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Abstract—A wide spectrum of Internet-scale mobile applications, ranging from social networking, gaming and entertainment to

emergency response and crisis management, all require efficient and scalable All k Nearest Neighbor (AkNN) computations over

millions of moving objects every few seconds to be operational. Most traditional techniques for computing AkNN queries are centralized,

lacking both scalability and efficiency. Only recently, distributed techniques for shared-nothing cloud infrastructures have been proposed

to achieve scalability for large datasets. These batch-oriented algorithms are sub-optimal due to inefficient data space partitioning and

data replication among processing units. In this paper we present Spitfire, a distributed algorithm that provides a scalable and high-

performance AkNN processing framework. Our proposed algorithm deploys a fast load-balanced partitioning scheme along with an

efficient replication-set selection algorithm, to provide fast main-memory computations of the exact AkNN results in a batch-oriented

manner. We evaluate, both analytically and experimentally, how the pruning efficiency of the Spitfire algorithm plays a pivotal role in

reducing communication and response time up to an order of magnitude, compared to three other state-of-the-art distributed AkNN

algorithms executed in distributed main-memory.
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1 INTRODUCTION

In the age of smart urban and mobile environments, the

mobile crowd generates and consumes massive amounts of

heterogeneous data [18]. Such streaming data may offer a

wide spectrum of enhanced science and services, ranging

from mobile gaming and entertainment, social networking, to

emergency and crisis management services [7]. However, such

data present new challenges in cloud-based query processing.

One useful query for the aforementioned services is the All

kNN (AkNN) query: finding the k nearest neighbors for all

moving objects. Formally, the kNN of an object o from some

dataset O, denoted as kNN(o,O), are the k objects that have

the most similar attributes to o [23]. Specifically, given objects

oa �=ob �=oc, ∀ob ∈ kNN(oa, O) and ∀oc ∈ O−kNN(oa, O) it

always holds that dist(oa, ob)≤dist(oa, oc). In our discussion,

dist can be any Lp-norm distance metric, such as Manhattan

(L1), Euclidean (L2) or Chebyshev (L∞). An All kNN (AkNN)

query generates a kNN graph. It computes the kNN(o,O)
result for every o ∈ O and has a quadratic worst-case bound.

An AkNN query can alternatively be viewed as a kNN Self-

Join: Given a dataset O and an integer k, the kNN Self-Join of

O combines each object oa ∈ O with its k nearest neighbors

from O, i.e., O⊲⊳kNNO = {(oa, ob)|oa, ob ∈ O and ob ∈
kNN(oa, O)}.

A real-world application based on such a query is

Rayzit.com [7], our award-winning crowd messaging architec-

ture, that connects users instantly to their k Nearest Neighbors

Demetrios Zeinalipour-Yazti (Corresponding Author), Department of Com-
puter Science, University of Cyprus, Email: dzeina@cs.ucy.ac.cy, Tel: +357-

22-892755, Fax: +357-22-892701, Address: 1 University Avenue, P.O. Box

20537, 1678 Nicosia, Cyprus; G. Chatzimilioudis, C. Costa, University of
Cyprus, 1678 Nicosia, Cyprus; W.-C. Lee, Penn State University, PA 16802,

USA; E. Pitoura, University of Ioannina, 45110 Ioannina, Greece.

(kNN) as they move in space (Figure 1, left). Similar to

other social network applications (e.g., Twitter, Facebook),

scalability is key in making Rayzit functional and operational.

Therefore we are challenged with the necessity to perform

a fast computation of an AkNN query every few seconds

in a scalable architecture. The wide availability of off-the-

shelf, shared-nothing, cloud infrastructures brings a natural

framework to cope with scalability, fault-tolerance and perfor-

mance issues faced in processing AkNN queries. Only recently

researchers have proposed algorithms for optimizing AkNN

queries in such infrastructures.

Specifically, the state-of-the-art solution [16] consists of

three phases, namely partitioning the geographic area into

sub-areas, computing the kNN candidates for each sub-area

that need to be replicated among servers in order to guarantee

correctness and finally, computing locally the global AkNN for

the objects within each sub-area taking the candidates into

consideration. The given algorithm has been designed with

an offline (i.e., analytic-oriented) AkNN processing scenario

in mind, as opposed to an online (i.e., operational-oriented)

AkNN processing scenario we aim for in this work. The

performance of [16] can be greatly improved, by introduc-

ing an optimized partitioning and replication strategy. These

improvements, theoretically and experimentally shown to be

superior, are critical in dramatically reducing the AkNN query

processing cost yielding results within in a few seconds, as

opposed to minutes, for million-scale object scenarios.

Solving the AkNN problem efficiently in a distributed

fashion requires the object set O be partitioned into disjoint

subsets Oi corresponding to m servers (i.e., O =
⋃

1≤i≤m Oi).

To facilitate local computations on each server and ensure

correctness of the global AkNN result, servers need to compute

distances across borders for the objects that lie on opposite
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Fig. 1. (Left) Our Rayzit crowd messenger enabling users

to interact with their k geographic Nearest Neighbors.

(Right) Distributed main-memory AkNN computation in
Rayzit is enabled through the Spitfire algorithm.

sides of the border and are close enough to each other.

Consider the example illustrated at the right side of Figure 1,

where 11 objects are partitioned over 4 spatial quadrants,

each being processed by one of four servers {s1 . . . s4}. Now

assume that we are interested in deriving the 2NN for each

object {o1 . . . o11}. By visually examining the example, we

can identify that the 2NN(o1, O) are {o2, o8}. Although o8
indeed resides along with o1 on s1, the same does not apply

to o2, which resides on s2. Consequently, in order to calculate

dist(o1, o2), we will first need to transfer o2 from s2 to

s1. The same problem also applies to other objects (e.g.,

2NN(o8, O) = {o7, o1} and 2NN(o6, O) = {o7, o8}).

In any performance-driven distributed algorithm, the effi-

ciency is determined predominantly by the network messaging

cost (i.e., network I/O). Therefore, in this work we address

the problem of minimizing the number of objects transferred

(replicated) between servers during the computation of the

AkNN query.

Another factor in a distributed system is balancing the

workload assigned to each computing node s i, such that each

si will require approximately the same time to compute the

distances among objects. By examining Figure 1 (right), we

can see that s4 would require to compute 15 distances among 6

objects (i.e., local objects {o4, o5, o9, o10, o11} and transferred

object {o3}), while s3 would need to compute only 3 distances

among 3 objects (i.e., local objects {o6, o7} and transferred

object {o8}). This asymmetry, means that s3 will complete 5

times faster than s4. In fact, s4 lies on the critical path of the

computation as it has the highest load among all servers.

Consequently, in this work we also address the problem

of quickly deriving a fair partitioning of objects between s i

that would yield a load-balanced execution and thus minimize

synchronization time.

In this paper we present Spitfire, a scalable and high-

performance distributed algorithm that solves the AkNN prob-

lem in a fast batch mode using a shared-nothing cloud

infrastructure of m servers. To address the aforementioned

load balancing and communication issues, Spitfire starts out

by partitioning O into disjoint sub-areas of approximately

equal population using a fast equi-depth partitioning scheme.

It then uses a threshold-based pruning algorithm to determine

minimal replication sets to be exchanged between servers.

Particularly, each server si receives from its neighboring

servers a set of replicated objects potentially of interest, coined

External Candidates (ECi). ECi supplements server si with all

the needed external objects to compute the correct kNN for

every o ∈ Oi, i.e., kNN(o,ECi ∪Oi) = kNN(o,O).
Particularly, Spitfire completes in three discrete phases.

First, we devise a simple but fast centralized hash-based

adaptation of equi-depth histograms [17] to partition the input

O into disjoint subsets achieving good load balancing in

O(n+
√
nm) time. To do this we first hash the objects based

on their locations into a number of sorted equi-width buckets

on each axis and then partition each axis sequentially by

grouping these buckets in an equi-depth fashion. Subsequently,

each si computes a subset of Oi, coined External Candidates

ECji, which is possibly needed by its neighboring s j for

carrying out a local AkNN computation in the next phase.

The given set ECji is replicated from si to sj . Finally, each

si performs a local Oi ⊲⊳kNN (Oi∪ECi) computation, which

is optimized by using a heap structure along with internal

geographic grouping and bulk processing.

Spitfire completes in only one communication round, as

opposed to two communication rounds needed by the state-

of-the-art [16], and its precise replication scheme has better

pruning power, thus minimizing the communication cost/time

as it is shown both analytically and experimentally in this

work. The CPU time of Spitfire is O(fSpitfire
n2

m2 ) and its

communication cost O(fSpitfiren), as this will be shown in

Sections 3. We show that factor fSpitfire is always smaller than

the factor achieved by the state-of-the-art [16]. Finally, Spitfire

is implemented using the Message Passing Interface (MPI)

framework [20]. This makes it particularly useful to large-

scale main-memory data processing platforms (e.g., Apache

Spark [27]), which have no dedicated AkNN operators.

In our previous work [4], we have presented a centralized

algorithm named Proximity, which deals with AkNN queries

in continuous query processing scenarios. In this work, we

completely refocus the problem formulation to tackle the

distributed in-memory AkNN query processing problem and

propose the Spitfire algorithm. Our new contributions are

summarized as follows:

• We devise Spitfire, a distributed algorithm that solves

the AkNN problem in a fast batch mode, offering both

scalability and efficiency. It encapsulates a number of

innovative internal components, such as: (i) a novel

linear-time partitioning algorithm that achieves sufficient

load-balancing independent of data skewness, (ii) a new

replication algorithm that exploits geometric properties

towards minimizing the candidates to be exchanged be-

tween servers, and (iii) optimizations added to the local

AkNN computation proposed in [4].

• We provide a formal proof of the correctness of our algo-

rithm and a thorough analytical study of its performance.

• We conduct an extensive experimental evaluation that

validates our analytical results and shows the superiority

of Spitfire. Particularly, we use four datasets of various

skewness to test real implementations of AkNN algo-

rithms on our 9-node cluster, and report an improvement
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of at least 50% in the pruning power of replicated objects

that have to be communicated among the servers.

The remainder of the paper is organized as follows. Sec-

tion 2 provides our problem definition, system model and

desiderata, as well as an overview of the related work on

distributed AkNN query processing. Section 3 presents our

Spitfire algorithm with a particular emphasis on its partitioning

and replication strategies, whereas Section 4 analyzes its

correctness and complexity. Section 5 presents an extensive

experimental evaluation and Section 6 concludes the paper.

2 BACKGROUND AND RELATED WORK

This section formalizes the problem, describes the general

principles needed for efficiency, and overviews existing re-

search on distributed algorithms for computing AkNN queries.

Such solutions can be categorized as “bottom-up” or “top-

down” approaches. We shall express the AkNN query as

a kNN Self-Join introduced earlier. Our main notation is

summarized in Table 1.

2.1 Goal and Design Principles

In this section we outline the desiderata and design principles

for efficient distributed AkNN computation.

Research Goal. Given a set of objects O in a bounding area

A and a cloud computing infrastructure S, compute the AkNN

result of O using S, maximizing performance, scalability and

load balancing.

Performance: In a distributed system the main bottleneck

for the response time is the communication cost, which is

affected by the size of the input dataset for each server.

Synchronization, handshake, and/or header data are considered

negligible in such environments [1]. Therefore, the lower

bound of the communication cost is achieved when the total

input of the servers equals to the size of the initial data set

O. However, additional communication cost is incurred when

some objects need to be transmitted (replicated) to more than

one server. Thus, the input is augmented with a number of

replicated objects, which is denoted as replication factor f .

Scalability: To accommodate the growth of data in volume,

an efficient data processing algorithm should exploit the com-

puting power of as many workers as possible. Unfortunately,

increasing the number of workers usually comes with an

increased communication cost. A scalable solution would

require that the replication factor f increases slower than the

performance gain with respect to the number of servers.

Load Balancing: To fully exploit the computational power of

all servers and minimize response time, an efficient algorithm

needs to distribute work load equally among servers. In the

worst case, a single server may receive the whole load, making

the algorithm slower than its centralized counterpart. The work

load is determined by the number of objects that are assigned

to a server. Therefore, load balancing is achieved when the

object set is partitioned equally.

TABLE 1
Summary of Notation

Notation Description

o,O, n Object o, set of all o, n = |O|
si, S,m Server si, set of all si, m = |S|
kNN(o, O) k nearest neighbors of o in O

dist(oa, ob) Lp-norm distance between oa and ob
A,Ai, Oi Area, Sub-Area i, Objects in sub-area i

b,Bi A border edge of Ai, set of all b ∈ Ai

Adji Set of all Aj adjacent (sharing b) to Ai

ECi External Candidates of Ai

2.2 Parallel AkNN Algorithms

There is a significant amount of previous work in the field of

computational geometry, where parallel AkNN algorithms for

special multi-processor or coarse-gained multicomputer sys-

tems are proposed. The algorithm proposed in [3] uses a quad-

tree and the well-separated pair decomposition to answer an

AkNN query in O(logn) using O(n) processors on a standard

CREW PRAM shared-memory model. Similarly, [9] proposes

an algorithm with time complexity O(n · log n
m + t(n,m)),

where n is the number of points in the data set, m is the

number of processors, and t(n,m) is the time for a global-

sort operation. Nevertheless, none of the above algorithms

is suitable for a shared-nothing cloud architecture, mainly

due to the higher communication cost inherent in the latter

architectures.

2.3 Distributed AkNN Algorithms: Bottom-Up

The first category of related work on distributed solutions

solve the AkNN problem bottom-up by applying existing kNN

techniques (e.g., iterative deepening from the query point [29])

to find the kNN for each point separately. The authors in

[21] propose a general distributed framework for answering

AkNN queries. This framework uses any centralized kNN

technique as a black box. It determines how data will be

initially distributed and schedules asynchronous communi-

cation between servers whenever a kNN search reaches a

server border. In [19] the authors build on the same idea,

but optimize the initial partitioning of the points onto servers

and the number of communication rounds needed between the

servers. Nevertheless, it has been shown in [4] that answering

a kNN query for each object separately restricts possible

optimizations that arise when searching for kNNs for a group

of objects that are in close proximity.

2.4 Distributed AkNN Algorithms: Top-Down

The second category of related work on distributed solutions

solve the AkNN problem top-down by first partitioning the

object set into subsets and then computing kNN candidates for

each area in a process we call replication. These batch-oriented

algorithms are directly comparable to our proposed solution,

therefore we have summarized their theoretical performance

in Table 2. All existing algorithms in this category happen to

be implemented in the MapReduce framework, therefore we

overview basic MapReduce concepts before we describe these

algorithms.
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Background: MapReduce [8] (MR) is a well established

programming model for processing large-scale data sets

with commodity shared-nothing clusters. Programs written in

MapReduce can automatically be parallelized using a refer-

ence implementation, such as the open source Hadoop frame-

work1, while cluster management is taken care of by YARN or

Mesos [13]. The Hadoop MapReduce implementation allows

programmers to express their query through map and reduce

functions, respectively. For clarity, we refer to the execution of

these MapReduce functions as tasks and their combination as a

job. For ease of presentation, we adopt the notation MR#.map

and MR#.reduce to denote the tasks of MapReduce job number

#, respectively. Main-memory computations in Hadoop can be

enforced using in-memory file systems such as Tachyon 2.

Hadoop Naive kNN Join (H-NJ [16]). This algorithm is

implemented with 1 MapReduce job. In the map task, O is

transferred to all m servers triggering the reduce task that

initiates the nested-loop computation Oi ⊲⊳kNN O (Oi contains

n/m objects logically partitioned to the given server). H-NJ

incurs a heavy O( n
2

m ) processing cost on each worker during

the reduce step, which needs to compute the distances of O i

to O members. It also incurs a heavy O(mn) communication

cost, given that each server receives the complete O. The

replication factor achieved is fH-NJ = m.

Hadoop Block Nested Loop kNN Join (H-BNLJ [28]). This

algorithm is implemented with 2 MapReduce jobs, MR1 and

MR2, as follows: In MR1.map, O is partitioned into
√
m

disjoint sets, creating m possible pairs of sets in form of

(Oi, Oj), where i, j ≤ √
m. Each of the m pairs (Oi, Oj)

is sent to one of the m servers. The communication cost

for this action is O(
√
mn), attributed to the replication of

m pairs each of size n√
m

. The objective of the subsequent

MR1.reduce task is to allow each of the m servers to derive

the “local” kNN results for each of its assigned objects.

Particularly, each si performs a local block nested loop kNN

join Oi ⊲⊳kNN Oj . The results of MR1.reduce have to go

through a MR2 job, in order to yield a “global” kNN result per

object. Particularly, MR2.map hashes the possible
√
m kNN

results of an object to the same server. Finally, MR2.reduce

derives the global kNN for each object using a local top-k

filtering. The CPU cost of H-BNLJ is O( n
2

m ), as each server

performs a nested loop in MR1.reduce. The replication factor

achieved is fH-BNLJ = 2
√
m.

Hadoop Block R-tree Loop kNN Join (H-BRJ [28]). This

is similar to H-BNLJ, with the difference that an R-tree on

the smaller Oi set is built prior to the MR1.reduce task, to

alleviate its heavy processing cost shown above. This reduces

the join processing cost during MR1.reduce to O( n√
m

log n√
m
).

The communication cost remains O(
√
mn) and the incurred

replication factor is again fH-BRJ = 2
√
m.

Hadoop Partitioned Grouped Block kNN Join (PGBJ

[16]): This is the state-of-the-art Hadoop-based AkNN query

processing algorithm that is implemented with 2 MapReduce

jobs, MR1′ and MR2′, and 1 pre-processing step according

1. Apache Hadoop. http://hadoop.apache.org/

2. Tachyon: http://tachyon-project.org/

TABLE 2
Algorithms for Distributed Main-Memory AkNN Queries

[ n: objects | m: servers | f : replication factor | f << m < n ]
Algorithm Preproc. Part. & Repl. Refinement Communic.

H-NJ [16] - O(n) O(n2

m
) O(mn)

H-BNLJ [28] - O(n) O(n2

m
) O(

√
mn)

H-BRJ [28] - O(n) O( n√
m

log n√
m

) O(
√
mn)

PGBJ [16] O(
√
n) O(n1.5/m) O(fPGBJ

n2

m2
) O(fPGBJn)

Spitfire - O(n) O(fSpitfire
n2

m2
) O(fSpitfiren)

to the following logic: in a preprocessing step, a set of

approximately
√
n random pivots in space is generated [16].

During MR1′.map, each object in O is mapped to its closest

pivot, thus partitioning O into
√
n sets (i.e., O=

⋃

1≤j≤
√
n Oj ).

This takes O(n
3

2 /m) time, since on each server the distance of

n/m objects is measured against
√
n pivots. At the same time,

the maximum and minimum distances between Oj objects

and its corresponding pivot are recorded as lower and upper

pruning thresholds for subsequent filtering. In MR2 ′.map, the

given bounds define a set of objects around each partition O j

that must be replicated to Oj (coined Fj). MR1′.reduce in

PGBJ is void.

During MR2′.map, the
√
n subsets defined during

MR1′.map are geographically grouped together into m clusters

(i.e., O=
⋃

1≤i≤m Oi) using a grouping strategy, which greed-

ily attempts to generate clusters of equal population around

some m geometrically dispersed pivots. For each generated

cluster Oi, a set Fi is derived based on the union of the

respective Fj sets of the cluster defined earlier. Having Fi

defined, it allows MR2′.reduce to perform a straightforward

Oi ⊲⊳kNN (Oi ∪ Fi) to generate the final result.

The replication factor is fPGBJ=
1
n

∑m
i=1 |Fi|+1. The CPU

cost is O(
√
n) for the preprocessing step, O( n

m

√
n) for MR1′

and O(fPGBJ
n2

m2 ) in MR2′. PGBJ only distributes O over m
servers and then exchanges fPGBJn candidates between servers,

therefore its communication cost is O(fPGBJn).

3 THE SPITFIRE ALGORITHM

In this section we propose Spitfire, a high-performance dis-

tributed main-memory algorithm. We outline its operation and

intrinsic characteristics and then detail its three internal steps

that capture the core functionality, namely partition (Parti-

tioning/Splitting), computeECB (Replication) and localAkNN

(Refinement). The name Spitfire is derived by a syllable play

using the meaning of these three steps, namely Split, Refine

replicate, which implies good mechanical performance.

3.1 Spitfire: Overview and Highlights

As shown in [4], grouping the points geographically and

computing common kNN candidates per group, instead of

computing the kNN for each point separately, significantly

improves performance. Furthermore, partitioning is necessary

for distribution, thus such algorithms, which geographically

group their points, inherently lend themselves as distributed

solutions. For the above reasons, the solution we propose
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Fig. 2. Spitfire Overview: i) Space partitioning to equi-

depth quadrants; ii) Replication between neighboring Oi

and Oj using ECji and ECij , respectively; and iii) Local
refinement within each Oi ∪ ECi.

in this work also belongs to the category of “top-down”

distributed AkNN solutions.

Overview: In Spitfire, the input O is processed in a single

communication round, involving the three discrete steps shown

in Algorithm 1 and explained below (please see Figure 2 along

with the description):

• Step 1 (Partitioning): Initially, O is partitioned into

(disjoint) sub-areas with an approximately equal num-

ber of objects, i.e., O =
⋃

1≤i≤m Oi. We use a sim-

ple but fast centralized hash-based adaptation of equi-

depth histograms [17] to achieve good load balancing in

O(n +
√
nm) time. It first hashes the objects based on

their locations into a number of sorted equi-width buckets

on each axis and then partitions each axis sequentially

by grouping these buckets in an equi-depth fashion. Let

each Oi belong to area Ai handled by server si, Bi be

the border segmentations surrounding A i and Adji be the

adjacent servers to si (handling adjacent areas to Ai).

• Step 2 (Replication): Subsequently, each si computes a

subset of Oi, coined External Candidates ECji, which

is possibly needed by its neighboring sj for carrying

out a local AkNN computation in Step 3 (refinement).

The given set ECji is transmitted by si to sj (i.e., left-

dashed area within Oi, as depicted in Figure 2). Since

each sj applies the above operation as well, we also

have the notion of ECij . The union of ECij for all

neighboring sj ∈ Adji defines the External Candidates

of Oi, i.e., ECi =
⋃

1≤j≤Adji
ECij . The cardinality of all

ECi defines the Spitfire replication factor, i.e.,

fSpitfire =
1

n

m
∑

i=1

|ECi|+ 1 (1)

• Step 3 (Refinement): Finally, each si performs a local

Oi ⊲⊳kNN (Oi ∪ ECi) computation, which is optimized

by using a heap structure along with internal geographic

grouping and bulk processing.

Algorithm 1 - Spitfire Distributed AkNN Algorithm

Input: n Objects O in Area A, m Servers S, Parameter k
Output: AkNN of O

⊲ Step 1: Partitioning (centrally)

1: Areas = partition(A,m) ⊲ (Algo. 2, Sec. 3.2)
2: for all Ai ∈ Areas do

3: determine Oi, Adji and Bi

4: transmit Oi to server si ∈ S
5: end for

⊲ Step 2: Replication (parallel on each si)
6: for all b ∈ Bi do ⊲ Find candidates needed by each Aj

7: ECb =computeECB(b,Oi) ⊲ (Algo. 3, Sec. 3.3)

8: ECji=ECji ∪ ECb ⊲ Append to ECji results.
9: end for

10: for all Aj ∈ Adji do ⊲ Exchange External Candidates
11: Asynchronous send ECji to adjacent server sj
12: Asynchronous receive ECij from adjacent server sj
13: ECi = ECi ∪ECij ⊲ Append to ECi results.
14: end for

⊲ Step 3: Refinement (parallel on each si)
15: localAkNN(Oi,ECi) ⊲ (Algo. 4, Sec. 3.4)

The CPU time of Spitfire is T (n) = n+
√
nm+ fSpitfire

n2

m2 ,

as this will be shown in Sections 3.2 and 3.4, respectively. Its

communication cost is the total number of objects communi-

cated over the network, i.e., C(n) = fSpitfiren.

Highlights: Spitfire’s main advantages to prior work follow:

• Fast Batch Processing: Spitfire is suitable for online op-

erational AkNN workloads as opposed to offline analytic

AkNN workloads. Particularly, it is able to compute the

AkNN result-set every few seconds as opposed to minutes

required by state-of-the-art AkNN algorithms configured

in main-memory.

• Effective Pruning: Spitfire uses a pruning strategy that

achieves replication factor fSpitfire, which is shown ana-

lytically and experimentally to be always better than that

achieved by state-of-the-art AkNN algorithms.

• Single Round: Spitfire is a single round algorithm as

opposed to state-of-the-art AkNN algorithms that require

multiple rounds.

3.2 Step 1: Partitioning

To fully utilize the processing power of the available servers

in the cluster, it is desirable to allocate an evenly balanced

workload. This functionality has to be carried out in a fast

batch-oriented manner, in order to accommodate the real-time

nature of crowd messaging services such as those offered

by Rayzit. Particularly, our execution has to be carried out

every few seconds. As the partitioning is to be used by

each AkNN query, the result will not be useful after a few

seconds (i.e., when the next AkNN query is executed). We

consequently have not opted for traditional space partitioning

index structures (e.g., k-d trees, R-trees, etc.), as these require

a wasteful O(nlogn) construction time.

Our partition function runs on a master node centrally and

uses a hash-based adaptation of equi-depth histograms [17] for

speed and simplicity. Instead of ordering the objects on each

axis and then partitioning each axis sequentially for a time

complexity of O(nlogn), our partition function first hashes
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Algorithm 2 - partition(A,m) Algorithm

Given: object space A, number of partitions m, set of objects O, number of
buckets per axis paxis

1: partitions = ∅, 1≤s≤m ⊲ initialize final partitions
2: xpartitionr=∅, 1≤r≤⌈√m⌉ ⊲ initialize x-axis partitions
3: xbuckets = equi-width hash ∀o ∈ O into px buckets
4: for all bucket in xbuckets do

5: if |xpartitionr |+ 1
2
|bucket|> n√

m
and r<

√
m then

6: r = r + 1
7: end if

8: xpartitionr ← bucket
9: end for

10: for all part in xpartitions do

11: empty all ybuckets
12: ybuckets=equi-width hash ∀o∈part into py buckets
13: for all bucket in ybuckets do

14: if |partitions|+ 1
2
|bucket|> n

m
and s<

√
m then

15: s = s+ 1
16: end if

17: partitions ← bucket

18: end for

19: end for

the objects, based on their location, into paxis < n sorted equi-

width buckets on each axis, and then partitions each axis by

grouping these buckets for O(n+
√
mn) time.

Particularly, our partition function (Algorithm 2) splits the

x-axis into px equi-width buckets and hashes each object o in

O in the corresponding x-axis bucket (Line 3). Then it groups

all x-axis buckets into ⌈√m⌉ vertical partitions (xpartition) so

that no group has more than n√
m
+ 1

2 |bucket| objects (Line 4-9).

The last x-axis partition gets the remaining buckets. Next, it

splits the y-axis into py equi-width buckets. For each generated

vertical partition xpartitioni it hashes object o ∈ xpartitioni

into the corresponding bucket (Line 12). Then it groups all

y-axis buckets into ⌈√m⌉ partitions so that no group has

more than n
m+ 1

2 |bucket| objects (Line 13-18). The last y-axis

partition gets the remaining buckets.

The result is m partitions of approximately equal popula-

tion, i.e., n
m+ 1

2 |bucket|. The more buckets we hash into, i.e.,

larger values for px and py , the more “even” the populations

will be. The time complexity of the partition function is

determined by the number n of objects to hash into each

bucket (px + py) (Lines 3 and 12) and the nested-loop over

all
√
m xpartitions (Lines 10-19). In our setting, px<

√
n and

py<
√
n are used in the internal loop (Lines 13-18). Thus, the

total time complexity is O(n+
√
mn) = O(n), since n > m.

3.3 Step 2: Replication

The theoretical foundation of our replication algorithm is

based on the notion of “hiding”, analyzed in detail later in

Section 4.1. Intuitively, given the kNNs of a line segment or

corner b and a set of points Oi on one side of b, it is guaranteed

that any point belonging to the opposite side of b, other than

the given kNNs of b, is not a kNN of Oi.

Each server si computes the External Candidates ECji for

each of its adjacent servers sj ∈ Adji (Algorithm 1, Line 6-9).

It runs the computeECB algorithm for each border segment or

corner b ∈ Bi (Line 7) and combines the results according to

the adjacency between b and Adji (Line 8).

computeECB (Algorithm 3) scans all the objects in

Oi once to find the kNN(b, Oi), i.e., the k objects

Algorithm 3 - computeECB(b,Oi) Algorithm

Given: border segment (or corner) b, object set Oi

1: construct Min Heap Hb from Oi based on mindist(o, b)
2: kNN(b, Oi) = extract top k objects from Hb

3: θb ← maxp∈kNN(b,Oi)
{maxdist(p, b)}

4: for all o ∈ Oi do

5: if mindist(o, b) < θb then

6: ECb = ECb ∪ o
7: end if

8: end for

9: return ECb

Algorithm 4 - localAkNN(Oi,ECi) Algorithm

Given: External Candidates ECi and set of objects Oi

1: partition the area Ai into a set of cells Ci

2: for all cells c ∈ Ci do

3: construct Min Heap Hc from Oi on mindist(o, c)
4: kNN(c, Oi) = extract top k objects from Hc

5: θc ← maxp∈kNN(c,Oi)
{maxdist(p, c)}

6: for all o ∈ Oi do

7: if mindist(o, c) < θc then

8: ECc = ECc ∪ o
9: end if

10: end for

11: compute kNN(o, Oc ∪ ECc), ∀o ∈ Oc

12: end for

with the smallest mindist to border b (Line 2), where

mindist(o, b)=minp∈b{dist(o, p)} and p is any point on b. Note,

that the partitioning step guarantees that each server will have

at least k objects if m < n
k − |bucket|.

A pruning threshold θb is determined by kNN(b, Oi) and

used to prune objects that should not be part of EC b. Specif-

ically, threshold θb is the worst (i.e., largest) maxdist(o, b)
of any object o ∈ kNN(b, Oi) to border b (Line 3), where

maxdist(o, b) is defined as maxdist(o, b)=maxp∈b {dist(o, p)}.

θb = argmaxp∈kNN(b,Oi)
{maxdist(p, b)} (2)

Given θb, an object o ∈ Oi is part of ECb if and only if its

mindist to b is smaller than θb (Line 4-8) (based on Theorem

1, Section 4). Formally,

ECb = {o|o ∈ Oi ∧ mindist(o, b) < θb} (3)

As si completes the computation of ECji for an adjacent

server sj ∈ Adji, it sends ECji to sj and receives ECij′ from

some s′j ∈ Adji that has completed the respective computation

in an asynchronous fashion (Algorithm 1, Line 10-14). When

all servers complete the replication step, each si have received

set ECi=
⋃

sj∈Adji
ECij .

In the example of Figure 3, server s1 has O1=
{o1, o2, o3, o4} and wants to run computeECB for b=be. The

2 neighbors 2NN(b, O1) of border b are {o1, o2} and there-

fore θb=maxdist(o1, b) (since maxdist(o1, b)>maxdist(o2, b)).
Objects o3 and o4 do not qualify as part of ECb, since

mindist(o3, b)>θb and mindist(o4, b)>θb, thus ECb={o1, o2}.

3.4 Step 3: Refinement

Having received ECi, each server si computes kNN(o,Oi ∪
ECi), ∀o ∈ Oi (Algorithm 1, Line 15). Any centralized main-

memory AkNN algorithm [4], [6] that finds the kNNs from

Oi ∪ ECi for each object o ∈ Oi (a.k.a. kNN-Join between

sets Oi and Oi ∪ ECi) can be used for this step.
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In Spitfire, we partition sub-area Ai of server si into a grid

of equi-width cells Ci. Each cell c ∈ Ci contains a disjoint

subset Oc ⊂ Oi of objects. Next, we compute locally a correct

external candidate set ECc for each cell c ∈ Ci (similarly to

the replication step). Finally, we find the kNNs for each object

o ∈ Oi by computing kNN(o,Oc ∪ ECc).
In Algorithm 4, objects o∈Oi are scanned once to build

a k-min heap Hc for each cell c∈Ci based on the minimum

distance mindist(o, c) between o and the cell-border (Line 3).

The first k objects are then popped from Hc to determine

threshold θc, based on Equation (2) (Lines 4-5). Objects o∈O i

are scanned once again to determine the External Candidates

ECc that satisfy the threshold as in Equation (3) (Lines 6-10).

Finally, si computes kNN(o,Oc ∪ ECc), ∀o ∈ Oc (Line 11).

Given optimal load balancing, the building phase (heap

construction and External Candidates) completes in O( n
m )

time, whereas finding the kNN within Oc ∪ ECc completes

in O(fSpitfire
n
m ) time, where n

m = |Oi|.

3.5 Running Example

Given an object set O, assume that a set of servers

{s1, s2, s3, s4} have been assigned to sub-areas {abde, bcfe,

efih, dehg}, respectively (see Figure 3). In the following, we

discuss the processing steps of server s1. The objects of s1 are

O1={o1, o2, o3, o4}, its adjacent servers are Adji={s2, s3, s4},

and its border segments are B1 = {a, ab, b, be, e, ed, d, da}.

For simplicity we have defined the border segments to be a

one-to-one mapping to the corresponding adjacent servers. As

shown, border segment be is adjacent to server s2, corner e is

adjacent to server s3, and segment ed is adjacent to server s4.

Server s1 locally computes ECb for each b ∈ Bi. It does so

by scanning all objects o ∈ O1 and building a heap Hb for each

border segment b based on mindist(o, b). The k closest objects

to each b are popped from Hb as a result. In our example,

{o1, o2} are the k closest objects to segment be, {o1, o2} are

the k closest objects to e, and {o2, o4} are the k closest objects

to segment ed.

For each segment b, its pruning threshold θb is deter-

mined by the largest maxdist of its closest objects computed

in the previous step. For instance, for segment be this is

θb = maxdist(o1, be), since maxdist(o1, be) > maxdist(o2, be).
Given the thresholds θb, all objects o ∈ O1 are scanned again

and the condition mindist(o, b) < θb is checked for each

segment b. If this condition holds then object o is part of

ECb. In our example, ECbe = {o1, o2}, ECe = {o1, o2} and

ECed = {o2, o4}. Now s1 sends ECbe to s2, ECe to s3, and

ECed to s4, based on the adjacency described earlier.

Similarly, the above steps take place in parallel on each

server. Therefore, s1 receives from s2 the ECbe of set O2,

from s3 the ECe of set O3, and from s4 the ECed of set

O4. Hence, server s1 will be able to construct its EC1 =
⋃

b∈Bi
ECb = {o5, o6, o7, o8}. The External Candidate compu-

tation completes and the local kNN refinement phase initiates

computing kNN(o,Oi ∪ ECi), ∀o ∈ Oi on each server si.

4 CORRECTNESS AND ANALYSIS

In this section we first show that our algorithm leads to a cor-

rect AkNN result, i.e.,
∑m

i kNN(o,ECi ∪Oi) = kNN(o,O),
based on the External Candidates determined by computeECB.

Then, we analyze its computational and communication cost.

4.1 Correctness of the computeECB function

To prove correctness, we show that it suffices to compute the

External Candidates ECBi
to border Bi in order to find the

External Candidates ECi of the whole area Ai, given area Ai,

its border Bi, and the necessary objects around Bi. In the

following, we first define the notion of point hiding.

Definition 1 (Point Hiding). Given three points o1, o2, o3 on

a line, which holds the following relationship dist(o1, o3) =
dist(o1, o2)+dist(o2, o3), we say that o2 hides o1 and o3 from

each other.

In Figure 4 (top) point o2 hides o1 and o3 from each other.

Lemma 1. Given three points o1, o2, o3 where o2 hides o1
from o3 and the fact that o1 is not a kNN of o2, it holds that

o1 is not a kNN of o3, and vice versa.

Proof: To prove that o1 is not a kNN of o3 it suffices

to prove that there are k points closer than o1 is to o3. The

fact that o1 is not a kNN of o2 means that there are k other

points, {p1, p2, ..., pk}, in space that are closer to o2 than

is o1, dist(pi, o2) ≤ dist(o1, o2). It holds that dist(pi, o3) ≤
dist(o1, o2)+dist(o1, o3)−dist(o2, o1) based on trigonometry,

which gives dist(pi, o3) ≤ dist(o1, o3). Therefore there are k
points, namely {p1, p2, ..., pk}, that are closer to o3 than is o1

Similarly, we can extend the notion of hiding from a point

to a line segment, i.e., border. In Figure 4 (bottom) segment b
hides o1 and o3 from each other.

Definition 2 (Segment Hiding). Given two points o1, o3, and

a segment b, we say that b hides o1 and o3 from each other,

when there is always a point o ∈ b that hides o1 and o3 from

each other.

Lemma 2. Given two points o1 and o3, a segment b that hides

o1 from o3, and the fact that o1 is not a kNN of any point on

b, it holds that o1 is not a kNN of o3, and vice versa.

Proof: It suffices if it holds that dist(ki, o3) ≤ dist(o1, o3)
for 1 ≤ i ≤ k. Given that o1 is not a kNN of any point p ∈ b,
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then for each p there are k other points {k1, k2, ..., kk}p in

space. It holds that dist(kp′

i , o3) ≤ dist(o1, o3)− dist(o1, p
′)+

dist(o1, p
′) based on trigonometry, which gives dist(k p′

i , o3) ≤
dist(o1, o3) for 1 ≤ i ≤ k.

Since border Bi of area Ai hides every point that is outside

Ai from the points inside Ai, we can easily extend Lemma 1

and Lemma 2 into Lemma 3:

Lemma 3. Given an area Ai, its objects Oi and its border

segments Bi, then any object x outside area Ai, i.e., x /∈ Oi,

that is not a kNN of some point of border Bi is guaranteed

not to be a kNN of any object inside Ai.

4.2 Correctness of Spitfire

The correctness of computeECB performed on a single server

assumes that for a given border b the server has access to

all the kNN candidates of b. In a distributed environment this

may not be the case as some candidates of b might span over

several servers. More specifically, this happens when a server

has less than k objects or when there is a θb that is greater

than the side of the sub-area Ai assigned to the server.

The result of Spitfire is always correct since it deals with

both cases gracefully. In particular, given a dataset of size n,

Spitfire does not allow m to be set such that n
m < k and

furthermore, at the end of the partitioning step (Algorithm

2) it iterates through the m generated partitions partitions,

1≤s≤m, to check whether |partitions| < k. If this is the case,

Spitfire re-instantiates itself using only m/2 servers in order

to produce partitions with larger population.

To handle the second case, Spitfire also computes the

side lengths of each partition during the partitioning step

(Algorithm 2) and checks on each server during the repli-

cation step whether for any b ∈ Bi it holds that θb >
partition side length in Algorithm 3. If this is the case,

Spitfire re-instantiates itself using only m/2 servers in order to

produce partitions with bigger side lengths. The above controls

are not shown in the Algorithms for clarity of presentation.

Given that each server si receives ECi computed by function

computeECB over all adjacent servers sj ∈ Adji we get:

Theorem 1. Given an object set O that is geograph-

ical partitioned into disjoint subsets O =
⋃

1≤i≤m Oi,

the bounding border Bi of each Oi, and the segmen-

tation of Bi into segments b ∈ Bi, it holds that

kNN(o,O)=
∑m

i kNN(o,Oi ∪ ECi), ∀o ∈ Oi if and only if

ECi = ECBi
=

⋃

b∈Bi
ECb, ∀1 ≤ i ≤ m.

Proof: Directly from Equation (3) and Lemma 3

4.3 Computational Cost of computeECB

The computational cost is directly affected by the replication

factor fSpitfire achieved by Spitfire. Assume that the border B i

of area Ai is divided into |Bi| equi-width border segments

b ∈ Bi, with width db.

Lemma 4. Given n objects, m servers, |B| number of

segments for each area border, and the optimal allocation of

objects to the servers n
m , the time to compute the candidates

ECi for each sub-area is O(|B|·( n
m+klog n

m )).

Proof: Assuming optimal partitioning and an equal num-

ber of segments for each server, it holds that |O i| = n
m

and |B| = |Bi| for each si, respectively. In Algorithm 3

computeECB is invoked for each border segment b ∈ B i in or-

der to compute the candidates ECi. Determining kNN(Bi, Oi)
(Line 1) and θi (Line 3) has time complexity O( n

m+klog n
m ).

Scanning set Oi to determine ECb using θb (Lines 4 - 8)

has time complexity O( n
m). Therefore, each server spends

O(|B|( n
m+klog n

m )) time to compute the candidates to be

transmitted to its neighbors.

Theorem 2. Given n objects, m servers, parameter k, the

perimeter PA of area A, the length db of each border segments,

and the optimal allocation of objects to the servers n
m , the

time to compute the candidates ECi for each sub-area is

O(PA

√
m

db
( n
m + klog n

m )).

Proof: In Lemma 4 we can replace the number of seg-

ments |B| by the total length L over the length of the segments

db as follows: |B| = L/db. The total length of all borders

based on the partition algorithm is L =
√
m∗Ax+

√
m∗Ay , as

each axis is partitioned
√
m times. Aaxis represents the length

of area A along the given axis. Therefore, |B|= PA

√
m

2db

4.4 Communication Cost of Replication

The computational cost is directly affected by the replication

factor fSpitfire, which is the cardinality of the External Candi-

date set ECi for each server si (see Equation (1) in Section

3). Each ECi consists of the k closest objects to its border

Bi plus the objects alti whose mindist is smaller than θi, as

described Section 3.3:

|ECi| = k + |alti| (4)

We can only analyze the replication factor f further if

we make an assumption about the distribution of objects.

Hereafter, we assume that the distribution is uniform. Further,

w.l.o.g. we assume that we use border segments of the same

diameter db to compose the borders between sub-areas.

Lemma 5. Given a uniform distribution of n objects over

area A, m servers with border segment diameter db, and an

AkNN query, the alternative external candidate population is

|alti| ≈ n
A ·(db+

√

kA
nπ )

2−k.

Proof: The proof is omitted due to space limitation.

Theorem 3. Given a uniform distribution of n objects over

area A, m servers with border segment diameter db, and an

AkNN query, the replication factor is

fSpitfire ≈
m

A
· (db +

√

kA

nπ
)2 + 1

Proof: Follows from Equations (1), (4) and Lemma 5.

4.5 Optimal border segment size

Given a cluster setup (m), a dataset (A, n), the CPU speed

of the servers, the LAN speed, an AkNN query (k) and the
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(right) shown as shaded areas in both figures.

border segment size db used in Spitfire, we can estimate the

total response time as follows:

T =
CPU · PA · n

db
√
m

+
LAN · n ·m

A
· (db +

√

kA

nπ
)2

Given that the only parameter we can fine-tune is the

segment length db, we find the optimal value for db that

minimizes the above equation as follows:

db = argmindb
T (5)

4.6 Replication Factor: Spitfire vs. PGBJ

In this section, we qualitatively explain the difference of the

replication factors fSpitfire and fPGBJ achieved by the replication

strategies adopted in Spitfire and PGBJ, respectively. We use

Figure 5 to illustrate the discussion.

In Spitfire, the cutoff distance for the candidates θ Spitfire

(defining the shaded bound) is determined by the maximum

distance of the k closest external objects to the border segment

b (let this be of length d). Now assume that all external objects

are located directly on the border b. In this case, θ Spitfire = d.

On the other extreme, assume that the external objects are

exactly d distance from the border b where their worst case

maximum distance to a border point would be
√
2 · d. In this

case, θSpitfire =
√
2 · d.

In PGBJ, the maximum distance between a pivot (+) and

its assigned objects defines the radius r of a circular bound

(dashed line), centered around the pivot. θPGBJ is determined

by the maximum distance of the k closest objects to the pivot

plus r. Now assume that all objects are located directly on

the pivot. In this case, r = 0 and θPGBJ = 0. On the other

extreme, assume that all objects are on the boundary of the

given Voronoi cell. In this case, θPGBJ = 2 · r. When d=r,

θSpitfire has a
√
2 advantage over θPGBJ.

5 EXPERIMENTAL EVALUATION

To validate our proposed ideas and evaluate Spitfire, we con-

duct a comprehensive set of experiments using a real testbed

on which all presented algorithms have been implemented. We

show the evaluation results of Spitfire in comparison with the

state-of-the-art algorithms.

5.1 Experimental Testbed

Hardware: Our evaluation is carried out on the DMSL

VCenter3 IaaS datacenter, a private cloud, which encompasses

3. DMSL VCenter @ UCY. http://goo.gl/dZfTE5
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Fig. 6. Our Rayzit and experimental architecture.

5 IBM System x3550 M3 and HP Proliant DL 360 G7

rackables featuring single socket (8 cores) or dual socket (16

cores) Intel(R) Xeon(R) CPU E5620 @ 2.40GHz, respectively.

These hosts have collectively 300GB of main memory, 16TB

of RAID-5 storage on an IBM 3512 and are interconnected

through a Gigabit network. The datacenter is managed through

a VMWare vCenter Server 5.1 that connects to the respective

VMWare ESXi 5.0.0 hosts.

Computing Nodes: The computing cluster, deployed over our

VCenter IaaS, comprises of 9 Ubuntu 12.04 server images

(i.e., denoted earlier as si), each featuring 8GB of RAM

with 2 virtual CPUs (@ 2.40GHz). The images utilize fast

local 10K RPM RAID-5 LSILogic SCSI disks, formatted with

VMFS 5.54 (1MB block size). Each node features Hadoop

v0.20.2 along with memory-centric distributed file system

Tachyon v0.5.0. It also features the Parallel Java Library 4 to

accommodate MPI [20] message passing in Spitfire.

Rayzit Service [7]: Our service, outlined in Section 1, features

a HAProxy5 HTTP load balancer to distribute the load to

respective Apache HTTP servers (see Figure 6). Each server

also features a Couchbase NoSQL document store6 for storing

the messages posted by our users. In Couchbase, data is stored

across the servers in JSON format, which is indexed and

directly exposed to the Rayzit Web 2.0 API7. In the backend,

we run the computing node cluster that carries out the AkNN

computation as discussed in this work. The results are passed

to the servers through main memory (i.e., MemCached) every

few seconds.

5.2 Datasets

In our experiments we use the following synthetic, realistic

and real datasets (depicted in Figure 7):

Random (synthetic): This dataset was generated by randomly

placing objects in space, in order to generate uniformly

distributed datasets of 10K, 100K and 1M users.

Oldenburg (realistic): The initial dataset was generated with

the Brinkhoff spatio-temporal generator [2], including 5K

vehicle trajectories in a 25km x 25km area of Oldenburg,

4. Parallel Java. http://goo.gl/uOQsDX

5. HAProxy. http://haproxy.1wt.eu/

6. Couchbase. http://www.couchbase.com/

7. Rayzit API. http://api.rayzit.com/
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Fig. 7. Datasets (top row) and population histograms (bottom row) for an indicative 3x3 partitioning.

Germany. The generated spatio-temporal dataset was then

decomposed on the temporal dimension, in order to generate

realistic spatial datasets of 10K, 100K and 1M users.

Geolife (realistic): The initial dataset was obtained from the

Geolife project at Microsoft Research Asia [30], including

1.1K trajectories of users moving in the city of Beijing, China

over a life span of two years (2007-2009). Similarly to Olden-

burg, the generated spatio-temporal dataset was decomposed

on the temporal dimension, in order to generate realistic spatial

datasets of 10K, 100K and 1M users.

Rayzit (real): This is a real spatial dataset of 20K coordinates

captured by our Rayzit service during February 2014. We

intentionally did not scale this dataset up to more users, in

order to preserve the real user distribution.

Figure 7 (second row) shows the population histograms for

the four respective datasets, when split into nine equi-width

partitions. The standard deviation among the buckets for a

total population of 1M objects is: i) 2K in Random; ii) 90K

in Oldenburg; and iii) 200K in Geolife. For Rayzit, which has

a population of 20K, the standard deviation is 3.3K.

5.3 Evaluated Algorithms

We compare one centralized and four distributed algorithms,

which have been confirmed to generate identical correct results

to the AkNN query.

Proximity [4]: This centralized algorithm runs on a single

server and groups objects using a given space partitioning of

cellular towers in a city. It computes the candidates kNNs of

each area and scans those for each object within the area.

Although this centralized algorithm is not competitive, we use

it as a baseline for putting scalability into perspective.

H-BNLJ [28]: This is the two-phase MapReduce algorithm

analyzed in Section 2.4, which partitions the object set ran-

domly in
√
m disjoint sets and creates their m possible pairs.

Each server performs a kNN-join among each pair. Finally, the

local results are gathered and the top-k results are returned as

the final k nearest neighbors of each object.

H-BRJ [28]: This is the same algorithm as H-BNLJ, only it

exploits an R-tree when performing the kNN-join to reduce

the computation time.

PGBJ [16]: This is the two-phase MapReduce algorithm

analyzed in Section 2.4, which partitions the space based

on a set of pivot points generated in a preprocessing step.

The candidate set is then computed based on the distance of

each point to each pivot. We use the original implementation

kindly provided by the authors of PGBJ that comes with the

following configurations: (i) the number of pivots used is set

to P = 4000 (i.e., ≈ √
n, for n = 1M objects).

Spitfire: This is the algorithm proposed in this work. The only

configuration parameter we use is the optimal border segment

size db, which is derived with Equation (5), given the provided

cluster of m nodes, the preference k, a dataset (A,n), the CPU

speed of the servers and the LAN speed.

The traditional Hadoop implementation transfers interme-

diate results between tasks through a disk-oriented Hadoop

Distributed File System (HDFS). For fair comparison we port

all MapReduce algorithms to UC Berkeley’s Tachyon in-

memory file system to enable memory-oriented data-sharing

across MapReduce jobs. As such, the algorithms presented in

this section have no Disk I/O operations, i.e., we are thus only

concerned with minimizing Network I/Os (NI/Os).

5.4 Metrics and Configuration Parameters

Response Time: This represents the actual time required by

a distributed AkNN algorithm to compute its result. We do

not include the time required for loading the initial objects to

main memory of the m servers or writing the result out. We

use this setting to capture the processing scenarios deployed in

our real Rayzit system architecture. Times are averaged over

five iterations measured in seconds and plotted in log-scale,

unless otherwise stated.

Replication Factor (f ): This represents the number of times

the n objects are replicated between servers to guarantee

correctness of the AkNN computation. f determines the com-

munication overhead of distributed algorithms, as described in

Section 2. A good algorithm is expected to have a low repli-

cation factor (when f=1 there is no replication of objects).

We also extend our presentation with additional Network

I/O (NI/O) and Server Load Balancing measurements. Table

3 summarizes all parameters used in the experiments.
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TABLE 3
Values used in our experiments

Section Dataset n k m

5.5 ALL [104, 105, 106] 64 9

5.6 Random 106 64 9

5.7 ALL 106 (104 Rayzit) 64 9

5.8 Random, Rayzit 106 (104 Rayzit) 4i, 1 ≤ i ≤ 5 9

5.9 Random 106 64 [3, 6, 9]

5.5 Varying Number of Users (n)

In this experimental series, we increase the workload of the

system by growing the number of online users (n) exponen-

tially and measure the response time and replication factor of

the algorithms under evaluation.

Total Computation: In Figure 8, we measure the total re-

sponse time for all algorithms, datasets and workloads. We

can clearly see that Spitfire outperforms all other algorithms

in every case. It is also evident that H-BNLJ and H-BRJ do not

scale. H-BRJ achieves the worst time for 106 users. Adding

up the values shown in Figures 9 and 10 and comparing to the

total response time in Figure 8, it becomes obvious that most

of H-BRJ’s response time is spent in communication, which

is indicated theoretically by its communication complexity of

O(
√
mn) shown in Table 2. We focus on comparing only

Spitfire and PGBJ for the rest of our evaluation.

For 104 online users, Spitfire outperforms all algorithms

by at least 85% for all dataset, whereas for 105 Spitfire

outperforms PGBJ, by 75%, 75% and 53% for the Random,

Oldenburg and Geolife datasets, respectively.

Spitfire and PGBJ are the only algorithms that scale. For a

million online users (n=106), Spitfire and PGBJ are the fastest

algorithms, but Spitfire still outperforms PGBJ by 67%, 75%,

14% for the Random, Oldenburg and Geolife datasets, respec-

tively. The small percentage noted for the Geolife dataset is

attributed to the fact that this dataset is highly skewed (as

observed in Figure 7), and that PGBJ achieves better load

balancing (as shown later in Section 5.7), which in turn leads

to a faster refinement step.
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Fig. 12. Low level Network I/O (NI/O) measurements for Spitfire and PGBJ. Spitfire consumes 2.5x less NI/O.

Partitioning and Replication: In Figure 9 we measure the

response time for the partitioning and replication steps in

isolation. The theoretical time complexities, as presented in

Table 2, confirm the outcomes: PGBJ is growing faster with

the number of users n, while the other algorithms have only

linear growth. These plots also show that the partitioning step

of Spitfire features an important advantage: speed. Spitfire

requires only ∼91 milliseconds, as opposed to PGBJ ∼263

milliseconds. In Spitfire we have opted for a much faster

partitioning algorithm, even if that results in a slightly longer

refinement process. Finally, it is also evident that the response

time of these steps is independent of the dataset skewness.

Refinement: Figure 10 shows that the response time for

the refinement step in PGBJ is independent of the dataset

skewness, as opposed to Spitfire. Specifically, PGBJ achieves

a response time of approximately 200 seconds for 10 6 users

using any dataset. For the same amount of users Spitfire

achieves a response time of 90, 100, or 800 seconds depending

on the skewness of the dataset. The partitioning step in PGBJ

is more sophisticated and produces a more even distribution.

This means greater computational cost (Figure 9) but reduced

response times for refinement (Figure 10) due to better load

balancing. On the other hand, Spitfire strikes a better balance in

these two steps, i.e., the much faster partitioning step makes

up for the slower refinement step to achieve a much better

overall performance.

Replication Factor: In Figure 11 we measure the replication

factor for the distributed algorithms. It is noteworthy that the

replication factor fSpitfire of Spitfire is always close to the

optimal value 1. Spitfire only selects a very small candidate

set around the border of each server (Algorithm 3 in Section

3.3). As analyzed in Section 4.6, in the worst case scenario

fSpitfire is only
√
2 times smaller than fPGBJ, but we see that

for real datasets fSpitfire is at least half of fPGBJ. Finally,

fH-BNLJ = fH-BRJ = 2
√
m = 6 independently of n, as

described in Section 2.4.

This experimental series demonstrates the algorithmic ad-

vantage that Spitfire offers, free from any effect that the

implementation framework might add.

5.6 Network I/O Performance

We examine the underlying Network I/O (NI/O) activity taking

place in PGBJ and Spitfire in order to better explain the results

of Section 5.5. For brevity, we only present the Random

dataset with n=106 online users, using m=9 servers and

searching for k=64 NN. The other datasets produce similar

results. We measured the Network I/O cost using nmon8.

8. nmon for Linux. http://nmon.sourceforge.net/
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Figure 12 shows that Spitfire features almost no NI/O in

its partitioning step, while the respective step for PGBJ is

quite intensive and lengthy. In fact, the total network traffic

for PGBJ is 215 MB while for Spitfire it is only 84 MB. The

above observations are compatible with our analysis, where

we showed that fSpitfire has a
√
2 advantage over fPGBJ in the

worst case. Here the advantage of Spitfire over PGBJ is even

greater than
√
2 (i.e., 2.5x).

5.7 Partitioning and Load Balancing

In Section 5.5, we observe that for certain skewed datasets the

competitive advantage of Spitfire over PGBJ is relatively small

(e.g., in Geolife it is 14%). In this experimental series, we

analyze in further depth the performance of the load balancing

subroutines deployed in both PGBJ and Spitfire, respectively.

Going back to our analysis in Section 2.4, we recall that PGBJ

achieves a close to optimal partitioning using the
√
n pivots,

but at a higher computational cost. Here we experimentally

validate these analytical findings.

Figure 13 shows that the partitioning technique used by

PGBJ achieves almost full load-balancing (i.e., ± 270 for

106 objects), while Spitfire achieves a less balanced workload

among servers (i.e., ± 20,315 for 106 objects). Clearly, such

a workload distribution will force certain servers to perform

more distance calculations and will require higher synchro-

nization time. Note, that the load balancing achieved by H-

BNLJ and H-BRJ is optimal (standard deviation of object load

on servers ≈ 0 not depicted in the figure), because they do

not perform spatial partitioning but rather arbitrarily split the

original object set into equally sized subsets.
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5.8 Varying Number of Neighbors (k)

In this experiment, we exponentially increase the query param-

eter k by a factor of 4 and study its effect on the response time

and the replication factor f of both Spitfire and PGBJ. We use

the Random dataset of n = 106 online users and the 2∗104
Rayzit dataset. It is expected that an increasing k increases the

workload for the distributed AkNN solutions, as the number

of objects exchanged among servers is increased.

In Figure 14, we observe that Spitfire scales linearly with

the increase in k for both datasets. This confirms our analytical

result in Section 4, which shows Spitfire’s computational time

and replication factor to be sub-linearly proportional to k.

Spitfire is almost two orders of magnitude faster than PGBJ

for k = 1024.

Figure 15 shows that the replication factor f of Spitfire,

not only scales well with an increasing k, but also has a very

low absolute value. Particularly, fSpitfire is less than 1.07 for

k ≤ 64, and it barely reaches 1.25 for k = 1024, showing more

than a 95% improvement over fPGBJ. This is one of the main

reasons for the better response times exhibited by Spitfire in the

previous experiments. Therefore, Spitfire outperforms PGBJ in

scalability when the workload is increased by searching for

more nearest neighbors.

5.9 Varying Number of Servers (m)

In this experiment we evaluate the effect that the number of

servers (m) has on the response time and the replication factor

of the distributed algorithms under evaluation.

In Figure 16 (left), we observe that with more servers

Spitfire becomes faster than PGBJ, indicating that Spitfire

utilizes the computational resources better than PGBJ.

Figure 16 (right) shows that the replication factor of Spitfire

grows slightly faster than that of PGBJ. This experiment

confirms Theorem 3 in Section 4, where fSpitfire is shown to

increase as the number m of servers increases. Nevertheless,

the absolute difference of the replication factor between Spit-

fire and PGBJ remains significantly large, making Spitfire the

better choice. Comparing the two plots in Figure 16 it becomes
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evident that the replication factor f increases slower than the

performance gain with respect to the number of servers, a

characteristic that proves the scalability of Spitfire.

6 CONCLUSIONS AND FUTURE WORK

In this paper we present Spitfire, a scalable and high-

performance distributed algorithm that solves the AkNN prob-

lem using a shared-nothing cloud infrastructure. Our algorithm

offers several advantages over the state-of-the-art algorithms

in terms of efficient partitioning, replication and refinement.

Theoretical analysis and experimental evaluation show that

Spitfire outperforms existing algorithms reported in recent

literature, achieving scalability both on the number of users

and on the number of k nearest neighbors.

In the future, we plan to study the temporal exten-

sions to support more gracefully higher-rate AkNN scenarios

with streaming data, as well as AkNN queries over high-

dimensional data. We also plan to provide an approximate

AkNN version of Spitfire. Finally, we are interested in de-

veloping online geographic hashing techniques at the network

load-balancing level and also port our developments to general

open-source large-scale data processing architectures (e.g.,

Apache Spark [27] and Apache Flink [11]). Finally, we intent

to release our developments as an open-source project.
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