
Distributed Identity Management Model for Digital
Ecosystems

Hristo Koshutanski
Computer Science Department
University of Malaga (Spain)

Email: hristo@lcc.uma.es

Mihaela Ion
CREATE-NET

Via Solteri 38, Trento (Italy)
Email: mihaela.ion@create-net.org

Luigi Telesca
CREATE-NET

Via Solteri 38, Trento (Italy)
Email: luigi.telesca@create-net.org

Abstract— Digital Ecosystems is the new paradigm for dynamic
IT business integration. A Digital Ecosystem consists of insti-
tutions that compete, collaborate, and form stable or unstable
federations. Such a dynamic environment becomes a bottleneck
for identity management solutions. Existing solutions are either
too restricting and not flexible enough to support the dynamic
nature of ecosystems or they are too complex and difficult to
adopt by Small and Medium-size Enterprises (SMEs).

This paper presents an identity management model for au-
tomated processing of identity information between distributed
ecosystem partners. The model emphasizes on its practical, clear
and easy to deploy framework. The model is based on the
new OASIS SAML standard to provide interoperability and
convergence between existing identity technologies. The paper
presents the basic and extended identity models for single services
and service compositions.

The aim of this research is to allow SMEs to use and enhance
their current identity technology with a practical and easy to
implement identity management solution that scales up to the
dynamic and distributed nature of digital ecosystems.

I. INTRODUCTION

A Digital Ecosystem (DE) consists of diverse institutions
which sometimes compete against each other and other times
collaborate and form stable or unstable federations. Digital
ecosystems are interconnected by a network to form a complex
and dynamic environment.

Managing identities in such a distributed system poses many
challenges. First of all, institutions use different types of
certificates and identity technologies (e.g. X.509, SPKI and
Kerberos) which are not always compatible with each other.
Secondly, users often need to access applications, services or a
composition of services located on different administrative do-
mains. Finally, because of the dynamic nature of the environ-
ment, federating and sharing of identities becomes a complex
task. A pure federating approach is viable only when there
is a stable relation. In Digital Ecosystems, federation does
not scale up because of the unstable and ad-hoc coalitions.
Institutions cooperate some times and are rival to each other
other times.

We need to provide ways for exchanging identity informa-
tion between companies independent of the standards they use
and to share user identity between different domains which
could be federated or have no direct trust.

WS-Policy [14], WS-Trust [15] and WS-Federation [13]
cover a wide range of requirements and at the same time are

difficult to suit immediately for small and medium size enter-
prises (SMEs). What SMEs in DEs need is a targeted model
that is easy to understand and straightforward to implement
and put in practice. Existing standards are heavy and difficult
to understand and implement and therefore suitable for large
enterprises.

A. Paper Contribution

Our model aims at automating the process of identification
between ecosystem partners. We emphasize on practical so-
lutions which are clear and easy to implement. The model is
based on the new OASIS Security Assertion Markup Language
(SAML v2.0) standard for providing proper identification.
SAML faces interoperability on the message level and helps to
automate and converge when technologies are not compatible.
We face distributed identity storage by the use of user profiles.
A user profile is an abstract view of a client’s identity informa-
tion that is stored in a decentralized manner. Decentralization
is faced by use of peer-to-peer replication of user profiles on
trusted nodes.

II. AVAILABLE STANDARDS AND APPROACHES

There are several technologies and standards used for
managing distributed identities. The most mature and widely
deployed solutions for federated identity are the SAML and
Liberty Alliance standards. SAML [9], developed by OASIS,
is an XML-based framework for communicating user authen-
tication, authorization and attribute information. SAML pro-
vides XML formats and protocols for encoding and exchang-
ing identity information. It also provides standards for single
sign-on of identity management. Liberty Alliance provides
open SAML-based standards for federated network identity.
The most relevant technology specifications developed by the
Alliance are Identity Federation Framework (ID-FF) [3] and
Web Services Framework (ID-WSF) [4]. As of the new SAML
version (v2.0) the OASIS technical committee has unified the
Liberty standards within one SAML identity framework with
a rich set of identity profiles.

WS-Trust and WS-Federation define standards for federat-
ing identities by allowing and brokering trust of identities, at-
tributes and authentication between participating Web services.
However, though partially inspired by the two standards, our
model aims at simplifying them and targeting environments

International Conference on Emerging Security Information, Systems and Technologies

0-7695-2989-5/07 $25.00 © 2007 IEEE
DOI 10.1109/SECURWARE.2007.15

132

composed of unstable coalitions which is often the case for
SMEs.

SAML assertions allow principals to make statements about
a subject’s authentication, attribute, or authorization details. A
subject is uniquely referred to by using an Identifier which
can be a real name or a pseudonym. SAML focuses on
authentication and attribute statements while authorization
statements are the focus of XACML [17]. The entity issuing
the SAML assertions is called the asserting party or identity
provider (IdP). The party which makes use of the assertions
made by the IdP to control access and provide services is
called relaying party or service provider (SP). A SP trusts an
IdP if it relies on assertions issued by the IdP.

Identity federation means sharing of identity information
between domains who have a trust relationship or agreement.
SAML and Liberty Alliance define standards for federating
identities and single sign-on (SSO). SSO allows users to
get identified once and then move across domains within a
federation with this identity.

The SSO use case requires a Service Provider (SP) and an
Identity Provider (IdP) which have a trust relationship (SP
relies on assertions from IdP). The SSO can be initiated by
any of the two parties. Below we describe the SP-initiated
SSO case.

1) The user tries to access a service on SP without any
login information.

2) The user is not recognized and gets redirected to the IdP.
3) The user signs on by providing the required credentials

to the IdP (e.g. username and password).
4) IdP provides a SAML web SSO assertion for the user’s

federated identity back to SP.
5) The user is identified at SP and can access the service.

The redirection is done automatically and the user is not
aware of being forwarded to a different domain.

X.509[16] and SPKI[10] are the main standards for identity
certification used by IT business companies now-a-days. The
standards are not compatible since they were designed to
address different issues.

X.509 is the widely used standard for Public Key Infrastruc-
ture (PKI). It specifies a standard format for certificates and
a certification path validation algorithm. An X.509 certificate
binds a public key to a global name. A Certification Authority
(CA) is a trusted third party which creates and signs off-
line digital certificates. X.509 assumes a hierarchy of CAs.
X.509 was designed for providing authentication and attribute
information.

SPKI provides a standard for using digital certificates to
provide authorization and authentication for using resources
in a peer-to-peer fashion. SPKI allows principals to define
local names and their namespaces can be linked to define
trust (also called Web-of-trust). There is no hierarchical global
infrastructure in contrast to X.509. Each public key (entity) is a
certificate authority and can issue certificates on the same basis
as any other principal thus making it suitable for decentralized
and unstable coalitions.

OpenID1 is a decentralized framework for digital identity.
The underlying idea is that users can identify themselves
on the web like websites do with URIs. OpenID allows a
username/password login. The username is the personal URI
and the password is safely stored on the OpenID Provider. To
login to an OpenID-enabled website, the user is required the
OpenID URI and then gets redirected to the OpenID Provider
to authenticate. After authentication, the OpenID Provider
sends back the user to the website with the required identity
information to logon.

III. THE BASIC IDENTITY MANAGEMENT MODEL

We start by defining the key entities in the model.
1) User: any entity that can be identified in the network

(peer or web browser user, institution or person)
2) Service Provider (SP): any identifiable entity that has

one or more services or resources available to other
entities.

3) Credential Provider (CP): any entity that is able to
provide digitally signed credentials to other entities.

4) Digital Ecosystem (DE): distributed digital environment
where both partners and competitors are present and
where stable and unstable coalitions are created; coali-
tion of digitally represented partners with few or no
a priori established trust relations. Thus the notion of
ecosystem comprises cooperative and competitive rela-
tions.

5) Federation: Stable coalition of companies which have a
cooperative relation.

We propose an identity management model for decentralized
peer-to-peer ecosystem domains. All users are considered
equal and there is no hierarchy of ecosystems. Any peer can
be a Credential Provider or a Service Provider, or both. Each
user can issue a certificate to other users. Each user has a list
of trusted Credential Providers. Each Credential Provider has a
list of acceptable security tokens. A Credential Provider issues
certificates to users either (i) based on secure tokens issued by
the provider itself or (ii) based on trusted secure tokens (from
Credential Providers with whom it has trust relationships) or
(iii) based on user registration information.

A. Managing user identities

In a system of interconnected digital ecosystems, users and
companies use different kinds of certificates obtained from
outside the system. Companies have own X.509 certificates
issued by Certification Authorities outside the system and
which they are obliged by law to use when doing online
transactions. SMEs often have their own proprietary solutions
for identification of their employees such as username and
password, ad hoc secure tokens or adoption of OpenID for
Web-based access.

To approach proper identity management first we need to
define a way to cope with the incompatibility of the variety
of standards and solutions. Here we borrow the concept of

1http://openid.net

133

credential transformation from one type to another as already
introduced in the WS-Trust standard. To address the problem
we have to convert identity information from one certificate
technology to another one compatible with the current domain
of business. Section IV describes in details the use cases
regarding the model.

After joining a Digital Ecosystem, users (partners) obtain a
variety of certificate tokens issued (transformed) by Credential
Providers for particular business needs. Possible secure tokens
considered in the system are X.509, SPKI, Kerberos and
SAML identity assertions. However, partners that already have
OpenID or ad hoc identity tokens (or username/password) can
use them in the system but only for the purpose of providing
identity information to CPs that are to certify partners’ identity.
All the subsequent certificates issued by CPs in a DE are bound
to one of the standards mentioned above. The reason for that
is to unify and simplify identity management between DEs to
well-defined identity standards.

Each CP has the responsibility to provide proper
pseudonimity to end users. Typically a CP either provides a
user pseudonym on its own or allows users to define it and
then certifies the pseudonym in a trusted secure token to a
Service Provider. We note that a SP explicitly asks a CP to
reveal user identity in case of user misbehavior. So, each CP
maintains a database mapping user’s pseudonimity with user’s
real identity.

B. Managing user profile
Having multiple identity certificates issued by different CP,

it becomes difficult for a user to manage and allocate all of
them when needed to access a service, especially in the case
of distributed services.

Users connect to a DE either via a portal (a Web browser)
or via a rich client system installed on their computers.
In either of the cases a user needs a way to manage its
credentials, username/passwords and public/private key pairs.
For that purpose we adopted the use of user profile. A
user profile contains all available information about user’s
identity obtained from the user’s interactions within DEs. Its
main purpose is to provide an abstract view of what identity
credentials are available, where they are available (e.g. local or
remote storage) and how to obtain them (e.g. via authentication
to a CP by username/password or via LDAP2 storage etc).

Here, an important issue is how to allocate, store and
retrieve the user profile. The profile contains sensitive infor-
mation that is necessary when communicating with entities
in a DE. So, the profile must be protected from unauthorized
disclosure (no one except the owner of the file) and at the
same time must be available on demand (avoid denial of
service/availability). To address these issues we adopted to
keep the profile encrypted and replicated on trusted peers. The
encrypted profile is only meaningful to its owner and reliably
obtained via a trusted peer-to-peer network.

Another issue worth mentioning is the availability of a
profile to be shared (used) by multiple entities. This may often

2http://www.openldap.org/

be the case for SMEs where selected employees are allowed
to use the profile and therefore represent the company in on-
line business negotiations. So, we decided to provide a sticky
policy with each profile that encodes who can use the profile
and under what conditions. The sticky policy is optional and
if not explicitly specified it has the default value of read and
write permissions only for the profile’s owner. A good solution
for a sticky policy model is the use of Access Control Lists
(ACL).

As we mentioned before, we adopted the concept of peer-to-
peer trusted network to replicate and provide service availabil-
ity when locating and loading user profiles. As of time being,
we leave the problem of how to establish a proper method-
ology for data replication specific to a particular application
scenario and assume that there are available models, e.g. [5],
[12], that address this issue.

A user is required to remember only a username and
password in order to login into a DE. The username and
password are obtained once when the user initially registers to
a DE. Then, whenever the user logs in another (or the same)
Digital Ecosystem by presenting its name and password (just
authentication), the DE takes the responsibility to allocate and
retrieve the encrypted user profile. Each DE has its predefined
trusted node(s) which stores information on DE users and
addresses of other trusted nodes residing in other DEs.

When a user starts a new session, his profile is downloaded
on a secure memory (e.g. browser s-box) in its Web browser or
local client and then decrypted in the memory. Once decrypted
the profile is ready to be used and processed by the Web
browser client or the local client. At the end of the session,
the user’s profile is encrypted and updated on the associated
trusted node (peer) and then replicated on the other trusted
peers.

In the case of a local client installed on user’s own machine,
the profile could be locally copied and stored so that it could
be loaded from the client’s machine next time. However, in this
case the profile must also be stored and replicated on the other
trusted peers in order to provide availability and actualization
if shared among multiple users.

C. Managing passwords and secure tokens

Each user has a pair of private/public keys used in all certifi-
cates issued by different authorities3. User identity information
is stored in a user profile that is encrypted and replicated
on trusted peers. The user profile contains information about
available certificates, public/secret key pair and user authenti-
cation information needed to access and obtain secure tokens.

User identity information obtained outside DEs should be
updated in the user profile so that it can be used when the
user does business interactions with partners within DEs.
Especially, when a user first registers to a DE and creates
its initial profile, it decides whether to import the already
available identity information. However, a user can start from

3For the sake of simplicity of the framework we assume one key pair.
However, multiple key pairs are also possible providing that there is a proper
mapping between available certificates and used key pairs in the user profile.

134

no identity information and collect it on a step-by-step basis
when interacting with service providers (and their CP).

After each interaction with a CP, the user’s client (web
or local) automatically records the information on the new
identity token for subsequent use. The information stored
depends on the settings the user specified and the CP’s policy.
For example, an identity token may only be issued to be
presented to a SP without being stored on the client profile.
In this case, we record only the information on how to
obtain a new token (e.g., by presenting another token or by
username/password). In other cases, the identity token could
be stored on a secure LDAP server trusted by the CP who
issued the token so that it can be automatically obtained by
a user via authentication to the server. In any case, after each
interaction with a CP, the client profile stores the necessary
information on what identity, what validity and how to obtain
such.

The last issue left to be examined is how to keep user
profiles encrypted. A user profile is encrypted with a long
master password (usually key phrase) that is never stored and
known only to the user. The master password must be different
from the user password needed for user authentication to a DE.
Thus, a user has to remember one login information and one
master password in order to facilitate best security when using
a DE.

D. Use of SAML in the model

Having designed the identity model, we faced the problem
of incompatibility of different identity standards. X.509 and
SPKI, the certificate standards most widely cited in the liter-
ature, are designed to be different. We had to provide ways
for a client identified with one standard to be able to use
his identity information when communicating with a SP using
another standard.

Another issue we had to take into account was that SMEs
often adopt their own (ad hoc) certificate tokens or different
identity mechanisms (such as OpenID) to manage identities of
their employees.

To cope with this wide range of identity mechanisms we
have to make the following assumption. Each SP adopts the
identity standard best suiting its needs but its related CPs
should support by default the SAML standard (especially
v2.0). It means that any SME could preserve its existing
identity management infrastructure but should enhance its
trusted CP with the ability to understand SAML. Furthermore,
each CP must be able to issue SAML assertions derived
(transformed) from any of the standards the CP supports. Refer
to the example given below.

With the new version of SAML, the standard allows to
express identity information (in SAML assertions) within a
context of any type of authentication (e.g. X.509, SPKI, Ker-
beros tickets, username/password etc). Thus, the model uses
SAML assertions to bridge different identification information
and standards.

For example a CP that supports X.509 and username and
password authentication to be functional/compatible in our

framework it has to also support the conversion:
– X.509 ↔ SAML assertion
– Username & password ↔ SAML assertion

SAML assertions are used when accessing or negotiating
with different ecosystem domains. Once we unify the identity
and authorization representations between CPs we can accom-
modate any identity model/requirements particular to a service
provider.

Example (X.509 and SPKI identity exchange)
Let us suppose that a SP1 only accepts X.509-based authenti-
cation to identify entities and that SP1 trusts CP1 to validate
X.509 tokens. Now, if a user has a SPKI certificate issued by
CP2 that has a trust relationships with CP1 then the user is
able to identify itself to SP1 by use of our model.

To do so, the user has to contact his CP2 and request for
a SPKI to SAML assertion transformation in order to identify
itself to CP1. Since CP1 has trust in CP2 for proper entity
identification CP1 accepts the SAML assertion and issues
(transforms it to) an X.509 identity certificate that is forwarded
to SP1. SP1 trusts its CP1 for identifying entities and provides
access to the desired service.

E. The Identity Management Model

So far, we have presented all we need to state our identity
management model. Figure 1 shows the basic model and
workflow of messages between the main actors. The message
flow of the model is the following:
1. An entity (web browser user or local client) makes a request

Fig. 1. The Basic Identity Management Model

to a Service Provider.
2-3. The Service Provider redirects the user to a Trusted
Credential Provider (TCP).
4. The user has no credentials issued by the TCP. The TCP
sends a list of accepted certificates with a list of its trusted
CPs (TCPs) to the user.
5. The user requests its profile from a trusted peer storing it
and uses username/password for authentication. Information

135

for ecosystem trusted peers is obtained (possibly publicly
available) when users join the ecosystem.
6. The trusted peer sends the encrypted user profile.
7. After the profile is decrypted, the user checks if it has
the right credentials, i.e. processes his profile for matching
of credentials (issued by any of the TCPs obtained in step 4).
If no credential is matched then the user has to register to
the TCP to obtain an identity token. If one of the credentials
requested in step 4 is found, then the user extracts it either
from the profile or requests it from the remote TCP that issued
it. Important issue here is that the user identifies whether the
certificates match by type and TCP name or only by TCP
name. The first case requires that the user just presents the
certificate as it is, while the latter case requires that the user
requests the TCP for credential transformation.
8. The TCP authenticates the user and then returns either the
requested certificate or its transformation to a SAML assertion.
9. The user forwards the certificate/SAML assertion to the
TCP.
10. The TCP verifies and validates the certificate and issues
(transforms if needed) a new one that is to be forwarded to
the SP.
11. The user is redirected to the Service Provider which
accepts tokens from its TCP.
12. The Service Provider verifies the new certificate and
provides the requested resource to the user.

We note that in step 10, TCP transforms the certificate
presented in step 9 to an identity token type acceptable by
the SP. Even if the identity token type accepted by the SP is
the same with the one presented by the user, the TCP still
has to issue a new identity token (even of the same type), but
signed by the TCP (thus validating the user’s identity).

The only case in which the TCP does not issue a new token
is, for example, when the user has been already in contact with
the SP and presents the same identity token that has been
issued by the TCP last time. In this case, the TCP does only
certificate verification and validation.

F. Available technology providers

Having shown the basic model and its functionalities, the
next step is to identify the technology providers and possible
component implementations supporting our framework.

Below we list the technology implementations with a brief
description of their use in the framework.

– OpenSAML [7]: the most widely used SAML v1.1 tech-
nology implementation. It is available in Java and C++
libraries.

– OpenPMI [6]: an open source project targeting an open
platform for providing PKI/PMI based solutions. Espe-
cially interesting for use is XSAML library for conversion
of X.509 to SAML assertions and vice versa,

– OpenSSO [8]: provides widely use of the SSO concept
based on SAML,

– Sun Java System Federation Manager [2] and Sun Java
System Access Manager [1]: useful tools for digital
identity generation, management and sharing (based on

SSO model) within a circle of trusted partners and
across federations. It is based on the SAML and Liberty
standards.

IV. BASIC USE CASES AND SCENARIOS

There are several basic use cases that the model needs to
consider:

• Accessing a resource in the same ecosystem: corresponds
to the SSO use case.

• Accessing a resource in a different ecosystem: requires a
new login if the user is recognized in the new ecosystem.

• Transforming secure tokens from one type to another: the
user is not recognized in the new ecosystem.

• Services composition: one service depends on other ser-
vices.

A. Transforming of secure tokens from one type to another

An identity can be trusted in one domain of the federation
and not in another one. To access resources in another do-
main, an identity mapping is needed. Identity mapping means
converting a digital identity from one domain to a digital
identity valid in another domain. The conversion is made by a
credential provider that trusts the starting domain and is trusted
by the ending domain (the end domain accepts its assertions).

Example (Identification during negotiation)
Figure 2 shows an example of identification in interconnected
digital ecosystems for the purpose of a business negotiation.
CP1 is the trusted credential provider of B1 and N which are in
the same ecosystem and CP2 is the trusted credential provider
of B2 which belong to a different ecosystem. N is the entity
(peer) that hosts the business negotiation. The identification
between B1 and N is done using SSO. B1 is simply redirected
to CP1 to login. For the identification between N and B2, a
transformation of credentials is needed from CP2 credentials
to CP1 credentials.
1. N starts a negotiation

Fig. 2. Example Authentication in Business Negotiation

2. N published the negotiation on P1
3. B2 finds out about the negotiation through P2

136

4. B1 and B2 bids
5. Mutual authentication of B1 and N: SSO using CP1
6. Mutual authentication of B2 and N: transforming of CP2
credentials to CP1 credentials and vice versa.

V. MODEL EXTENSION TO SERVICE COMPOSITION

Digital Ecosystems allow companies to cooperate with each
other and compose services. An important requirement for an
identity management model for DEs is to support composition
of services. We extend the basic model presented above to
cope with the case in which one service relies on services
from other providers.

In a service composition scenario, the service provider
aggregating services from other service providers needs to
run the services on the name of the user and as so he has
to authenticate the user to the other providers. To solve this
problem we adopted the use of Proxy Certificate that the client
issues to the provider of the composite service.

A Proxy Certificate [11] is derived from and signed by a
normal X.509 public key end entity certificate or by another
Proxy Certificate (PC). The identity of the new PC is derived
from the identity that signed it. A PC has its own public and
private key pair. A PC is identified as such by its extensions.
Any X.509 certificate has extension fields to encode different
certificate characteristics. A PC has a policy that specifies
what conditions must be respected when an entity is using
it. Another important issue is that a PC can only sign another
proxy certificate.

There are three important requirements specified in the
policy of a proxy certificate that reflect our identity model. The
first requirement is the scope of a PC. We identity the scope of
a PC to be the scope of the service being requested by a client.
Scope of service means any aggregated service that is directly
used for the sake of proper execution of the main service.
In other words, any service that is not directly aggregated by
the main service (e.g. aggregation of aggregation) should not
consider the PC as a valid identity certificate (on behalf of a
client).

To solve the issue of complex aggregation of services that
aggregate other services we propose the second requirement,
that is the level of aggregation. The purpose of this level of
aggregation is to restrict the use of a PC in a chain of service
aggregations.

The third policy requirement is the validity period of the PC.
Usually, this depends on the particularity of the main service
being executed (i.e., the validity of the service transaction).
The client obtains such information from the SP hosting the
main service.

The level of aggregation should be interpreted as not to use
the PC as deep as the level is, but to indicate whether a new
PC could be obtained from the original one. That is, when a
SP contacts another SP to execute an aggregated service, the
second SP specifies that it needs a PC to execute other services
within its aggregated service. To do so, the first SP signs a new
PC to the second SP but with level of aggregation decreased
with one unit and scope of PC the scope of the second SP

aggregated service. Additionally, the validity period of the new
PC is the remaining validity period of the PC that signs it.

Thus, the second SP can use the new PC only for the sake
of execution of its aggregated service as requested by the first
SP and within the validity time frame as specified originally
by the user.

Fig. 3. The Extended Identity Management Model

Figure 3 shows the extended identity model for service
compositions. The steps behind the model are the following:
1. The user downloads the profile from a trusted peer that
stores it.
2. The user requests a composite service from SP1.
3. The user is redirected to TCP1 to logon (SSO use case).
SP1 indicates that the requested service is an aggregation of
services together with a list of the services to be used. The
user identifies itself to the TCP1 and then issues a PC to SP1
with policy that the proxy certificate will only be used for
the scope of this service request and specified level of further
aggregations.
4. SP1 requests a service to SP2.
5. SP2 redirects SP1 to TCP2 for authentication. SP1 authen-
ticates the user with TCP2 using the proxy certificate (the PC
obtained in step 3).
6. SP2 runs the service and provides the result to SP1.
7. SP1 completes the service execution and provides the result
to the user.

The extended model scheme can be (recursively) applied in
case SP2 needs to contact SP3 as next level aggregated service
provider. Then SP2 takes the role of SP1 in the model.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a new identity manage-
ment model for Digital Ecosystems. The model bridges main
identity standards by using SAML as a unified message-level
protocol for quering and obtaining authentication attributes.
By using SAML we are able to automate the process of
identifying entities in a distributed environment. We adopted

137

the use of user profiles to keep an abstract view of user’s
identity information such as certificates, username/passwords,
public/private keys etc. The user profile is encrypted and
replicated on trusted peers. To scale to service compositions
we adopted the use of proxy certificates with two main policy
settings limiting service scope and level of aggregation.

We have presented the extension of the model to address
the problem of identity management and control for service
compositions. The extended model provides the end-user with
the ability to control the use of its identity information in case
of service aggregations.

Ongoing work is providing a practical implementation of
the described model. Several steps are needed to be taken into
account. First one is defining a standard semantics of user
profiles allowing for automated processing and querying of
identity information. Second step is defining interfaces and
APIs for credential providers and local/web-based user clients
to allow automatic queries and transformations of different
identity tokens to SAML assertions. The second step will be
based on SSOs.

The last main step is enhancing the model with management
of authorization information between distributed ecosystem
partners. Especially, we want to target the two standards,
X.509 and SPKI, that play a major role in certifying autho-
rization decisions.

ACKNOWLEDGMENT

This work was partly supported by the projects: 038978 EU-
MarieCurie-EIF-iAccess, 034744 EU-INFSO-IST ONE and
034824 EU-INFSO-IST OPAALS.

REFERENCES

[1] Sun Java System Access Manager.
www.sun.com/software/products/access mgr.

[2] Sun Java System Federation Manager.
www.sun.com/software/products/federation mgr/index.xml.

[3] ID-FF. Liberty Identity Federation Framework (ID-FF), 2007.
www.projectliberty.org/resources/specifications.php.

[4] ID-WSF. Liberty Identity Web Services Framework (ID-WSF), 2007.
www.projectliberty.org/resources/specifications.php.

[5] Thanasis Loukopoulos and Ishfaq Ahmad. Static and adaptive distributed
data replication using genetic algorithms. Journal of Parallel and
Distributed Computing, 64(11):1270–1285, 2004.

[6] OpenPMI. Open Privilege Management Infrastructure (OpenPMI).
openpmi.sourceforge.net.

[7] OpenSAML. Open Source SAML Implementation. www.opensaml.org.
[8] OpenSSO. Open Web SSO (OpenSSO). https://opensso.dev.java.net/.
[9] SAML. Security Assertion Markup Language (SAML), 2005.

www.oasis-open.org/committees/security.
[10] SPKI. SPKI certificate theory, 1999. IETF RFC 2693.
[11] Steven Tuecke, Von Welch, Doug Engert, Laura Perlman, and Mary

Thompson. RFC3820: Internet X.509 Public Key Infrastructure (PKI)
Proxy Certificate Profile, 2004. www.ietf.org/rfc/rfc3820.txt.

[12] Ouri Wolfson, Sushil Jajodia, and Yixiu Huang. An adaptive data repli-
cation algorithm. ACM Transactions on Database Systems, 22(2):255–
314, 1997.

[13] WS-Federation. Web Services Federation Language (WS-Federation),
2006. http://www-106.ibm.com/developerworks/webservices/library/ws-
fed.

[14] WS-Policy. Web Services Policy Framework (WS-Policy), 2004.
http://www-106.ibm.com/developerworks/library/specification/ws-
polfram.

[15] WS-Trust. Web Services Trust Language (WS-Trust), 2005. http://www-
106.ibm.com/developerworks/library/specification/ws-trust.

[16] X.509. The directory: Public-key and attribute certificate frameworks,
2005. ITU-T Recommendation X.509:2005 | ISO/IEC 9594-8:2005.

[17] XACML. eXtensible Access Control Markup Language (XACML),
2005. www.oasis-open.org/committees/xacml.

138

