,PSX). (A.23)

Next, consider the type II error event that happens when an error occurs at the channel

decoder. We need to consider two separate cases: I(U ;W )+µ > R and I(U ;W )+µ ≤
R. Note that in the former case, binning is performed and type II error happens at

the decoder only if a sequence W k(l) exists in the wrong bin M̂ 6= M = fB(J) such

that (V k,W k(l)) ∈ T k[VW ]
δ̃
. As noted in [26], the calculation of the probability of this

event does not follow from the standard random coding argument usually encountered

in achievability proofs due to the fact that the chosen codewordW k(J) depends on the

entire codebook. Following steps similar to those in [26], we analyze the probability

of this event (averaged over codebooks C and random binning) as follows. We first

consider the case when I(U ;W ) + µ > R.

P(D0|F1) ≤ P( ∃ W k(l) : fB(l) = M̂ 6= 1, (W k(l), vk) ∈ T k[WV ]
δ̃
|F1)

≤
M ′

k
∑

l=2

∑

m̂ 6=1

P(M̂ = m̂|F1) P((W
k(l), vk) ∈ T k[WV ]

δ̃
: fB(l) = m̂|F1)

=

M ′
k

∑

l=2

∑

m̂ 6=1

P(M̂ = m̂|F1)
∑

w̃k:
(w̃k,vk)∈Tk

[WV ]
δ̃

P(W k(l) = w̃k : fB(l) = m̂|F1)

=

M ′
k

∑

l=2

∑

m̂ 6=1

P(M̂ = m̂|F1)
∑

w̃k:
(w̃k,vk)∈Tk

[WV ]
δ̃

P(W k(l) = w̃k|F1)
1

ekR
(A.24)

=

M ′
k

∑

l=2

∑

w̃k:
(w̃k,vk)∈Tk

[WV ]
δ̃

P(W k(l) = w̃k|F1)
1

ekR
. (A.25)
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Let C−
1,l = C\{W k(1),W k(l)}. Then,

P(W k(l) = w̃k|F1) =
∑

C−
1,l=c

P(C−
1,l = c|F1)P(W

k(l) = w̃k|F1, C−
1,l = c). (A.26)

The term in (A.26) can be upper bounded as follows:

P(W k(l) = w̃k|F1, C−
1,l = c)

= P(W k(l) = w̃k|Uk = uk, V k = vk, C−
1,l = c)

P(W k(1) = wk|W k(l) = w̃k, Uk = uk, V k = vk, C−
1,l = c)

P(W k(1) = wk|Uk = uk, V k = vk, C−
1,l = c)

P(J = 1|W k(1) = wk,W k(l) = w̃k, Uk = uk, V k = vk, C−
1,l = c)

P(J = 1|W k(1) = wk, Uk = uk, V k = vk, C−
1,l = c)

(A.27)

P(fB(J) = 1|J = 1,W k(1) = wk,W k(l) = w̃k, Uk = uk, V k = vk, C−
1,l = c)

P(fB(J) = 1|J = 1,W k(1) = wk, Uk = uk, V k = vk, C−
1,l = c)

P(ENE , ECE |fB(J) = 1, J = 1,W k(1) = wk,W k(l) = w̃k, Uk = uk, V k = vk, C−
1,l = c)

P(ENE , ECE |fB(J) = 1, J = 1,W k(1) = wk, Uk = uk, V k = vk, C−
1,l = c)

.

Since the codewords are generated independently of each other and the binning

operation is independent of the codebook generation, we have

P(W k(1) = wk|W k(l) = w̃k, Uk = uk, V k = vk, C−
1,l = c)

= P(W k(1) = wk|Uk = uk, V k = vk, C−
1,l = c),

and

P(fB(J) = 1|J = 1,W k(1) = wk,W k(l) = w̃k, Uk = uk, V k = vk, C−
1,l = c)

= P(fB(J) = 1|J = 1,W k(1) = wk, Uk = uk, V k = vk, C−
1,l = c).

Also, note that

P(ENE , ECE |fB(J) = 1, J = 1,W k(1) = wk,W k(l) = w̃k, Uk = uk, V k = vk, C−
1,l = c)

= P(ENE , ECE |fB(J) = 1, J = 1,W k(1) = wk, Uk = uk, V k = vk, C−
1,l = c).
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Next, consider the term in (A.27). Let N(uk, C−
1,l) = |{wk(l′) ∈ C−

1,l : l
′ 6= 1, l′ 6=

l, (wk(l′), uk) ∈ T k[WU ]δ
}|. Recall that if there are multiple sequences in codebook C

that are jointly typical with the observed sequence Uk, then the encoder selects one

of them uniformly at random. Also, note that given F1, (w
k, uk) ∈ T k[WU ]δ

. Thus, if

(w̃k, uk) ∈ T k[WU ]δ
, then

P(J = 1|W k(1) = wk,W k(l) = w̃k, Uk = uk, V k = vk, ENE , ECE , C−
1,l = c)

P(J = 1|W k(1) = wk, Uk = uk, V k = vk, C−
1,l = c)

=

[

1

N(uk, C−
1,l) + 2

]

1

P(J = 1|W k(1) = wk, Uk = uk, V k = vk, C−
1,l = c)

≤
N(uk, C−

1,l) + 2

N(uk, C−
1,l) + 2

= 1.

If (w̃k, uk) /∈ T k[WU ]δ
, then

P(J = 1|W k(1) = wk,W k(l) = w̃k, Uk = uk, V k = vk, C−
1,l = c)

P(J = 1|W k(1) = wk, Uk = uk, V k = vk, C−
1,l = c)

=

[

1

N(uk, C−
1,l) + 1

]

1

P(J = 1|W k(1) = wk, Uk = uk, V k = vk, C−
1,l = c)

≤
N(uk, C−

1,l) + 2

N(uk, C−
1,l) + 1

≤ 2.

Hence, the term in (A.26) can be upper bounded as

P(W k(l) = w̃k|F1)

≤
∑

C−
1,l=c

P(C−
1,l = c|F1) 2 P(W k(l) = w̃k|Uk = uk, V k = vk, C−

1,l = c)

= 2 P(W k(l) = w̃k|Uk = uk, V k = vk) = 2 P(W k(l) = w̃k). (A.28)

Substituting (A.28) in (A.25), we obtain

P(D0|F1) ≤
M ′

k
∑

l=1

∑

w̃k:
(w̃k,vk)∈Tk

[WV ]
δ̃

2 P(W k(l) = w̃k)
1

ekR
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=

M ′
k

∑

l=1

∑

w̃k:
(w̃k,vk)∈Tk

[WV ]
δ̃

2 · e−k(H(W )−O(δ̂)) 1

ekR

= 2 M ′
k e

k(H(W |V )+δ) e−k(H(W )−O(δ̂)) 1

ekR

≤ e−k(R−I(U ;W |V )−δ(k)2 ), (A.29)

where δ
(k)
2 := O(δ) + log(2)

k .

For the case I(U ;W )+µ ≤ R (when binning is not done), the terms can be bounded

similarly using (A.28) as follows.

P(D0|F1) =
∑

m̂ 6=1

P(M̂ = m̂|F1) P((W
k(m̂), vk) ∈ T k[WV ]

δ̃
|F1)

≤
∑

m̂ 6=1

P(M̂ = m̂|F1)
∑

w̃k:
(w̃k,vk)∈Tk

[WV ]
δ̃

2 P(W k(m̂) = w̃k)

≤ e−k(I(V ;W )−δ(k)2 ). (A.30)

Next, consider the event when there are no encoding or channel errors, i.e., ENE ∩ EcCE .
For the case I(U ;W ) + µ > R, the binning error event denoted by EBE happens

when a wrong codeword W k(l), l 6= J , is retrieved from the bin with index M by

the empirical entropy decoder such that (W k(l), V k) ∈ T k[WV ]δ
. Let PŨ Ṽ W̃ denote

the type of PUkV kWk(J). Note that PŨW̃ ∈ T k
[UW ]δ

when ENE holds. If H(W̃ |Ṽ ) <

H(W |V ), then in the bin with index M , there exists a codeword with empirical en-

tropy strictly less than H(W |V ). Hence, the decoded codeword Ŵ k is such that

(Ŵ k, V k) /∈ T k[WV ]
δ̃
(asymptotically) since (Ŵ k, V k) ∈ T k[WV ]

δ̃
necessarily implies that

He(Ŵ
k|V k) ≥ H(W |V )−O(δ) (for δ small enough). Consequently, a type II error can

happen under the event EBE only when H(W̃ |Ṽ ) ≥ H(W |V )−O(δ). The probability

of the event EBE can be upper bounded under this condition as follows:

P(EBE |F2)

≤ P
(

∃ l 6= 1, l ∈ [M ′
k] : fB(l) = 1 and (W k(l), vk) ∈ T k[WV ]

δ̃
|F2

)
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≤
M ′

k
∑

l=2

P
(

(W k(l), vk) ∈ T k[WV ]
δ̃
|F2

)

P
(

fB(l) = 1|F2, (W
k(l), vk) ∈ T k[WV ]

δ̃

)

=

M ′
k

∑

l=2

P
(

(W k(l), vk) ∈ T k[WV ]
δ̃
|F2

)

e−kR

≤
M ′

k
∑

l=2

∑

w̃k:
(w̃k,vk)∈Tk

[WV ]
δ̃

2 P(W k(l) = w̃k) e−kR (A.31)

= e−k(R−I(U ;W |V )−δ(k)2 ). (A.32)

In (A.31), we used the fact that

P
(

W k(l) = w̃k|F2

)

≤ 2 P(W k(l) = w̃k), (A.33)

which follows in a similar way as (A.28). Also, note that, by definition, P(D0|F21) = 1.

We proceed to analyze the R.H.S of (A.12) which upper bounds the type II error

probability. Towards this end, we first focus on the the case when ENE holds. From

(A.14), it follows that

∑

(uk,vk)∈Uk×Vk

P(Uk = uk, V k = vk|H = 1) P(D0|Uk = uk, V k = vk, ENE) (A.34)

=
∑

(uk,vk)∈Uk×Vk

P(Uk = uk, V k = vk|H = 1)

P(D0|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE). (A.35)

Rewriting the summation in (A.35) as the sum over the types and sequences within a

type, we obtain

P(D0| ENE , H = 1)

=
∑

P
ŨṼ W̃

∈T k
UVW

∑

(uk,vk,wk)
∈TP

ŨṼ W̃

[

P(Uk = uk, V k = vk|H = 1) P(D0|F)

P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)
]

. (A.36)
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We also have

P(Uk = uk, V k = vk|H = 1) P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)

=

[

k
∏

i=1

QUV (ui, vi)

]

P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)

≤
[

k
∏

i=1

QUV (ui, vi)

]

1

|TP
W̃ |Ũ

| ≤ e−k(H(Ũ Ṽ )+D(P
ŨṼ

||QUV )+H(W̃ |Ũ)− 1
k
|U||W| log(k+1)),

(A.37)

where PŨ Ṽ W̃ denotes the type of the sequence (uk, vk, wk).

With (A.23), (A.29), (A.30), (A.32) and (A.37), we have the necessary machinery

to analyze (A.36). First, consider that the event ENE ∩ EcCE ∩ EcBE holds. In this case,

P(D0|F22) = P(D0|Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE , EcCE , EcBE)

=











1, if Pukwk ∈ T k[UW ]δ
and Pvkwk ∈ T k[VW ]

δ̃
,

0, otherwise.

(A.38)

Thus, the following terms in (A.36) can be simplified (for sufficiently large k) as follows:

∑

P
ŨṼ W̃

∈T k
UVW

∑

(uk,vk,wk)
∈TP

ŨṼ W̃

[

P(Uk = uk, V k = vk|H = 1) P(EcCE |F) P(EcBE |F2) P(D0|F22)

P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)
]

≤
∑

P
ŨṼ W̃

∈T k
UVW

∑

(uk,vk,wk)
∈TP

ŨṼ W̃

[

P(Uk = uk, V k = vk|H = 1) P(D0|F22)

P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)
]

≤ (k + 1)|U||V||W| max
P
ŨṼ W̃

∈
T̂ (k)
1 (PUW ,PV W )

ekH(Ũ Ṽ W̃ )e−k(H(Ũ Ṽ )+D(P
ŨṼ

||QUV )+H(W̃ |Ũ)− 1
k
|U||W| log(k+1))

= e−kẼ1k , (A.39)
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where,

T̂ (k)
1 (PUW , PVW ) := {PŨ Ṽ W̃ : PŨW̃ ∈ T k[UW ]δ

and PṼ W̃ ∈ T k[VW ]
δ̃
}, (A.40)

and Ẽ1k := min
P
ŨṼ W̃

∈
T̂ (k)
1 (PUW ,PV W )

H(Ũ Ṽ ) +D(PŨ Ṽ ||QUV ) +H(W̃ |Ũ)−H(Ũ Ṽ W̃ )

− 1

k
|U||V||W| log(k + 1)− 1

k
|U||W| log(k + 1). (A.41)

To obtain (A.39), we used (A.37) and (A.38). Note that for δ small enough,

Ẽ1k

(k)

≥ min
P
ŨṼ W̃

∈
T1(PUW ,PV W )

∑

PŨ Ṽ W̃ log

(

PŨ Ṽ
QUV

1

PŨ Ṽ

PŨ
PŨW̃

PŨ Ṽ W̃

)

−O(δ)

= min
P
ŨṼ W̃

∈
T1(PUW ,PV W )

D(PŨ Ṽ W̃ ||QUVW )−O(δ) = E1(PW |U )−O(δ), (A.42)

Next, consider the terms corresponding to the event ENE ∩ EcCE ∩ EBE in (A.36).

Note that given the event F21 = {Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) =

wk, ENE , EcCE , EBE} occurs, Pukwk ∈ T k[UW ]δ
. Also, D0 can happen only ifHe(w

k|vk) ≥
H(W |V )−O(δ̃), and Pvk ∈ T k[V ]δ̌

. Using these facts to simplify the terms corresponding

to the event ENE ∩ EcCE ∩ EBE in (A.36), we obtain

∑

P
ŨṼ W̃

∈T k
UVW

∑

(uk,vk,wk)
∈TP

ŨṼ W̃

[

P(Uk = uk, V k = vk|H = 1) P(EcCE |F) P(EBE |F2) P(D0|F21)

P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)
]

≤
∑

P
ŨṼ W̃

∈T k
UVW

∑

(uk,vk,wk)
∈TP

ŨṼ W̃

[

P(Uk = uk, V k = vk|H = 1) P(EBE |F2) P(D0|F21)

P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)
]

≤ max
P
ŨṼ W̃

∈
T̂ (k)
2 (PUW ,PV )

ekH(Ũ Ṽ W̃ )e−k(H(Ũ Ṽ )+D(P
ŨṼ

||QUV )+H(W̃ |Ũ)+R−I(U ;W |V )−O(δ))

e(|U||V||W| log(k+1)+|U||W| log(k+1))

= e−kẼ2k , (A.43)
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where,

T̂ (k)
2 (PUW , PV ) :=

{

PŨ Ṽ W̃ : PŨW̃ ∈ T k[UW ]δ
, PṼ ∈ T k[V ]δ̌

and H(W̃ |Ṽ ) ≥ H(W |V )−O(δ)
}

, (A.44)

and

Ẽ2k := min
P
ŨṼ W̃

∈
T2(PUW ,PV )

H(Ũ Ṽ ) +D(PŨ Ṽ ||QUV ) +H(W̃ |Ũ) +R− I(U ;W |V )

− 1

k
|U||V||W| log(k + 1)− 1

k
|U||W| log(k + 1)−O(δ)

(k)

≥ E2(PW |U , PSX , R)−O(δ). (A.45)

Also, note that EBE occurs only when I(U ;W ) + µ > R.

Next, consider that the event ENE∩ECE holds. As in the case above, note that given

F1 = {Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE , ECE}, Pukwk ∈ T k[UW ]δ

and D0 occurs only if Pvk ∈ T k[V ]δ̌
. Using these facts and eqns. (A.29), (A.30) and

(A.23), it can be shown that the terms corresponding to this event in (A.36) results in

the factor E3(PW |U , PSX , R, τ)−O(δ) in the error-exponent.

Finally, we analyze the case when the event EcNE occurs. Since the encoder declares

H1 if M̂ = 0, it is clear that D0 occurs only when the channel error event ECE happens.

Thus, we have

P(D0| Uk = uk, V k = vk, EcNE) =P(ECE | Uk = uk, V k = vk, EcNE)

P(D0| Uk = uk, V k = vk, EcNE ∩ ECE). (A.46)

It follows from Borade et al.’s coding scheme [22] that asymptotically,

P(ECE | Uk = uk, V k = vk, EcNE) ≤ e−n(Em(PSX)−O(δ)) = e−kτ(Em(PSX)−O(δ)). (A.47)

When binning is performed at the encoder, D0 occurs only if there exists a sequence

Ŵ k in the bin M̂ 6= 0 such that (Ŵ k, V k) ∈ T k[WV ]
δ̃
. Also, recalling that the encoder

sends the error message M = 0 independent of the source codebook C, it can be shown
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using standard arguments that for such vk ∈ T k[V ]δ̌
,

P(D0| Uk = uk, V k = vk, EcNE ∩ ECE) ≤ e−k(R−I(U ;W |V )−O(δ)). (A.48)

Thus, from (A.46), (A.47) and (A.48), we obtain (asymptotically) that,

∑

uk,vk

P(Uk = uk, V k = vk|H = 1) P(D0| Uk = uk, V k = vk, EcNE ∩ ECE)

≤ e−k(R−I(U ;W |V )+D(PV ||QV )+τEm(PSX)−O(δ)). (A.49)

On the other hand, when binning is not performed, D0 occurs only if (W k(M̂), V k) ∈
T k[WV ]

δ̃
and in this case, we obtain (asymptotically) that,

∑

uk,vk

P(Uk = uk, V k = vk|H = 1) P(D0| Uk = uk, V k = vk, EcNE ∩ ECE)

≤ e−k(I(V ;W )+D(PV ||QV )+τEm(PSX)−O(δ)). (A.50)

This results in the factor E4(PW |U , PSX , R, τ) − O(δ) in the error-exponent. Since

the error-exponent is lower bounded by the minimal value of the exponent due to the

various type II error events, the proof of the theorem is complete by noting that δ > 0

is arbitrary.

A.2 Proof of Theorem 2.6

We only give a sketch of the proof as the intermediate steps follow similarly to

those in the proof of Theorem 2.2. We will use the random coding method combined

with the expurgation technique as explained in the proof of Theorem 2.2, to guarantee

the existence of at least one deterministic codebook that achieves the type I error

probability and error-exponent claimed in Theorem 2.6. For brevity, we will denote

information theoretic quantities like IP̂ (U, S; W̄ ), Tn
[P̂USW̄ ]δ

, etc., that are computed

with respect to joint distribution P̂UV SW̄X′XY given below in (A.51) by I(U, S; W̄ ),

Tn
[USW̄ ]δ

, etc.
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Fix distributions (PS , PW̄ |US , PX′|US , PX|USW̄ ) ∈ Bh and a positive number δ > 0.

Let µ = O(δ) subject to constraints that will be specified below. Let δ̂ := |W̄|δ, δ′ := δ
2 ,

δ̄ := δ′

|V| , δ̃ := 2δ, and

P̂UV SW̄X′XY (PS , PW̄ |US , PX′|US , PX|USW̄ ) := PUV PSPW̄ |USPX′|USPX|USW̄PY |X .

(A.51)

Generate a sequence Sn i.i.d. according to
∏n
i=1 PS(si). The realization Sn = sn is

revealed to both the encoder and detector. Generate the quantization codebook C =

{w̄n(j), j ∈ [en(I(U,S;W̄ )+µ)]}, where each codeword w̄n(j) is generated independently

according to the distribution
∏n
i=1 P̂W̄ , where

P̂W̄ =
∑

(u,s)∈U×S
PU (u)PS(s)PW̄ |US(w̄|u, s).

Encoding : If (un, sn) is typical, i.e., (un, sn) ∈ Tn[US]δ′
, the encoder first looks for

a sequence w̄n(j) such that (un, sn, w̄n(j)) ∈ Tn[USW ]δ
. If there exists multiple such

codewords, it chooses one among them uniformly at random. The encoder trans-

mits Xn = xn over the channel, where Xn is generated according to the distri-

bution
∏n
i=1 PX|USW̄ (xi|ui, si, w̄i(j)). If (un, sn) /∈ T k[US]δ′

or such an index j does

not exist, the encoder generates the channel input X ′n = x′n randomly according to
∏n
i=1 PX′|US(x

′
i|ui, si).

Decoding : Given the side information sequence V n = vn, received sequence Y n = yn

and sn, the detector first checks if (vn, sn, yn) ∈ Tn[V SY ]
δ̃
, δ̃ > δ. If the check is

unsuccessful, Ĥ = 1. Else, it searches for a typical sequence ˆ̄wn = w̄n(ĵ) ∈ T k
[W̄ ]

δ̂

, in

the codebook such that

ĵ = argmin
l:w̄n(l)∈Tn

[W̄ ]
δ̂

He(w̄
n(l)|vn, sn, yn).

If (vn, sn, yn, ˆ̄wn) ∈ Tn
[V SY W̄ ]

δ̃

, Ĥ = 0. Else, Ĥ = 1.
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Analysis of Type I error:

A type I error occurs only if one of the following events happen.

ẼTE =
{

(Un, V n, Sn) /∈ Tn[UV S]δ̄

}

ẼEE =
{

∄ j ∈
[

en(I(U,S;W̄ )+µ)
]

: (Un, Sn, W̄n(j)) ∈ Tn[USW̄ ]δ

}

ẼME =
{

(V n, Sn, W̄n(J)) /∈ Tn[V SW̄ ]
δ̃

}

ẼCE =
{

(V n, Sn, W̄n(J), Y n) /∈ Tn[V SW̄Y ]
δ̃

}

ẼDE =

{

∃ l ∈
[

en(I(U,S;W̄ )+µ)
]

, l 6= J, W̄n(l)) ∈ Tn[W̄ ]
δ̂
, He(W̄

n(l)|V n, Sn, Y n) ≤

He(W̄
n(J)|V n, Sn, Y n)

}

By the weak law of large numbers, ẼTE tends to 0 asymptotically with n. The covering

lemma guarantees that ẼEE ∩ ẼcTE tends to 0 doubly exponentially if µ = O(δ) is

chosen appropriately. Given ẼcEE ∩ ẼcTE holds, it follows from the Markov lemma

and the weak law of large numbers, respectively, that P(ẼME) and P(ẼCE) tends to

zero asymptotically. Next, we consider the probability of the event ẼDE . Given that

ẼcCE∩ẼcME∩ẼcEE∩ẼcTE holds, note thatHe(W̄
n(J)|V n, Sn, Y n)

(n)

≥ H(W̄ |V, S, Y )−O(δ).

Hence, similarly to (A.5) in Appendix A.1, it can be shown that

P(ẼDE |ẼcCE ∩ ẼcME ∩ ẼcEE ∩ ẼcTE) ≤ e−n(IP̂ (W̄ ;V,S,Y )−I
P̂
(U,S;W̄ )−δ(n)

3 ).

where δ
(n)
3

(n)−−→ O(δ). Hence, for δ > 0 small enough, the probability of the events

causing type I error tends to zero asymptotically since I(U ; W̄ |S) < I(W̄ ;Y, V |S).

Analysis of Type II error: The analysis of the error-exponent is very similar to

that of the SHTCC scheme given in Appendix A.1. Hence, only a sketch of the proof

is provided, with the differences from the proof of the SHTCC scheme highlighted.

Let

Ē0 := {(Un, Sn) /∈ Tn[US]δ′
}. (A.52)



Appendix A. Proofs for Chapter 2 150

Then, the type 2 error probability can be written as

β
(

n, n, f (n,n), g(n,n)
)

≤
∑

(un,vn)∈Un×Vn

P(Un = un, V n = vn|H = 1)
[

P(ẼEE ∩ Ēc0 |Un = un, V n = vn)

+ P(D0|Un = un, V n = vn, ẼNE) + P(D0|Un = un, V n = vn, Ē0)
]

, (A.53)

where, ẼNE := ẼcEE ∩ Ēc0 . It is sufficient to restrict the analysis to the events ẼNE and

Ē0 that dominate the type 2 error. Define the events

ẼT2 =
{

∃ l ∈
[

en(I(U,S;W̄ )+µ)
]

, l 6= J, W̄n(l) ∈ Tn[W̄ ]
δ̂
,

(V n, W̄n(l), Sn, Y n) ∈ Tn[V SW̄Y ]
δ̃

}

, (A.54)

F̃ = {Un = un, V n = vn, J = 1, W̄n(1) = w̄n, Sn = sn, Y n = yn, ẼNE}, (A.55)

F̃1 = {Un = un, V n = vn, J = 1, W̄n(1) = w̄n, Sn = sn, Y n = yn, ẼNE , ẼcT2}, (A.56)

F̃2 = {Un = un, V n = vn, J = 1, W̄n(1) = w̄n, Sn = sn, Y n = yn, ẼNE , ẼT2}. (A.57)

By the symmetry of the codebook generation, encoding and decoding procedure, the

term P(D0|Un = un, V n = vn, J = j, ẼNE) is independent of the value of J . Hence,

w.l.o.g. assuming J = 1, we can write

P(D0| Un = un, V n = vn, ẼNE)

=

en(I(U,S;W̄ )+µ)
∑

j=1

P(J = j| Un = un, V n = vn, ẼNE)

P(D0|Un = un, V n = vn, J = 1, ẼNE)

= P(D0|Un = un, V n = vn, J = 1, ẼNE)

=
∑

(w̄n,sn,yn)
∈ W̄n×Sn×Yn

P(W̄n(1) = w̄n, Sn = sn, Y n = yn|Un = un, V n = vn, J = 1, ẼNE)

P(D0|Un = un, V n = vn, J = 1, W̄n(1) = w̄n, Sn = sn, Y n = yn, ẼNE)

=
∑

(w̄n,sn,yn)
∈ W̄n×Sn×Yn

P(W̄n(1) = w̄n, Sn = sn, Y n = yn|Un = un, V n = vn, J = 1, ẼNE)

P(D0| F̃). (A.58)
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The last term in (A.58) can be upper bounded using the events in (A.55)-(A.57) as

follows.

P(D0| F̃) ≤ P(D0| F̃1) + P(ẼT2| F̃) P(D0| F̃2).

We next analyze the R.H.S of (A.53), which upper bounds the type 2 error proba-

bility. We can write,

P(D0|F̃1) =











1, if Punsnw̄n ∈ Tn
[USW̄ ]δ

and Pvnw̄nsnyn ∈ T k
[V SW̄Y ]

δ̃

,

0, otherwise.

(A.59)

Hence, the terms corresponding to the event F̃1 in (A.53) can be upper bounded (in

the limit δ, δ̃ → 0) as

∑

(un,vn,w̄n,sn,yn)
∈ Un×Vn×W̄n×Sn×Yn

[

P(Un = un, V n = vn|H = 1) P(D0|F̃1)

P(W̄n(1) = w̄n, Sn = sn, Y n = yn|Un = un, V n = vn, J = 1, ẼNE)
]

≤
∑

P
ŨṼ S̃W̃ Ỹ

∈T n
UVW̄SY

∑

(un,vn,w̄n,sn,yn)
∈TP

ŨṼ S̃W̃ Ỹ

[

P(Un = un, V n = vn|H = 1) P(D0|F̃1)

P(Sn = sn, W̄n(1) = w̄n|Un = un, J = 1, ẼNE)

P(Y n = yn|Un = un, Sn = sn, J = 1, W̄n(1) = w̄n, ẼNE)
]

≤
∑

P
ŨṼ S̃W̃ Ỹ

∈T n
UVW̄SY

∑

(un,vn,w̄n,sn,yn)
∈TP

ŨṼ S̃W̃ Ỹ

[

P(D0|F̃1) e
−n(H(Ũ Ṽ )+D(P

ŨṼ
||QUV ))

e−n(H(S̃W̃ |Ũ)− 1
n
|U||W̄||S| log(n+1)) e

−n
(

H(Ỹ |Ũ S̃W̃ )+D(P
Ỹ |ŨS̃W̃

||P̂Y |USW̄ |P
ŨS̃W̃

)
)

]

≤ max
P
ŨṼ S̃W̃ Ỹ

∈
T ′(n)
1 (P̂USW̄ ,P̂V SW̄Y )

[

e−n(H(Ũ Ṽ )+D(P
ŨṼ

||QUV )) e−n(H(S̃W̃ |Ũ)− 1
n
|U||W̄||S| log(n+1))

e
−n

(

H(Ỹ |Ũ S̃W̃ )+D(P
Ỹ |ŨS̃W̃

||P̂Y |USW̄ |P
ŨS̃W̃

)
)

en(H(Ũ Ṽ S̃W̃ Ỹ )− 1
n
||U||V||W̄||S||Y| log(n+1))

]

= e−nE
∗
1n , (A.60)
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where,

T ′(n)
1 (P̂USW̄ , P̂V SW̄Y ) := {PŨ Ṽ S̃W̃ Ỹ ∈ TUVSWY : PŨ S̃W̃ ∈ Tn[USW̄ ]δ

, PṼ S̃W̃ Ỹ ∈ Tn[V SW̄Y ]
δ̃
},

and

E∗
1n

:= min
P
ŨṼ S̃W̃ Ỹ

∈
T ′
1 (P̂USW̄ ,P̂V SW̄Y )

[

H(Ũ Ṽ ) +D(PŨ Ṽ ||QUV ) +H(S̃W̃ |Ũ) +H(Ỹ |Ũ S̃W̃ )−H(Ũ Ṽ W̃ S̃Ỹ )

+D(PỸ |Ũ S̃W̃ ||P̂Y |USW̄ |PŨ S̃W̃ )− 1

n
(|U||W̄|+ |U||V||W̄||S||Y|) log(n+ 1)

]

(n)

≥ min
P
ŨṼ S̃W̃ Ỹ

∈
T ′
1 (P̂USW̄ ,P̂V SW̄Y )

[

∑

Ũ Ṽ S̃W̃ Ỹ

PŨ Ṽ S̃W̃ Ỹ log

(

1

PŨ Ṽ

PŨ Ṽ
QUV

PŨ
PŨ S̃W̃

1

PỸ |Ũ S̃W̃

PỸ |Ũ S̃W̃

P̂Y |USW̄
PŨ Ṽ S̃W̃ Ỹ

)

−O(δ)

]

= min
P
ŨṼ S̃W̃ Ỹ

∈
T ′
1 (P̂USW̄ ,P̂V SW̄Y )

[

D(PŨ Ṽ S̃W̃ Ỹ |QUV PS̃W̃ |Ũ P̂Y |USW̄ )−O(δ)

]

= E′
1(PS , PW̄ |US , PX|USW̄ )−O(δ). (A.61)

Here, (A.61) follows from the fact that PS̃W̃ |Ũ → PSW̄ |U given ẼNE , as δ → 0.

Next, consider the terms corresponding to the event F̃2 in (A.53). Given F̃2, PŨ S̃W̃ ∈
Tn
[USW̄ ]δ

andD0 occurs only if (V n, Sn, Y n) ∈ Tn[V SY ]δ′′
, δ′′ = |W̄|δ̃, andH(W̃ |Ṽ, S̃, Ỹ ) ≥

H(W̄ |V, S, Y )−O(δ̃). Thus, we have,

∑

(un,vn,w̄n,sn,yn)
∈ Un×Vn×W̄n×Sn×Yn

[

P(Un = un, V n = vn|H = 1) P(D0|F̃2) P(ẼT2|F̃)

P(W̄n(1) = w̄n, Sn = sn, Y n = yn|Un = un, V n = vn, J = 1, ẼNE)
]

≤
∑

P
ŨṼ S̃W̃ Ỹ

∈
T n(U×V×W̄×S×Y)

∑

(un,vn,w̄n,sn,yn)
∈TP

ŨṼ S̃W̃ Ỹ

[

P(Un = un, V n = vn|H = 1) P(D0|F̃2) P(ẼT2|F̃)

P(Sn = sn, W̄n(1) = w̄n|Un = un, J = 1, ẼNE)

P(Y n = yn|Un = un, Sn = sn, J = 1, W̄n(1) = w̄n, ẼNE)
]
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≤
∑

P
ŨṼ S̃W̃ Ỹ

∈
T n(U×V×W̄×S×Y)

∑

(un,vn,w̄n,sn,yn)
∈TP

ŨṼ S̃W̃ Ỹ

[

e−n(H(Ũ Ṽ )+D(P
ŨṼ

||QUV ))P(D0|F̃2) · 2

e−n(I(W̄ ;V,S,Y )−I(U,S;W̄ )−O(δ))e−n(H(S̃W̃ |Ũ)− 1
n
|U||W̄||S| log(n+1))

e
−n

(

H(Ỹ |Ũ S̃W̃ )+D(P
Ỹ |ŨS̃W̃

||P̂Y |USW̄ |P
ŨS̃W̃

)
)

]

(A.62)

≤ max
P
ŨṼ S̃W̃ Ỹ

∈
T ′(n)
2 (P̂UW ,P̂V SWY )

[

e−n(H(Ũ Ṽ )+D(P
ŨṼ

||QUV )) e−n(H(S̃W̃ |Ũ)− 1
n
|U||W̄||S| log(n+1))

e−n(I(W̄ ;V,S,Y )−I(U,S;W̄ )−O(δ)− 1
n) e

−n
(

H(Ỹ |Ũ S̃W̃ )+D(P
Ỹ |ŨS̃W̃

||P̂Y |USW̄ |P
ŨS̃W̃

)
)

en(H(Ũ Ṽ S̃W̃ Ỹ )− 1
n
||U||V||W̄||S||Y| log(n+1))

]

= e−nE
∗
2n , (A.63)

where,

T ′(n)
2 (P̂USW̄ , P̂V SW̄Y )

:= {PŨ Ṽ S̃W̃ Ỹ ∈ TUVSWY : PŨ S̃W̃ ∈ Tn[USW̄ ]δ
, PṼ S̃W̃ Ỹ ∈ Tn[V SW̄Y ]

δ̃

and H(W̃ |Ṽ, S̃, Ỹ ) ≥ H(W̄ |V, S, Y )−O(δ)},

and

E∗
2n

(n)

≥ min
P
ŨṼ S̃W̃ Ỹ

∈
T ′
2 (P̂USW̄ ,P̂V SW̄Y )

[

D(PŨ Ṽ S̃W̃ Ỹ |QUV PS̃W̃ |Ũ P̂Y |USW̄ ) + I(W̄ ;V, Y |S)

− I(U ; W̄ |S)−O(δ)

]

= E′
2(PS , PW̄ |US , PX|USW̄ )−O(δ). (A.64)

In (A.62), we used the fact that

P(ẼT2|F̃) ≤ 2 · e−n(I(W̄ ;V,Y |S)−I(U ;W̄ |S)−O(δ)),

which follows from

P
(

W̄n(l) = w̃n|F̃
)

≤ 2 P(W̄n(l) = w̃n). (A.65)
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Eqn. (A.65) can be proved similarly to (A.28).

Finally, we consider the case when Ē0 holds.

∑

un,vn

P(Un = un, V n = vn|H = 1) P(D0| Un = un, V n = vn, Ē0)

=
∑

un,vn

P(Un = un, V n = vn|H = 1)

∑

sn,yn

P(Sn = sn, Y n = yn,D0| Un = un, V n = vn, Ē0)

=
∑

un,vn

P(Un = un, V n = vn|H = 1)

[

∑

sn,yn

P(Sn = sn, Y n = yn| Un = un, V n = vn, Ē0)

P(D0| Un = un, V n = vn, Sn = sn, Y n = yn, Ē0)
]

=
∑

un,vn

P(Un = un, V n = vn|H = 1)
[

∑

sn,yn

P(Sn = sn, Y n = yn| Un = un, Ē0)

P(D0| Un = un, V n = vn, Sn = sn, Y n = yn, Ē0)
]

(A.66)

The event D0 occurs only if there exists a sequence (W̄n(l), V n, Sn, Y n) ∈ Tn
[W̄V SY ]

δ̃

for some l ∈ [en(I(U,S;W̄ )+µ)]. Noting that the quantization codebook is independent of

the (V n, Sn, Y n) given that Ē0 holds, it can be shown using standard arguments that

P(D0| V n = vn, Sn = sn, Y n = yn, Ē0) ≤ e−n(I(W̄ ;V,Y |S)−I(U ;W̄ |S)−O(δ)). (A.67)

Also,

P(Sn = sn, Y n = yn| Un = un, Ē0) ≤ e
−n(H(S̃Ỹ |Ũ)+D(P

S̃Ỹ |Ũ ||Q̌SY |U |P
Ũ
))
. (A.68)

Hence, using (A.67) and (A.68) in (A.66), we obtain

∑

un,vn

P(Un = un, V n = vn|H = 1) P(D0| Un = un, V n = vn, Ē0)

≤ (n+ 1)|U||V||S||Y| max
P
ŨṼ S̃Ỹ

:

P
Ṽ S̃Ỹ

=P̂V SY

enH(Ũ Ṽ S̃Ỹ ) e−n(H(Ũ Ṽ )+D(P
ŨṼ

||QUV )) e−nH(S̃Ỹ |Ũ)

e
−nD(P

S̃Ỹ |Ũ ||Q̌SY |U |P
Ũ
)
e−n(I(W̄ ;V,Y |S)−I(U ;W̄ |S)−O(δ))
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= e−nE
∗
3n ,

where,

E∗
3n = min

P
Ṽ S̃Ỹ

=P̂V SY

D(PṼ S̃Ỹ ||Q̌V SY ) + I(W̄ ;V, Y |S)− I(U ; W̄ |S)

− |U||V||S||Y| log(n+ 1)−O(δ)

(n)−−→ E′
3

(

PS , PW̄ |US , PX′|US , PX|USW̄
)

−O(δ).

Since the error-exponent is lower bounded by the minimal value of the exponent due

to the various type 2 error events, this completes the proof of the theorem.

A.3 Optimal single-letter characterization of error-exponent

when C(PY |X) = 0

The achievability follows from Proposition 2.4 which states that for τ ≥ 0, κ(τ, ǫ) ≥
κ0(τ), ∀ ǫ ∈ (0, 1]. Now, it is well-known (see [20]) that C(PY |X) = 0 only if

P ∗
Y := PY |X=x = PY |X=x′ , ∀ x, x′ ∈ X . (A.69)

From (A.69), it follows that Ec(PY |X) = 0. Also,

β0 ≥ D(PV ||QV ) + min
P
ŨṼ

:
P
Ũ
=PU , PṼ

=PV

D(PŨ |Ṽ ||QU |V
∣

∣PṼ )

≥ D(PV ||QV ),

which implies that κ0(τ) ≥ D(PV ||QV ).

Converse: We first show the weak converse, i.e., κ(τ) ≤ D(PV ||QV ), where κ(τ) is
as defined in (2.31). For any sequence of encoding functions f (k,nk) and acceptance

regions A(k,nk) for H0 that satisfy nk ≤ τk and (2.43), it follows similarly to (2.44),
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that

lim sup
k→∞

−1

k
log
(

β
(

k, nk, f
(k,nk), g(k,nk)

))

≤ lim sup
k→∞

1

k
D (PY nkV k ||QY nkV k) . (A.70)

The terms in the R.H.S. of (A.70) can be expanded as

1

k
D (PY nkV k ||QY nkV k)

= D(PV ||QV ) +
1

k

∑

(vk,ynk )

∈Vk×Ynk

PV kY nk (v
k, ynk) log

(

PY nk |V k(ynk |vk)
QY nk |V k(ynk |vk)

)

. (A.71)

Now, note that

PY nk |V k(ynk |vk) =
∑

(uk,xnk )

∈ Uk×Xnk

PUk|V k(uk|vk)PXnk |Uk(xnk |uk)PY nk |Xnk (y
nk |xnk)

=

(

nk
∏

i=1

P ∗
Y (yi)

)

∑

(uk,xnk )

∈ Uk×Xnk

PUk|V k(uk|vk)PXnk |Uk(xnk |uk) (A.72)

=

nk
∏

i=1

P ∗
Y (yi), (A.73)

where, (A.72) follows from (2.3) and (A.69). Similarly, it follows that

QY nk |V k(ynk |vk) =
nk
∏

i=1

P ∗
Y (yi). (A.74)

From (A.70), (A.71), (A.73) and (A.74), we obtain that

lim sup
k→∞

−1

k
log
(

β
(

k, nk, f
(k,nk), g(k,nk)

))

≤ D(PV ||QV ).

This completes the proof of the weak converse.

Next, we proceed to show that D(PV ||QV ) is the optimal error-exponent for every

ǫ ∈ (0, 1). For any fixed ǫ ∈ (0, 1), let f (k,nk) and A(k,nk) denote any encoding function

and acceptance region for H0, respectively, such that nk ≤ τk and

lim sup
k→∞

α
(

k, nk, f
(k,nk), g(k,nk)

)

≤ ǫ. (A.75)
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The joint distribution of (V k, Y nk) under the null and alternate hypothesis is given by

PV kY nk (v
k, ynk) =

(

k
∏

i=1

PV (vi)

)





nk
∏

j=1

P ∗
Y (yj)



 , (A.76)

and QV kY nk (v
k, ynk) =

(

k
∏

i=1

QV (vi)

)





nk
∏

j=1

P ∗
Y (yj)



 , (A.77)

respectively. By the weak law of large numbers, for any δ > 0, (A.76) implies that

lim
k→∞

PV kY nk

(

T k[PV ]δ
× Tnk

[P ∗
Y ]δ

)

= 1. (A.78)

Also, from (A.75), we have

lim inf
k→∞

PV kY nk

(

A(k,nk)

)

≥ (1− ǫ). (A.79)

From (A.78) and (A.79), it follows that

PV kY nk

(

A(k,nk) ∩ T k[PV ]δ
× Tnk

[P ∗
Y ]δ

)

≥ 1− ǫ′, (A.80)

for any ǫ′ > ǫ and k sufficiently large (k ≥ k0(δ, |V|, |Y|)). Let

A(vk, δ) :=
{

ynk : (vk, ynk) ∈ A(k,nk) ∩ T k[PV ]δ
× Tnk

[P ∗
Y ]δ

}

, (A.81)

and D(η, δ) :=
{

vk ∈ T k[PV ]δ
: PY nk (A(vk, δ)) ≥ η

}

. (A.82)

Fix 0 < η′ < 1 − ǫ′. Then, we have from (A.80) that for any δ > 0 and sufficiently

large k,

PV k

(

D(η′, δ)
)

≥ 1− ǫ′ − η′

1− η′
. (A.83)

From [20, Lemma 2.14], (A.83) implies that D(η′, δ) should contain atleast 1−ǫ′−η′
1−η′ frac-

tion (approx.) of sequences in T k[PV ]δ
and for each vk ∈ D(η′, δ), (A.82) implies that
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A(vk, δ) should contain atleast η′ fraction (approx.) of sequences in Tnk

[P ∗
Y ]δ

, asymptot-

ically. Hence, for sufficiently large k, we have

QV kY nk

(

A(k,nk)

)

≥
∑

vk∈D(η′,δ)

QV k(vk)
∑

ynk∈A(vk,δ)

PY n(ynk) (A.84)

≥ e
−k



D(PV ||QV )−
log

(

1−ǫ′−η′

1−η′

)

k
− log(η′)

k
−O(δ)





. (A.85)

Here, (A.85) follows from [20, Lemma 2.6].

Let A′
(k,nk)

:= T k[PV ]δ
× Tnk

[P ∗
Y ]δ

. Then, for sufficiently large k,

PV kY nk

(

A′
(k,nk)

)

(k)−−→ 1, (A.86)

and QV kY nk

(

A′
(k,nk)

)

≤ e−k(D(PV ||QV )−O(δ)), (A.87)

where, (A.86) and (A.87) follows from weak law of large numbers and [20, Lemma 2.6],

respectively. Together (A.85), (A.86) and (A.87) implies that

|κ(τ, ǫ)− κ(τ)| ≤ O(δ),

and the proposition is proved since δ > 0 is arbitrary.
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Proofs for Chapter 3

B.1 Proof of Proposition 3.6

First, we show the proof of achievability, i.e., for −D(PYX0
||PYX1

|PX0X1) < θ ≤
D(PYX1

||PYX0
|PX0X1),

κ
(

EPX0X1

[

ψ∗
YX0

,h̃X0,X1

(θ)
]

, xn0 , x
n
1

)

≥ EPX0X1

[

ψ∗
YX0

,h̃X0,X1

(θ)
]

− θ.

Let h̃′Yn : Yn 7→ R defined as

h̃′Yn(yn) := log

(

PY n|Xn=xn1
(yn)

PY n|Xn=xn0
(yn)

)

.

For the decision rule g
(n)
θ,Y defined in (3.13), the type I error probability can be upper

bounded for θ > −D(PYX0
||PYX1

|PX0X1) as follows:

α
(

n, g
(n)
θ,Y , x

n
0 , x

n
1

)

= PY n|Xn=xn0

(

log

(

PY n|Xn=xn1
(Y n)

PY n|Xn=xn0
(Y n)

)

≥ nθ

)

≤ e
−sup

λ≥0

(

nθλ−ψ
PY n|Xn=xn0

,h̃′
Yn

(λ)

)

(B.1)

= e
−sup

λ∈R

(

n

(

θλ− 1
n
ψ
PY n|Xn=xn0

,h̃′
Yn

(λ)

))

. (B.2)

Here, (B.1) follows using the standard Chernoff bound. Eqn. (B.2) follows due to the

fact that for θ > −D(PYX0
||PYX1

|PX0X1), the supremum in (B.1) is always achieved at

λ ≥ 0, which in turn follows from Lemma 3.1 (i) and (ii).
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Simplifying the term within the exponent in (B.2), we obtain

1

n
ψPY n|Xn=xn0

,h̃′Yn
(λ) :=

1

n
log

(

EPY n|Xn=xn0

(

P λY n|Xn=xn1
(Y n)

P λY n|Xn=xn0
(Y n)

))

=
1

n
log

(

EPY n|Xn=xn0

(

n
∏

i=1

P λYi|Xi=x1i
(Yi)

P λYi|Xi=x0i
(Yi)

))

=
1

n
log

(

n
∏

i=1

EPYi|Xi=x0i

(

P λYi|Xi=x1i
(Yi)

P λYi|Xi=x0i
(Yi)

))

=
1

n

n
∑

i=1

log

(

EPYi|Xi=x0i

(

P λYi|Xi=x1i
(Yi)

P λYi|Xi=x0i
(Yi)

))

=
∑

x,x′

Pxn0 xn1 (x, x
′) log

(

EPYx

(

P λYx′
(Y )

P λYx(Y )

))

(B.3)

(n)−−→ EPX0X1

[

log
(

EPYX0

(

eλh̃X0,X1
(Y )
))]

, (B.4)

where, (B.4) follows from (3.9) and Assumption 3.2. Substituting (B.4) in (B.2) and

using (3.6), we obtain for arbitrarily small but fixed δ > 0 and sufficiently large n that

α
(

n, g
(n)
θ,Y , x

n
0 , x

n
1

)

≤ e
−sup

λ∈R

(

n

(

θλ−EPX0X1

[

log

(

EPYX0

(

e
λh̃X0,X1

(Y )
))]

−δ
))

= e
−n

(

EPX0X1

[

sup
λ∈R

(

θλ−EPYX0

(

e
λh̃X0,X1

(Y )
))]

−δ
)

= e
−n

(

EPX0X1

[

ψ∗
YX0

,h̃X0,X1

(θ)

]

−δ
)

. (B.5)

Similarly, we can show that for θ ≤ D(PYX1
||PYX0

|PX0X1),

β
(

n, g
(n)
θ,Y , x

n
0 , x

n
1

)

≤ e
−n

(

EPX0X1

[

ψ∗
YX1

,h̃X0,X1

(θ)

]

−δ
)

. (B.6)

We also have

ψYx′ ,h̃x,x′
(λ) =

∑

y∈Y
PYx′

P λYx′

P λYx
=
∑

y∈Y
PYx

P λ+1
Yx′

P λ+1
Yx

= ψYx,h̃x,x′
(λ+ 1).

It follows that

ψ∗
Yx′ ,h̃x,x′

(θ) := sup
λ∈R

(

λθ − ψYx′ ,h̃x,x′
(λ)
)
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= sup
λ∈R

(

λθ − ψYx,h̃x,x′
(λ+ 1)

)

= ψ∗
Yx,h̃x,x′

(θ)− θ.

Hence,

EPX0X1

[

ψ∗
YX1

,h̃X0,X1

(θ)
]

= EPX0X1

[

ψ∗
YX0

,h̃X0,X1

(θ)
]

− θ. (B.7)

From (B.5), (B.6) and (B.7), it follows that for −D(PYX0
||PYX1

|PX0X1) < θ ≤
D(PYX1

||PYX0
|PX0X1),

κ̄
(

EPX0X1

[

ψ∗
YX0

,h̃X0,X1

(θ)
]

− δ, PX0X1

)

≥ EPX0X1

[

ψ∗
YX0

,h̃X0,X1

(θ)
]

− θ − δ.

Noting that δ > 0 is arbitrary and κ̄(κα, PX0X1) is a continuous function of κα for a

fixed PX0X1 , the proof of achievability is complete.

Next, we prove the converse. Let

µn(x, x
′) := Pxn0 xn1 (x, x

′),

and In(x, x′) := {i ∈ [n] s.t. x0i = x and x1i = x′}.

Denoting α
(

n, g(k,n), xn0 , x
n
1

)

and β
(

n, g(k,n), xn0 , x
n
1

)

by αn and βn, respectively, we

obtain that for any θ ∈ R,

αn + e−nθβn

≥ PY n|Xn=xn0

(

log

(

PY n|Xn=xn1
(Y n)

PY n|Xn=xn0
(Y n)

)

≥ nθ

)

(B.8)

= PY n|Xn=xn0

(

n
∑

i=1

log

(

PYi|X=x1i(Yi)

PYi|X=x0i(Yi)

)

≥ nθ

)

= PY n|Xn=xn0





∑

x,x′

∑

i∈In(x,x′)
log

(

PYi|X=x1i(Yi)

PYi|X=x0i(Yi)

)

≥ nθ





= PY n|Xn=xn0





∑

x,x′

∑

i∈In(x,x′)
log

(

PYi|X=x1i(Yi)

PYi|X=x0i(Yi)

)

≥
∑

(x,x′)∈X×X
nµn(x, x

′)θ





≥ PY n|Xn=xn0





⋂

x,x′





∑

i∈In(x,x′)
log

(

PYi|X=x1i(Yi)

PYi|X=x0i(Yi)

)

≥ nµn(x, x
′)θ








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=
∏

(x,x′)∈X×X
PY n|Xn=xn0





∑

i∈In(x,x′)
log

(

PYi|X=x1i(Yi)

PYi|X=x0i(Yi)

)

≥ nµn(x, x
′)θ



 .

Here, (B.8) follows by applying Theorem 3.4. Then, for arbitrary δ > 0 and sufficiently

large n, we can write

αn + e−nθβn ≥
∏

(x,x′)∈X×X
e
−nµn(x,x′)

((

min
Q̃x:EQ̃x

(Y )≥θ D(Q̃x||PYx)
)

+δ

)

(B.9)

≥
∏

(x,x′)∈X×X
e
−nµn(x,x′)

(

ψ∗
Yx,h̃

x,x′
(θ)+δ

)

(B.10)

= e
−n

(

EPX0X1

(

ψ∗
YX0

,h̃X0,X1

(θ)

)

+δ′
)

, (B.11)

where, δ′ > δ is arbitrary. Here, (B.9) follows from [6, Theorem 14.1]; (B.10) follows

from [6, Theorem 13.3] and [6, Theorem 14.3]; and (B.11) follows from (3.9). Note

that (B.11) holds even if ψ∗
Yx,h̃x,x′

(θ) = ∞ for some x, x′ ∈ X × X and θ > 0 since in

this case, both (B.10) and (B.11) equal 0. Equation (B.11) implies that

lim sup
n→∞

min

(

− log (αn)

n
,− log (βn)

n
+ θ

)

≤ EPX0X1

(

ψ∗
YX0

,h̃X0,X1

(θ)
)

+ δ′. (B.12)

Hence, if it holds that for all sufficiently large n,

αn < e
−n

(

EPX0X1

(

ψ∗
YX0

,h̃X0,X1

(θ)

)

+δ′
)

, (B.13)

then

lim sup
n→∞

− log(βn)

n
≤ EPX0X1

(

ψ∗
YX0

,h̃X0,X1

(θ)
)

− θ + δ′. (B.14)

Since δ (and δ′) is arbitrary, this implies via the continuity of κ̄ (κα, PX0X1) in κα that

κ̄
(

EPX0X1

[

ψ∗
YX0

,h̃X0,X1

(θ)
]

, PX0X1

)

≤ EPX0X1

[

ψ∗
YX0

,h̃X0,X1

(θ)
]

− θ.

To complete the proof, we need to show that θ can be restricted to lie in I(PX0X1 , PY |X).

To prove this, it suffices to show the following:
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(i) EPX0X1

(

ψ∗
YX0

,h̃X0,X1

(

−D
(

PYX0
||PYX1

|PX0X1

))

)

= 0.

(ii) EPX0X1

(

ψ∗
YX0

,h̃X0,X1

(

D
(

PYX1
||PYX0

|PX0X1

))

)

= D
(

PYX1
||PYX0

|PX0X1

)

.

(iii) EPX0X1

(

ψ∗
YX0

,h̃X0,X1

(θ)

)

and EPX0X1

(

ψ∗
YX0

,h̃X0,X1

(θ)

)

− θ are convex functions

of θ.

We have,

EPX0X1

(

ψ∗
YX0

,h̃X0,X1

(

−D
(

PYX0
||PYX1

|PX0X1

)))

= sup
λ∈R

[

−λ D
(

PYX0
||PYX1

|PX0X1

)

− EPX0X1

(

ψYX0
,h̃X0,X1

(λ)
)]

≤
∑

x0,x1

PX0X1(x0, x1)

[

sup
λ∈R

−λD
(

PYX0
||PYX1

)

− ψYX0
,h̃x0,x1

(λ)

]

(B.15)

= 0, (B.16)

where, (B.16) follows since each term inside the square braces in (B.15) is zero, which

in turn follows from Lemma 3.1 (iii). Also,

EPX0X1

(

ψ∗
YX0

,h̃X0,X1

(

−D
(

PYX0
||PYX1

|PX0X1

)))

=
∑

x0,x1

PX0X1(x0, x1) ψ
∗
YX0

,h̃X0,X1

(

−D
(

PYX0
||PYX1

|PX0X1

))

≥ 0, (B.17)

where, (B.17) again follows from Lemma 3.1 (iii). Combining (B.16) and (B.17) proves

(i). We also have that

EPX0X1

(

ψ∗
YX0

,h̃X0,X1

(

D
(

PYX1
||PYX0

|PX0X1

)))

−D
(

PYX1
||PYX0

|PX0X1

)

= EPX0X1

(

ψ∗
YX1

,h̃X0,X1

(

D
(

PYX1
||PYX0

|PX0X1

)))

= 0, (B.18)

where, (B.18) follows similarly to the proof of (i). This proves (ii). Finally, (iii) follows

from Lemma 3.1 (iii) and the fact that a weighted sum of convex functions is convex

provided the weights are non-negative. This completes the proof.



Appendix B. Proofs for Chapter 3 164

B.2 Proof of Theorem 3.9

Fix κα > 0 and (ω,R, PSX , θ) ∈ L(κα, τ). Let η > 0 be a small number, and let

R′ ≥ 0 and R ≥ 0 be defined as

R′ := ζq(κα, ω), (B.19)

and ζq(κα, ω)− ρ(κα, ω) ≤ R < τI(X;Y |S). (B.20)

Encoding:

The encoder is composed of two stages, a source encoder followed by a channel en-

coder. The source encoding comprises of a quantization scheme followed by binning

(if necessary). The details are as follows:

Quantization scheme: Let

DU
k (η) := {Û ∈ Tk(U) : D(Û ||U) ≤ κα + η}. (B.21)

Consider some ordering on the types in DU
k (η) and denote the elements as Û1, Û2, . . .,

etc. For each type variable Ûi ∈ DU
k (η), 1 ≤ i ≤ |DU

k (η)|, choose a joint type variable

ÛiŴi, Ŵi ∈ Tk(W), such that

D
(

Ŵi|Ûi||Wi|U
∣

∣Ûi

)

≤ η

3
, (B.22)

I(Ûi; Ŵi) ≤ R′ +
η

3
, (B.23)

where PWi|U = ω(PÛi
). This is always possible for k large enough due to (B.19) and

the continuity of ω (see [27]). Let

DUW
k (η) := {ÛiŴi : 1 ≤ i ≤ |DU

k (η)|}, (B.24)

and R′
i := I(Ûi; Ŵi) +

η

3
, 1 ≤ i ≤ |DU

k (η)|. (B.25)

Let

Ck =







wk(j), j ∈



1 :

|DU
k (η)|
∑

i=1

ekR
′
i











,
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denote a quantization codebook such that each codeword wk(j), j ∈ M′
i := [1 +

∑i−1
m=1 e

kR′
m :
∑i

m=1 e
kR′

m ], 1 ≤ i ≤ |DU
k (η)|, belongs to the set Tk(Ŵi). For u

k ∈ Tk(Ûi)
such that Ûi ∈ DU

k (η) for some 1 ≤ i ≤ |DU
k (η)|, let

µ(uk, Ck) := {j ∈ M′
i : w

k(j) ∈ Ck and (uk, wk(j)) ∈ Tk(ÛiŴi), ÛiŴi ∈ DUW
k (η)}.

If |µ(uk, Ck)| ≥ 1, let M ′(uk, Ck) denote an index selected uniformly at random from

the set µ(uk, Ck), otherwise, set M ′(uk, Ck) = 0. Given Ck and uk ∈ Uk, the quantizer

outputs M ′ =M ′(uk, Ck), where the support of M ′ is given by

M′ :=



0 :

|DU
k (η)|
∑

i=1

ekR
′
i



 .

Note that for sufficiently large k,

|M′| ≤ 1 +

|DU
k (η)|
∑

i=1

ekR
′
i ≤ 1 + |DU

k (η)|e
k



 max
ÛŴ∈DUW

k
(η)

I(Û ;Ŵ )+ η
3





≤ 1 + |DU
k (η)|ek(R

′+ 2η
3 ) ≤ ek(R

′+η), (B.26)

where, in (B.26), we used the fact that |DU
k (η)| ≤ (k + 1)|U|.

Let

Rk := log

(

ekR

|DU
k (η)|

)

,

Mi := [1 + (i− 1)Rk : iRk], 1 ≤ i ≤ |DU
k (η)|,

and M := {0}
⋃

|DU
k (η)|
⋃

i=1

Mi.

Note that

ekRk ≥ e
k
(

R− |U|
k

log(k+1)
)

. (B.27)

Let fb : M′ 7→ M denote a function such that fb(j) = 0 iff j = 0, and for each

index j ∈ M′
i, fb(j) ∈ Mi, 1 ≤ i ≤ |DU

k (η)|. Given fb, the source encoder outputs
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M = fb(M
′). If R′ + η ≤ R, then fb is taken to be the identity map, and in this case,

M =M ′.

Channel Encoding: Let n = ⌊τk⌋. Each index in M is mapped to a codeword in the

channel codebook CnX := {Xn(j), j ∈ M}, which is generated similar to the codebook

used for the unequal error protection of a single message in [22]. Without loss of

generality (w.l.o.g.), denote the elements of the set S = X by {1, . . . , |X |}. The

codeword length n is divided into |S| = |X | blocks, where the length of the first block

is ⌈PS(1)n⌉, the second block is ⌈PS(2)n⌉, so on so forth, and the length of the last

block is chosen such that the total length is n. The codewordXn(0) = sn corresponding

to M = 0 is obtained by repeating i in block i for 1 ≤ i ≤ |X |. The remaining1
⌈

ekR
⌉

ordinary codewords Xn(j), j ∈
[

ekR
]

, are obtained by blockwise i.i.d. random coding,

i.e., the symbols in the ith block of each codeword are generated i.i.d. according to

PX|S=i. The sequence sn is revealed to the detector.

Decoding:

The decoder consists of two parts, a channel decoder followed by a tester.

Channel decoding: At the detector, the channel decoder first performs a NP test on

the channel output Y n using the decision rule gθ : Yn 7→ {0, 1}, where

gθ(y
n) := ✶





n
∑

j=1

log

(

PY |X=s(j))(yj)

PY |S=s(j)(yj)

)

≥ nθ



 ,

s(j) := i if

i−1
∑

l=1

⌈PS(l)n⌉ < j ≤
i
∑

l=1

⌈PS(l)n⌉. (B.28)

In (B.28), the empty sum is defined to be equal to 0. If gθ(y
n) = 1, then M̂ = 0

and Ĥ = 1 is declared. Else, maximum likelihood (ML) decoding is done on the

remaining codewords Xn(j), j ∈
[

ekR
]

, and M̂ is set equal to the ML estimate. Note

that since the ith block of each codeword Xn(j), j ∈
[

ekR
]

, is generated independently

and i.i.d. according to distribution PX|S=i, the channel outputs in the ith block is

distributed i.i.d. according to PY |S=i. It then follows similar to Proposition 3.6 that

1Actually, the number of codewords generated should be slightly higher (e.g. ek(R+δ) for a small
positive number δ), as an expurgation step is involved later.
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for k sufficiently large,

P
(

M̂ = 0|M 6= 0
)

≤ e−kτ(Em(PSX ,θ)−η) (B.29)

and

P
(

M̂ 6= 0|M = 0
)

≤ e−kτ(Em(PSX ,θ)−θ−η). (B.30)

Also, given M̂ 6= 0, it follows from the analysis based on random coding and expurga-

tion (see [20, Exercise 10.18, 10.24] and [89]) that there exists a deterministic codebook

CnX such that (B.29) and (B.30) holds, and the ML-decoding described above asymp-

totically yields

P
(

M̂ 6= m|M = m 6= 0, M̂ 6= 0
)

≤ e−n(Ex(R
τ
,PSX)−η). (B.31)

This deterministic codebook is used for channel coding.

Testing: The acceptance region for the hypothesis test is the same as that given in [27,

Theorem 1]. More specifically, for a given codebook Ck, let Om′ denote the set of uk

such that the source encoder outputs m′, m′ ∈ M′\{0}. For each m′ ∈ M′\{0} and

uk ∈ Om′ , let

Bm′(uk) = {vk ∈ Vk : (wkm′ , uk, vk) ∈ J κα+η
k (Wm′UV )},

where Wm′UV is uniquely specified by

Wm′ − U − V and PWm′ |U = ω(Puk). (B.32)

For m′ ∈ M′\{0}, we define

Bm′ := {vk : vk ∈ Bm′(uk) for some uk ∈ Om′}.

Define the acceptance region for H0 at the detector as

Ak := ∪
m′∈M′\0

m′ × Bm′ , (B.33)
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or equivalently as

Ae
k := ∪

m′∈M′\0
Om′ × Bm′ . (B.34)

The tester takes M̂ as input, decodes for the quantization codeword wk(M̂ ′) (if re-

quired) using the empirical conditional entropy decoder (ECED), and declares the

output of the hypothesis test based on wk(M̂ ′) and V k. More specifically, if binning

is not performed, i.e., if R′ + η ≤ R, set M̂ ′ = M̂ . Otherwise (if R′ + η > R), given

M̂ = m̂ and V k = vk, set M̂ ′ = m̂′, where

m̂′ :=















0, if M̂ = 0,

argmin
j:fb(j)=m̂

He(w
k(j)|vk), otherwise.

If M̂ ′ = 0, Ĥ = 1 is declared. Otherwise, given M̂ ′ = m̂′ 6= 0 and V k = vk, Ĥ = 0 or

Ĥ = 1 is declared depending on whether (m̂′, vk) ∈ Ak or (m̂′, vk) /∈ Ak, respectively.

Analysis of the type I and type II error probabilities:

Using the method of random coding, we will analyze the type I and type II error prob-

abilities over an ensemble of randomly generated quantization and binning codebooks.

Then, the standard random coding argument followed by an expurgation technique [89]

guarantees the existence of a deterministic quantization and binning codebook that

achieves the lower bound given in Theorem 3.9. Let each codeword wk(j), j ∈ M′
i,

1 ≤ i ≤ |DU
k (η)|, be selected (with replacement) independently and uniformly at ran-

dom from the set Tk(Ŵi) (see quantization scheme above). Let fB denote the random

binning function such that for each index j ∈ M′
i, an index fB(j) is selected (with

replacement) independently and uniformly at random from the set Mi. We proceed

to analyze the type I and type II error probabilities averaged over these random code-

books. Note that a type I error can occur only under the following events:

(i) EEE :=
⋃

Û∈DU
k
(η)

⋃

uk∈Tk(Û)

EEE(uk), where

EEE(uk) :=
{

∄ W k(j) ∈ Ck, j ∈ [1 : |M′|], s.t. (uk,W k(j)) ∈ Tk(ÛiŴi),

PÛi
= Puk , ÛiŴi ∈ DUW

k (η)
}

.
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(ii) M̂ ′ =M ′.

(iii) M ′ 6= 0 and M̂ 6=M .

(iv) M ′ =M = 0 and M̂ 6=M .

(v) M ′ 6= 0, M̂ =M and M̂ ′ 6=M ′.

Here, (i) corresponds to the event that there does not exist a quantization codeword

corresponding to atleast one sequence uk of type Puk ∈ DU
k (η); (ii) corresponds to the

event, in which, there is neither an error at the channel decoder nor at the ECED; (iii)

and (iv) corresponds to the case, in which, there is an error at the channel decoder

(hence also at the ECED); and, (v) corresponds to the case such that there is an error

only at the ECED.

As we show later in (B.72), it follows by a generalization of the type-covering lemma

[20, Lemma 9.1] that

P(EEE) ≤ e−e
kΩ(η)

. (B.35)

Since ekΩ(η)

k

(k)−−→ ∞ for η > 0, we may safely ignore this event from the analysis of the

exponent of type I and type II error probability. Given EcEE and that event (ii) holds,

it follows from [27, Equation 4.22] that for any given codebook Ck, the type I error

probability is asymptotically upper bounded by e−kκα , since the acceptance region is

the same. Hence, it also holds when averaged over the random quantization codebooks

such that EcEE holds, implying that

P
(

Ĥ = 1|EcEE , M̂ ′ =M ′
)

≤ e−kκα . (B.36)

Next, consider event (iii). By the design of the channel codebook CnX , it holds asymp-

totically that

P
(

M ′ 6= 0, M̂ 6=M |H = 0
)

= P
(

M ′ 6= 0|H = 0
)

P
(

M̂ 6=M |M 6= 0
)

≤ P
(

M̂ 6=M |M 6= 0
)

≤ P
(

M̂ = 0|M 6= 0
)

+ P
(

M̂ 6=M |M 6= 0, M̂ 6= 0
)
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≤ e−kτ(Em(PSX ,θ)−η) + e−kτ(Ex(R
τ
,PSX)−η) (B.37)

= e−kτ(min(Em(PSX ,θ),Ex(R
τ
,PSX))−η), (B.38)

where, in (B.37), we used (B.29) and (B.31). Also, note by the definition of Dk(Û)

and (B.35) that the probability of event (iv) can be upper bounded as

P
(

M = 0, M̂ 6=M |H = 0
)

≤ P
(

M ′ = 0|H = 0
)

≤ e−kκα . (B.39)

Next, consider the event (v). Note that this event is impossible when R′+η ≤ R, since

there is no binning involved. Hence, assume that R′+ η > R. Since M = 0 iff M ′ = 0,

M ′ 6= 0 and M̂ =M implies that M̂ 6= 0. Let

DVW
k (η) :=

{

V̂ Ŵ : ∃ (wk, uk, vk) ∈ ∪
m′∈M′\{0}

J κα+η
k (Wm′UV ),Wm′UV satisfies (B.32)

and Pwkukvk = PŴ ÛV̂

}

.

We can write,

P
(

M ′ 6= 0, M̂ =M, M̂ ′ 6=M ′|H = 0
)

= P
(

M ′ 6= 0, M̂ =M, M̂ ′ 6=M ′, (M ′, V k) ∈ Ak|H = 0
)

+ P
(

M ′ 6= 0, M̂ =M, M̂ ′ 6=M ′, (M ′, V k) /∈ Ak|H = 0
)

. (B.40)

The second term in (B.40) can be upper-bounded as

P
(

M ′ 6= 0, M̂ =M, M̂ ′ 6=M ′, (M ′, V k) /∈ Ak|H = 0
)

≤ P
(

(M ′, V k) /∈ Ak, EEE |H = 0
)

+ P
(

(M ′, V k) /∈ Ak, EcEE |H = 0
)

≤ e−e
kΩ(η)

+ P
(

(M ′, V k) /∈ Ak|EcEE , H = 0
)

≤ e−e
kΩ(η)

+ P
(

(Uk, V k) /∈ Ae
k

)

≤ e−e
kΩ(η)

+ e−kκα , (B.41)
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where, the inequality in (B.41) follows from [27, Equation 4.22] for sufficiently large k,

since the acceptance region is the same. Let

Dk(V ) := {V̂ : ∃ Ŵ s.t. V̂ Ŵ ∈ DVW
k (η)}.

The first term in (B.40) can be bounded as shown below:

P
(

M ′ 6= 0, M̂ =M, M̂ ′ 6=M ′, (M ′, V k) ∈ Ak|H = 0
)

≤
∑

vk∈Tk(V̂ ):

V̂ ∈Dk(V )

P
(

V k = vk, ∃ j ∈ f−1
B (M), j 6=M ′ : He(W

k(j)|vk) ≤

He(W
k(M ′)|vk)|M ′ 6= 0

)

=
∑

vk∈Tk(V̂ ):

V̂ ∈Dk(V )

P
(

V k = vk|M ′ 6= 0
)

P
(

∃ j ∈ f−1
B (M), j 6=M ′ : He(W

k(j)|vk) ≤

He(W
k(M ′)|vk)|V k = vk,M ′ 6= 0

)

(B.42)

Defining the events

E ′
1 := {V k = vk,M ′ 6= 0},

E ′
2 := {V k = vk,M ′ = m′ 6= 0,M = m},

we can write

P
(

∃ j ∈ f−1
B (M), j 6=M ′ : He(W

k(j)|vk) ≤ He(W
k(M ′)|vk)|E ′

1

)

=
∑

m′∈
M′\{0}

∑

m∈
M\{0}

P
(

M ′ = m′,M = m|E ′
1

)

P
(

∃ j ∈ f−1
B (m), j 6= m′ :

He(W
k(j)|vk) ≤ He(W

k(m′)|vk)|E ′
2

)

. (B.43)

Consider the second term in (B.43). Denoting the type of vk by V̂ , it follows that

P
(

∃ j ∈ f−1
B (m), j 6= m′ : He(W

k(j)|vk) ≤ He(W
k(m′)|vk)|E ′

2

)

=
∑

j∈M′\{0,m′}
P
(

fB(j) = m : He(W
k(j)|vk) ≤ He(W

k(m′)|vk)|E ′
2

)



Appendix B. Proofs for Chapter 3 172

≤ 1

ekRk

∑

j∈M′\{0,m′}
P
(

He(W
k(j)|vk) ≤ He(W

k(m′)|vk)|E ′
2 ∪ {fB(j) = m}

)

(B.44)

≤ 1

ekRk

∑

j∈M′\{0,m′}

∑

Ŵ :
V̂ Ŵ∈DV W

k (η)

∑

wk:
(vk,wk)∈Tk(V̂ Ŵ )

P
(

W k(m′) = wk|E ′
2 ∪ {fB(j) = m}

)

∑

w̃k∈Tk(Ŵ )

He(w̃k|vk)≤H(Ŵ |V̂ )

P
(

W k(j) = w̃k|E ′
2 ∪ {fB(j) = m} ∪ {W k(m′) = wk}

)

(B.45)

≤ 1

ekRk

∑

j∈M′\{0,m′}

∑

Ŵ :
V̂ Ŵ∈DV W

k (η)

∑

wk:
(vk,wk)∈Tk(V̂ Ŵ )

P
(

W k(m′) = wk|E ′
2 ∪ {fB(j) = m}

)

∑

w̃k∈Tk(Ŵ ):

He(w̃k|vk)≤H(Ŵ |V̂ )

2 P
(

W k(j) = w̃k
)

. (B.46)

In (B.44), we used the fact that binning is done uniformly at random; in (B.45), we

used the following: if vk ∈ Tk(V̂ ) is such that V̂ ∈ Dk(V ), then M ′ 6= 0 implies that

(W k(M ′), vk) ∈ Tk(V̂ Ŵ ) for some V̂ Ŵ ∈ DVW
k (η). In (B.46), we used

P
(

W k(j) = w̃k|E ′
2 ∪ {fB(j) = m} ∪ {W k(m′) = wk}

)

≤ 2 P
(

W k(j) = w̃k
)

, (B.47)

which will be shown later. Continuing, we can write (for sufficiently large k)

P
(

∃ j ∈ f−1
B (m), j 6= m′ : He(W

k(j)|vk) ≤ He(W
k(m′)|vk)|E ′

2

)

≤ 1

ekRk

∑

j∈M′\{0,m′}

∑

Ŵ :
V̂ Ŵ∈

DV W
k (η)

∑

wk:
(vk,wk)∈
Tk(V̂ Ŵ )

P
(

W k(m′) = wk|E ′
2 ∪ {fB(j) = m}

)

∑

w̃k∈T
Ŵ

:

He(w̃k|vk)
≤H(Ŵ |V̂ )

2 e−k(H(Ŵ )−η) (B.48)

≤ 1

ekRk

∑

j∈M′\{0,m′}

∑

Ŵ :
V̂ Ŵ∈

DV W
k (η)

∑

wk:
(vk,wk)∈
Tk(V̂ Ŵ )

P
(

W k(m′) = wk|E ′
2 ∪ {fB(j) = m}

)

(k + 1)|V||W|ekH(Ŵ |V̂ )2 e−k(H(Ŵ )−η) (B.49)
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≤ 1

ekRk

∑

j∈M′\{0,m′}

∑

Ŵ :
V̂ Ŵ∈DV W

k (η)

2 (k + 1)|V||W| e−k(I(Ŵ ;V̂ )−η)

≤ 1

ekRk

∑

j∈M′\{0,m′}
2 (k + 1)|W| (k + 1)|V||W| e

−k



 min
V̂ Ŵ∈DV W

k
(η)
I(Ŵ ;V̂ )−η





(B.50)

≤ e−k(R−R′+ρk−η′k), (B.51)

where,

ρk := min
V̂ Ŵ∈DV W

k
(η)
I(V̂ ; Ŵ )

and η′k := 3η +
|W|(|V|+ 1) log(k + 1)

k
+

log(2)

k
+

|U| log(k + 1)

k
.

In (B.48), we used [20, Lemma 2.3] and the fact that codewords are chosen uniformly at

random from Tk(Ŵ ); in (B.49), we used that the total number of sequences w̃k ∈ Tk(W̃ )

such that Pw̃kvk = PW̃ Ṽ and H(W̃ |Ṽ ) ≤ H(Ŵ |V̂ ) is upper bounded by ekH(Ŵ |V̂ ) and

|Tn(W × V)| ≤ (k + 1)|V||W|; in (B.50), we used [20, Lemma 2.2]; and, in (B.51), we

used (B.19), (B.20), (B.26) and (B.27). Thus, for sufficiently large k, since ρk →
ρ(κα, ω) + O(η), we have from (B.41), (B.42), (B.43) and (B.51) that for sufficiently

large k,

P
(

M ′ 6= 0, M̂ =M, M̂ ′ 6=M ′|H = 0
)

≤ e−k(min(κα,R−ζq(κα,ω)+ρ(κα,ω)−O(η))). (B.52)

By choice of (ω, PSX , θ) ∈ L(κα, τ), it follows from (B.35), (B.36), (B.38), (B.39) and

(B.52) that the type I error probability is upper bounded by e−k(κα−O(η)), asymptoti-

cally.

Next, we analyze the type II error probability averaged over the random codebooks.

For a given codebook Ck, let Ũ, Ṽ, W̃ and W̃d denote the type variable for the real-

izations of Ūk, V̄ k,W k(M ′) (M ′ 6= 0) and W k(M̂ ′) (M̂ ′ 6= 0), respectively. A type II

error can occur only under the following events:

(a) Ea := {M̂ = M, M̂ ′ = M ′ 6= 0, (Ūk, V̄ k,W k(M ′)) ∈ Tk(Û V̂ Ŵ ) such that ÛŴ ∈
DUW
k (η) and V̂ Ŵ ∈ DVW

k (η)}.
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(b)

Eb :=























M ′ 6= 0, M̂ =M, M̂ ′ 6=M ′, fB(M̂ ′) = fB(M
′),
(

Ūk, V̄ k,W k(M ′),

W k(M̂ ′)
)

∈ Tk(Û V̂ Ŵ Ŵd) s.t. ÛŴ ∈ DUW
k (η), V̂ Ŵd ∈ DVW

k (η),

and He

(

W k(M̂ ′)|V̄ k
)

≤ He

(

W k(M ′)|V̄ k
)























.

(c)

Ec :=







M ′ 6= 0, M̂ 6=M or 0, (Ūk, V̄ k,W k(M ′),W k(M̂ ′)) ∈ Tk(Û V̂ Ŵ Ŵd)

such that ÛŴ ∈ DUW
k (η) and V̂ Ŵd ∈ DVW

k (η)







.

(d) Ed := {M =M ′ = 0, M̂ 6=M, (V̄ k,W k(M̂ ′)) ∈ Tk(V̂ Ŵd) s.t. V̂ Ŵd ∈ DVW
k (η)}.

Since the exponent of probability of the event EEE tends to ∞ with k by (B.35), we

may assume that EcEE holds for the type II error-exponent analysis. It then follows

from the analysis in [27, Eq. 4.23-4.27] that for sufficiently large k, we have

P (Ea|EcEE) ≤ e−k(E1(κα,ω)−O(η)). (B.53)

When R′ + η ≤ R, note that Eb is impossible, and hence, the exponent of this event is

∞. Assume that R′ + η > R. Let

F2,k(η) :={Ũ Ṽ W̃ W̃d ∈ Tk(U × V ×W ×W) : ŨW̃ ∈ DUW
k (η), Ṽ W̃d ∈ (B.54)

DVW
k (η) and H(W̃d|Ṽ ) ≤ H(W̃ |Ṽ )}.

Then, we can write

P (Eb|H = 1)

≤
∑

Ũ Ṽ W̃ W̃d

∈F2,k(η)

∑

(uk,vk,wk,w̄k)

∈Tk(Ũ Ṽ W̃ W̃d)

∑

m′∈M′\{0}
P
(

Ūk = uk, V̄ k = vk,M ′ = m′,

W k(M ′) = wk|H = 1
)

[

∑

m̂′∈M′\{0}
P
(

W k(m̂′) = w̄k, fB(m
′) = fB(m̂

′)|Ūk = uk, V̄ k = vk,
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M ′ = m′,W k(m′) = wk
)

]

(B.55)

The first term in (B.55) can be written as

P
(

Ūk = uk, V̄ k = vk,M ′ = m′,W k(M ′) = wk|H = 1
)

= P
(

Ūk = uk, V̄ k = vk,M ′ = m′|H = 1
)

P
(

W k(m′) = wk|Ūk = uk, V̄ k = vk,M ′ = m′
)

(B.56)

Note that M ′ 6= 0 and Ūk = uk implies that ŨW̃ ∈ Dk(UW ). Hence, we can bound

the second term in (B.55) for sufficiently large k as

P
(

W k(m′) = wk|Ūk = uk, V̄ k = vk,M ′ = m′
)

≤











1

ek(H(W̃ |Ũ)−η) , if wk ∈ Tk(W̃ ),

0, otherwise,

(B.57)

where we used the fact that given M ′ = m′ and Ūk = uk, W k(m′) is uniformly

distributed in the set Tk(PW̃ |Ũ , u
k) and that for sufficiently large k,

|Tk(PW̃ |Ũ , u
k)| ≥ ek(H(W̃ |Ũ)−η).

On the other hand, the second term in (B.55) can be bounded as follows:

P
(

W k(m̂′) = w̄k, fB(m
′) = fB(m̂

′)|Ūk = uk, V̄ k = vk,M ′ = m′,W k(m′) = wk
)

≤ 1

ekRk
P
(

W k(m̂′) = w̄k|Ūk = uk, V̄ k = vk,M ′ = m′,W k(m′) = wk
)

(B.58)

≤ 2

ekRk
P
(

W k(m̂′) = w̄k
)

, (B.59)

where, in (B.58), we used the fact that the binning is uniformly distributed and inde-

pendent of the codebook generation; in (B.59), we used

P
(

W k(m̂′) = w̄k|Ūk = uk, V̄ k = vk,M ′ = m′,W k(m′) = wk
)

≤ 2 P
(

W k(m̂′) = w̄k
)

. (B.60)
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which will be shown below. Thus, from (B.57) and (B.59), we can bound the term in

(B.55) (for sufficiently large k) as

P (Eb|H = 1)

≤ 2

ekRk

∑

Ũ Ṽ W̃ W̃d

∈F2,k(η)

∑

(uk,vk,wk,w̄k)

∈Tk(Ũ Ṽ W̃ W̃d)

∑

m′∈M′\{0}
P
(

Ūk = uk, V̄ k = vk,M ′ = m′|H = 1
)

1

ek(H(W̃ |Ũ)−η)

∑

m̂′∈M′\{0}
P
(

W k(m̂′) = w̄k
)

≤ 2

ekRk

∑

Ũ Ṽ W̃ W̃d

∈F2,k(η)

∑

(uk,vk,wk,w̄k)

∈Tk(Ũ Ṽ W̃ W̃d)

e−k(H(Ũ Ṽ )+D(Ũ Ṽ ||Ū V̄ )) 1

ek(H(W̃ |Ũ)−η)

∑

m′∈M′\{0}
P
(

M ′ = m′|Ūk = uk, V̄ k = vk
)

∑

m̂′∈M′\{0}
P
(

W k(m̂′) = w̄k
)

≤ 2

ekRk

∑

Ũ Ṽ W̃ W̃d

∈F2,k(η)

∑

(uk,vk,wk,w̄k)

∈Tk(Ũ Ṽ W̃ W̃d)

e−k(H(Ũ Ṽ )+D(Ũ Ṽ ||Ū V̄ )) 1

ek(H(W̃ |Ũ)−η)

∑

m̂′∈M′\{0}
P
(

W k(m̂′) = w̄k
)

≤ 2

ekRk

∑

Ũ Ṽ W̃ W̃d

∈F2,k(η)

∑

(uk,vk,wk,w̄k)

∈Tk(Ũ Ṽ W̃ W̃d)

e−k(H(Ũ Ṽ )+D(Ũ Ṽ ||Ū V̄ )) 1

ek(H(W̃ |Ũ)−η)
ek(R

′+η)

ek(H(W̃d)−η)

≤ 2

ekRk

∑

Ũ Ṽ W̃ W̃d

∈F2,k(η)

∑

(uk,vk,wk)

∈Tk(Ũ Ṽ W̃ )

e−k(H(Ũ Ṽ )+D(Ũ Ṽ ||Ū V̄ )) 1

ek(H(W̃ |Ũ)−η)
ek(R

′+η)

ek(H(W̃d)−η)

ekH(W̃d|Ṽ )

≤ 2

ekRk

∑

Ũ Ṽ W̃ W̃d

∈F2,k(η)

ekH(Ũ Ṽ W̃ )e−k(H(Ũ Ṽ )+D(Ũ Ṽ ||Ū V̄ )) 1

ek(H(W̃ |Ũ)−η)
ek(R

′+η)

ek(H(W̃d)−η)

ekH(W̃d|Ṽ )

≤ e−kE2,k ,

where

E2,k := min
Ũ Ṽ W̃ W̃d∈F2,k(η)

−H(Ũ Ṽ W̃ ) +H(Ũ Ṽ ) +D(Ũ Ṽ ||Ū V̄ ) +H(W̃ |Ũ)

+ I(Ṽ ; W̃d) +R−R′ − 3η − δ′k,
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δ′k :=
|U||V||W|2

k
log(k + 1) +

|U|
k

log(k + 1) +
log(2)

k
. (B.61)

Note that since Ũ Ṽ W̃ W̃d ∈ F2,k(η) implies that Ṽ W̃d ∈ DVW
k (η), we have

E2,k ≥ min
Ũ Ṽ W̃ W̃d∈F2,k(η)

−H(Ũ Ṽ W̃ ) +H(Ũ Ṽ ) +D(Ũ Ṽ ||Ū V̄ ) +H(W̃ |Ũ)

+ ρk +R−R′ − 3η − δ′k. (B.62)

Simplifying the terms in (B.62) and using ρk
(k)−−→ ρ(κα, ω) + O(η), we obtain by the

continuity of KL-divergence that

−1

k
log (P (Eb|H = 1))

(k)

≥















min
Ũ Ṽ W̃∈T2(κα,ω)

D(Ũ Ṽ W̃ ||Ū V̄ W̄ ) + Eb(κα, ω,R)−O(η), if R < ζq(κα, ω) + η,

∞, otherwise,

= E2(κα, ω,R)−O(η). (B.63)

Next, consider the event Ec. Assume that R′ + η > R (i.e., binning is required). Let

F3,k(η) := {Ũ Ṽ W̃ W̃d ∈ Tk(U × V ×W ×W) : ŨW̃ ∈ DUW
k (η) and Ṽ W̃d ∈ DVW

k (η)}.

Then, we can write (for sufficiently large k) that,

P (Ec|H = 1)

≤
∑

Ũ Ṽ W̃ W̃d

∈F3,k(η)

∑

(uk,vk,wk,w̄k)

∈Tk(Ũ Ṽ W̃ W̃d)

∑

m′∈M′\{0}
P
(

Ūk = uk, V̄ k = vk,M ′ = m′,W k(M ′) = wk|H = 1
)

∑

m 6=0,m̂ 6=0:
m̂ 6=m

P (M = m|H = 1)P
(

M̂ = m̂|M = m
)





∑

m̂′∈M′\{0}
P
(

W k(m̂′) = w̄k, fB(m̂
′) = m̂|Ūk = uk, V̄ k = vk,M ′ = m′,W k(m′) = wk

)





≤ 2

ekRk

∑

Ũ Ṽ W̃ W̃d

∈F3,k(η)

ekH(Ũ Ṽ W̃ )e−k(H(Ũ Ṽ )+D(Ũ Ṽ ||Ū V̄ )) 1

ek(H(W̃ |Ũ)−η)
ek(R

′+η)

ek(H(W̃d)−η)
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ekH(W̃d|Ṽ ) e−kτ(Ex(R
τ
,PSX)−η) (B.64)

≤ e−kE3,k ,

where,

E3,k := min
Ũ Ṽ W̃ W̃d∈F3,k(η)

−H(Ũ Ṽ W̃ ) +H(Ũ Ṽ ) +D(Ũ Ṽ ||Ū V̄ ) +H(W̃ |Ũ)

+ τEx

(

R

τ
, PSX

)

+ ρk +R−R′ −O(η)− δ′k,

and δ′k is as defined in (B.61). To obtain (B.64), we used (B.31), (B.57) and (B.59).

On the other hand, if R′ + η ≤ R, it can be shown similarly that,

P (Ec|H = 1) ≤ e−kE
′
3,k ,

where

E′
3,k := min

Ũ Ṽ W̃ W̃d∈F3,k(η)
−H(Ũ Ṽ W̃ ) +H(Ũ Ṽ ) +D(Ũ Ṽ ||Ū V̄ ) +H(W̃ |Ũ)

+ τEx

(

R

τ
, PSX

)

+ ρk −O(η)− |U||V||W|2
k

log(k + 1)− log(2)

k
.

Hence, we obtain

−1

k
log (P (Ec|H = 1))

(k)

≥















































min
Ũ Ṽ W̃∈T3(κα,ω)

D(Ũ Ṽ W̃ ||Ū V̄ W̄ ) + Eb(κα, ω,R)

+τEx
(

R
τ , PSX

)

−O(η), if R < ζq(κα, ω) + η,

min
Ũ Ṽ W̃∈T3(κα,ω)

D(Ũ Ṽ W̃ ||Ū V̄ W̄ ) + ρ(κα, ω)

+τEx
(

R
τ , PSX

)

−O(η), otherwise,

= E3(κα, ω,R, PSX , τ)−O(η). (B.65)
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Finally, we consider the event Ed. Assume that R′ + η > R. We have

P (Ed|H = 1) =
∑

uk∈Tk(Ũ):

Ũ∈DU
k (η)

P
(

Ūk = uk, EEE , Ed|H = 1
)

+
∑

uk∈Tk(Ũ):

Ũ /∈DU
k (η)

P
(

Ūk = uk, Ed|H = 1
)

, (B.66)

where, (B.66) follows from the fact that if Ũ ∈ DU
k (η), then Ed can occur only if EEE

occurs. From (B.35), for any uk ∈ Tk(Ũ) such that Ũ ∈ DU
k (η), we have

P
(

Ūk = uk, EEE , Ed|H = 1
)

≤ e−e
kΩ(η)

.

Next, note that if Ũ /∈ DU
k (η), then M

′ = 0 is chosen with probability 1 independent

of the codebook Ck. Hence, we can write the second term in (B.66) as follows:

∑

uk∈Tk(Ũ):

Ũ /∈DU
k (η)

P
(

Ūk = uk, Ed|H = 1
)

≤
∑

uk∈Tk(Ũ):

Ũ /∈DU
k (η)

∑

(vk,w̄k)∈Tk(Ṽ W̃d):

Ṽ W̃d∈DV W
k (η)

∑

m̂∈M\{0}
P
(

Ūk = uk, V̄ k = vk,M ′ =M = 0|H = 1
)

P
(

M̂ = m̂|M = 0
)

∑

m̂′∈M′\{0}
P
(

fB(m̂
′) = m̂,W k(m̂′) = w̄k

)

≤
∑

uk∈Tk(Ũ):

Ũ /∈DU
k (η)

∑

(vk,w̄k)∈Tk(Ṽ W̃d):

Ṽ W̃d∈DV W
k (η)

P
(

Ūk = uk, V̄ k = vk,M ′ =M = 0|H = 1
)

∑

m̂∈M\{0}
P
(

M̂ = m̂|M = 0
)

∑

m̂′∈M′\{0}

1

ekRk

1

ek(H(W̃d)−η)

≤
∑

uk∈Tk(Ũ):

Ũ /∈DU
k (η)

∑

(vk,w̄k)∈Tk(Ṽ W̃d):

Ṽ W̃d∈DV W
k (η)

P
(

Ūk = uk, V̄ k = vk,M ′ =M = 0|H = 1
)

∑

m̂∈M\{0}
P
(

M̂ = m̂|M = 0
) ek(R

′+η)

ekRk

1

ek(H(W̃d)−η)

≤
∑

uk∈Tk(Ũ):

Ũ /∈DU
k (η)

∑

(vk,w̄k)∈Tk(Ṽ W̃d):

Ṽ W̃d∈DV W
k (η)

P
(

Ūk = uk, V̄ k = vk,M ′ =M = 0|H = 1
)
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e−kτ(Em(PSX ,θ)−θ−η) e
k(R′+η)

ekRk

1

ek(H(W̃d)−η)
(B.67)

≤
∑

Ũ Ṽ W̃d

∈DU
k (η)c×DV W

k (η)

ekH(Ũ Ṽ )e−k(H(Ũ Ṽ )+D(Ũ Ṽ ||Ū V̄ )) e−kτ(Em(PSX ,θ)−θ−η)

ek(R
′+η)

ekRk

ekH(W̃d|Ṽ )

ek(H(W̃d)−η)

≤ e−kE4,k ,

where,

E4,k := min
Ũ Ṽ W̃d

∈DU
k (η)c×DV W

k (η)

D(Ũ Ṽ ||Ū V̄ ) + τ (Em(PSX , θ)− θ) + ρk +R−R′

−O(η)− |U||V||W|
k

log(k + 1)

≥ min
Ṽ :∃W̃,

Ṽ W̃∈DV W
k (η)

D(Ṽ ||V̄ ) + τ (Em(PSX , θ)− θ) + ρk +R−R′

−O(η)− |U||V||W|
k

log(k + 1).

In (B.67), we used (B.30).

If R′ + η ≤ R, it can be shown that,

P (Ec|H = 1) ≤ e−kE
′
4,k ,

where

E′
4,k ≥ min

Ṽ :∃W̃,
Ṽ W̃∈DV W

k (η)

D(Ṽ ||V̄ ) + τ (Em(PSX , θ)− θ) + ρk −O(η)

− |U||V||W|
k

log(k + 1).

Hence, we obtain

−1

k
log (P (Ed|H = 1))
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(k)

≥



















































min Ṽ :∃W̃,
Ṽ W̃∈DV W

k (η)

D(Ṽ ||V̄ ) + Eb(κα, ω,R)

+τ (Em(PSX , θ)− θ)−O(η) if R < ζq(κα, ω) + η,

min Ṽ :∃W̃,
Ṽ W̃∈DV W

k (η)

D(Ṽ ||V̄ ) + ρ(κα, ω)

+τ (Em(PSX , θ)− θ)−O(η), otherwise,

= E4(κα, ω,R, PSX , θ, τ)−O(η). (B.68)

Since the exponent of the type II error probability is lower bounded by the minimum of

the exponent of the type II error causing events, it follows from (B.53), (B.63), (B.65)

and (B.68) that for a fixed (ω,R, PSX , θ) ∈ L(κα, τ),

κ(τ, κα) ≥min
(

E1(κα, ω), E2(κα, ω,R), E3(κα, ω,R, PSX , τ),

E4(κα, ω,R, PSX , θ, τ)
)

−O(η). (B.69)

To complete the proof, we need to show (B.35), (B.47) and (B.60). Since W k(j), j ∈
M′

i, is selected uniformly at random from the set Tk(Ŵi), we have from [20, Lemma

2.5] that, for any uk ∈ Tk(Ûi) and sufficiently large k,

P
(

(uk,W k(j)) /∈ Tk(ÛiŴi)
)

≤
(

1− ek(H(Ŵi|Ûi)− η
4 )

ekH(Ŵi)

)

. (B.70)

Since the codewords are selected independently, we have by the union bound that

P
(

∄(uk,W k(j)) /∈ Tk(ÛiŴi), j ∈ M′
i

)

≤
(

1− ek(H(Ŵi|Ûi)− η
4 )

ekH(Ŵi)

)ekR
′
i

≤ e−e
k(R′

i−I(Ûi;Ŵi)−
η
4 ) . (B.71)

Hence, by the choice of R′
i in (B.25), we have for sufficiently large k that

P(EEE) =
|DU

k (η)|
∑

i=1

e−e
k

η
12 ≤ (k + 1)|U|e−e

k
η
12 ≤ e−e

k
η
15 . (B.72)

This completes the proof of (B.35).
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Next, we prove (B.47). Note that by the encoding procedure, M ′ 6= 0 and wk ∈
Tk(Ŵi) for some 1 ≤ i ≤ |DU

k (η)| implies that Uk ∈ Tk(PÛi|Ŵi
, wk). Hence, we can

write for j 6= m′, that

P
(

W k(j) = w̃k|V k = vk,M ′ = m′ 6= 0,M = m, fB(j) = m,W k(m′) = wk
)

=
∑

uk∈Tk(PÛi|Ŵi
,wk)

P
(

Uk = uk|V k = vk,M ′ = m′ 6= 0,M = m, fB(j) = m,

W k(m′) = wk
)

P
(

W k(j) = w̃k|Uk = uk, V k = vk,M ′ = m′ 6= 0,M = m, fB(j) = m,

W k(m′) = wk
)

Let

C−
m′,j := Ck\{W k(m′),W k(j)},

E := {Uk = uk, V k = vk,M ′ = m′ 6= 0,M = m, fB(j) = m,W k(m′) = wk}.

Then, we can write,

P
(

W k(j) = w̃k|E
)

=
∑

C−
m′,j

=c

P(C−
m′,j = c|E)P(W k(j) = w̃k|E , C−

m′,j = c). (B.73)

We can write the term within the summation in (B.73) as follows:

P(W k(j) = w̃k|E , C−
m′,j = c)

= P(W k(j) = w̃k|Uk = uk, V k = vk, C−
m′,j = c)

P(M ′ = m′|W k(j) = w̃k,W k(m′) = wk, Uk = uk, V k = vk, C−
m′,j = c)

P(M ′ = m′|W k(m′) = wk, Uk = uk, V k = vk, C−
m′,j = c)

P(M = m, fB(j) = m|M ′ = m′,W k(j) = w̃k,W k(m′) = wk, Uk = uk, V k = vk, C−
m′,j = c)

P(M = m, fB(j) = m|M ′ = m′,W k(m′) = wk, Uk = uk, V k = vk, C−
m′,j = c)

(B.74)

= P(W k(j) = w̃k)
P(M ′ = m′|W k(j) = w̃k,W k(m′) = wk, Uk = uk, V k = vk, C−

m′,j = c)

P(M ′ = m′|W k(m′) = wk, Uk = uk, V k = vk, C−
m′,j = c)

.

(B.75)
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In (B.75), we used

P(M = m, fB(j) = m|M ′ = m′,W k(j) = w̃k,W k(m′) = wk, Uk = uk, V k = vk, C−
m′,j = c)

= P(M = m, fB(j) = m|M ′ = m′,W k(m′) = wk, Uk = uk, V k = vk, C−
m′,j = c)

= P(M = m, fB(j) = m),

which in turn follows from the fact that the binning is performed independent of the

Ck, Uk and V k. Let

N(uk, C−
m′,j) = |{wk(l) ∈ C−

m′,j : l 6= m′, j, (uk, wk(l)) ∈ Tk(ÛiŴi)}|.

Recall that if there are multiple indices l in the codebook Ck such that (uk, wk(l)) ∈
Tk(ÛiŴi), then the encoder selects one of them uniformly at random. Also, note that

since M ′ = m′ 6= 0, (uk, wk(m′)) ∈ Tk(ÛiŴi). Thus, if (u
k, w̃k) ∈ Tk(ÛiŴi), then

P(M ′ = m′|W k(j) = w̃k,W k(m′) = wk, Uk = uk, V k = vk, C−
m′,j = c)

P(M ′ = m′|W k(m′) = wk, Uk = uk, V k = vk, C−
m′,j = c)

=

[

1

N(uk, C−
m′,j) + 2

]

1

P(M = m|Uk = uk, V k = vk, C−
m′,j = c)

≤
N(uk, C−

m′,j) + 2

N(uk, C−
m′,j) + 2

= 1. (B.76)

On the other hand, if (uk, w̃k) /∈ Tk(ÛiŴi), then

P(M ′ = m′|W k(j) = w̃k,W k(m′) = wk, Uk = uk, V k = vk, C−
m′,j = c)

P(M ′ = m′|W k(m′) = wk, Uk = uk, V k = vk, C−
m′,j = c)

=

[

1

N(uk, C−
m′,j) + 1

]

1

P(M = m|Uk = uk, V k = vk, C−
m′,j = c)

≤
N(uk, C−

m′,j) + 2

N(uk, C−
m′,j) + 1

≤ 2.

(B.77)

Substituting (B.76) and (B.77) in (B.73), we obtain (B.47). The proof of (B.60) is

similar to that of (B.47), and hence, omitted.

Thus, we have shown that for a fixed (ω,R, PSX , θ) ∈ L(κα, τ), the probability of

type I and type II error probabilities averaged over the ensemble of randomly generated
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codebooks and binning functions satisfy

P
(

Ĥ = 1|H = 0
)

≤ e−k(κα−O(η)), (B.78)

and P
(

Ĥ = 0|H = 1
)

≤ e−k(κ
∗
s(τ,κα)−O(η)), (B.79)

for all sufficiently large k. By the random coding argument followed by an expurgation

step [89], there exists a deterministic codebook Ck and deterministic binning function

fb such that (B.78) and (B.79) are satisfied. Maximizing over (ω,R, PSX , θ) ∈ L(κα, τ)
and noting that η > 0 is arbitrary completes the proof.

B.3 Proof of Theorem 3.14

Fix κα > 0 and
(

PS , ω
′(·, PS), PX|USW ′ , PX′|US

)

∈ Lh(κα). Let η > 0 be a small

number, and choose a sequence sn ∈ Tn(Ŝ∗) which is revealed to both the encoder and

the detector, where Ŝ∗ satisfies D(Ŝ∗||S) ≤ η. Let R′ := ζ ′q(κα, ω
′, PŜ∗).

Encoding:

The encoder performs type based quantization followed by channel coding similar to

that in hybrid coding [26]. The details are as follows:

Quantization scheme: Let

DU
n (η) := {Û ∈ Tn(U) : D(Û ||U) ≤ κα + η}. (B.80)

Consider some ordering on the types in DU
n (η) and denote the elements as Û1, Û2,

. . ., etc. For each joint type variable Ŝ∗Ûi, Ûi ∈ DU
n (η), 1 ≤ i ≤ |DU

n (η)|, such that

Ŝ∗ ⊥ Ûi, choose a joint type variable Ŝ∗ÛiŴ ′
i , Ŵ

′
i ∈ Tn(W ′), such that

D
(

Ŵ ′
i |Ûi, Ŝ∗||W ′

i |U, Ŝ∗
∣

∣

∣
Ûi, Ŝ

∗
)

≤ η

3
,

I(Ŝ∗, Ûi; Ŵ
′
i ) ≤ R′ +

η

3
,

where PW ′
i |U,S = ω′(PÛi

, PŜ∗). Let

DSUW ′

n (η) := {Ŝ∗ÛiŴ
′
i : 1 ≤ i ≤ |DU

n (η)|},
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and R′
i := I(Ŝ∗, Ûi; Ŵ

′
i ) +

η

3
, 1 ≤ i ≤ |DU

n (η)|. (B.81)

Let

C′
n =







w′n(j), j ∈



1 :

|DU
n (η)|
∑

i=1

enR
′
i











,

denote a quantization codebook such that each codeword w′n(j), j ∈ M′
i := [1 +

∑i−1
m=1 e

nR′
m :

∑i
m=1 e

nR′
m ], 1 ≤ i ≤ |DU

n (η)|, belongs to the set Tn(Ŵ ′
i ). For un ∈

Tn(Ûi) such that Ûi ∈ Dn(U) for some 1 ≤ i ≤ |DU
n (η)|, let

µ′(un, C′
n) :={j ∈ M′

i : w
′n(j) ∈ C′

n and (sn, un, w′n(j)) ∈ Tn(Ŝ∗ÛiŴ
′
i ),

Ŝ∗ÛiŴ
′
i ∈ DSUW ′

n (η)}.

If |µ′(un, C′
n)| ≥ 1, let M ′(un, C′

n) denote an index selected uniformly at random from

the set µ′(un, C′
n), otherwise, set M

′(un, C′
n) = 0. Given C′

n and un ∈ Un, the quantizer
outputs M ′ =M ′(un, C′

k), where the support of M ′ is given by

M′ :=



0 :

|DU
n (η)|
∑

i=1

enR
′
i



 .

Note that for sufficiently large n, it follows similarly to (B.26) that

|M′| ≤ en(R
′+η).

If M ′ = m′ 6= 0, the encoder transmits Xn over the channel, where Xn = xn is

generated according to the distribution
∏n
i=1 PX|USW ′(xi|ui, si, w′

i(m
′)). If M ′ = 0,

the encoder transmits X ′n = x′n randomly according to
∏n
i=1 PX′|US(x

′
i|ui, si).

Decoding:

For a given codebook C′
n and m′ ∈ M′\{0}, let Om′ denote the set of un such that

M ′(un, C′
n) = m′. For each m′ ∈ M′\{0} and un ∈ Om′ , let

B′
m′(un) = {(vn, yn) ∈ Vn × Yn : (sn, un, w′n

m′ , vn, yn) ∈ J κα+η
n (Ŝ∗UW ′

m′V Y )},
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where Ŝ∗UW ′
m′V Y is uniquely specified by Ŝ∗ ⊥ (U, V )

W ′
m′ − (U, Ŝ∗)− V, Y − (U, Ŝ∗,W ′

m′)− V, PW ′
m′ |UŜ∗ = ω′(Pun , PŜ∗), (B.82)

PY |UŜ∗W ′
m′
(y|u, s, w′) =

∑

x∈X
PX|UŜ∗W ′

m′
(x|u, s, w′)PY |X(y|x),

∀ (y, u, s, w′) ∈ Y × U × S ×W ′. (B.83)

For m′ ∈ M′\{0}, we define

B′
m′ := {(vn, yn) : (vn, yn) ∈ Bm′(un) for some un ∈ Om′}.

Define the acceptance region for H0 at the detector as

An := ∪
m′∈M′\0

sn ×m′ × B′
m′ ,

or equivalently as

Ae
n := ∪

m′∈M′\0
sn ×Om′ × B′

m′ .

Given Y n = yn and V n = vn, if (sn, vn, yn) ∈ {sn}×⋃m′∈M′\{0} B′
m′ , then set M̂ ′ = m′,

where

m̂′ := argmin
j∈M′\0

He(w
′n(j)|vn, yn, sn).

Otherwise, set M̂ ′ = 0. If M̂ ′ = 0, Ĥ = 1 is declared. Otherwise, Ĥ = 0 or Ĥ =

1 is declared depending on whether (sn, m̂′, vn, yn) ∈ An or (sn, m̂′, vn, yn) /∈ An,

respectively.

Analysis of the type I and type II error probabilities:

Similar to Theorem 3.9, we will analyze the average type I and type II error probabilities

over an ensemble of randomly generated quantization codebooks. Then, the standard

random coding argument followed by the expurgation technique in [89] guarantees the

existence of a deterministic quantization codebook that achieves the lower bound given

in Theorem 3.14. Let each codeword w′n(j), j ∈ M′
i, 1 ≤ i ≤ |DU

n (η)|, be selected

(with replacement) independently and uniformly at random from the set Tn(Ŵ ′
i ) (see
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quantization scheme above). We proceed to analyze the type I and type II error

probabilities averaged over these random codebooks. Note that a type I error can

occur only under the following events:

(i) E ′
EE :=

⋃

Û∈D′
n(SU)

⋃

un∈Tn(Û)

E ′
EE(u

n), where

E ′
EE(u

n) :=







∄ W ′n(j) ∈ C′
n, j ∈ [1 : |M′|], s.t. (sn, un,W ′n(j)) ∈

Tn(Ŝ∗ÛiŴ ′
i ), PŜ∗Ûi

= Psnun , Ŝ
∗ÛiŴ ′

i ∈ DSUW ′

n (η)







.

(ii) M̂ ′ =M ′.

(iii) M ′ 6= 0 and M̂ ′ 6=M ′.

(iv) M ′ = 0 and M̂ ′ 6=M ′.

Similar to (B.35), we have since R′
i satisfies (B.81), that

P(E ′
EE) ≤ e−e

nΩ(η)
. (B.84)

Next, consider event (ii). Due to (B.84), we can write

P
(

Ĥ = 1|M̂ ′ =M ′, H = 0
)

≤ e−e
nΩ(η)

+ P
(

Ĥ = 1|M̂ ′ =M ′, E ′c
EE , H = 0

)

. (B.85)

The second term in (B.85) can be bounded as

P
(

Ĥ = 1|M̂ ′ =M ′, E ′c
EE , H = 0

)

= P
(

(sn,M ′, V n, Y n) /∈ An|E ′c
EE , H = 0

)

(B.86)

= 1− P
(

(sn, Un, V n, Y n) ∈ Ae
n|E ′c

EE , H = 0
)

(B.87)

We have similar to [27, Equation 4.17] that for un ∈ Om′ that

P((V n, Y n) ∈ B′
m′(un)|Un = un, E ′c

EE)

= P((V n, Y n) ∈ B′
m′(un)|Un = un,W ′n(m′) = w′n

m′ , E ′c
EE) (B.88)

≥ 1− e−n(κα+
η
3
−D(Pun ||PU )). (B.89)
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Then, using (B.80) and (B.89), it follows similarly to [27, Equation 4.22] that

P((sn, Un, V n, Y n) ∈ An
e |E ′c

EE) ≥ 1− e−nκα . (B.90)

Substituting (B.90) in (B.87), it follows that

P
(

Ĥ = 1|M̂ ′ =M ′, E ′c
EE , H = 0

)

≤ e−nκα . (B.91)

The probability of event (iii) can be upper bounded as follows:

P
(

M ′ 6= 0, M̂ ′ 6=M ′|H = 0
)

≤ P
(

M ′ 6= 0, M̂ ′ 6=M ′, (sn,M ′, V n, Y n) ∈ An|H = 0
)

+ P
(

M ′ 6= 0, M̂ ′ 6=M ′, (sn,M ′, V n, Y n) /∈ An|H = 0
)

≤ P
(

M ′ 6= 0, M̂ ′ 6=M ′, (sn,M ′, V n, Y n) ∈ An|H = 0
)

+ e−e
nΩ(η)

+ e−nκα (B.92)

≤ P
(

M̂ ′ 6=M ′|M ′ 6= 0, (sn,M ′, V n, Y n) ∈ An, H = 0
)

+ e−e
nΩ(η)

+ e−nκα

≤ e−n(ρ
′(κα,ω′,PS ,PX|USW ′ )−ζ′q(κα,ω′,P

Ŝ∗ )−O(η)) + e−e
nΩ(η)

+ e−nκα (B.93)

where (B.92) follows similar to (B.41) using (B.84) and (B.90), and (B.93) follows

similar to (B.51) by noting that (sn,M ′, V n, Y n) ∈ An implies that M̂ ′ 6= 0. Also,

from (B.84) and the definition of DU
n (η), we can bound the probability of event (iv) as

P
(

M ′ = 0, M̂ ′ 6=M ′|H = 0
)

≤ P
(

M ′ = 0|H = 0
)

≤ e−nκα . (B.94)

From (B.84), (B.91), (B.93) and (B.94), it follows that the type I error probability

satisfies e−k(κα−O(η)), asymptotically.

Next, we analyze the type II error probability of the above scheme averaged over the

random codebooks. For a given codebook C′
n, let Ũ, Ṽ, W̃, Ỹ and W̃d denote the type

variable for the realizations of Ūn, V̄ n,W ′n(M ′) (M ′ 6= 0), Ȳ n and W ′n(M̂ ′) (M̂ ′ 6= 0),

respectively. Let

DSVW ′Y
n (η)
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:=











Ŝ∗V̂ Ŵ Ŷ : ∃ (sn, un, vn, wn, yn) ∈ ∪
m′∈M′\{0}

J κα+η
n (Ŝ∗UVW ′

m′Y ),

Ŝ∗UVW ′
m′Y satisfies (B.82) and (B.83), and Psnunvnwnyn = PŜ∗Û V̂ Ŵ Ŷ











.

A type II error can occur only under the following events:

(a)

E ′
a :=







M̂ ′ =M ′ 6= 0, (sn, Ūn, V̄ n,W ′n(M ′), Ȳ n) ∈ Tn(Ŝ∗Û V̂ Ŵ Ŷ )

s.t. ÛŴ ∈ DSUW ′

n (η) and Ŝ∗V̂ Ŵ Ŷ ∈ DSVW ′Y
n (η)







.

(b)

E ′
b :=



















M ′ 6= 0, M̂ ′ 6=M ′, (sn, Ūn, V̄ n,W ′n(M ′), Ȳ n,W ′n(M̂ ′)) ∈
Tn(Ŝ∗Û V̂ Ŵ Ŷ Ŵd) s.t. Ŝ

∗ÛŴ ∈ DSUW ′

n (η), Ŝ∗V̂ ŴdŶ ∈ DSVW ′Y
n (η),

and He

(

W ′n(M̂ ′)|sn, V̄ n, Ȳ n
)

≤ He

(

W ′n(M ′)|sn, V̄ n, Ȳ n
)



















.

(c)

E ′
c :=







M ′ = 0, M̂ ′ 6=M ′, (sn, V̄ n, Ȳ n,W ′n(M̂ ′)) ∈ Tn(Ŝ∗V̂ Ŷ Ŵd) s.t.

Ŝ∗V̂ ŴdŶ ∈ DSVW ′Y
n (η)







.

Let

F ′
1,n(η) :={Ŝ∗Ũ Ṽ W̃ Ỹ ∈ Tn(S × U × V ×W ′ × Y) : Ŝ∗ŨW̃ ∈ DSUW ′

n (η),

Ŝ∗Ṽ W̃ Ỹ ∈ DSVW ′Y
n (η)}.

Then, we can write

P
(

E ′
a|H = 1

)

≤
∑

Ŝ∗Ũ Ṽ W̃ Ỹ
∈F ′

1,n(η)

∑

(un,vn,w′n,yn):
(sn,un,vn,w′n,yn)

∈Tn(Ŝ∗Ũ Ṽ W̃ Ỹ )

∑

m′∈M′\{0}
P
(

Ūn = un, V̄ n = vn,M ′ = m′,

W ′n(m′) = w′n, Ȳ n = yn|Sn = sn
)
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≤
∑

Ŝ∗Ũ Ṽ W̃ Ỹ
∈F ′

1,n(η)

∑

(un,vn,w′n,yn):
(sn,un,vn,w′n,yn)

∈Tn(Ŝ∗Ũ Ṽ W̃ Ỹ )

∑

m′∈M′\{0}
P
(

Ūn = un, V̄ n = vn,M ′ = m′|Sn = sn
)

P
(

W ′n(m′) = w′n|Ūn = un, V̄ n = vn,M ′ = m′, Sn = sn
)

P
(

Ȳ n = yn|Ūn = un, V̄ n = vn,M ′ = m′,W ′n(m′) = w′n, Sn = sn
)

≤
∑

Ŝ∗Ũ Ṽ W̃ Ỹ
∈F ′

1,n(η)

∑

(un,vn,w′n,yn):
(sn,un,vn,w′n,yn)

∈Tn(Ŝ∗Ũ Ṽ W̃ Ỹ )

∑

m′∈
M′\{0}

e−n(H(Ũ Ṽ )+D(Ũ Ṽ ||Ū V̄ ))

P
(

M ′ = m′|Ūn = un, V̄ n = vn, Sn = sn
) 1

en(H(W̃ |Ŝ∗Ũ)−η)

e
−n

(

H(Ỹ |Ũ Ŝ∗W̃ )+D
(

Ỹ |Ũ Ŝ∗W̃ ||Y |USW ′
∣

∣Ũ Ŝ∗W̃
))

(B.95)

≤
∑

Ŝ∗Ũ Ṽ W̃ Ỹ
∈F ′

1,n(η)

enH(Ũ Ṽ W̃ Ỹ |Ŝ∗)e−n(H(Ũ Ṽ )+D(Ũ Ṽ ||Ū V̄ )) 1

en(H(W̃ |Ŝ∗Ũ)−η)

e
−n

(

H(Ỹ |Ũ Ŝ∗W̃ )+D
(

Ỹ |Ũ Ŝ∗W̃ ||Y |USW ′
∣

∣Ũ Ŝ∗W̃
))

≤ e−nE
′
1,n , (B.96)

where

E′
1,n := min

Ŝ∗Ũ Ṽ W̃ Ỹ ∈F ′
1,n(η)

H(Ũ Ṽ ) +D(Ũ Ṽ ||Ū V̄ ) +H(W̃ |Ŝ∗Ũ)− η +H(Ỹ |Ũ Ŝ∗W̃ )

+D
(

Ỹ |Ũ Ŝ∗W̃ ||Y |USW ′∣
∣Ũ Ŝ∗W̃

)

−H(Ũ Ṽ W̃ Ỹ |Ŝ∗)− 1

n
||U||V||W ′||Y| log(n+ 1)

(n)

≥ min
Ũ Ṽ W̃ Ỹ S∈T ′

1 (κα,ω
′,PS ,PX|USW ′ )

D(Ũ Ṽ W̃ Ỹ ||Ū V̄ W̄ ′Ȳ |S)−O(η)

= E′
1(κα, ω

′)−O(η).

In (B.95), we used the fact that

P
(

W ′n(m′) = w′n|Ūn = un, V̄ n = vn, Sn = sn,M ′ = m′)

≤











1

en(H(W̃ |Ŝ∗Ũ)−η)
, if w′n ∈ Tn(W̃ ),

0, otherwise,
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which in turn follows from the fact that given M ′ = m′ and Ūn = un, W ′n(m′) is

uniformly distributed in the set Tn(PW̃ |Ŝ∗Ũ , (s
n, un)) and that for sufficiently large n,

|Tn(PW̃ |Ŝ∗Ũ , (s
n, un))| ≥ en(H(W̃ |Ŝ∗Ũ)−η).

Next, we analyze the probability of the event E ′
b. Let

F ′
2,n(η)

:=







Ŝ∗Ũ Ṽ W̃ Ỹ W̃d ∈ Tn(S × U × V ×W ′ × Y ×W ′) : Ŝ∗ŨW̃ ∈ DSUW ′

n (η),

Ŝ∗Ṽ W̃dỸ ∈ DSVW ′Y
n (η) and H

(

W̃d|Ŝ∗Ṽ Ỹ
)

≤ H
(

W̃ |Ŝ∗Ṽ Ỹ
)







.

Then,

P
(

E ′
b|H = 1

)

≤
∑

Ŝ∗Ũ Ṽ W̃ Ỹ W̃d

∈F ′
2,n(η)

∑

(un,vn,w′n,yn,w̄n):
(sn,un,vn,w′n,yn,w̄n)

∈Tn(Ŝ∗Ũ Ṽ W̃ Ỹ W̃d)

∑

m′∈M′\{0}
P
(

Ūn = un, V̄ n = vn,M ′ = m′,

W ′n(m′) = w′n, Ȳ n = yn|Sn = sn
)

∑

m̂′∈M′\{0,m′}
P
(

W ′n(m̂′) = w̄n|Ūn = un,M ′ = m′,W ′n(m′) = w′n, Sn = sn
)

≤
∑

Ŝ∗Ũ Ṽ W̃ Ỹ W̃d

∈F ′
2,n(η)

∑

(un,vn,w′n,yn,w̄n):
(sn,un,vn,w′n,yn,w̄n)

∈Tn(Ŝ∗Ũ Ṽ W̃ Ỹ W̃d)

∑

m′∈M′\{0}

[

e−n(H(Ũ Ṽ )+D(Ũ Ṽ ||Ū V̄ ))

P
(

M ′ = m′|Ūn = un, V̄ n = vn, Sn = sn
) 1

en(H(W̃ |Ŝ∗Ũ)−η)

e
−n

(

H(Ỹ |Ũ Ŝ∗W̃ )+D
(

Ỹ |Ũ Ŝ∗W̃ ||Y |USW ′
∣

∣Ũ Ŝ∗W̃
))

∑

m̂′∈M′\{0,m′}
P
(

W ′n(m̂′) = w̄n|Ūn = un,M ′ = m′,W ′n(m′) = w′n, Sn = sn
)

]

≤
∑

Ŝ∗Ũ Ṽ W̃ Ỹ W̃d

∈F ′
2,n(η)

∑

(un,vn,w′n,yn):
(sn,un,vn,w′n,yn)

∈Tn(Ŝ∗Ũ Ṽ W̃ Ỹ )

∑

m′∈M′\{0}

[

e−n(H(Ũ Ṽ )+D(Ũ Ṽ ||Ū V̄ ))

P
(

M ′ = m′|Ūn = un, V̄ n = vn, Sn = sn
) 1

en(H(W̃ |Ŝ∗Ũ)−η)
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e
−n

(

H(Ỹ |Ũ Ŝ∗W̃ )+D
(

Ỹ |Ũ Ŝ∗W̃ ||Y |USW ′
∣

∣Ũ Ŝ∗W̃
))

∑

m̂′∈M′\{0,m′}

2enH(W̃d|Ŝ∗Ṽ Ỹ )

en(H(W̃d)−η)

]

≤
∑

Ŝ∗Ũ Ṽ W̃ Ỹ W̃d

∈F ′
2,n(η)

∑

(un,vn,w′n,yn):
(sn,un,vn,w′n,yn)

∈Tn(Ŝ∗Ũ Ṽ W̃ Ỹ )

[

e−n(H(Ũ Ṽ )+D(Ũ Ṽ ||Ū V̄ )) 1

en(H(W̃ |Ŝ∗Ũ)−η)

e
−n

(

H(Ỹ |Ũ Ŝ∗W̃ )+D
(

Ỹ |Ũ Ŝ∗W̃ ||Y |USW ′
∣

∣Ũ Ŝ∗W̃
))

en(ζ
′
q(κα,ω

′,P
Ŝ∗ )+η) 2e

nH(W̃d|Ŝ∗Ṽ Ỹ )

en(H(W̃d)−η)

]

≤ e−nE
′
2,n , (B.97)

where

E′
2,n := min

Ŝ∗Ũ Ṽ W̃ Ỹ W̃d∈F ′
2,n(η)

H(Ũ Ṽ ) +D(Ũ Ṽ ||Ū V̄ ) +H(W̃ |Ŝ∗Ũ)− 2η

+H(Ỹ |Ũ Ŝ∗W̃ ) +D
(

Ỹ |Ũ Ŝ∗W̃ ||Y |USW ′∣
∣Ũ Ŝ∗W̃

)

+ I(W̃d; Ŝ
∗Ṽ Ỹ )

−H(Ũ Ṽ W̃ Ỹ |Ŝ∗)− ζ ′q(κα, ω
′, PŜ∗)−

log 2

n
− |S||U||V||W|2|Y| log(n+ 1)

n

≥ min
Ŝ∗Ũ Ṽ W̃ Ỹ W̃d∈F ′

2,n(η)
D(Ũ Ṽ W̃ Ỹ ||Ū V̄ W̄ ′Ȳ |S) + I(W̃d; Ŝ

∗Ṽ Ỹ )

− ζ ′q(κα, ω
′, PŜ∗)−

log 2

n
− |S||U||V||W|2|Y| log(n+ 1)

n
(n)

≥ min
Ũ Ṽ W̃ Ỹ S ∈

T ′
2 (κα,ω

′,PS ,PX|USW ′ )

D(Ũ Ṽ W̃ Ỹ ||Ū V̄ W̄ ′Ȳ |S) + ρ′(κα, ω
′, PS , PX|USW ′)

− ζ ′q(κα, ω
′, PS)−O(η)

= E′
2(κα, ω

′, PS , PX|USW ′)−O(η).

Similar to (B.66), we can write

P
(

E ′
c|H = 1

)

=
∑

un∈Tn(Ũ):

Ũ∈DU
n (η)

P
(

Ūn = un, E ′
EE , E ′

c|Sn = sn, H = 1
)

+
∑

un∈Tn(Ũ):

Ũ /∈DU
n (η)

P
(

Ūn = un, E ′
c|Sn = sn, H = 1

)

. (B.98)
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The first term in (B.98) decays double exponentially as e−e
nΩ(η)

. The second term in

(B.98) can be simplified as follows:

∑

un∈Tn(Ũ):

Ũ /∈DU
n (η)

P
(

Ūn = un, E ′
c|Sn = sn, H = 1

)

≤
∑

un∈Tn(Ũ):

Ũ /∈DU
n (η)

∑

(vn,yn,w̄n):

(sn,vn,yn,w̄n)∈Tn(Ŝ∗Ṽ Ỹ W̃d)

Ŝ∗Ṽ W̃dỸ ∈DSV W ′Y
n (η)

∑

m̂∈M\{0}
P
(

Ūn = un, V̄ n = vn,M ′ = 0, Ȳ n = yn|

Sn = sn, H = 1
)

∑

m̂′∈M′\{0}
P
(

W k(m̂′) = w̄k
)

≤
∑

un∈Tn(Ũ):

Ũ /∈DU
n (η)

∑

(vn,yn,w̄n):

(sn,vn,yn,w̄n)∈Tn(Ŝ∗Ṽ Ỹ W̃d)

Ŝ∗Ṽ W̃dỸ ∈DSV W ′Y
n (η)

P
(

Ūn = un, V̄ n = vn,M ′ = 0, Ȳ n = yn|

Sn = sn, H = 1
)

∑

m̂′∈M′\{0}

1

ek(H(W̃d)−η)

≤
∑

un∈Tn(Ũ):

Ũ /∈DU
n (η)

∑

(vn,yn):

(sn,vn,yn)∈Tn(Ŝ∗Ṽ Ỹ )

Ŝ∗Ṽ W̃dỸ ∈DSV W ′Y
n (η)

P
(

Ūn = un, V̄ n = vn
)

P
(

Ȳ n = yn|Ūn = un, V̄ n = vn,M ′ = 0, Sn = sn, H = 1
) enH(W̃d|Ŝ∗Ṽ Ỹ )en(R

′+η)

en(H(W̃d)−η)

≤
∑

Ũ Ŝ∗Ṽ W̃dỸ

∈DU
n (η)c×DSV W ′Y

n (η)

enH(Ũ Ṽ Ỹ |Ŝ∗)e
−n

(

H(Ũ Ṽ Ỹ |Ŝ∗)+D
(

Ũ Ṽ Ỹ ||Ū V̄ Y̌
∣

∣Ŝ∗
))

enH(W̃d|Ŝ∗Ṽ Ỹ )en(R
′+η)

en(H(W̃d)−η)

≤ e−nE
′
3,n , (B.99)

where,

E′
3,n := min

Ũ Ŝ∗Ṽ W̃dỸ

∈DU
n (η)c×DSV W ′Y

n (η)

D
(

Ũ Ṽ Ỹ ||Ū V̄ Y̌
∣

∣Ŝ∗
)

+ I(W̃d; Ŝ
∗, Ṽ, Ỹ )−R′ −O(η)

− |U||V||W||Y||S|
n

log(n+ 1)

(n)

≥ min
V̂ Ŷ S:Û V̂ Ŵ Ŷ S ∈

L̂h(κα,ω
′,PS ,PX|USW ′ )

D
(

V̂ Ŷ ||V̄ Y̌ |S
)

+ ρ′(κα, ω
′, PS , PX|USW ′)
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− ζ ′q(κα, ω
′, PS)−O(η)

= E′
3(κα, ω

′, PS , PX|USW ′ , PX′|US)−O(η).

Since the exponent of the type II error probability is lower bounded by the minimum

of the exponent of the type II error causing events, it follows from (B.96), (B.97) and

(B.99) that for a fixed
(

PS , ω
′(·, PS), PX|USW ′ , PX′|US

)

∈ Lh(κα),

κ(τ, κα) ≥min
{

E′
1(κα, ω

′), E′
2(κα, ω

′, PS , PX|USW ′), E′
3(κα, ω

′, PS , PX|USW ′ , PX′|US)
}

−O(η).

Maximizing over
(

PS , ω
′(·, PS), PX|USW ′ , PX′|US

)

∈ Lh(κα) and noting that η > 0 is

arbitrary completes the proof.
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Proofs for Chapter 4

C.1 Proof of Lemma 4.1

Note that for a stochastic detector, the type I and type II error probabilities are

linear functions of PĤ|M,V n . As a result, for each fixed n and f (n), ᾱ
(

f (n), g(n)
)

and

β̄
(

f (n), g(n)
)

for a stochastic detector g(n) can be thought of as the type I and type

II errors achieved by “time sharing” among a finite number of deterministic detectors.

To see this, consider some ordering on the elements of the set M× Vn and let νi :=

PĤ|M,V n(0|i), i ∈ [1 : N ], where i denotes the ith element of M×Vn and N = |M×Vn|.
Then, we can write

PĤ|M,V n =

















ν1 1− ν1

ν2 1− ν2
...

...

νN 1− νN

















.

Then, it is easy to see that PĤ|M,V n =
∑n

i=1 νiIi, where Ii := [ei 1 − ei] and ei

is an N length vector with 1 at the ith component and 0 elsewhere. Now, suppose

(ᾱ
(n)
1 , β̄

(n)
1 ) and (ᾱ

(n)
2 , β̄

(n)
2 ) denote the pair of type I and type II error probabilities

achieved by deterministic detectors g
(n)
1 and g

(n)
2 , respectively. Let A1,n and A2,n

denote their corresponding acceptance regions for H0. Let g
(n)
θ denote the stochastic

detector formed by using g
(n)
1 and g

(n)
2 with probabilities θ and 1 − θ, respectively.

From the above mentioned linearity property, it follows that g
(n)
θ achieves type I and

type II error probabilities of ᾱ
(

f (n), g
(n)
θ

)

= θᾱ
(n)
1 + (1 − θ)ᾱ

(n)
2 and β̄

(

f (n), g
(n)
θ

)

=

θβ̄
(n)
1 + (1− θ)β̄

(n)
2 , respectively. Let r(θ) = min(θ, 1− θ). Then, for θ ∈ (0, 1),

− 1

n
log
(

β̄
(

f (n), g
(n)
θ

))

195
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≤ min

(

− 1

n
log
(

β̄
(n)
1

(

f (n), g
(n)
1

))

,− 1

n
log
(

β̄
(n)
2

(

f (n), g
(n)
2

))

)

− 1

n
log(r(θ)).

Hence, either

ᾱ
(n)
1 ≤ ᾱ

(

f (n), g
(n)
θ

)

and − 1

n
log
(

β̄
(n)
1

(

f (n), g
(n)
1

))

≥ − 1

n
log
(

β̄
(

f (n), g
(n)
θ

))

+
1

n
log(r(θ)),

or

ᾱ
(n)
2 ≤ ᾱ

(

f (n), g
(n)
θ

)

and − 1

n
log
(

β̄
(n)
2

(

f (n), g
(n)
2

))

≥ − 1

n
log
(

β̄
(

f (n), g
(n)
θ

))

+
1

n
log(r(θ)).

Thus, since 1
n log(r(θ))

(n)−−→ 0, a stochastic detector does not offer any advantage over

deterministic detectors in the trade-off between the error-exponent and the type I error

probability.

C.2 Proof of Lemma 4.2

Let P̃
(j)
SnUnV nM denote the joint distribution of the r.v.’s (Sn, Un, V n,M) under hy-

pothesis Hj , j = 0, 1, and P̃Ŝn|M,V n denote an arbitrary stochastic function for g
(n)
r .

Then, we have

min
g
(n)
r

E
[

d
(

Sn, Ŝn
)

|H = j
]

= min
P̃
Ŝn|M,V n

EP̃ (j)

[

d
(

Sn, Ŝn
)]

= min
{P̃

Ŝi|M,V n}ni=1

1

n

n
∑

i=1

EP̃ (j)

[

d
(

Si, Ŝi

)]

=
1

n

n
∑

i=1

∑

M=m,V n=vn

P̃
(j)
MV n(m, v

n) min
P̃
Ŝi|M=m,V n=vn

∑

ŝi

P̃Ŝi|M=m,V n=vn(ŝi)

E
P̃

(j)
Si|M=m,V n=vn

[d (Si, ŝi)]

=
1

n

n
∑

i=1

∑

M=m,V n=vn

P̃
(j)
MV n(m, v

n) E
P̃

(j)
Si|M=m,V n=vn

[d (Si, φij(m, v
n))] ,
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where,

φij(m, v
n) = argmin

ŝ∈Ŝ
E
P̃

(j)
Si|M=m,V n=vn

[d(Si, ŝ)] .

Continuing, we have

min
g
(n)
r

E
[

d
(

Sn, Ŝn
)

|H = j
]

=
1

n

n
∑

i=1

∑

M=m,V n=vn

P̃
(j)
MV n(m, v

n) min
φi(m,vn)

E
P̃

(j)
Si|M=m,V n=vn

[d (Si, φi(m, v
n))]

= min
{φi(m,vn)}ni=1

1

n

n
∑

i=1

EP̃ (j) [d (Si, φi(M,V n))] . (C.1)

C.3 Proof of Lemma 4.4

We will first prove (4.14). Fix δ > 0. For γ > 0, define the following sets:

Bδ0,γ := {yn ∈ Tn[PY ]γ
: PY n(yn) ≥ PY n|IX(Xn,δ)=0(y

n)},

Cδ0,γ := {yn ∈ Tn[PY ]γ
: PY n(yn) < PY n|IX(Xn,δ)=0(y

n)},

Bδ1,γ := {yn ∈ Tn[QY ]γ
: QY n(yn) ≥ QY n|IX(Xn,δ)=0(y

n)},

Cδ1,γ := {yn ∈ Tn[QY ]γ
: QY n(yn) < QY n|IX(Xn,δ)=0(y

n)},

Bδ2,γ := {yn ∈ Tn[QY ]γ
: QY n(yn) ≥ QY n|IX(Xn,δ)=1(y

n)},

Cδ2,γ := {yn ∈ Tn[QY ]γ
: QY n(yn) < QY n|IX(Xn,δ)=1(y

n)}.

Then, we can write

‖QY n −QY n|IX(Xn,δ)=1‖

=
∑

yn

|QY n(yn)−QY n|IX(Xn,δ)=1(y
n)|

=
∑

yn /∈Tn
[QY ]γ

|QY n(yn)−QY n|IX(Xn,δ)=1(y
n)|+

∑

yn∈Tn
[QY ]γ

|QY n(yn)−QY n|IX(Xn,δ)=1(y
n)|

≤
∑

yn /∈Tn
[QY ]γ

QY n(yn) +QY n|IX(Xn,δ)=1(y
n)
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+
∑

yn∈Tn
[QY ]γ

|QY n(yn)−QY n|IX(Xn,δ)=1(y
n)|. (C.2)

Next, note that

QY n|IX(Xn,δ)=1(y
n) = QY n(yn)

QIX(Xn,δ)|Y n(1|yn)
Q(IX(Xn, δ) = 1)

≤ QY n(yn)

Q(IX(Xn, δ) = 1)
≤ 2QY n(yn), (C.3)

for sufficiently large n (depending on |X |), since Q(IX(X
n, δ) = 1)

(n)−−→ 1. Thus, for n

large enough,

∑

yn /∈Tn
[QY ]γ

QY n(yn) +QY n|IX(Xn,δ)=1(y
n) ≤ 3

∑

yn /∈Tn
[QY ]γ

QY n(yn) ≤ e−nΩ(γ). (C.4)

We can bound the term in (C.2) as follows.

∑

yn∈Tn
[QY ]γ

|QY n(yn)−QY n|IX(Xn,δ)=1(y
n)|

=
∑

yn∈Bδ
2,γ

QY n(yn)−QY n|IX(Xn,δ)=1(y
n) +

∑

yn∈Cδ
2,γ

QY n|IX(Xn,δ)=1(y
n)−QY n(yn)

=
∑

yn∈Bδ
2,γ

QY n(yn)−QY n|IX(Xn,δ)=1(y
n) +

∑

yn∈Cδ
2,γ

QY n|IX(Xn,δ)=1(y
n)−QY n(yn)

=
∑

yn∈Bδ
2,γ

QY n(yn)

(

1−
QY n|IX(Xn,δ)=1(y

n)

QY n(yn)

)

+
∑

yn∈Cδ
2,γ

QY n(yn)

(

QY n|IX(Xn,δ)=1(y
n)

QY n(yn)
− 1

)

=
∑

yn∈Bδ
2,γ

QY n(yn)

(

1−
QIX(Xn,δ)|Y n(1|yn)
Q(IX(Xn, δ) = 1)

)

+
∑

yn∈Cδ
2,γ

QY n(yn)

(

QIX(Xn,δ)|Y n(1|yn)
Q(IX(Xn, δ) = 1)

− 1

)

≤
∑

yn∈Bδ
2,γ

QY n(yn)
(

1−QIX(Xn,δ)|Y n(1|yn)
)
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+
∑

yn∈Cδ
2,γ

QY n(yn)

(

1

Q(IX(Xn, δ) = 1)
− 1

)

. (C.5)

Let PỸ denote the type of yn and define

E(n)(δ, γ) := min
P
Ỹ
∈Tn

[QY ]γ

min
P
X̃
∈Tn

[PX ]δ

D(PX̃|Ỹ ||QX|Y |PỸ ).

Then, for yn ∈ Tn[QY ]γ
, arbitrary γ̃ > 0 and n sufficiently large (depending on |X |, |Y|, δ, γ),

it follows from [20, Lemma 2.6] that

QIX(Xn,δ)|Y n(1|yn) ≥ 1− e−n(E
(n)(δ,γ)−γ̃),

and Q(IX(X
n, δ) = 1) ≥ 1− e−n(D(PX ||QX)−γ̃).

From (C.2), (C.4) and (C.5), it follows that

‖QY n −QY n|IX(Xn,δ)=1‖ ≤ e−nΩ(γ) + e−n(E
(n)(δ,γ)−γ̃) + e−n(D(PX ||QX)−γ̃). (C.6)

We next show that E(n)(δ, γ) > 0 for sufficiently small δ > 0 and γ > 0. This would

imply that the R.H.S of (C.6) converges exponentially to zero (for γ̃ small enough)

with exponent δ̄ := min
(

Ω(γ), E(n)(δ, γ)− γ̃, D(PX ||QX)− γ̃
)

, thus proving (4.14).

We can write,

E(n)(δ, γ) ≥ min
P
Ỹ
∈Tn

[QY ]γ

min
P
X̃
∈Tn

[PX ]δ

D(PX̃ ||Q̂X) (C.7)

≥ 2

[

min
P
Ỹ
∈Tn

[QY ]γ

min
P
X̃
∈Tn

[PX ]δ

‖PX̃ − Q̂X‖2
]

, (C.8)

where

Q̂X(x) :=
∑

y

PỸ (y)QX|Y (x|y).

Here, (C.7) follows due to the convexity of KL divergence (C.8) is due to Pinsker’s

inequality [20]. We also have from the triangle inequality satisfied by total variation
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that,

‖PX̃ − Q̂X‖ ≥ ‖PX −QX‖ − ‖PX̃ − PX‖ − ‖Q̂X −QX‖.

For yn ∈ Tn[QY ]γ
,

‖Q̂X −QX‖ ≤ ‖QX|Y PỸ −QXY ‖ ≤ ‖PỸ −QY ‖ ≤ O(γ).

Also, for PX̃ ∈ Tn[PX ]δ
,

‖PX̃ − PX‖ ≤ O(δ).

Hence,

E(n)(δ, γ) ≥ 2(‖PX −QX‖ −O(γ)−O(δ))2.

Since PX 6= QX , E
(n)(δ, γ) > 0 for sufficiently small γ > 0 and δ > 0. This completes

the proof of (4.14).

We next prove (4.16). Similar to (C.2) and (C.3), we have,

‖PY n − PY n|IX(Xn,δ)=0‖

≤
∑

yn /∈Tn
[PY ]γ

[

PY n(yn) + PY n|IX(Xn,δ)=0(y
n)
]

+
∑

yn∈Tn
[PY ]γ

|PY n(yn)− PY n|IX(Xn,δ)=0(y
n)|, (C.9)

and

PY n|IX(Xn,δ)=0(y
n) ≤ 2PY n(yn), (C.10)

since P (IX(X
n, δ) = 0)

(n)−−→ 1.
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Also, for γ < δ
|Y| and sufficiently large n (depending on δ, γ, |X |, |Y|), we have

∑

yn∈Tn
[PY ]γ

|PY n(yn)− PY n|IX(Xn,δ)=0(y
n)|

=
∑

yn∈Bδ
0,γ

PY n(yn)− PY n|IX(Xn,δ)=0(y
n) +

∑

yn∈Cδ
0,γ

PY n|IX(Xn,δ)=0(y
n)− PY n(yn)

≤
∑

yn∈Bδ
0,γ

PY n(yn)
(

1− PIX(Xn,δ)|Y n(0|yn)
)

+
∑

yn∈Cδ
0,γ

PY n(yn)

(

1

P (IX(Xn, δ) = 0)
− 1

)

≤
∑

yn∈Bδ
0,γ

PY n(yn)e−nΩ(δ−γ|Y|) +
∑

yn∈Cδ
0,γ

PY n(yn)e−nΩ(δ) (C.11)

≤ e−nΩ(δ−γ|Y|), (C.12)

where, to obtain (C.11), we used

P (IX(X
n, δ) = 0) ≥ 1− e−nΩ(δ), (C.13)

and PIX(Xn,δ)|Y n(0|yn) ≥ 1− e−nΩ(δ−γ|Y|), for yn ∈ Bδ0,γ and γ <
δ

|Y| . (C.14)

Here, (C.13) follows from Lemma 2.12, and (C.14) follows from Lemma 2.10 and

Lemma 2.12, in [20], respectively. Thus, from (C.9), (C.10) and (C.12), we can write

that,

‖PY n − PY n|IX(Xn,δ)=0‖ ≤ e−nΩ(γ) + e−nΩ(δ−γ|Y|) (n)−−→ 0.

This completes the proof of (4.16). The proof of (4.15) is exactly the same as (4.16),

with the only difference that the sets Bδ1,γ and Cδ1,γ are used in place of Bδ0,γ and Cδ0,γ ,
respectively.

C.4 Proof of Theorem 4.4 and Theorem 4.5

We first describe the encoding and decoding operations which is the same for both

Theorem 4.4 and Theorem 4.5.
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Codebook Generation: Fix a finite alphabet W, a conditional distribution PW |U , and

positive number (small) δ > 0. Let µ = O(δ) subject to constraints that will be

specified below, and let δ′ := δ
2 , δ̂ := |U|δ, δ̃ := 2δ, δ̄ := δ′

|V| , and M
′
n := en(IP (U :W )+µ).

Generate M ′
n independent sequences wn(k), k ∈ [M ′

n] randomly according to the

distribution
∏n
i=1 PW (wi), where

PW (w) =
∑

u∈U

∑

w∈W
PU (u)PW |U (w|u).

Denote this codebook by Cn.
Encoding : For a given codebook Cn, define a conditional probability distribution

PEu(j|un, Cn) :=
∏n
i=1 PU |W (ui|wi(j))

∑

j

∏n
i=1 PU |W (ui|wi(j)))

. (C.15)

If IP (U ;W ) + µ + |U||W| log(n+1)
n > R, the encoder performs uniform random binning

on the sequences wn(k), k ∈ [M ′
n] in Cn, i.e., for each codeword in Cn, it selects

an index uniformly at random from the set

[

e
n
(

R− |U||W| log(n+1)
n

)]

. Denote the bin

assignment by CnB and the bin index selected for wn(k) by fB(k). If the observed

sequence Un = un is typical, i.e., un ∈ Tn[PU ]δ′
, then the encoder outputs the message1

M := (T,M ′) = (t,m′), m′ = fB(j), M ∈ [enR] or M := (T, J) = (t, j) depending on

whether IP (U ;W ) + µ + |U||W| log(n+1)
n > R or otherwise. Here, j ∈ [M ′

n] is selected

according to the probability PEu(j|un, Cn) and t denotes the index of the joint type of

(un, wn(j)) in the set of types T n(U × W). If un /∈ Tn[PU ]δ′
, the encoder outputs the

error message M = 0. Note that the encoder f (n) : Un 7→ M := [enR] described by

the above operations is a stochastic encoder with output M .

Decoding : If M = 0 or t /∈ Tn[PUW ]δ
, Ĥ = 1 is declared. Else, given M = (t,m′)

and V n = vn, the detector looks for a typical sequence ŵn := wn(ĵ) ∈ Tn[PW ]
δ̂
, in the

codebook Cn such that

ĵ = argmin
l: m′=fB(l),
wn(l)∈Tn

[PW ]
δ̂

He(w
n(l)|vn), if IP (U ;W ) + µ+

1

n
|U||W| log(n+ 1) > R,

1Note that this is valid assignment since the total number of types in T n(U ×W) is upper bounded
by (n+ 1)|U||W| [20].
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ĵ = j, otherwise.

Denote the above decoding rule by PED(m, v
n). The detector declares Ĥ = 0 if

(ŵn, vn) ∈ Tn[PWV ]
δ̃
. Else, Ĥ = 1.

We next analyze the average of the type I and type II error probabilities achieved

by the above scheme averaged over the random ensemble of codebooks Cn and CnB.

Analysis of Type I error:

The system induced distribution when H = 0 is given by

P̃ (0)(sn, un, vn, j, wn,m, ĵ, ŵn)

=

[

n
∏

i=1

PSUV (si, ui, vi, zi)

]

PEu(j|un, Cn)✶(Wn(j) = wn)

✶(fB(j) = m) ✶(ĵ = PED(m, v
n)) ✶(Wn(ĵ) = ŵn), if un ∈ Tn[PU ]δ′

, (C.16)

and

P̃ (0)(sn, un, vn,m) =

[

n
∏

i=1

PSUV (si, ui, vi)

]

✶(m = 0), if un /∈ Tn[PU ]δ′
. (C.17)

Consider two auxiliary distribution Ψ̃ and Ψ defined as

Ψ̃(0)(sn, un, vn, j, wn,m, ĵ, ŵn)

:=

[

n
∏

i=1

PSUV (si, ui, vi)

]

PEu(j|un, Cn)✶(Wn(j) = wn)✶(fB(j) = m)

✶(ĵ = PED(m, v
n))✶(Wn(ĵ) = ŵn), (C.18)

and

Ψ(0)(sn, un, vn, j, wn,m, ĵ, ŵn)

:=
1

M ′
n

✶(Wn(j) = wn)

[

n
∏

i=1

PU |W (ui|wi)
][

n
∏

i=1

PV S|U (vi, si|ui)
]

✶(fB(j) = m) ✶(ĵ = PED(m, v
n)) ✶(Wn(ĵ) = ŵn). (C.19)
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Note that the distributions P̃ (0),Ψ(0) and Ψ̃(0) defined are r.v.’s, and depend on the

codebook realizations Cn and CnB. Also, observe that the stochastic encoder is chosen

such that PEu(j|un, Cn) = Ψ(0)(j|un) and hence, the only difference between the joint

distribution Ψ(0) and Ψ̃(0) is the marginal distribution of Un. By the soft-covering

lemma [68] [70], it follows that for some γ1 > 0,

ECn

[

‖Ψ(0)
Un − Ψ̃

(0)
Un‖

]

≤ e−nγ1
(n)−−→ 0. (C.20)

Hence, from (C.20) and Property 4.4.1(c), we have

ECn

[

‖Ψ(0) − Ψ̃(0)‖
]

≤ e−nγ1 , (C.21)

where the distributions Ψ(0) and Ψ̃(0) are over the r.v.’s given in (C.18). Also, note that

the only difference between the distributions P̃ (0) and Ψ̃(0) is PEu when un /∈ Tn[PU ]δ′
.

Since

P(Un /∈ Tn[PU ]δ′
|H = 0) ≤ e−nΩ(δ′), (C.22)

it follows that

ECn

[

‖P̃ (0) − Ψ̃(0)‖
]

≤ e−nΩ(δ′). (C.23)

Equations (C.21) and (C.23) together imply via Property 4.4.1(b) that

ECn

[

‖P̃ (0) −Ψ(0)‖
]

≤ e−nΩ(δ′) + e−γ1n
(n)−−→ 0. (C.24)

This means that for large n, the system distribution P̃ (0) induced by encoding and

decoding operations (when H0 is the true hypothesis) can be approximated by that

under Ψ(0). Let P̃ (1) and Ψ̃(1) be defined by the R.H.S. of (C.16), (C.17) and (C.18),

with PSUV replaced by QSUV . Let Ψ(1) denote the R.H.S. of (C.19) with PV S|U

replaced by QV S|U . Note that under joint distribution Ψ(l), l ∈ {0, 1},

Si − (Wi(J), Vi)− (M,Wn(J), V n), i ∈ [n]. (C.25)
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Also, since IP (U ;W ) + µ > 0, by the application of soft-covering lemma,

ECn

[

n
∑

i=1

‖PW −Ψ
(l)
Wi

(J)‖
∣

∣H = l

]

≤ e−γ3n
(n)−−→ 0, l = 0, 1, (C.26)

for some γ3 > 0.

If QU = PU , then it again follows from the soft-covering lemma that

ECn

[

‖Ψ(1)
Un − Ψ̃

(1)
Un‖

]

≤ e−γ1n
(n)−−→ 0, (C.27)

thereby implying that

ECn

[

‖Ψ(1) − Ψ̃(1)‖
]

≤ e−γ1n, (C.28)

where the distributions Ψ(1) and Ψ̃(1) are over the r.v.’s given in (C.18). Also, note that

the only difference between the distributions P̃ (1) and Ψ̃(1) is PEu when un /∈ Tn[PU ]δ′
.

Since QU = PU implies P(Un /∈ Tn[PU ]δ′
|H = 1) ≤ e−nΩ(δ′), it follows that

ECn

[

‖P̃ (1) − Ψ̃(1)‖
]

≤ e−nΩ(δ′). (C.29)

Eqns. (C.28) and (C.29) together imply that

ECn

[

‖P̃ (1) −Ψ(1)‖
]

≤ e−nΩ(δ′) + e−γ1n
(n)−−→ 0. (C.30)

This means that for large n, the system distribution P̃ (1) induced by encoding and

decoding operations when H1 is the true hypothesis can be approximated by that

under Ψ(1).

Also, from (C.19), (C.24) and (C.26) and the weak law of large numbers,

P((Un,Wn(J)) ∈ Tn[PUW ]δ
|H = 0) ≥ 1− e−nΩ(δ) (n)−−→ 1. (C.31)

A type I error occurs only if one of the following events happen:

ETE =
{

(Un, V n) /∈ Tn[PUV ]δ̄

}

,
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ESE = {T /∈ Tn[PUW ]δ
},

EME =
{

(V n,Wn(J)) /∈ Tn[PV W ]
δ̃

}

,

EDE =

{

∃ l ∈
[

en(I(U ;W )+δ′)
]

, l 6= J : fB(l) = fB(J), W
n(l) ∈ Tn[PW ]

δ̂
,

He(W
n(l)|V n) ≤ He(W

n(J)|V n)

}

.

Let E := ETE ∪ ESE ∪ EME ∪ EDE . Then, the type I error can be upper bounded as

α(f (n)) := inf
g(n)

α(f (n), g(n)) ≤ P(E|H = 0).

P(ETE) tends to 0 asymptotically by the weak law of large numbers. From (C.31),

P(ESE)
(n)−−→ 0. Given EcSE and EcTE holds, it follows from the Markov chain relation

V − U −W and the Markov lemma [72], that P(EME)
(n)−−→ 0. Also, as in the proof of

Theorem 2.2, it follows that

P(EDE | V n = vn,Wn(J) = wn, EcME ∩ EcSE ∩ EcTE , H = 0)

≤ e−n(R−IP (U ;W |V )−δ(n)
1 ), (C.32)

where δ
(n)
1

(n)−−→ µ + O(δ). Thus, if R > IP (U ;W |V ), it follows by choosing µ =

O(δ) appropriately, that for δ > 0 small enough, the R.H.S. of (C.32) tends to zero

asymptotically. By the union bound, α(f (n))
(n)−−→ 0.

Analysis of Type II error:

Note that a type II error occurs only if V n ∈ Tn[PV ]δ′′
, δ′′ = |W|δ̃, and M 6= 0, i.e.,

Un ∈ Tn[PU ]δ′
and T ∈ Tn[PUW ]δ

. Hence, we can restrict the type II error analysis to only

such (Un, V n). Denote the event that a type II error happens by D0. The type II error

probability can be written as

β(f (n), ǫ) =
∑

(un,vn)∈ Un×Vn

P(Un = un, V n = vn|H = 1)

P(D0|Un = un, V n = vn, H = 1). (C.33)
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Let ENE := EcSE ∩{V n ∈ Tn[V ]δ′′
}∩{Un ∈ Tn[U ]δ′

}. The last term in (C.33) can be upper

bounded as follows.

P(D0|Un = un, V n = vn, H = 1)

= P(ENE |Un = un, V n = vn, H = 1) P(D0|Un = un, V n = vn, ENE , H = 1)

≤ P(D0|Un = un, V n = vn, ENE , H = 1).

By averaging over all codebooks Cn, CnB and using the symmetry of the codebook

generation, encoding and decoding procedure, we can write,

P(D0| Un = un, V n = vn, ENE , H = 1)

=
∑

wn∈Wn

P(Wn(1) = wn|Un = un, V n = vn, J = 1, fB(J) = 1, ENE , H = 1)

P(D0|Un = un, V n = vn, J = 1, fB(J) = 1,Wn(1) = wn, ENE , H = 1). (C.34)

The first term in (C.34) can upper bounded as

P(Wn(1) = wn|Un = un, V n = vn, J = 1, fB(J) = 1, ENE , H = 1)

≤ 1

|TP
W̃ |Ũ

| ≤ e−n(H(W̃ |Ũ)− 1
n
|U||W| log(n+1)). (C.35)

To obtain (C.35), we used the fact that PEu(1|un, Cn) in (C.15) is invariant to the joint

type TP
ŨW̃

of (Un,Wn(1)) = (un, wn) (keeping all the other codewords fixed), which

in turn implies that given ENE and the type PŨ of Un = un, each sequence in the

conditional type TP
W̃ |Ũ

is equally likely (in the randomness induced by the random

codebook generation and stochastic encoding in (C.15)) and its probability is upper

bounded by 1
|TP

W̃ |Ũ
| . Defining the events

EBE :=
{

∃ l ∈
[

M ′
n

]

, l 6= J, fB(l) =M, Wn(l)) ∈ Tn[PW ]
δ̂
,

(V n,Wn(l)) ∈ Tn[PV W ]
δ̃

}

, (C.36)

F := {Un = un, V n = vn, J = 1, fB(J) = 1,Wn(1) = wn, ENE}, (C.37)

F1 := {Un = un, V n = vn, J = 1, fB(J) = 1,Wn(1) = wn, ENE , EcBE}, (C.38)
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and

F2 := {Un = un, V n = vn, J = 1, fB(J) = 1,Wn(1) = wn, ENE , EBE}, (C.39)

the last term in (C.34) can be written as

P(D0|F , H = 1) =P(EcBE |F , H = 1) P(D0|F1, H = 1)

+ P(EBE |F , H = 1) P(D0|F2, H = 1). (C.40)

The analysis of the terms in (C.40) is essentially similar to that given in the proof of

Theorem 2.2, except for a subtle difference that we mention next. In order to bound

the binning error event EBE , we require a bound similar to

P (Wn(l) = w̃n|F) ≤ 2 P(Wn(l) = w̃n), ∀ w̃n ∈ Wn, (C.41)

that is used in the proof of Theorem 2.2. Note that the stochastic encoding scheme

considered here is different from the one in Theorem 2.2. In place of (C.41), we will

show that for l 6= 1,

P(Wn(l) = w̃n| F) ≤ (1 + o(1)) P(Wn(l) = w̃n).

We can write

P(Wn(l) = w̃n|F)

= P(Wn(l) = w̃n|Un = un, V n = vn)
P(Wn(1) = wn|Wn(l) = w̃n, Un = un, V n = vn)

P(Wn(1) = wn|Un = un, V n = vn)

P(J = 1|Wn(1) = wn,Wn(l) = w̃n, Un = un, V n = vn)

P(J = 1|Wn(1) = wn, Un = un, V n = vn)
(C.42)

P(fB(J) = 1|J = 1,Wn(1) = wn,Wn(l) = w̃n, Un = un, V n = vn)

P(fB(J) = 1|J = 1,Wn(1) = wn, Un = un, V n = vn)

P(ENE |fB(J) = 1, J = 1,Wn(1) = wn,Wn(l) = w̃n, Un = un, V n = vn)

P(ENE |fB(J) = 1, J = 1,Wn(1) = wn, Un = un, V n = vn)
.
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Since the codewords are generated independently of each other and the binning oper-

ation is done independent of the codebook generation, we have

P(Wn(1) = wn|Wn(l) = w̃n, Un = un, V n = vn)

= P(Wn(1) = wn|Un = un, V n = vn),

and

P(fB(J) = 1|J = 1,Wn(1) = wn,Wn(l) = w̃n, Un = un, V n = vn)

= P(fB(J) = 1|J = 1,Wn(1) = wn, Un = un, V n = vn). (C.43)

Also, note that

P(ENE |fB(J) = 1, J = 1,Wn(1) = wn,Wn(l) = w̃n, Un = un, V n = vn)

= P(ENE |fB(J) = 1, J = 1,Wn(1) = wn, Un = un, V n = vn).

Next, consider the term in (C.42). Let

F ′ := {Wn(1) = wn, Un = un, V n = vn},

F ′′ := {Wn(1) = wn,Wn(l) = w̃n, Un = un, V n = vn},

Cnl := Cn\{Wn(1)},

and Cn1,l := Cn\{Wn(1),Wn(l)}.

Then, the numerator and denominator of (C.42) can be written as,

P(J = 1|F ′′)

= ECn
1,l|F ′′

[

∏n
i=1 PU |W (ui|wi)

∏n
i=1 PU |W (ui|wi) +

∏n
i=1 PU |W (ui|w̃i) +

∑

j 6=1,l

∏n
i=1 PU |W (ui|Wi(j))

]

≤ ECn
1,l|F ′′

[

∏n
i=1 PU |W (ui|wi)

∏n
i=1 PU |W (ui|wi) +

∑

j 6=1,l

∏n
i=1 PU |W (ui|Wi(j))

]

, (C.44)
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and

P(J = 1|F ′) = ECn
1 |F ′

[

∏n
i=1 PU |W (ui|wi)

∏n
i=1 PU |W (ui|wi) +

∑

j 6=1

∏n
i=1 PU |W (ui|Wi(j))

]

, (C.45)

respectively. Note that Cn1 and Cn1,l consists of codewords that are distributed i.i.d.

according to
∏n
i=1 PW given F ′ and F ′′, respectively. The R.H.S. of (C.44) (resp.

(C.45)) denote the average probability that J = 1 is chosen by the stochastic encoder

PEu given Wn(1) = wn, Un = un and ⌈M ′
n⌉ − 2 (resp. ⌈M ′

n⌉ − 1) other independent

codewords in the codebook. Note that for Wn(j) = wn(j),

n
∏

i=1

PU |W (ui|wi(j)) = e
−n

(

H(Ũ |W̃j)+D(P
Ũ|W̃j

||PU|W |P
W̃j

)
)

, (C.46)

where PŨW̃j
denote the joint type of (un, wn(j)). Since each term of the form above

is exponentially decreasing in n, it follows that the term inside the square braces in

(C.44) and (C.45) differ (significantly) asymptotically only if the event

E lmax :=

{

n
∏

i=1

PU |W (ui|Wi(l)) ≥ max

({

n
∏

i=1

PU |W (ui|Wi(j)), j ∈ ⌈M ′
n⌉\{1}

}

∪
{

n
∏

i=1

PU |W (ui|wi)
})}

, (C.47)

occurs, and being probabilities, the difference is atmost 1. Since the probability of the

event E lmax decreases as 2−e
n(IP (U ;W )+µ)

with n , we have that

P(J = 1|F ′′)
P(J = 1|F ′)

≤
ECn

1,l|F ′′

[ ∏n
i=1 PU|W (ui|wi)

∏n
i=1 PU|W (ui|wi)+

∑

j 6=1,l

∏n
i=1 PU|W (ui|Wi(j))

]

ECn
1 |F ′

[ ∏n
i=1 PU|W (ui|wi)

∏n
i=1 PU|W (ui|wi)+

∑

j 6=1

∏n
i=1 PU|W (ui|Wi(j))

]

≤
(1 + o(1))ECn

1,l|F ′′

[ ∏n
i=1 PU|W (ui|wi)

∏n
i=1 PU|W (ui|wi)+

∑

j 6=1,l

∏n
i=1 PU|W (ui|Wi(j))

]

ECn
1,l|F ′′

[ ∏n
i=1 PU|W (ui|wi)

∏n
i=1 PU|W (ui|wi)+

∑

j 6=1,l

∏n
i=1 PU|W (ui|Wi(j))

]

− 2−(en(IP (U ;W )+µ)−1)

≤ 1 + o(1), (C.48)

where the final inequality in (C.48) follows since the term within the expectation

which is exponential in order dominates the double exponential term 2−e
n(IP (U ;W )+µ)

.
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The analysis of the other terms in (C.40) is the same as in the SHA scheme in [11] and

follows similar2 to Theorem 2.2. This results in the error-exponent (within a additive

O(δ) term) claimed in the Theorem. By the random coding argument followed by

the standard expurgation technique [21] (see also proof of Theorem 2.2), there exists a

deterministic codebook pair (Cn, CnB) such that the type I and type II error probabilities

are within a constant multiplicative factor of their average values over the random

ensemble, and

Si − (wi(J), Vi)− (M,wn(J), V n), i ∈ [n], (C.49)

‖P̃ (0) −Ψ(0)‖ ≤ e−γ4n, (C.50)

‖P̃ (1) −Ψ(1)‖ ≤ e−γ4n, if QU = PU , (C.51)

and
n
∑

i=1

‖PW −Ψ(l)
wi
(J)‖ ≤ e−γ5n l = 0, 1, (C.52)

where γ4 and γ5 are some positive numbers. Since the average type I error probability

for our scheme tends to zero asymptotically, and the error-exponent is unaffected by a

constant multiplicative scaling of the type II error probability, this codebook achieves

the same type I error probability and error-exponent as the average over the random

ensemble. Using this deterministic codebook for encoding and decoding, we first lower

bound the equivocation and average distortion of Sn at the detector as follows:

First consider the equivocation of Sn under the null hypothesis.

H(Sn|M,V n, H = 0)

≥ P(M 6= 0|H = 0)H(Sn|M 6= 0, V n, H = 0)

≥ (1− e−nΩ(δ)) H(Sn|M 6= 0, V n, H = 0) (C.53)

≥ (1− e−nΩ(δ)) H(Sn|wn(J), V n, H = 0) (C.54)

= (1− e−nΩ(δ)) HP̃ (0)(S
n|wn(J), V n) (C.55)

≥ (1− e−nΩ(δ)) HΨ(0)(Sn|wn(J), V n)− 2e−γ4n log

( |S|n|V|n
e−γ4n

)

(C.56)

2In Theorem 2.2, the communication channel between the observer and the detector is a DMC.
However, since the coding scheme is a separation based scheme, the type II error-exponent when the
channel is noiseless can be recovered by setting E3(·) and E4(·) in Theorem 2.2 to ∞.
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=

n
∑

i=1

HΨ(0)(Si|wi(J), Vi)− e−nΩ(δ)
n
∑

i=1

HΨ(0)(Si|wi(J), Vi)− o(1) (C.57)

≥
n
∑

i=1

HΨ(0)(Si|wi(J), Vi)− ne−nΩ(δ)HP (S|V )− o(1) (C.58)

=

[

n
∑

i=1

HΨ(0)(Si|wi(J), Vi)
]

− o(1) (C.59)

= nHP (S|W,V )− o(1). (C.60)

Here, (C.53) follows from (C.22); (C.54) follows since M is a function of wn(J) for

a deterministic codebook; (C.56) follows from (C.50) and Lemma 4.3; (C.57) follows

from (C.19); and (C.60) follows from (C.52) and Ψ
(0)
SiVi|wi

= P
(0)
SV |W , i ∈ [n].

If QU = PU , it follows similarly to above that

H(Sn|M,V n, H = 1)

≥ (1− e−nΩ(δ)) HΨ(1)(Sn|wn(J), V n)− 2e−γ4n log

( |S|n|V|n
e−γ4n

)

(C.61)

=
n
∑

i=1

HΨ(1)(Si|wi(J), Vi)− e−nΩ(δ)
n
∑

i=1

HΨ(1)(Si|wi(J), Vi)− o(1) (C.62)

≥
n
∑

i=1

HΨ(1)(Si|wi(J), Vi)− ne−nΩ(δ)HQ(S|V )− o(1) (C.63)

=

[

n
∑

i=1

HΨ(1)(Si|wi(J), Vi)
]

− o(1) (C.64)

= nHQ(S|W,V )− o(1). (C.65)

Finally, consider the case H = 1 and QU 6= PU . We have for δ′ small enough that,

P (M = 0|H = 1) = P
(

Un /∈ Tn[PU ]δ′
|H = 1

)

≥ 1− e−n(D(PU ||QU )−O(δ′)) (n)−−→ 1. (C.66)

Hence, for δ′ small enough, we can write

H(Sn|M,V n, H = 1) ≥ H(Sn|M,V n, IU (U
n, δ′), H = 1)

≥
(

1− e−n(D(PU ||QU )−O(δ′))
)

H(Sn|M,V n, IU (U
n, δ′) = 1, H = 1) (C.67)
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=
(

1− e−n(D(PU ||QU )−O(δ′))
)

H(Sn|V n, IU (U
n, δ′) = 1, H = 1) (C.68)

≥
(

1− e−n(D(PU ||QU )−O(δ′))
)

(H(Sn|V n, H = 1)− o(1)) (C.69)

= nHQ(S|V )− ne−n(D(PU ||QU )−O(δ′))HQ(S|V )− o(1) = nHQ(S|V )− o(1). (C.70)

Here, (C.67) follows from (C.66); (C.68) follows since IU (U
n, δ′) = 1 implies M = 0;

(C.69) follows from Lemma 4.3 and (4.14). Thus, since δ > 0 is arbitrary, we have

shown that for ǫ ∈ (0, 1), (R, κ,Λ0,Λ1) ∈ Rs
e(ǫ) if (4.17)-(4.20) holds.

On the other hand, average distortion of Sn at the detector can be lower bounded

under H = 0 as follows:

min
g
(n)
r

E
[

d
(

Sn, Ŝn
)

|H = 0
]

= min
{φ̄i(m,vn)}ni=1

EP̃ (0)

[

n
∑

i=1

d
(

Si, φ̄i(M,V n)
)

]

(C.71)

≥ min
{φ̄i(m,vn)}ni=1

EΨ(0)

[

n
∑

i=1

d(Si, φ̄i(M,V n))

]

− ne−nγ4Dm (C.72)

≥ min
{φ̄i(·,·)}ni=1

EΨ(0)

[

n
∑

i=1

d(Si, φ̄i(wi(J), Vi))

]

− ne−nγ4Dm (C.73)

≥ n min
{φ(·,·)}

EP [d(S, φ(W,V ))]− n
(

e−nγ4 + e−nγ5
)

Dm. (C.74)

= n min
{φ(·,·)}ni=1

EP [d(S, φ(W,V ))]− o(1). (C.75)

Here, (C.71) follows from Lemma 4.2; (C.72) follows from (C.50) and boundedness of

distortion measure; (C.73) follows from (C.49); (C.74) follows from (C.52) and the fact

that Ψ
(0)
SiVi|wi

= P
(0)
SV |W , i ∈ [n].

Next, consider that the alternate hypothesis holds and that QU = PU . Then, simi-

larly to above, we can write

min
g
(n)
r

E
[

d
(

Sn, Ŝn
)

|H = 1
]

= min
{φ̄i(m,vn)}ni=1

EP̃ (1)

[

n
∑

i=1

d (Si, φi(M,V n))

]

≥ min
{φ̄i(m,vn)}ni=1

EΨ(1)

[

n
∑

i=1

d(Si, φi(M,V n))

]

− ne−nγ4Dm (C.76)
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≥ min
{φi(·,·)}ni=1

EΨ(1)

[

n
∑

i=1

d(Si, φi(wi, Vi))

]

− ne−nγ4Dm (C.77)

≥ n min
{φ(·,·)}ni=1

EQ [d(S, φ(W,V ))]− n(e−nγ4 + e−nγ5)Dm. (C.78)

= n min
{φ(·,·)}ni=1

EQ [d(S, φ(W,V ))]− o(1). (C.79)

If QU 6= PU , we have

min
g
(n)
r

E
[

d
(

Sn, Ŝn
)

|H = 1
]

≥ P (M = 0|H = 1) min
{φ̄i(m,vn)}ni=1

n
∑

i=1

EP̃ (1) [d (Si, φi(0, V
n))]

≥ P (M = 0|H = 1)

[

min
{φ′i(v)}ni=1

EQ

[

n
∑

i=1

d(Si, φ
′
i(Vi))

]

−Dmo(1)

]

(C.80)

= n min
{φ′(·)}

EQ
[

d(S, φ′(V ))
]

− o(1). (C.81)

Here, (C.80) follows from (4.14) in Lemma 4.4 and (C.81) follows from (C.66). Thus,

since δ > 0 is arbitrary, we have shown that (R, κ,∆0,∆1) ∈ Rd(ǫ), ǫ ∈ (0, 1), provided

that (4.17), (4.18), (4.24) and (4.25) are satisfied. This completes the proof of the

theorem.

C.5 Proof of Lemma ??

Consider the |U|+ 2 functions of PU |W ,

PU (ui) =
∑

w∈W
PW (w)PU |W (ui|w), i = 1, 2, . . . , |U| − 1, (C.82)

HP (U |W,Z) =
∑

w

PW (w)g1(PU |W , w), (C.83)

HP (Y |W,Z) =
∑

w

PW (w)g2(PU |W , w), (C.84)

HP (S|W,Y, Z) =
∑

w

PW (w)g3(PU |W , w), (C.85)
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where,

g1(PU |W , w) = −
∑

u,z

PU |W (u|w)PZ|U (z|u) log
(

PU |W (u|w)PZ|U (z|u)
∑

u PU |W (u|w)PZ|U (z|u)

)

,

g2(PU |W , w) = −
∑

y,z,u

PU |W (u|w)PY Z|U (y, z|u) log
(
∑

u PU |W (u|w)PY Z|U (y, z|u)
∑

u PU |W (u|w)PZ|U (z|u)

)

,

g3(PU |W , w) = −
∑

s,y,z,u

PU |W (u|w)PSY Z|U (s, y, z|u)

log

(
∑

u PU |W (u|w)PSY Z|U (s, y, z|u)
∑

u PU |W (u|w)PY Z|U (y, z|u)

)

.

Thus, by the Fenchel-Eggleston-Carathéodory’s theorem [72], it is sufficient to have at

most |U| − 1 points in the support of W to preserve PU and three more to preserve

HP (U |W,Z), HP (Y |W,Z) and HP (S|W,Z, Y ). Noting that HP (Y |Z) and HP (U |Z)
are automatically preserved since PU is preserved (and (Y, Z, S) − U − W holds),

|W| = |U| + 2 points are sufficient to preserve the R.H.S. of equations (4.28)-(4.30).

This completes the proof for the case of Re. Similarly, considering the |U|+1 functions

of PW |U given in (C.82)-(C.84) and

EP [d (S, φ(W,Y, Z))] =
∑

w

PW (w)g4(w,PW |U ), (C.86)

where, g4(w,PW |U ) =
∑

s,u,y,z

PU |W (u|w)PY ZS|U (y, z, s|u) d(s, φ(w, y, z)), (C.87)

similar result holds also for the case of Rd.



Appendix D

Proofs for Chapter 5

D.1 Proof of Theorem 5.3

By the equivalence in (5.6) and the fact that the region R̄∗
d (and also R∗

s) is defined

as a closed set, it is sufficient to show that (R,Rs,∆) ∈ R∗
s if,

R > I(W2;U |Z), (D.1)

Rs > H(V |W2, Z), (D.2)

and ∆ < min{ζs, ζp}min
φ′′(·)

E (da (U, φ(E))) + (ζs −min{ζs, ζp}) min
φ′(·,·)

E (da (U, φ(E,W1)))

+ (1− ζs) min
φ(·,·)

E (da (U, φ(E,W2))) . (D.3)

To show this, we will in fact consider a more general rate distortion problem described

in Section 5.4 and provide an inner bound for the region R∗
g. More specifically, we will

show that (R,Rs, D,∆) ∈ R∗
g if there exist auxiliary r.v.’s W , W1 and W2 with joint

distribution PUV EZBPW2|UPW1|W2
PW |V such that

R > I(W2;U |Z), (D.4)

Rs > I(V ;W |W2, Z), (D.5)

∆ < min{ζs, ζp}min
φ′′(·)

E (da (U, φ(E))) + (ζs −min{ζs, ζp}) min
φ′(·,·)

E (da (U, φ(E,W1)))

+ (1− ζs) min
φ(·,·)

E (da (U, φ(E,W2))) , (D.6)

and D > E(dl(V, V̂ )), (D.7)

where V̂ := φl(W,Z,W2) for some function φl : W×Z ×W2 7→ V̂. Our coding scheme

and its analysis are inspired from [75] and [67] respectively. The proof technique uses

the soft covering lemma and the standard random coding argument.

216
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Codebook generation: Fix a joint distribution PUV EZBPW2|UPW1|W2
PW |V and φl :

W ×Z ×W2 7→ V̂ satisfying (D.6) and (D.7). Assume that

I(E;W1) < I(Z;W1), (D.8)

and I(E;W2|W1) < I(Z;W2|W1), (D.9)

holds, so that ζp and ζs are strictly positive. The other cases can be handled similarly.

Let R′
s, R1, R

′
1, R2, R

′
2 be non-negative numbers that will be specified later, and let

R := R1 +R2. (D.10)

Codebook used by encoder of source V : Generate codewords Wn(m,m′), (m,m′) ∈
M × M′ := [2nRs ] × [2nR

′
s ], each independently drawn according to the distribution

∏n
i=1 PW . The indexM is transmitted whileM ′ is recovered by the legitimate receiver

using the side information Z and the message from the helper. Denote this random

codebook by Cnv .

Codebook used by encoder of source U : Generate codewords Wn
1 (m1,m

′
1), m1 ∈

[2nR1 ], m′
1 ∈ [2nR

′
1 ] drawn independently according to the distribution

∏n
i=1 PW1 . De-

note this codebook by Cnw1
. For each (m1,m

′
1), generate codewordsW

n
2 (m1,m

′
1,m2,m

′
2),

m2 ∈ [2nR2 ], m′
2 ∈ [2nR

′
2 ] independently drawn according to the distribution

∏n
i=1 PW2|W1

(w2i|W1i(m1,m
′
1)). Denote this codebook by Cnw2

. The indices (M1,M2)

are transmitted while (M ′
1,M

′
2) are not, but can be recovered by the legitimate receiver

using its side information Zn. Denote the two codebooks Cnw1
and Cnw2

together by Cnu .
The codebooks Cnu and Cnv are known to all the parties including the eavesdropper.

Encoder: We use a stochastic encoder that chooses messages according to the fol-

lowing probability:

PEu(m̌|un) =
∏n
i=1 PU |W2

(ui|W2i(m̌))
∑

m̃∈M̌
∏n
i=1 PU |W2(ui|W2i(m̃))

,

PEv(m,m
′|vn) =

∏n
i=1 PV |W (vi|Wi(m,m

′))
∑

m̃∈M×M′

∏n
i=1 PV |W (ui|Wi(m̃))

,

where m̌ ∈ M̌ := [2nR1 ]× [2nR
′
1 ]× [2nR2 ]× [2nR

′
2 ] and (m,m′) ∈ M×M′. Note that
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this probability is a random variable that depends on the codebook realization. The

messages (M1,M2) and M are transmitted over the respective noiseless channels.

Decoder: The decoder first uses a good channel decoding rule PD1(m̂
′
1, m̂

′
2|m1,m2, z

n)

to estimate the messages (M ′
1,M

′
2) using the side information Zn. Note that Zn can

be considered as the channel output of discrete memoryless channel
∏n
i=1 PZ|W2

us-

ing the superposition channel sub-codebook {Wn
2 (m1,m

′
1,m2,m

′
2)} for transmission of

messages (M ′
1,M

′
2). Next, the message index M ′ is decoded similarly by using a good

channel decoding rule for the transmission of messages M ′ over a memoryless channel
∏n
i=1 PZW2|W using the sub-codebook {Wn(m,m′)}. The decoder for the source U can

be considered to be composed of two parts, PDM
u
(m̂′

1, m̂
′
2|m1,m2, z

n) which is a good

channel decoder and PDu given by

PDu(ŵ
n
2 |m1, m̂

′
1,m2, m̂

′
2) = ✶(Wn

2 (m1, m̂
′
1,m2, m̂

′
2) = ŵn2 ).

Similarly the decoder for source V is composed of two parts, a good channel decoder

PDM
v
(m̂′|m, ŵn2 , zn) and a symbol by symbol reconstruction given as

PDv(v̂
n|m, m̂′, ŵn2 , z

n) =
n
∏

i=1

✶(φl(ŵi(m, m̂
′), ŵ2i, zi) = v̂i).

Analysis: Note that (5.2) is satisfied by definition in the above scheme. The joint

distribution induced by the encoding and decoding operations is given as follows:

P̃ (en, bn, zn, un,m1,m
′
1,m2,m

′
2, w

n
1 , w

n
2 , v

n,m,m′, wn, m̂′
1, m̂

′
2, ŵ

n
2 , m̂

′, v̂n)

= PEnBnZnUnV n(en, bn, zn, un, vn)PEu(m1,m
′
1,m2,m

′
2|un)PWn

1 |M1M ′
1
(wn1 |m1,m

′
1)

PWn
2 |Wn

1 (M1,M ′
1)M2M ′

2
(wn2 |wn1 ,m2,m

′
2) PEv(m,m

′|vn) PWn|MM ′(wn|m,m′)

PDM
u
(m̂′

1, m̂
′
2|m1,m2, z

n) PDu(ŵ
n
2 |m1, m̂

′
1,m2, m̂

′
2) PDM

v
(m̂′|m, ŵn2 , zn)

PDv(v̂
n|m, m̂′, ŵn2 , z

n)

=

[

n
∏

i=1

PEBZUV (ei, bi, zi, ui, vi)

]

PEu(m1,m
′
1,m2,m

′
2|un)✶(Wn

1 (m1,m
′
1) = wn1 )

✶(Wn
2 (m1,m

′
1,m2,m

′
2) = wn2 ) PEv(m,m

′|vn)✶(Wn(m,m′) = wn)

PDM
u
(m̂′

1, m̂
′
2|m1,m2, z

n)✶(Wn
2 (m1, m̂

′
1,m2, m̂2 = ŵn2 )PDM

v
(m̂′|m, ŵn2 , zn)
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PDv(v̂
n|m, m̂′, ŵn2 , z

n).

Define an auxiliary distribution

Q(en, bn, zn, un,m1,m
′
1,m2,m

′
2, w

n
1 , w

n
2 , v

n,m,m′, wn, m̂′
1, m̂

′
2, ŵ

n
2 , m̂

′, v̂n)

:= QM1M ′
1M2M ′

2
(m1,m

′
1,m2,m

′
2) QWn

1 |M1,M ′
1
(wn1 |m1,m

′
1)

QWn
2 |Wn

1 (M1,M ′
1)M2M ′

2
(wn2 |wn1 ,m2,m

′
2) QUn|Wn

2 (M1,M ′
1,M2,M ′

2)
(un|wn2 (m1,m

′
1,m2,m

′
2))

QZnV nEnBn|Un(zn, vn, en, bn|un) QM̂ ′
1M̂

′
2|ZnM1M2

(m̂′
1, m̂

′
2|zn,m1,m2)

QŴn
2 |M1M̂ ′

1M2M̂ ′
2
(ŵn2 |m1, m̂

′
1,m2, m̂

′
2) QMM ′|V n(m,m′|vn) QWn|MM ′(wn|m,m′)

QM̂ ′|ZnŴn
2 M

(m̂′|zn, ŵn2 ,m) QV̂ n|MM̂ ′Ŵn
2 Z

n(v̂
n|m, m̂′, ŵn2 , z

n)

:=
1

2n(R1+R′
1+R2+R′

2)
✶
(

Wn
1 (m1,m

′
1) = wn1

)

✶
(

Wn
2 (m1,m

′
1,m2,m

′
2) = wn2

)

[

n
∏

i=1

PU |W2
(ui|w2i(m1,m

′
1,m2,m

′
2))

] [

n
∏

i=1

PZV EB|U (zi, vi, ei, bi|ui)
]

PDM
u
(m̂′

1, m̂
′
2|zn,m1,m2) ✶(W

n
2 (m1, m̂

′
1,m2, m̂

′
2) = ŵn2 ) ×

[

PEv(m,m
′|vn) ✶(Wn(m,m′) = wn) PDM

v
(m̂′|m, ŵn2 , zn) PDv(v̂

n|m, m̂′, ŵn2 , z
n)
]

:= QH
M1M ′

1M2M ′
2W

n
1 W

n
2 U

nZnV nEnBnM̂ ′
1M̂

′
2Ŵ

n
2
(m1,m2,m

′
1,m

′
2, w

n
1 , w

n
2 , u

n, zn,

vn, en, bn, m̂′
1, m̂

′
2, ŵ

n
2 )·

QS
MM ′WnM̂ ′V̂ n|V nZnŴn

2
(m,m′, wn, m̂′, v̂n|vn, zn, ŵn2 ).

Define

Q(1)(m1,m2,m
′
1,m

′
2, w

n
1 , w

n
2 , u

n, zn, m̂′
1, m̂

′
2, ŵ

n
2 , e

n, vn, bn,m,m′, wn, m̂′, v̂n)

:= QM1M ′
1M2M ′

2W
n
1 W

n
2 U

nZnV nEnBnM̂ ′
1M̂

′
2
(m1,m2,m

′
1,m

′
2, w

n
1 , w

n
2 , u

n, zn,

vn, en, bn, m̂′
1, m̂

′
2)

PDu(ŵ
n
2 |m1,m

′
1,m2,m

′
2) Q

S(m,m′, wn, m̂′, v̂n|vn, zn, ŵn2 )

:= QM1M ′
1M2M ′

2W
n
1 W

n
2 U

nZnV nEnBnM̂ ′
1M̂

′
2
(m1,m2,m

′
1,m

′
2, w

n
1 , w

n
2 , u

n, zn,

vn, en, bn, m̂′
1, m̂

′
2)

PDu(ŵ
n
2 |m1,m

′
1,m2,m

′
2) PEv(m,m

′|vn) ✶(Wn(m,m′) = wn)
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PDM
v
(m̂′|m, ŵn2 , zn) PDv(v̂

n|m, m̂′, ŵn2 , z
n).

Note that the only difference between Q and Q(1) is the term PDu , the part of the

decoder that obtains the reconstruction sequence Ŵn
2 . In Q(1), the actual messages

(m′
1,m

′
2) intended by the encoder is used by PDu instead of the estimates m̂′

1, m̂
′
2.

Taking expectation with respect to the codebook Cu, we obtain

ECn
u

[

Q
(1)

UnZnŴn
2

]

= PUnZnWn
2
:=

n
∏

i=1

PUZW2 .

Let

Q̄
(1)

UnZnV nEnBnŴn
2 MM ′WnV̂ n

(un, zn, vn, en, bn, ŵn2 ,m,m
′, wn, m̂′, v̂n)

:= ECn
u

[

Q
(1)

UnZnV nEnBnŴn
2 MM ′WnV̂ n

(un, zn, vn, en, bn, ŵn2 ,m,m
′, wn, m̂′, v̂n)

]

=

[

n
∏

i=1

PUZV EBW2(ui, zi, vi, ei, bi, ŵ2i)

]

QS
MM ′WnM̂ ′V̂ n|V nZnŴn

2
(m,m′, wn, m̂′, v̂n|vn, zn, ŵn2 ).

It is easy to see that the likelihood encoder PEu is chosen such that

PEu = QM1M ′
1M2M ′

2|Un . (D.11)

Let

QH
M1M ′

1M2M ′
2W

n
1 W

n
2 U

nZnV nEnBnM̂ ′
1M̂

′
2Ŵ

n
2
(m1,m

′
1,m2,m

′
2, w

n
1 , w

n
2 , u

n, zn, vn, en, bn,

m̂′
1, m̂

′
2, ŵ

n
2 )

= QUn(un)PEu(m1,m
′
1,m2,m

′
2|un) PWn

1 |M1M ′
1
(wn1 |m1,m

′
1)

PWn
2 |Wn

1 (M1,M ′
1)M2M ′

2
(wn2 |wn1 ,m2,m

′
2)

[

n
∏

i=1

PZV EB|U (zi, vi, ei, bi|ui)
]

PDM
u
(m̂′

1, m̂
′
2|m1,m2, z

n) PDu(ŵ
n
2 |m1, m̂

′
1,m2, m̂

′
2).
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Observe that the only difference between QH and P̃ is the marginal distribution of U .

By Lemma 5.2, it follows that

ECn
u

[

‖QHU − P̃U

]

‖ ≤ e−δ1n,

provided

R1 +R′
1 > I(U ;W1), (D.12)

and R2 +R′
2 > I(U ;W2|W1). (D.13)

Applying Property 4.4.1 (c), we get

ECn
u

[

‖QH
M1M ′

1M2M ′
2W

n
1 W

n
2 U

nZnV nEnBnM̂ ′
1M̂

′
2Ŵ

n
2
− P̃M1M ′

1M2M ′
2W

n
1 W

n
2 U

nZnV nEnBnM̂ ′
1M̂

′
2Ŵ

n
2
‖
]

≤ e−δ1n.

Since the messages M1,M
′
1,M2,M

′
2 are uniformly distributed under the joint distribu-

tion QH , it is well known that if

R′
1 < I(W1;Z), (D.14)

and R′
2 < I(W2;Z|W1), (D.15)

then, a maximum likelihood decoder achieves a asymptotically vanishing decoding error

probability i.e.,

ECn
u

[

Pr(M̂ ′
1, M̂

′
2) 6= (M ′

1,M
′
2)
]

≤ ǫ′n
(n)−−→ 0,

where the probability is evaluated based on the joint distributionQH . Hence by Lemma

5.1, we have

ECn
u

[

‖Q(1)

M1M ′
1M2M ′

2W
n
1 W

n
2 U

nZnV nEnBnM̂ ′
1M̂

′
2Ŵ

n
2

−QH
M1M ′

1M2M ′
2W

n
1 W

n
2 U

nZnV nEnBnM̂ ′
1M̂

′
2Ŵ

n
2
‖
]

≤ ǫ′n
(n)−−→ 0.
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Applying Property 4.4.1(c) yields

ECn
u

[

‖Q(1)

M1M ′
1M2M ′

2W
n
1 W

n
2 U

nZnV nEnBnM̂ ′
1M̂

′
2Ŵ

n
2 MM ′WnM̂ ′V̂ n

−

P̃M1M ′
1M2M ′

2W
n
1 W

n
2 U

nZnV nEnBnM̂ ′
1M̂

′
2Ŵ

n
2 MM ′WnM̂ ′V̂ n‖

]

= ECn
u

[

‖Q(1)

M1M ′
1M2M ′

2W
n
1 W

n
2 U

nZnV nEnBnM̂ ′
1M̂

′
2Ŵ

n
2

−

P̃M1M ′
1M2M ′

2W
n
1 W

n
2 U

nZnV nEnBnM̂ ′
1M̂

′
2Ŵ

n
2
‖
]

≤ ECn
u

[

‖Q(1) −QH‖
]

+ ECn
u

[

‖QH − P̃‖
]

≤ e−δ1n + ǫ′n := δ2n
(n)−−→ 0,

and

ECn
u

[

EP̃

[

dl(V
n, V̂ n)

]]

≤
[

EQ̄(1)

[

dl(V
n, V̂ n)

]]

+Dl δ2n, (D.16)

In order to bound the first term in (D.16), we will use the results in Section IV in [67].

As shown there, Q̄(1) is equal to the distribution induced by the maximum likelihood

encoder PEv for the rate distortion problem with the source V and side information

(Z,W2) at the decoder (E and B are irrelevant for distortion analysis at the legitimate

receiver).

Let

Q
(3)

UnZnV nEnBnŴn
2 MM ′WnM̂ ′V̂ n

(un, zn, vn, en, bn, ŵn2 ,m,m
′, wn, m̂′, v̂n)

:=
1

2n(Rs+R′
s)
✶(Wn(m,m′) = wn)

n
∏

i=1

PV |W (vi|wi)PUZEBW2|V (ui, zi, ei, bi, ŵ2i|vi)

PDM
v
(m̂′|m, ŵn2 , zn) PDv(v̂

n|m,m′, ŵn2 , z
n).

Note that PDv uses the actual messages (m,m′) rather than estimates (m, m̂′) for

forming the reconstruction V̂ . It follows similar to [67, Equation (79)] that for some

δ3n
(n)−−→ 0, we have

ECn
v

[

‖Q̄(1)

UnZnV nEnBnŴn
2 MM ′WnM̂ ′V̂ n

−Q
(3)

UnZnV nEnBnŴn
2 MM ′WnM̂ ′V̂ n

‖
]

≤ δ3n,
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provided

Rs +R′
s > I(V ;W ), (D.17)

and R′
s < I(W ;W2, Z). (D.18)

Next, note that

ECn
v

[

Q
(3)

UnZnV nEnBnŴn
2 V̂

n

]

=

n
∏

i=1

PUZV EBW2φl(W ).

Thus, the average distortion at the legitimate receiver averaged over the random

codebook Cnv and Cnu can be bounded as

ECn
v

[

ECn
u

[

EP̃

[

dl(V
n, V̂ n)

]]]

= ECn
v

[

EQ̄(1)

[

dl(V
n, V̂ n)

]

+Daδ2n

]

≤ ECn
v

[

EQ(3)

[

dl(V
n, V̂ n)

]]

+Da (δ2n + δ3n)

= EP
[

dl(V
n, V̂ n)

]

+Da (δ2n + δ3n)

= EP
[

dl(V, V̂ )
]

+Da (δ2n + δ3n)

< D +Dl (δ2n + δ3n) . (D.19)

Analysis of distortion at eavesdropper:

For k ≥ 1, consider an auxiliary distribution

Q̂
(k)

M1M ′
1M2M ′

2W
n
1 E

nBk−1Uk
(m1,m

′
1,m2,m

′
2, w

n
1 , e

n, bk−1, uk) (D.20)

:=
1

2n(R1+R′
1+R2+R′

2)
✶(Wn

1 (m1,m
′
1) = wn1 )

n
∏

i=1

PE|W1
(ei|w1i)

k−1
∏

i=1

PB|EW1
(bi|ei, w1i)

PU |EW1
(uk|ek, w1k).

Note that the following Markov relation holds under Q̂(k),

Uk −
(

Ek,W1k(M1,M
′
1)
)

−
(

M1,M
′
1,M2,M

′
2, B

k−1, En
)

.
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Also, observe by definition that for fixed M2 = m2,

QM1M ′
1M

′
2E

nBk−1Uk|M2=m2
(m1,m

′
1,m

′
2, e

n, bk−1, uk)

=
1

2n(R1+R′
1+R

′
2)

n
∏

i=1

PE|W2
(ei|W2i(m1,m

′
1,m2,m

′
2))

[

k−1
∏

i=1

PB|EW2
(bi|ei,W2i(m1,m

′
1,m2,m

′
2))

]

PU |EW2
(uk|ek, w2k)

=
1

2n(R1+R′
1+R

′
2)

n
∏

i=1

PE|W2W1
(ei|W2i(m1,m

′
1,m2,m

′
2),W1i(m1,m

′
1))

[

k−1
∏

i=1

PB|EW2W1
(bi|ei,W2i(m1,m

′
1,m2,m

′
2),W1i(m1,m

′
1))

]

PU |EW2W1
(uk|ek,W2k(m1,m

′
1,m2,m

′
2),W1k(m1,m

′
1)).

Let

k2 :=
(R′

2 − I(W2;E|W1))n

I(B;W2|W1, E)
+
I(B;W2|W1, E)− I(U ;W2|B,W1, E)

I(B;W2|W1, E)
.

By the application of Lemma 5.2, it follows that for arbitrary fixed M2 = m2,

ECn
v

[

‖Q̂(k)

M1M ′
1E

nBk−1Uk
−QM1M ′

1E
nBk−1Uk

‖
]

≤ e−δ4n
(n)−−→ 0, 1 ≤ k < k2,

for some δ4 > 0, if1

R′
2 > I(E;W2|W1). (D.21)

Averaging over M2, we obtain

ECn
v

[

‖Q̂(k)

M1M ′
1M2EnBk−1Uk

−QM1M ′
1M2EnBk−1Uk

‖
]

≤ e−δ4n
(n)−−→ 0, ∀ k < k2.

Hence, for some δ5 > 0,

ECn
v

[

k2−1
∑

k=1

‖Q̂(k)

M1M ′
1M2EnBk−1Uk

−QM1M ′
1M2EnBk−1Uk

‖
]

≤ (k2 − 1)e−δ4n

≤ e−δ5n
(n)−−→ 0. (D.22)

1Note that a choice of R′
2 simultaneously satisfying (D.15) and (D.21) is possible due to (D.9).
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Also, identifying (W,Z,X, Y,R1, R2) with (∅,W1, ∅,W1, 0, R1 +R′
1) in Lemma 5.2, we

obtain that for all 1 ≤ i ≤ n and some δ6 > 0,

ECn
v

[

‖PW1 − Q̂
(i)
W1i

(M1,M
′
1)‖
]

≤ e−δ6n,

if R1 +R′
1 > I(∅;W1) = 0. Hence,

ECn
v

[

n
∑

i=1

‖PW1 − Q̂
(i)
W1i

(M1,M
′
1)‖
]

≤ ne−δ6n
(n)−−→ 0. (D.23)

For k ≥ 1, consider another auxiliary distribution,

Q̌
(k)

M1M ′
1M2M ′

2E
nBk−1Uk

(m1,m
′
1,m2,m

′
2, e

n, bk−1, uk)

:=
1

2n(R1+R′
1+R2+R′

2)

[

n
∏

i=1

PE(ei)

] [

k−1
∏

i=1

PB|E(bi|ei)
]

PU |E(uk|ek).

Note that under Q̌(k),

Uk − Ek −
(

M1,M
′
1,M2,M

′
2, B

k−1, En
)

.

By definition, for fixed M2 = m2 and M1 = m1,

QM ′
1M

′
2E

nBk−1Uk|M1=m1,M2=m2

=
1

2n(R
′
1+R

′
2)

[

n
∏

i=1

PE|W2
(ei|W2i(m1,m

′
1,m2,m

′
2))

]

[

k−1
∏

i=1

PB|EW2
(bi|ei,W2i(m1,m

′
1,m2,m

′
2))

]

PU |EW2
(uk|ek,W2k(m1,m

′
1,m2,m

′
2))

=
1

2n(R
′
1+R

′
2)

[

n
∏

i=1

PE|W2W1
(ei|W2i(m1,m

′
1,m2,m

′
2),W1i(m1,m

′
1))

]

[

k−1
∏

i=1

PB|EW2W1
(bi|ei,W2i(m1,m

′
1,m2,m

′
2),W1i(m1,m

′
1))

]

PU |EW2W1
(uk|ek,W2k(m1,m

′
1,m2,m

′
2),W1k(m1,m

′
1)).
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Let

k1 := min

(

k2,
(R′

1 − I(W1;E))n

I(B;W1|E)
+
I(B;W1|E)− I(U ;W1|B,E)

I(B;W1|E)

)

.

By an application of Lemma 5.2, it follows that for fixed M2 = m2,M1 = m1,

ECn
v

[

‖Q̌(k)

EnBk−1Uk
−QEnBk−1Uk

‖
]

≤ e−δ7n
(n)−−→ 0, 1 ≤ k < k1,

for some δ7 > 0, if (D.21) holds and

R′
1 > I(E;W1). (D.24)

Averaging over M2 and M1, we obtain

ECn
v

[

‖Q̌(k)

M1M2EnBk−1Uk
−QM1M2EnBk−1Uk

‖
]

≤ e−δ7n
(n)−−→ 0.

Hence, for some δ8 > 0, we have

ECn
v

[

k1−1
∑

k=1

‖Q̌(k)

M1M2EnBk−1Uk
−QM1M2EnBk−1Uk

‖
]

≤ (k1 − 1)e−δ7n

≤ e−δ8n
(n)−−→ 0. (D.25)

By identifying (W,Z,X, Y,R1, R2) in Lemma 5.2 with (W1,W2, ∅,W2, R1+R
′
1, R2+R

′
2),

it follows again from an application of Lemma 5.2 that for some δ9 > 0, we have

ECn
v

[

n
∑

i=1

‖PW2 −QW2i(M1,M
′
1,M2,M

′
2)‖
]

≤ e−δ9n
(n)−−→ 0, (D.26)

provided R1 + R′
1 > 0 and R2 + R′

2 > 0. By the random coding argument combined

with the standard expurgation technique, there exists a deterministic codebook Cnu and

Cnv such that (D.19), (D.22), (D.23), (D.25) and (D.26) are satisfied.

Now, the distortion at the eavesdropper can be lower bounded as follows:

min
{φi(·,·,·,·)}

[

n
∑

i=1

EP̃ (da(Ui, φi(M1,M2, E
n, B(i−1)))

]
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≥ min
{φi(·,·,·,·)}

[

n
∑

i=1

EQ(da(Ui, φi(M1,M2, E
n, B(i−1)))

]

− nDa

(

e−δ1n
)

(D.27)

Now consider the first term in (D.27). For 1 ≤ i < k1, we can write

min
{φi(m1,m2,en,bi−1)}

[

k1−1
∑

i=1

EQ(da(Ui, φi(M1,M2, E
n, B(i−1)))

]

≥ min
{φi(m1,m′

1,m2,m′
2,e

n,bi−1)}

[

k1−1
∑

i=1

EQ(da(Ui, φi(M1,M
′
1,M2,M

′
2, E

n, B(i−1)))

]

≥ min
{φi(ei)}

[

k1−1
∑

i=1

EQ̌(k1)(da(Ui, φi(Ei))

]

− k1e
−δ8nDa (D.28)

≥ (k1 − 1) min
{φ′′(e)}

EP (da(U, φ
′′(E))− ne−δ8nDa, (D.29)

where (D.28) follows from (D.25).

Similarly,

min
{φi(m1,m2,en,bi−1)}

[

k2−1
∑

i=k1

EQ(da(Ui, φi(M1,M2, E
n, B(i−1)))

]

≥ min
{φi(m1,m′

1,m2,m′
2,e

n,bi−1)}

[

k2−1
∑

i=k1

EQ(da(Ui, φi(M1,M
′
1,M2,M

′
2, E

n, B(i−1)))

]

≥ min
{φi(ei,w1i)}

[

k2−1
∑

i=k1

EQ̂(k2)(da(Ui, φi(Ei,W1i(M1,M
′
1)))

]

− ne−δ5nDa (D.30)

≥ (k2 − k1 − 1) min
{φ′(e,w1)}

EP (da(U, φ
′(E,W1))− n

(

e−δ5n + ne−δ6n
)

Da, (D.31)

where (D.30) follows from (D.22); and (D.31) follows from (D.23) by noting that

Q̂k2EiUi|W1i
= PEU |W1

.

The remaining terms inside the summation in (D.27) can be bounded as follows

min
{φi(m1,m2,en,bi−1)}

[

n
∑

i=k2

EQ(da(Ui, φi(M1,M2, E
n, B(i−1)))

]

≥ min
{φi(m1,m2,en,bi−1)}

[

n
∑

i=k2

EQ(da(Ui, φi(M1,M
′
1,M2,M

′
2, E

n, B(i−1)))

]
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≥ min
{φi(ei,w2i)}

[

n
∑

i=k2

EQ
(

da(Ui, φi(Ei,W2i(M1,M
′
1,M2,M

′
2))
)

]

= (n− k2 + 1) min
{φ(e,w2)}

EP (da(U, φ(E,W2))) , (D.32)

where (D.32) follows from (D.26). Next, note that

lim
n→∞

k2 − 1

n
=
R′

2 − I(W2;E|W1)

I(B;W2|W1, E)
,

and lim
n→∞

k1 − 1

n
= min

(

R′
2 − I(W2;E|W1)

I(B;W2|W1, E)
,
R′

1 − I(W1;E)

I(B;W1|E)

)

.

By maximizing the distortion incurred at the eavesdropper with respect to R′
1 and

R′
2, it follows from (D.6), (D.27), (D.29), (D.31) and (D.32) that for any γ > 0 and

sufficiently large n,

min
{φi(m1,m2,en,bi−1)}

[

n
∑

i=1

EP̃ (da(Ui, φi(M1,M2, E
n, B(i−1)))

]

> n∆− γ.

This is due to the fact that the supremum with respect to R′
1 and R′

2 occurs at R′
1 =

I(W1;Z) and R′
2 = I(W2;Z|W1). Setting R′

1 and R′
2 to these values, it follows from

(D.10), (D.12)-(D.15), (D.17), (D.18), (D.21) and (D.24) via the Markov conditions

(Z,W2)− V −W and Z −U −W2 −W1 that (R,Rs, D,∆) ∈ R∗
g if (D.4)-(D.7) holds.

The cases where the joint distribution PUV EZBPW2|UPW1|W2
PW |V is such that (D.8)

and/or (D.9) does not hold can be handled similarly. Specializing to the lossless case

(D = 0) with hamming distortion measure, we obtain the condition Rs > H(V |W2, Z)

given in (D.2) by setting W = V . This completes the proof of the theorem.

D.2 Proof of Theorem 5.7

The proof of this theorem is similar to that of Theorem 5.3. In lieu of the equivalence

(5.7), we will consider the more general rate distortion problem described in Section

5.4 and provide an inner bound on Rg. We will show that (Rs, D,∆) ∈ Rg if there

exist auxiliary r.v.’s W , W1 and W2 with joint distribution
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PUV EZBPW2|UPW1|W2
PW |V PX|UW1W2

PY J |X such that

I(W2;U) < I(W1,W2;Y, Z), (D.33)

Rs > I(V ;W |W2, Z, Y ), (D.34)

∆ < min{ζ ′s, ζ ′p}min
φ′′(·)

E (da (U, φ(E))) +
(

ζ ′s −min{ζ ′s, ζ ′p}
)

min
φ′(·,·)

E (da (U, φ(E,W1)))

+ (1− ζ ′s) min
φ(·,·)

E (da (U, φ(E,W2))) , (D.35)

D > E(dl(V, V̂ )), (D.36)

for some function φl : W × Z × Y × W2 7→ V̂. Specializing the result to the lossless

case (D = 0) with the hamming distortion metric will then complete the proof. Below,

we describe the encoding and decoding operations of our scheme, which is basically a

hybrid coding scheme with an embedded superposition code [72] to achieve secrecy.

Codebook generation: Fix a joint distribution PUV EZY PW2|UPW1|W2
PW |V PX|UW1W2

PY J |X

and φl : W ×Z ×W2 ×Y 7→ V̂ satisfying (D.33), (D.35) and (D.36). Choose numbers

R1 and R2 be non-negative numbers such that

I(U ;W1) < R1 < I(W1;Y, Z), if I(U ;W1) < I(W1;Y, Z), (D.37)

I(U ;W1) < R1 < H(W1), otherwise, (D.38)

R2 < I(W2;Y, Z|W1), (D.39)

and I(W2;U) < R1 +R2 < I(W1,W2;Y, Z). (D.40)

Codebook used by encoder of source V : Let Rs and R′
s be non-negative numbers.

Generate codewords Wn(m,m′), (m,m′) ∈ M × M′ := [2nRs ] × [2nR
′
s ], each drawn

independently according to the distribution
∏n
i=1 PW . Denote this random codebook

by Cnv .
Codebook used by encoder of source U : Generate codewords Wn

1 (m1), m1 ∈ [2nR1 ],

drawn independently according to the distribution
∏n
i=1 PW1 . Denote this codebook by

Cnw1
. For each m1, generate codewordsW

n
2 (m1,m2), m2 ∈ [2nR2 ], drawn independently

according to the distribution
∏n
i=1 PW2|W1

(w2i|W1i(m1)). Denote this codebook by

Cnw2
, and the two codebooks Cnw1

and Cnw2
together by Cnu . The codebooks Cnu and Cnv

are known to all the parties including the eavesdropper.
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Encoder: First, the encoder of source U chooses (M1,M2) and the encoder of source

V chooses (M,M ′) stochastically according to distributions

PEu(m1,m2|un) :=
∏n
i=1 PU |W2

(ui|W2i(m1,m2))
∑

m̌∈M̌
∏n
i=1 PU |W2(ui|W2i(m̌))

, ∀ (m1,m2) ∈ M̌ := M1 ×M2,

and PEv(m,m
′|vn) :=

∏n
i=1 PV |W (vi|Wi(m,m

′))
∑

m̃∈M×M′

∏n
i=1 PV |W (ui|Wi(m̃))

, ∀ (m,m′) ∈ M×M′,

respectively. Note that PEu and PEv are r.v.’s that depend on the realization of Cnu
and Cnv , respectively. The encoder of source U transmits the codeword Xn over the

channel PY J |X , where X
n is randomly generated according to the distribution

∏n
i=1 PX|W1W2U (xi|W1i(m1),W2i(m1,m2), ui), and the encoder of source V transmits

M over the noiseless channel.

Decoder: Upon receiving Y n = yn and M = m and observing Zn = zn, the decoder

first uses a good channel decoding rule PD1(m̂1, m̂2|yn, zn) to estimate the messages

(M1,M2). Subsequently index M ′ is recovered by using a good channel decoding

rule for the transmission of messages M ′ over a memoryless channel
∏n
i=1 PZYW2|W

using the sub-codebook {Wn(m,m′),m′ ∈ M′}. The decoder for the source U can be

considered to be composed of two parts, PDM
u
(m̂1, m̂2|yn, zn) which is a good channel

decoder followed by PDu given by

PDu(ŵ
n
2 |m̂1, m̂2) := ✶(Wn

2 (m̂1, m̂2) = ŵn2 ).

Similarly, the decoder for source V is composed of two parts, a good channel decoder

PDM
v
(m̂′|m, ŵn2 , zn, yn) followed by a symbol by symbol reconstruction given by

PDv(v̂
n|m, m̂′, ŵn2 , z

n, yn) =
n
∏

i=1

✶(φl(ŵi(m, m̂
′), ŵ2i, zi, yi) = v̂i).

Analysis:

The joint distribution induced by the encoding and decoding operations is given by

P̃ (en, bn, zn, un,m1,m2, w
n
1 , w

n
2 , v

n,m,m′, wn, xn, yn, jn, m̂1, m̂2, ŵ
n
2 , m̂

′, v̂n)

= PEnBnZnUnV n(en, bn, zn, un, vn)PEu(m1,m2|un)PWn
1 |M1

(wn1 |m1)

PWn
2 |Wn

1 (M1)M2
(wn2 |wn1 ,m2) PEv(m,m

′|vn) PWn|MM ′(wn|m,m′)
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PXn|Wn
1 W

n
2 U

n(xn|wn1 , wn2 , un) PY nJn|Xn(yn, jn|xn) PDM
u
(m̂1, m̂2|yn, zn)

PDu(ŵ
n
2 |m̂1, m̂2) PDM

v
(m̂′|m, ŵn2 , zn, yn)PDv(v̂

n|m, m̂′, ŵn2 , z
n, yn)

=

[

n
∏

i=1

PEBZUV (ei, bi, zi, ui, vi)

]

PEu(m1,m2|un)✶(Wn
1 (m1) = wn1 )

✶(Wn
2 (m1,m2) = wn2 ) PEv(m,m

′|vn)✶(Wn(m,m′) = wn)
[

n
∏

i=1

PX|W1W2U (xi|wii, w2i, ui)

][

n
∏

i=1

PY J |X(yi, ji|xi)
]

PDM
u
(m̂1, m̂2|yn, zn)

✶(Ŵn
2 (m̂1, m̂2) = ŵn2 ) PDM

v
(m̂′|m, ŵn2 , zn, yn) PDv(v̂

n|m, m̂′, ŵn2 , z
n, yn).

Let Q and Q(1) denote auxiliary distributions defined as

Q(en, bn, zn, un,m1,m2, w
n
1 , w

n
2 , v

n,m,m′, wn, xn, yn, jn, m̂1, m̂2, ŵ
n
2 , m̂

′, v̂n)

:= QM1M2(m1,m2) QWn
1 |M1

(wn1 |m1) QWn
2 |Wn

1 (M1)M2
(wn2 |wn1 ,m2)

QUn|Wn
2 (M1,M2)(u

n|wn2 (m1,m2)) QZnV nEnBn|Un(zn, vn, en, bn|un)

QXn|Wn
1 W

n
2 U

n(xn|wn1 , wn2 , un) QY nJn|Xn(yn, jn|xn) QM̂1M̂2|ZnY n(m̂1, m̂2|zn, yn)

QŴn
2 |M̂1M̂2

(ŵn2 |m̂1, m̂2) QMM ′|V n(m,m′|vn) QWn|MM ′(wn|m,m′)

QM̂ ′|MZnŴn
2 Y

n(m̂
′|m, zn, ŵn2 , yn) QV̂ n|MM̂ ′Ŵn

2 Z
nY n(v̂

n|m, m̂′, ŵn2 , z
n, yn)

:=
1

2n(R1+R2)
✶ (Wn

1 (m1) = wn1 )✶ (W
n
2 (m1,m2) = wn2 )

[

n
∏

i=1

PU |W2
(ui|w2i(m1,m2))

]

[

n
∏

i=1

PZV EB|U (zi, vi, ei, bi|ui)
] [

n
∏

i=1

PX|W1W2U (xi|w1i, w2i, ui)

]

(D.41)

[

n
∏

i=1

PY J |X(yi, ji|xi)
]

PDM
u
(m̂1, m̂2|zn, yn) ✶(Ŵn

2 (m̂1, m̂2) = ŵn2 )

[

PEv(m,m
′|vn) ✶(Wn(m,m′) = wn) PDM

v
(m̂′|m, ŵn2 , zn, yn)

]

PDv(v̂
n|m, m̂′, ŵn2 , z

n, yn)

:= QH
M1M2Wn

1 W
n
2 U

nZnV nEnBnXnY nJnM̂1M̂2Ŵn
2
(m1,m2, w

n
1 , w

n
2 , u

n, zn, vn, en, bn,

xn, yn, jn, m̂1, m̂2, ŵ
n
2 )

QS
MM ′WnM̂ ′V̂ n|V nZnŴn

2 Y
n(m,m

′, wn, m̂′, v̂n|vn, zn, ŵn2 , yn),
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and

Q(1)(m1,m2, w
n
1 , w

n
2 , u

n, zn, vn, en, bn, xn, yn, jn, m̂1, m̂2, ŵ
n
2 , y

n,m,m′, wn, m̂′, v̂n)

:= QM1M2Wn
1 W

n
2 U

nZnV nEnBnXnY nJnM̂1M̂2
(m1,m2,m

′
1,m

′
2, w

n
1 , w

n
2 , u

n, zn,

vn, en, bn, xn, yn, jn, m̂1, m̂2)

PDu(ŵ
n
2 |m1,m2) Q

S(m,m′, wn, m̂′, v̂n|vn, zn, ŵn2 , yn)

:= QM1M2Wn
1 W

n
2 U

nZnV nEnBnXnY nJnM̂1M̂2
(m1,m2,m

′
1,m

′
2, w

n
1 , w

n
2 , u

n, zn,

vn, en, bn, xn, yn, jn, m̂1, m̂2)

PDu(ŵ
n
2 |m1,m2) PEv(m,m

′|vn) ✶(Wn(m,m′) = wn) PDM
v
(m̂′|m, ŵn2 , zn, yn)

PDv(v̂
n|m, m̂′, zn, ŵn2 , y

n),

respectively. Note that the only difference between Q and Q(1) is PDu , the part of the

decoder that obtains the reconstruction sequence Ŵn
2 . In Q(1), the actual messages

(m1,m2) intended by the encoder is used by PDu instead of the estimates m̂1, m̂2.

Taking expectation with respect to the codebook Cu, we obtain

ECn
u

[

Q
(1)

UnZnY nJnŴn
2

]

= PUnZnY nJnWn
2
:=

n
∏

i=1

PUZY JW2 .

Let

Q̄
(1)

UnZnV nEnBnY nJnŴn
2 MM ′WnV̂ n

:= ECn
u

[

Q
(1)

UnZnV nEnBnY nJnŴn
2 MM ′WnV̂ n

(un, zn, vn, en, bn, yn, jn, ŵn2 ,m,m
′, wn, m̂′, v̂n)

]

=

[

n
∏

i=1

PUZV EBY JW2(ui, zi, vi, ei, bi, yi, ji, ŵ2i)

]

QS
MM ′WnM̂ ′V̂ n|V nZnY nŴn

2
(m,m′, wn, m̂′, v̂n|vn, zn, yn, ŵn2 ).

Observe that the likelihood encoder PEu is chosen such that

PEu = QM1M2|Un . (D.42)
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Let

QH
M1M2Wn

1 W
n
2 U

nZnV nEnBnXnY nJnM̂1M̂2Ŵn
2

= QUn(un) PEu(m1,m2|un) PWn
1 |M1

(wn1 |m1) PWn
2 |Wn

1 (M1)M2
(wn2 |wn1 ,m2)

[

n
∏

i=1

PZV EB|U (zi, vi, ei, bi|ui)
] [

n
∏

i=1

PX|W1W2U (xi|wii, w2i, ui)

]

[

n
∏

i=1

PY J |X(yi, ji|xi)
]

PDM
u
(m̂1, m̂2|zn) PDu(ŵ

n
2 |m1, m̂

′
1,m2, m̂

′
2).

Note that the only difference between QH and P̃ is the marginal distribution of U . By

Lemma 5.2, it follows that

ECn
u

[

‖QHU − P̃U

]

‖ ≤ e−δ1n,

since I(U ;W1) < R1 ≤ H(W ) and R1 + R2 > I(U ;W1,W2) = I(U ;W2) by (D.37)-

(D.38) and (D.40), respectively. Note that the above conditions also implies that (5.12)

is satisfied, i.e., R2 > I(U ;W2)−R1 ≥ I(U ;W2)−H(W1).

Applying Property 4.4.1 (c), we obtain that for some δ1 > 0,

ECn
u

[

‖QH
M1M2Wn

1 W
n
2 U

nZnV nEnBnXnY nJnM̂1M̂2Ŵn
2

− P̃M1M2Wn
1 W

n
2 U

nZnV nEnBnXnY nJnM̂1M̂2Ŵn
2
‖
]

≤ e−δ1n.

Since the messages M1,M2 are uniformly distributed under the joint distribution QH ,

and R2 < I(W2;Z, Y |W1) and R1+R2 < I(W1,W2;Z, Y ) (by (D.39) and (D.40)), it is

well known that a maximum likelihood decoder drives the decoding error probability

to zero, i.e.,

ECn
u

[

Pr(M̂1, M̂2) 6= (M1,M2)
]

≤ ǫ′n,

for some ǫ′n
(n)−−→ 0, where the probability is evaluated based on the joint distribution

QH .
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Hence by Lemma 5.1, we have

ECn
u

[

‖Q(1)

M1M2Wn
1 W

n
2 U

nZnV nEnBnXnY nJnM̂1M̂2Ŵn
2

−QH
M1M2Wn

1 W
n
2 U

nZnV nEnBnXnY nJnM̂1M̂2Ŵn
2
‖
]

≤ ǫ′n.

Applying Property 4.4.1(c) yields

ECn
u

[

‖Q(1)

M1M2Wn
1 W

n
2 U

nZnV nEnBnXnY nJnM̂1M̂2Ŵn
2 MM ′WnM̂ ′Ŵn

−

P̃M1M2Wn
1 W

n
2 U

nZnV nEnBnXnY nJnM̂1M̂2Ŵn
2 MM ′WnM̂ ′V̂ n‖

]

= ECn
u

[

‖Q(1)

M1M2Wn
1 W

n
2 U

nZnV nEnBnXnY nJnM̂1M̂2Ŵn
2

− P̃M1M2Wn
1 W

n
2 U

nZnV nEnBnXnY nJnM̂1M̂2Ŵn
2
‖
]

≤ ECn
u

[

‖Q(1) −QH‖
]

+ ECn
u

[

‖QH − P̃‖
]

≤ e−δ1n + ǫ′n := δ2n
(n)−−→ 0,

and

ECn
u

[

EP̃

[

dl(V
n, V̂ n)

]]

≤
[

EQ̄(1)

[

dl(V
n, V̂ n)

]]

+Dl δ2n. (D.43)

In order to bound the first term in (D.43), we will use similar results to that used

in the Wyner- Ziv section in [67]. As shown there, Q̄(1) is equal to the distribution

induced by the maximum likelihood encoder PEv for the rate distortion problem with

the source V and side information (Z,W2, Y ) at the decoder.

Let

Q
(3)

UnZnV nEnBnXnY nJnŴn
2 MM ′WnM̂ ′V̂ n

(un, zn, vn, en, bn, xn, yn, jn, ŵn2 ,m,m
′, wn, m̂′, v̂n)

:=
1

2n(Rs+R′
s)
✶(Wn(m,m′) = wn)

[

n
∏

i=1

PV |W (vi|wi)PUZEBXY JW2|V (ui, zi, ei, bi, xi, yi,

ji, ŵ2i|vi)
]

PDM
v
(m̂′|m, ŵn2 , zn, yn) PDv(v̂

n|m,m′, ŵn2 , z
n, yn).
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Note that PDv uses the actual messages (m,m′) rather than estimates (m, m̂′) for

forming the reconstruction V̂ . It follows from the results in [67] that for some δ3 > 0,

ECn
v

[

‖Q̄(1)

UnZnV nEnBnXnY nJnŴn
2 MM ′WnM̂ ′V̂ n

−Q
(3)

UnZnV nEnBnXnY nJnŴn
2 MM ′WnM̂ ′V̂ n

‖
]

≤ e−δ3n
(n)−−→ 0,

provided that

Rs +R′
s > I(W ;V ), (D.44)

and R′
s < I(W ;Z,W2, Y ). (D.45)

Note that (D.44) and (D.45) together implies via the Markov relation (Z,W2, Y )−V −
W that

Rs > I(W ;V |W2, Z, Y ). (D.46)

Next, note that

ECn
v

[

Q
(3)

UnZnV nEnBnXnY nJnŴn
2 V̂

n

]

=
n
∏

i=1

PUZV EBXY JW2φl(W ).

Thus, the average distortion at the legitimate receiver averaged over the random

codebook Cnv and Cnu can be bounded as

ECn
v

[

ECn
u

[

EP̃

[

dl(V
n, V̂ n)

]]]

= ECn
v

[

EQ̄(1)

[

dl(V
n, V̂ n)

]

+Dlδ2n

]

≤ ECn
v

[

EQ(3)

[

dl(V
n, V̂ n)

]]

+Dl (δ2n + δ3n)

= EP
[

dl(V
n, V̂ n)

]

+Dl (δ2n + δ3n)

= EP
[

dl(V, V̂ )
]

+Dl (δ2n + δ3n)

≤ D +Dl (δ2n + δ3n) . (D.47)

Analysis of distortion at eavesdropper:
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For k ≥ 1, consider an auxiliary distribution

Q̂
(k)

M1M2Wn
1 E

nJnBk−1Uk
(m1,m2, w

n
1 , e

n, jn, bk−1, uk) (D.48)

:=
1

2n(R1+R2)
✶(Wn

1 (m1) = wn1 )

[

n
∏

i=1

PEJ |W1
(ei, ji|w1i)

]

[

k−1
∏

i=1

PB|EW1J(bi|ei, w1i, ji)

]

PU |EW1J(uk|ek, w1k, jk).

Note that the following Markov relation holds under Q̂(k),

Uk − (Ek,W1k(M1), Jk)−
(

Bk−1, En, Jn,M1,M2

)

.

Also, observe that by definition,

QM1M2EnJnBk−1Uk

=
1

2n(R1+R2)

[

n
∏

i=1

PEJ |W2
(ei, ji|W2i(m1,m2))

]

[

k−1
∏

i=1

PB|EW2J(bi|ei,W2i(m1,m2), ji)

]

PU |EW2J(uk|ek, w2k, jk)

=
1

2n(R1+R2)

[

n
∏

i=1

PEJ |W2W1
(ei, ji|W2i(m1,m2),W1i(m1))

]

[

k−1
∏

i=1

PB|EJW2W1
(bi|ei, ji,W2i(m1,m2),W1i(m1))

]

PU |EJW2W1
(uk|ek, jk,W2k(m1,m2),W1k(m1)).

By application of Lemma 5.2, it follows that for some δ4 > 0,

ECn
v

[

‖Q̂(k)

M1EnJnBk−1Uk
−QM1EnJnBk−1Uk

‖
]

≤ e−δ4n
(n)−−→ 0,

for any k < k2, k ∈ Z+, where

k2 :=
(R2 − I(W2;E, J |W1))n

I(B;W2|W1, E, J)
+
I(B;W2|W1, E, J)− I(U ;W2|B,W1, E, J)

I(B;W2|W1, E, J)
.
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Hence,

ECn
v

[

k2−1
∑

k=1

‖Q̂(k)

M1EnJnBk−1Uk
−QM1EnJnBk−1Uk

‖
]

≤ (k2 − 1)e−δ4n

≤ e−δ5n
(n)−−→ 0, (D.49)

for some δ5 > 0. Also, identifying (W,Z,X, Y,R1, R2) in Lemma 5.2 with (∅,W1, ∅,W1, 0, R1),

we obtain that for all 1 ≤ i ≤ n,

ECn
v

[

‖PW1 − Q̂
(i)
W1i

(M1)‖
]

≤ e−δ6n,

for some δ6 > 0 since R1 > I(∅;W1) = 0. Hence,

ECn
v

[

n
∑

i=1

‖PW1 − Q̂
(i)
W1i

(M1)‖
]

≤ ne−δ6n ≤ e−δ7n
(n)−−→ 0. (D.50)

For k ≥ 1, consider another auxiliary distribution,

Q̌
(k)

M1M2EnJnBk−1Uk
(m1,m2, e

n, jn, bk−1, uk)

:=
1

2n(R1+R2)

[

n
∏

i=1

PEJ(ei, ji)

][

k−1
∏

i=1

PB|E,J(bi|ei, ji)
]

PU |EJ(uk|ek, jk)

Note that under Q̌(k),

Uk − (Ek, Jk)−
(

M1,M2, B
k−1, En, Jn

)

.

By an application of Lemma 5.2, it follows that

ECn
v

[

‖Q̌(k)

EnJnBk−1Uk
−QEnJnBk−1Uk

‖
]

≤ e−δ8n
(n)−−→ 0,

for some δ8 > 0 and any k < k1, where

k1 := min

(

k2,
(R1 − I(W1;E, J))n

I(B;W1|E, J)
+
I(B;W1|E, J)− I(U ;W1|B,E, J)

I(B;W1|E, J)

)

.
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Hence,

ECn
v

[

k1−1
∑

k=1

‖Q̌(k)

EnJnBk−1Uk
−QEnJnBk−1Uk

‖
]

≤ (k1 − 1)e−δ8n

≤ e−δ9n
(n)−−→ 0, (D.51)

for some δ9 > 0. By identifying (W,Z,X, Y,R1, R2) in Lemma 5.2 with (W1,W2, ∅,W2, R1, R2)

and noting that R1 > 0, R2 > 0, we obtain again by an application of Lemma 5.2 that

ECn
v

[

n
∑

i=1

‖PW2 −QW2i(M1,M2)‖
]

≤ e−δ10n
(n)−−→ 0, (D.52)

for some δ10 > 0. By the random coding argument, there exists a deterministic code-

book Cnu and Cnv such that (D.47), (D.49), (D.50), (D.51) and (D.52) are satisfied. Now,

the distortion at the eavesdropper can be lower bounded as follows:

min
{φi(en, jn, bi−1)}

[

n
∑

i=1

EP̃

(

da

(

Ui, φi

(

En, Jn, B(i−1)
)))

]

≥ min
{φi(en, jn, bi−1)}

[

n
∑

i=1

EQ
(

da

(

Ui, φi

(

En, Jn, B(i−1)
)))

]

− nDa

(

e−δ1n
)

. (D.53)

Consider the first term in (D.53). We can write

min
{φi(en, jn, bi−1)}

[

k1−1
∑

i=1

EQ
(

da

(

Ui, φi

(

En, Jn, B(i−1)
)))

]

≥ min
{φi(ei)}

[

k1−1
∑

i=1

EQ̌(i) (da (Ui, φi(Ei)))

]

− nDa

(

e−δ9n
)

(D.54)

≥ (k1 − 1) min
{φ′′(·)}

EP (da (U, φ(E)))

]

− nDa

(

e−δ9n
)

,

where (D.54) follows from (D.51).

Similarly,

min
{φi(en,jn,bi−1)}





k2−1
∑

i=k1

EQ
(

da

(

Ui, φi

(

En, Jn, B(i−1)
)))




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≥ min
{φi(ei,ji,w1i)}

[

k2−1
∑

i=k1

EQ̂(i) (da (Ui, φi(Ei, Ji,W1i(M1))))

]

− nDa

(

e−δ5n
)

(D.55)

≥ (k2 − k1 − 1) min
{φ(e,y2,w1)}

EP (da (U, φ(E, J,W1)))− nDa

(

e−δ5n
)

, (D.56)

where (D.55) follows from (D.49). Equation (D.56) follows from (D.50) by noting that

Q̂iEiJiUi|W1i
= PEJU |W1

.

The remaining terms inside the summation in (D.53) can be written as

min
{φi(en,jn,bi−1)}

[

n
∑

i=k2

EQ
(

da

(

Ui, φi

(

En, Jn, B(i−1)
)))

]

≥ min
{φi(ei,ji,w2i)}

[

n
∑

i=k2

EQ (da(Ui, φi(Ei, Ji,W2i(M1,M2))))

]

= (n− k2 + 1) min
{φ(e,j,w2)}

EP (da(U, φ(E, J,W2))) , (D.57)

where (D.57) follows from (D.52). Finally, note that

lim
n→∞

k2 − 1

n
=
R2 − I(W2;E, J |W1)

I(B;W2|W1, E, J)
, (D.58)

lim
n→∞

k1 − 1

n
= min

(

R2 − I(W2;E, J |W1)

I(B;W2|W1, E, J)
,
R1 − I(W1;E, J)

I(B;W1|E, J)

)

, (D.59)

and

R2 < min (I(W2;Z, Y |W1), I(W1,W2;Y, Z)−R1) (D.60)

< min (I(W2;Z, Y |W1), I(W1,W2;Y, Z)− I(W1;U)), (D.61)

where (D.60) and (D.61) follows from (D.39)-(D.40) and (D.37)-(D.38), respectively.

By maximizing the distortion incurred at the eavesdropper with respect to rate R1

(the supremum occurs at a value of R1 = I(W1;Z, Y )), it follows that for any γ > 0

and sufficiently large n,

min
{φi(en,jn,bi−1)}

[

n
∑

i=1

EP̃

(

da

(

Ui, φi

(

En, Jn, B(i−1)
)))

]

> n∆− γ. (D.62)

Thus, from (D.46), (D.47) and (D.62), we have shown that (Rs, D,∆) ∈ Rg provided
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(D.33)-(D.36) are satisfied. Specializing to the lossless case (D = 0) with hamming

distortion measure, we obtain the condition Rs > H(V |W2, Z, Y ) given in (D.34) by

setting W = V . This completes the proof of the theorem.
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