
This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Mohammed, Thaha; Joe-Wong, Carlee; Babbar, Rohit; Francesco, Mario Di
Distributed Inference Acceleration with Adaptive DNN Partitioning and Offloading

Published in:
INFOCOM 2020 - IEEE Conference on Computer Communications

DOI:
10.1109/INFOCOM41043.2020.9155237

Published: 01/07/2020

Document Version
Peer reviewed version

Please cite the original version:
Mohammed, T., Joe-Wong, C., Babbar, R., & Francesco, M. D. (2020). Distributed Inference Acceleration with
Adaptive DNN Partitioning and Offloading. In INFOCOM 2020 - IEEE Conference on Computer Communications
(pp. 854-863). [9155237] (Proceedings - IEEE INFOCOM; Vol. 2020-July). IEEE.
https://doi.org/10.1109/INFOCOM41043.2020.9155237

https://doi.org/10.1109/INFOCOM41043.2020.9155237
https://doi.org/10.1109/INFOCOM41043.2020.9155237

Distributed Inference Acceleration

with Adaptive DNN Partitioning and Offloading
Thaha Mohammed∗, Carlee Joe-Wong†, Rohit Babbar∗, and Mario Di Francesco∗

∗Department of Computer Science †Electrical and Computer Engineering

Aalto University Carnegie Mellon University

Abstract—Deep neural networks (DNN) are the de-facto solu-
tion behind many intelligent applications of today, ranging from
machine translation to autonomous driving. DNNs are accurate
but resource-intensive, especially for embedded devices such as
mobile phones and smart objects in the Internet of Things. To
overcome the related resource constraints, DNN inference is gen-
erally offloaded to the edge or to the cloud. This is accomplished
by partitioning the DNN and distributing computations at the
two different ends. However, most of existing solutions simply
split the DNN into two parts, one running locally or at the
edge, and the other one in the cloud. In contrast, this article
proposes a technique to divide a DNN in multiple partitions
that can be processed locally by end devices or offloaded to
one or multiple powerful nodes, such as in fog networks. The
proposed scheme includes both an adaptive DNN partitioning
scheme and a distributed algorithm to offload computations based
on a matching game approach. Results obtained by using a self-
driving car dataset and several DNN benchmarks show that the
proposed solution significantly reduces the total latency for DNN
inference compared to other distributed approaches and is 2.6
to 4.2 times faster than the state of the art.

Index Terms—DNN inference, task partitioning, task offload-
ing, distributed algorithm, matching game.

I. INTRODUCTION

Intelligent applications are becoming more and more per-

vasive due to advances in machine learning and artificial

intelligence (AI), particularly, in deep learning [1]. Their scope

is very broad: it ranges from intelligent assistants (such as

Google Now and Amazon Echo) to advanced video analytics

in smart cities. As such, they encompass different types of de-

vices, including mobile phones, wearables, and smart objects

in the Internet of Things (IoT) [2]. These devices are embed-

ded, thus, also resource-constrained. As a consequence, their

processing capabilities are limited, whereas machine learning

algorithms are computationally expensive. Still, personal and

IoT devices are connected to the Internet; therefore, they can

offload computing tasks to third-party services running in the

cloud. This has been the prevalent approach in the industry as

of now, and also a research focus until a few years back [3].

Offloading computations to the cloud involves transferring

the source data over the Internet, usually through wireless

links. The computational capabilities of embedded devices

have been increasing at a much faster pace than radio band-

width [4]: a typical smartphone of today has 6 to 8 CPU

cores running at 2 GHz or more [5], and the latest off-the-shelf

embedded IoT devices are equipped with special components

(e.g., massively parallel GPUs) to accelerate AI [6]. Such a

trend has made processing data locally at the end devices or

at the edge of the network more and more efficient.

As a consequence, distributing computations to devices

nearby is a better option than offloading them entirely to the

cloud [3, 7]. In fact, such an approach reduces the communica-

tion overhead while, at the same time, increasing the utilization

of computing resources in the network. Accordingly, several

solutions have been recently proposed for task offloading [8–

11], especially for accelerating1 deep neural network (DNN)

inference (Section VI). A few of them operate only lo-

cally [15]; some split DNN computations between the local (or

edge) network and the cloud [3, 7]; and others leverage devices

in a tiered network architecture [16, 17]. In this context, the

main challenge is deciding how to collaboratively partition and

distribute computations under dynamic network conditions.

This article presents DINA (Distributed INference Accel-

eration), an approach based on matching theory for devices

in a (tiered) fog network to carry out distributed DNN infer-

ence. Matching theory is a mathematical framework that has

originated in economics to describe interactions between two

sets of agents with preferences on each other [18]. It has also

been applied to wireless networks [19], including for resource

allocation in several contexts ranging from device-to-device

communications and 5G to the Internet of Things [20–23].

However, to the best of the authors’ knowledge, it has not been

employed for task offloading in DNN inference acceleration.

The main contributions of this work are the following. First,

it proposes a fine-grained adaptive partitioning scheme to

divide a source DNN in pieces that can be smaller than a

single layer (Section III). Partitioning takes into account the

specific characteristics of layer types in commonly-used DNNs

through an efficient matrix representation that reduces the

communication overhead in the network. Second, it presents

a distributed algorithm based on swap-matching for of-

floading DNN inference from end devices to nodes in a fog

network (Section IV). Such an algorithm is based on a detailed

characterization of communication and processing delays,

including possible queuing at fog nodes. Finally, extensive

simulations based on a large dataset and different types

of DNNs demonstrate that the proposed solution significantly

reduces the total latency for DNN inference compared to other

distributed approaches and is 2.6 to 4.2 times faster than the

state of the art (Section V).

1Related research includes software-driven optimizations, hardware-accel-
erated DNN computing, as well as federated learning [12–14]. However, these
are not considered as they are complementary to the approach proposed here.

Smartphones IoT sensors Cameras

Fog

nodes

REV 1.2

2011-08-08

REV 1.2

2011-08-08

REV 1.2

2011-08-08

REV 1.2

2011-08-08

End

devices

WiFi access point Base station

(a)

DNN inference task d1

a1a
1

a2a
1

a6a
1

v21

v22

v23

a3a
1

a4a
1

a5a
1

v0 v1

v3

Sub-task

Layer

(b)

d1

a1a
1

a2a
1

a6a
1

v21 v22

v23a4a
1

v0 v1 v3

Fog

node f1

Fog

node f2

Fog

node f3

User

node u1
REV 1.2

2011-08-08

Other

user nodes

a5a
1

a3a
1

(c)

Fig. 1: (a) Reference two-tier fog architecture: end (user) devices and more powerful fog nodes. (b) A DNN inference task consisting of
multiple sub-tasks, corresponding to processing either a whole layer or part of it, namely, a partition. (c) Sample DNN offloading of task d1
in (b) at end user u1 onto three fog nodes; striped sub-tasks denote those associated with user nodes other than u1.

II. MODELING DNN INFERENCE IN FOG COMPUTING

This section models a fog network wherein DNN tasks are

offloaded from user nodes to fog nodes (Fig. 1). The main

features of the network are introduced first, followed by a

characterization of DNNs and the related computation. Finally,

a model for optimal assignment of DNN tasks is introduced.

The key parameters of the system are summarized in Table I.

A. Network Model

A fog network (such as the one in Fig. 1a) comprises

a set F = {f1, f2, · · · , fF } of F fog nodes and a set

U = {u1, u2, · · · , uU} of U user nodes (i.e., end devices)

distributed in a certain geographical area [24]. Fog nodes are

connected to each other and to the cloud through high-speed

dedicated links. User nodes communicate with fog nodes over

a shared wireless channel with total bandwidth equal to B. In

particular, a certain user node can reach all the fog nodes in

its transmission range, determined based on Rayleigh channel

fading, where the channel gain gfu comprises both shadow

fading and distance-dependent path loss according to [25].

User nodes need to run DNN tasks denoted as D =
{d1, d2, · · · , dD}. A given task d ∈ D might be partitioned

into smaller sub-tasks indicated by A = {ad1, a
d
2, · · · , a

d
A}.

The input and output size of sub-task a are denoted as Isa and

Os
a, respectively. The number of cycles to process one element

of the input (i.e., the task density) is indicated as c. User nodes

process at most one sub-task at a time, while fog nodes can

process many due to their higher computational power. Each

fog node has a constant CPU-cycle frequency of νf .

A certain sub-task can either be executed locally by the user

node or offloaded to fog nodes. In the latter case, the input of

offloaded sub-tasks need to be transferred from the user to the

fog node. A fog node may not execute a sub-task immediately,

but can add it to its FIFO execution queue of maximum size

Qf , which is proportional to its computing power.

B. DNN Model

A complete DNN associated with d is modeled as a

Directed Acyclic Graph (DAG) G = (E ,V) where V =

{v0, v1, v2, · · · , vn, vn+1} is the set of vertices representing

the layers of the DNN; particularly, v0 and vn+1 denote

the input layer and the output layers (respectively). An edge

(vi, vj) ∈ E represents the dependency of node vj on vi. Layer

vi needs to be computed first and the resulting weights are

passed as input to layer vj for later processing. The DNN

model of d is pre-loaded at all nodes in the network.

Vertices (layers) are not atomic and can be subdivided into

multiple sub-vertices (sub-layers), as illustrated in Fig. 1b. In

particular, any vertex vi – i.e., excluding the input and output

layers – can be split such that vi = {vi1, vi2, · · · vin}. The

attributes of the vertices are matrices that either denote the

weights or the feature map at each layer of the DNN depending

on their type. These attributes are represented as R ∈ R
m×n

where m and n denotes the size of a given vertex vl and the

subsequent one vk. A vertex with multiple outgoing edges has

several attributes R ∈ R. As a result of partitioning, a matrix

R is divided into sub-matrices Rij , with 1 ≤ i ≤ m and

1 ≤ j ≤ n.

C. Computation Model

The computation time of a DNN depends on the type of its

layers. This work considers multi-channel convolution, feed-

forward, and activation layers.

The convolution operation at a certain layer across multiple

channels [26] is calculated as:

Zi,j,k =
∑

l

∑

m

∑

n

Il,j+m−1,k+n−1 · Ki,l,m,n (1)

where K is the 4D kernel tensor and I is the 3D input

consisting of the input data. Here, Ki,j,k,l ∈ K, ∀i, j, k, l ∈ Z

is the connection weight between an element in channel i of

the layer output and an element in channel j of the input

with an offset of k rows and l columns. Moreover, Ii,j,k ∈ I,

∀i, j, k ∈ Z gives the input data value within channel i at row

j and column k. Assuming that convolution is implemented as

a sliding window, the total number of floating point operations

for a single layer is given by

Cf = 2 · Ihk · Iwl · (cin ·Kw
i ·Kh

j + 1) · cout

TABLE I: Summary of used notation

Symbol Description

F Set of fog nodes
U Set of user nodes (end devices)
D Set of DNN inference tasks
A Set of DNN layers / partitions
G(V, E) DNN graph with vertices V and edges E
R,R Set of weight matrices (feature maps) and its element R
νf Computing power of fog node f
Qf Queue length of fog node f
Cf Number of FLOPs for a convolution layer
Ff Number of FLOPs for a fully-connected layer
T c Time for computing a convolution layer

T f Time for computing a fully-connected layer
ruf Data rate of user node u towards fog node f
Isa Size of the input task a in bits
Os

a Size of the output resulting from processing task a in bits
Tfa Total execution time for task a at fog node f
T exe
fa

Execution time for task a at fog node f

T tr
fa

Transmission time for task a to fog node f

T
que
fa

Queuing time for task a at fog node f

θ Maximum fog nodes for offloading
xfa Binary variable denoting task a assigned to fog node f
τa Time threshold for task a
Γ Target transmission rate threshold
δ Edge delay
c Task processing density of fog nodes
sfa Average service rate at fog node f for task a

where: Ihl , Iwk , Kw
i , and Kh

j are the height and width of the

input feature map and the kernel, respectively; cin and cout
are the number of channels in the input and output feature

maps. Thus, the execution time for a single convolution layer

is T c = (Cf · c)/νf .

Instead, the number of floating point operations for a (fully-

connected) feed-forward layer is Ff = (I ·O+O · (I − 1)) =
(2I−1)O, where I and O are the input and output dimensions.

The related computation time is T f = (Ff · c)/νf .

The activation layer is assumed to be a rectified linear

unit, which simply computes f(x) = max(0, x). The related

execution time is not considered part of the total time, since

it is negligible compared to convolutions and dot products.

Accordingly, the time T exe
fa for computing a deep learning par-

tition a is T exe
fa = T c for a convolution layer and T exe

fa = T f

for a fully-connected layer.

Next, the time needed to exchange inputs and outputs

between a user node and a fog node are derived. Such a

time depends on the transmission rate of user nodes, which

is computed through the Shannon-Hartley theorem [27]:

ruf = β log2

(

1 +
pugfu

σ2 +
∑

u′ 6=u∈U pfu′gfu′

)

(2)

where: β is the total bandwidth assigned to user node u; pu
is the transmit power of user node u; gfu is the channel

gain between the fog node f and user node u; pu′ and gfu′

are the transmit power and the channel gain of interfering

node u′, respectively. Consequently, the time taken by a

user node to send the DNN partition a to fog node f is

T tr
fa = (Isa +Os

a)/ruf . As for the downlink, fog nodes

need to send the intermediate outputs to users only for the

local tasks that require that as input. Moreover, intermediate

outputs are generally much smaller than the input [3, 7]; as a

consequence, the corresponding time is assumed to be small

and is represented as an edge delay δ, as in [28].

Recall that offloaded tasks may not be executed immediately

at the fog node, hence, they are delayed due to queuing time

T que
fa =

∑

ai∈Qf

flops(ai) · c

νf

where flops(ai) is the number of floating point operations for

sub-task ai in the execution queue i ∈ Qf at fog node f .

D. Problem Formulation

Distributing DNN inference in a fog network aims at mini-

mizing the total execution time of a given DNN by partitioning

and offloading it to one or more fog nodes (Fig. 1c). For

the sake of simplicity, the following considers first the case

where partitioned tasks are given as input to the problem; this

assumption is relaxed at the end of the section.

The offloading problem is defined in terms of the binary

variable xfa ∈ {0, 1} expressing whether sub-task a is

offloaded to fog node f (i.e., xfa = 1) or not (i.e., xfa = 0).

Then the total execution time for a sub-task a offloaded by

user node u to a fog node f is:

Tfa = T tr
fa + T exe

fa + T que
fa + δ (3)

where: T tr
fa is the time taken for transmitting the input of a to

f ; T exe
fa is the time taken for computing a at f ; T que

fa is the

sub-task waiting time at a; and δ is the edge delay.

min
xfa

∑

f∈F

∑

a∈A

Tfa · xfa (4a)

s.t.
∑

f∈F

xfa ≤ θ, ∀u ∈ U (4b)

pugfu
σ2 +

∑

u′ 6=u∈U pfu′gfu′

≥ xfaΓ, ∀u ∈ U (4c)

Tfa ≤ τa, ∀a ∈ A (4d)

max
a∈A∗

Tfa <
∑

a∈A∗

τa, ∀A
∗∈ P(A), ∀u ∈ U (4e)

The meaning of the constraints in the optimization problem

is explained next. Eq. (4b) signifies that task d is offloaded

to at most θ fog nodes at a given time. Eq. (4c) indicates

that the rate of transmission should never be less than a

target value Γ. Eq. (4d) indicates that the total time taken

to compute the task at a fog node should not take more than

the time τa for executing the same task locally (i.e., without

offloading). Finally, Eq. (4e) states that parallel execution of

tasks at fog nodes should take less time than processing the

same tasks locally as a sequence. This is expressed via P(A),
which denotes all possible sets of tasks that can be executed

in parallel by up to θ fog nodes.

The formulation above is a non-linear programming prob-

lem with a non-convex cost function, which directly follows

from Eq. (2). Finding an optimal solution to such a problem is

computationally complex [29]. Note that the problem assumes

that the partition A is given. In practice, all possible partitions

Input of layer vj Output of layer vj

(a)

Input of layer vj Output of layer vj

(b)

0 1 2 2 1

3 2 4 5 3

0 0 2 0 0

4 0 0 0 0

0 0 0 6 0

0 1 2 2 1

3 2 4 5 3

[]

2 4 6
[]

2 0 3
[]

0 1 2 3
[]

P1

P2

(c)

Fig. 2: Comparison of redundant data transmitted during convolution for (a) grid-based 2D partition and (b) segment-based 1D partition. (c)
Hybrid representation of the matrix: P1 is a dense representation and P2 is a sparse representation.

of the source task into sub-tasks should be considered for

optimal offloading. This implies that finding a solution is hard.

Consequently, the problem is addressed next by considering

two separate sub-problems: adaptive partitioning of the DNN

layers and their distribution (i.e., offloading) to fog nodes.

III. ADAPTIVE DNN PARTITIONING

This section focuses on the problem of partitioning a given

DNN into (sub)layers so that they can be offloaded to fog

nodes. First, it addresses how to efficiently represent DNN

inputs, so as to reduce their storage requirements as well as

their transmission time. It then presents a DNN partitioning

algorithm that adapts to the current state of the network.

A. DNN Layer Representation

As before, the discussion below distinguishes between con-

volutional and fully-connected layers.

The way layers are partitioned affects the communication

overhead, especially for convolutional neural networks that

need to process data across partition boundaries. For instance,

Fig. 2a and Fig. 2b show a 2D (i.e., grid-based) and a 1D (i.e.,

segment based) partitioning of an 8× 8 DNN layer (respec-

tively) into 4 partitions of the same size, each to be offloaded

to a fog node. For a 2× 2 kernel, computing the output feature

map of partition P1 in Fig. 2a requires transmitting nine extra

values with grid-based partitioning: four from P2, four from

P3, and one from P4. In contrast, segment-based partitioning

of P1 in Fig. 2b requires eight extra values, only from a single

partition (P2). Accordingly, the approach in this work relies

on partitioning convolutional layers into segments along the

largest dimension of the input [15].

The fully-connected layers considered here also include

state-of-the-art pruned network layers which are sparser than

“traditional” fully-connected2 layers [30]. Most computing

time in a fully-connected layer involves matrix-vector multi-

plication. The sparsity of a matrix and a suitable data structure

determine the computational cost as well as the transmission

time [31]. Adaptive partitioning here employs the Compressed

Sparse Row (CSR) storage scheme [32]. The size of a matrix

in CSR format is 12 · ẑ+4 · (m+1) bytes, where ẑ is the total

2This article refers to either dense or sparser layers after pruning as fully-
connected, as this is also the most widely used terminology in the literature.

number of non-zero elements and m the number of rows; in

contrast, a dense matrix requires 8 ·m · n bytes. Accordingly,

the CSR storage scheme is applied if θ̂ < ẑ/(m · n), where

θ̂ is a user-defined threshold between [0, 1] and m,n are the

dimensions of the partition. Fig. 2c illustrates a source matrix

divided into a dense partition P1 and a sparse partition P2

encoded in CSR format. The example shows the advantage

of the latter choice, as storing P2 only requires 52 bytes as

opposed to the 120 bytes of a dense representation.

B. DNN Partitioning Algorithm

The partitioning algorithm itself, called DINA Partitioning

(DINA-P), is presented next. DINA-P relies on the concept of

utility function as a measure on how valuable is partitioning a

certain task. Specifically, the service utility of fog node f for

executing task a of user node u is:

ϕfa = xfa(t)
(

τa − T tr
fa − T exe

fa − T
que

fa

)

(5)

where τa is the delay threshold for the task a ∈ A and T
que

fa =
∑

ai∈Qf
(flops(ai)/sfai

(t)) is the average queuing latency. In

particular, sfai
is the service rate at fog node f for computing

task ai received from user node u, which can be estimated

based on an exponentially weighted moving average:

sfai
= α(t)sfai

(t) + (1− α(s))sfai
(t− 1) (6)

where α is a learning parameter and t the time of calculating

the estimate. The rationale behind this choice is the following:

partitioning should occur only if the task is initially3 offloaded

to node f (i.e., xfa = 1); it is as valuable as its computation

time (including overheads) is lower than the time threshold τa
[recall Eq. (3)].

Algorithm 1 describes DINA-P as executed at node u
upon arrival of task d. After initializing the variables, all

parallel paths in the source DNN are considered (line 1). For

each fog neighbor f (line 2), the user node calculates the

partitioning ratio ρ based on the corresponding service utilities

and computing capabilities (line 3).

Such a ratio is applied to divide the task (i.e., matrix)

into partitions (i.e., submatrices) depending on the type of

layer, convolutional (lines 4–6) or fully-connected (lines 7–

11), according to the discussion in Section III-A. The ratio ρ

3Such an initial assignment can be randomly obtained (see Section IV-B).

Algorithm 1: Adaptive DNN partitioning (DINA-P)

Input : p: convolution kernel size; ϕfa: utility of f ; |fn|:
number of fog neighbors f of u ∈ U ; G: DAG for
DNN inference task d; Rm×n

a : matrix associated
with subtask a, ∀a ∈ A; c: compute power of f .

Output : DNN partitions P ={P1, P2, P3, . . .}
Init : P ← ∅, c0 = 0, w ← max(m,n)

1 forall a belonging to parallel paths in G
2 for i ∈ [1, |fn|]

3 ρi ←

∑i−1

j=0
(cj/ϕfa)

∑|fn|
j=0

(cj/ϕfa)
4 if convolutional layer
5 ωi ← ⌊ρi · (w − (p− 1))⌋
6 Pi ← Pi ∪Ra[ωi−1][ωi + (p− 1)]

7 else // fully-connected layer

8 if θ̂ < ẑ/(m · n) then store P̂ in CSR format
9 ωi ← ⌊ρi · w⌋

10 P̂ = Ra[ωi−1][ωi]

11 Pi ← Pi ∪ P̂

12 P ← P ∪ Pi

adaptively partitions the layers into multiple partitions p based

on the network conditions to provide maximum utility for both

the fog nodes and the user nodes.

Note that the DNN partitioning obtained as described above

is adaptive, as DINA-P leverages time-varying service utilities

that express network conditions dynamically.

IV. DNN INFERENCE OFFLOADING

Once partitions are derived, they can be offloaded from user

nodes to fog nodes. Accordingly, this section presents DINA

Offloading (DINA-O), a distributed solution based on match-

ing theory to solve the optimization problem in Section II-D.

The rest of this section introduces first matching games and

their characterization for the system model considered here. It

then details DINA-O and presents an analysis of its properties.

A. Matching Games with Externalities

Matching theory is a mathematical framework in economics

that models interactions between two sets of selfish agents

competing within a set to match agents in the other set [18].

The related two-sided matching problems have been addressed

through game-theoretic approaches with the goal of achieving

stability [33, 34]: breaking a stable matching provides no

advantages to any of the agents in the system. Two-sided

matching problems are defined by the constraints on the nature

of the matching itself, for instance, if an agent in one set can

be matched to exactly a single agent in the other set (one-to-

one) or to more than one (one-to-many) [35].

Based on the characterization in Section II, a single DNN

task d can be offloaded to multiple fog nodes; whereas a

single fog node can be associated with multiple user nodes

to run their (sub)tasks. Therefore, a many-to-many matching

is considered in this work, as formally stated below.

Definition 1 (Many-to-many matching). Given two disjoint

sets of user nodes and fog nodes (U ,F), a many-to-many

matching µ is defined as a mapping from the set U ∪ F into

the set of all subsets of A∪F such that ∀u ∈ U and ∀f ∈ F:

1) µ(u) ⊂ F , ∀u ∈ U and µ(f) ⊂ U , ∀f ∈ F
2) |µ(u)| ≤ θ, |µ(f)| ≤ U
3) f ∈ µ(u) ⇔ u ∈ µ(f)

The first condition simply indicates that one user node is

matched to multiple fog nodes and vice versa. The second

condition bounds the number of agents belonging to the

matching: a fog node can accept tasks from the maximum

number of user nodes U in the network, while each user node

can be associated with at most θ fog nodes (according to

Section II-D). The last condition states that if user node u
is matched to fog node f , then the reverse should also hold.

Matching is obtained according to preference relations,

generally indicated with the ≻ symbol, which express the

ranking agents in one set have for all the agents in the other

set. In this context, ≻u is the preference relation of user u,

while ≻f is the preference relation of fog node f . If user

u1 prefers fog node f1 over fog node f2, then the relation is

indicated as f1 ≻u1
f2. Similarly, if fog node f1 prefers user

node u1 over user node u2, then the relation is denoted as

u1 ≻f1 u2.

Preferences are derived by means of utility functions,

similar to partitioning. Also here, the utility of fog node f
represents the total benefit it obtains by executing task a of

user u (namely, when user u offloads task a to f), as expressed

by Eq. (5). Accordingly, it is:

a ≻f a′ ⇔ ϕfa ≥ ϕfa′ (7)

Instead, the utility of user node u for matching with a fog

node f is inversely proportional to the total execution time:

ϕuf =
1

Tfa
(8)

In terms of user preference, it is:

f ≻u f ′ ⇔ Tfa ≤ Tf ′a = f ≻u f ′ ⇔ ϕuf ≥ ϕuf ′ (9)

User and fog nodes independently rank each other according

to the utility functions in Eq. (8) and Eq. (5). To do so, they

exchange information about their current state – including

queuing times and transmission rates – with each other once

a user needs to run a DNN inference task.

It is worth noting that the preferences defined above for fog

nodes [Eq. (7)] and user nodes [Eq. (9)] depend on each other;

particularly, a matched user is affected by the matching of

other users to the same fog node. In matching theory, such kind

of dependence is referred to as externality [36]. Unfortunately,

the basic results of matching theory – in particular, stability –

do not apply to matching problems with externalities [37] due

to the dynamic nature of preferences. To address this issue,

the following leverages the concept of two-side exchange

stability [38], which assumes that no user node can remain

unmatched, thereby allowing to swap user tasks to fog nodes.

Some preliminary definitions are introduced next, following

the notation in [20].

Definition 2 (Swap matching). Let a matching µ be given

as well as pairs (f ,u) and (f ′,u′), such that u, u′ ∈ U and

f, f ′ ∈ F with f ∈ µ(u), f ′ ∈ µ(u′), f /∈ µ(u′) and f ′ /∈

µ(u). A swap matching µu′,f ′

u,f is:

µu′,f ′

u,f = {µ \ {(u, µ(u)) , (u′, µ(u′))}}∪

{(u, {{µ(u) \ f} ∪ f ′}) , (u′, {{µ(u′) \ f ′} ∪ f})}

In other words, a swap matching enables any two user nodes

to swap one of their fog nodes as long as the matching of

other users and other fog nodes remains the same.

Definition 3 (Swap-blocking pair). Given a matching µ and

two user nodes u and u′, the pair (u, u′) is swap-blocking if

and if only it satisfies the following conditions:

1) ∀y ∈ {u, u′, f, f ′}, such that Φy(µ
u′,f ′

u,f) ≥ Φy(µ)

2) ∃y ∈ {u, u′, f, f ′}, Φy(µ
u′,f ′

u,f) > Φy(µ)

where Φy(µ) = ϕyµ(y) is the utility function of y for µ.

The first condition states that the utility function of all user

nodes u, u′ and fog nodes f, f ′ should not decrease after

the swap. Similarly, the second condition signifies that the

utility of at least one node should improve following the swap.

Clearly, both the user nodes and the fog nodes in the swap-

blocking pairs should approve such a swap, and swaps are

sought among these pairs.

Definition 4 (Two-sided exchange stability). A matching µ is

said to be two-sided exchange stable if and if only if a swap-

blocking pair does not exist.

Equivalently, a matching µ is two-sided exchange stable if no

user u or fog node f prefers another fog node f ′ or user node

u′ with respect to its current matching

B. DNN Offloading Algorithm

DINA Offloading (DINA-O) leverages the concept of two-

sided exchange stability to find a matching by means of

swapping node pairs, as detailed in Algorithm 2.

DINA-O includes two phases: initialization and swap

matching. In the initialization phase (lines 1–6), each user node

u first discovers its neighboring fog nodes f . All nodes then

calculate their signal to noise interference ratio to derive the

rate in Eq. (2) and exchange their current operating parameters

[i.e., in relation to Eq. (3)]. At this point, both user and fog

nodes are able to calculate their utilities; based on these,

they construct their preference relations. Finally, an initial

matching that satisfies the constraints in Eq. (4b) – (4d) is

derived through a random assignment of user nodes to fog

nodes [39]. Based on such an assignment, DNN partitioning

is performed with DINA-P (i.e., Algorithm 1).

In the swap matching phase (lines 7–27), the matched user-

fog node pair performs a swap matching if there is a swap-

blocking pair and update their utilities. At each iteration, a

user node sends a request to its preferred fog nodes if they

are not yet matched to them. Then fog nodes calculate the new

utilities for task a from user u and accept the proposal only if

their utility is improved by swap matching. If the proposal is

Algorithm 2: DNN Inference Offloading (DINA-O)

Input : A set of fog nodes f ∈ F and UNs u ∈ U
Output : A two-sided exchange-stable matching µ
// Phase 1: Initialization

1 Each u ∈ U discover its neighboring fog nodes f ∈ F
2 All nodes ∀u ∈ U , ∀f ∈ F calculate ruf with Eq. (2)
3 ∀f ∈ F creates a preference list with Eq. (5)
4 ∀u ∈ U creates a preference list with Eq. (8)
5 Randomly match (u, f), ∀f ∈ F , u ∈ U such that the

constraints in Eq. (4b) – (4d) are satisfied
6 Execute Algorithm 1 to partition DNN tasks d ∈ D
// Phase 2: Swap matching

7 while ∃µu′,f ′

u,f : (f ′, µu′,f ′

u,f) ≻u (f, µ), (u′, µu′,f ′

u,f) ≻f

(u, µ), (f, µu′,f ′

u,f) ≻u′ (f ′, µ), (u, µu′,f ′

u,f) ≻f ′ (u′, µ)
8 Update ϕfu and ϕfu based on µ
9 Sort fog nodes f ∈ F based on preference ≻u

10 Sort user nodes u ∈ U based on preference ≻f

11 if µu,f = ∅ // There is an unmatched item o
12 u sends proposal to most preferred f
13 f computes ϕfu

(

µo,f
u,o

)

14 if (u, µo,f
u,o) ≻f (u, µ) and Eq. (4b)–(4d) hold

15 Accept proposal, µ← µu′,f ′

u,f

16 Λf ← Λf ∪ {u}, Λu ← Λu ∪ {f}
17 else Reject proposal and keep matching µ

18 if (f ′, µu′,f ′

u,f) ≻u (f, µ) and (f, µu′,f ′

u,f) ≻u′ (f ′, µ)
19 u sends proposal to f ′ and u′ to f

20 f , f ′ compute ϕf ′u(µ
u′,f ′

u,f), ϕfu′(µu′,f ′

u,f)

21 if (u′, µu′f ′

u,f) ≻f ′ (u, µ) and Eq. (4b)–(4d) hold

22 Accept proposal, µ← µu′,f ′

u,f

23 Λf ′ ,Λu ← Λf ′ \ {u′} ∪ {u},Λu \ {f} ∪ {f
′}

24 else if (u, µu′f ′

u,f) ≻f (u′, µ) and Eq. (4b)–(4d) hold

25 Accept proposal, µ← µu′,f ′

u,f

26 Λf ,Λu′ ← Λf \ {u} ∪ {u
′}, Λu′ \ {f ′} ∪ {f}

27 else Reject proposal and keep matching µ

rejected, the user nodes makes a request to the next preferred

fog node for swapping. This phase ends when the matching

at a certain iteration is the same as in the previous one;

consequently, the final matching is obtained and offloading

occurs accordingly.

C. Analysis of DINA-O

The following proves stability and convergence of DINA-O.

Proposition 1 (Stability). Let us assume that DINA-O con-

verges to a matching µ∗. Then, µ∗ is a two-sided exchange-

stable matching.

Proof: Let us assume that a swap-blocking pair does exist

in the matching µ∗ obtained upon convergence. Accordingly,

DINA-O proceeds with a new iteration as the condition on

line 7 of Algorithm 2 is not satisfied. However, this is in

contrast with the assumption that DINA-O has converged to

µ∗. By contradiction, a swap-blocking pair does not exist,

which implies that µ∗ is a two-sided exchange-stable matching

by Definition 4.

Proposition 2 (Convergence). DINA-O converges within a

finite number of iterations as well as swap matchings.

TABLE II: Simulation Parameters

Parameter Value

Network size 500× 500 m
System bandwidth 10 MHz
Transmit power of user nodes 10 dBm [42]
Edge delay (δ) uniformly distributed in [0.125, 0.25]
Target transmission rate (Γ) 20 dB
Number of fog nodes (F) 30
Number of user nodes (U) 90
DNN association threshold (θ) 4
Mean task arrival rate (λu) 8 tasks/s
Processing density (c) 4 double-precision FLOPS/cycle [44]

Fog compute power (ν) 1010 cycle/s [43]
(Sub)task delay threshold (τa) [5, 110] ms

CSR sparsity threshold (θ̂) 0.3 [31]

Proof: The matching µ is updated after swap matching

at each iteration in Algorithm 2. Definition 3 implies that the

utility of both the user and fog nodes improves after swap

matching. Therefore, it suffices to show that the utility does not

increase indefinitely with the swap matchings. The utility of

both user and fog nodes depend on the total execution time Tfa

according to Eq. (5) and Eq. (8). A swap matching increases

the utility but also the load of fog nodes. The number of fog

nodes in a network is limited, as the amount of computational

resources they provide. Fog nodes can accept tasks for later

execution by queuing them even when they are fully utilized;

this increases the queuing time, thus, the total execution time

as well. Consequently, the utility does not indefinitely increase,

thus, the number of swap matchings as well as iterations is

finite and DINA-O converges.

V. PERFORMANCE EVALUATION

This section evaluates the performance of DINA by exten-

sive simulations based on a real dataset and several benchmarks.

A. Simulation Setup and Methodology

Experiments are carried out with a custom python net-

work simulator built on top of the Caffe [40] deep learning

framework. The Berkeley Deep Drive data set (BDD100k) is

employed for both training and inference [41]. The dataset

contains 120M images from 100K videos captured by cameras

on self-driving cars; images are extracted from the videos

every 10 seconds. Tasks are assumed to be independent from

each other; they arrive at users according to a Poisson distri-

bution with a mean of λu. Four well-known DNN models are

employed as benchmarks: NiN and VGG16 as chain topologies

as well as Alexnet and ResNet32 as DAG topologies (Fig. 3).

The deployment area of the network is a square grid of

500 m2. The ratio between the number of fog nodes and user

nodes is 1:3, according to [42, 43]. The bandwidth for user

transmissions is 10 MHz, similar to that of 5G systems [42].

Computations are characterized by double precision floating

point operations per cycle [44]. All the fog nodes have

the same computing power. The delay thresholds are varied

depending upon the size and type of the benchmark DNN. The

parameters used in the simulation are reported in Table II.

For comparison purposes, three different schemes for parti-

tioning and offloading are defined: random offloading of DNN

Alexnet

ResNet32

NiN VGG16

Input

Convolution

Max

Fully-conn.

Activation

Output

Fig. 3: Benchmark DNNs used in the evaluation, including both DAG
(Alexnet and ResNet32) and chain (NiN and VGG16) topologies.

inference tasks with DINA-P (Section III) as partition scheme

(RANDP); random offloading of the DNN layers without

partitioning (RAND); and a greedy algorithm that offloads

the DNN layers to the nearest fog node without partitioning

(GANC). DINA is also compared against the ECDI-L scheme

in [7]. Unless otherwise stated, the data points in the results are

the average of twenty replications for each experiment, with

error bars representing the corresponding standard deviation.

B. Obtained Results

Simulations results are presented next according to different

metrics: total execution time, queuing time, and distribution

of computation across fog nodes. Finally, DINA is compared

against the considered schemes as well as the state of the art.

Total Execution Time. Fig. 4 illustrates the total execution

time (Tfa) averaged over all DNN tasks for DINA and the

other schemes (RANDP, RAND, GANC) for the considered

DNN benchmarks (NiN, Alexnet, VGG16, ResNet32). DINA

clearly achieves the lowest values in all cases. Moreover,

it obtains the lowest increase in the total execution time

with the number of tasks (always below 2.5 times), while

the other schemes suffer from delays that grow substantially

(roughly about one order of magnitude). This demonstrates the

scalability of the proposed offloading scheme, together with

the benefits in using DINA-P. Note that adaptive partitioning

alone is generally beneficial; in fact, RANDP always performs

better than other approaches with no partitioning (i.e., RAND

and GANC). In particular, there is a higher gap when the DNN

tasks increase over about 50 due to resource saturation.

DINA obtains the best performance for the NiN benchmark

(Fig. 4a). This is because NiN has a linear topology and also

the smallest number of layers. The total execution time for

Alexnet is higher (Fig. 4b), but still significantly lower than

VGG16 (Fig. 4c) and ResNet32 (Fig. 4d). This happens as

Alexnet has two independent paths that can be efficiently

parallelized by all schemes; there is no major difference,

instead, between the results for VGG16 and ResNet32, despite

the different topologies (chain and DAG, respectively).

Queuing Time. Fig. 5 illustrates the average queuing time

(T que
fa) at fog nodes over all inference tasks for the considered

schemes and the different DNN benchmarks. Also in this case

DINA exhibits the best performance, corresponding to the

0 20 40 60 80 100

0

50

100

Number of DNN inference tasks

T
o
ta

l
e
xe

c
u
ti
o
n

ti
m

e
(m

s
)

DINA

RANDP

RAND

GANC

(a)

0 20 40 60 80 100

0

50

100

150

200

Number of DNN inference tasks

T
o
ta

l
e
xe

c
u
ti
o
n

ti
m

e
(m

s
)

DINA

RANDP

RAND

GANC

(b)

0 20 40 60 80 100

500

1,000

1,500

Number of DNN inference tasks

T
o
ta

l
e
xe

c
u
ti
o
n

ti
m

e
(m

s
)

DINA

RANDP

RAND

GANC

(c)

0 20 40 60 80 100

0

500

1,000

1,500

Number of DNN inference tasks

T
o
ta

l
e
xe

c
u
ti
o
n

ti
m

e
(m

s
)

DINA

RANDP

RAND

GANC

(d)

Fig. 4: Total execution time of the different schemes as a function of the DNN tasks for (a) NiN, (b) Alexnet, (c) VGG16, and (d) ResNet32.

0 20 40 60 80 100

0

20

40

60

Number of DNN inference tasks

Q
u
e
u
in

g
ti
m

e
(m

s
)

DINA

RANDP

RAND

GANC

(a)

0 20 40 60 80 100

0

20

40

60

80

100

120

Number of DNN inference tasks

Q
u
e
u
in

g
ti
m

e
(m

s
)

DINA

RANDP

RAND

GANC

(b)

0 20 40 60 80 100

0

200

400

600

800

Number of DNN inference tasks

Q
u
e
u
in

g
ti
m

e
(m

s
)

DINA

RANDP

RAND

GANC

(c)

0 20 40 60 80 100

0

200

400

600

800

Number of DNN inference tasks

Q
u
e
u
in

g
ti
m

e
(m

s
)

DINA

RANDP

RAND

GANC

(d)

Fig. 5: Queuing time of the different schemes as a function of the DNN tasks for (a) NiN, (b) Alexnet, (c) VGG16, (d) ResNet32.

lowest queuing time, irrespective from the actual benchmark

and the number of DNN tasks. In all cases, the queuing

time of the different schemes for a small number of tasks

is comparable, as fog nodes are lightly loaded. However, the

obtained values rapidly increase for the schemes other than

DINA, especially when the number of DNN tasks exceeds

50. This is consistent with the increase in the total execution

time reported in Fig. 4, thereby revealing the prevalence of

queuing time when fog nodes start being congested for GANC,

RAND, and RANDP. This also explains why the trends for

NiN (Fig. 5a), AlexNet (Fig. 5b), VGG16 (Fig. 5c), and

ResNet32 (Fig. 5d) reflect those for the total execution time.

Distribution of Computation. Fig. 6 illustrates the amount

of computation (in GFLOPS) of the individual fog nodes in

the network when using the VGG16 benchmark. The figure

shows how the most uneven distribution is obtained by GANC

(Fig. 6a). This is expected, as GANC takes a greedy approach

based on physical proximity. As a consequence, fog nodes that

are close to many end devices quickly become overloaded;

whereas those farther away may not be utilized, despite being

available to execute offloaded (sub)tasks. Both RAND and

RANDP result in a more even distribution (Figs. 6b–6c),

due to their random selection policy. Note that their actual

performance is rather different (as shown by Fig. 4), as the

figures only provide the (average) total computation per fog

node. Finally, DINA provides the most balanced utilization

(Fig. 6d). Note that in this case DINA offloads 96% of the

tasks, while 4% of them runs locally.

Improvement. Fig. 7 shows the improvement of DINA as

the ratio between the time obtained with a certain scheme

and that of DINA as a function of the considered DNN

benchmarks. In particular, Fig. 7a shows the improvement in

the total execution time. The figure clearly shows how DINA

outperforms the other solutions, with improvements between

1.7 and 5.2. The best results are obtained for AlexNet, as it

is the one that can be more easily parallelized. Fig. 7b shows

the improvement in the transmission time. In this case, DINA

achieves a performance that is 1.7 to 2.9 times better than

RAND and RANDP. DINA obtains an improvement of about

1.5 over GANC for ResNet and VGG16; however, it actually

performs worse than GANC for Alexnet and NiN in terms of

transmission time. This happens as GANC greedily choses the

nearest fog node, thereby maximizing the rate in Eq. (2) and

reducing interference (as only one user is associated with a fog

node). However, this is beneficial only when the parallel paths

of the DNN are short (as in AlexNet and NiN), as the related

intermediate processing and synchronization are not an issue.

Fig. 7c shows the improvement in the queuing time. Here,

DINA obtains the highest performance relative to GANC in

this case (always over 3 times better), and an improvement

between 1.7 and 3.8 over RAND and RANDP.

Finally, Fig. 7d shows the improvement of DINA against the

state of the art, represented by ECDI-L in [7], in terms of total

execution time. ECDI-L divides a DNN into two partitions by

solving the minimum cut problem on the associated graph.

The figure clearly shows how DINA achieves an improvement

between 2.6 and 4.2. Such an improvement is higher for the

benchmarks other than ResNet32 as these have less parallel

paths; the longer the path, the better the performance of DINA.

This happens as ECDI-L does not benefit much from obtaining

the maximum cut of graphs with a relatively simple structure.

Fog node ID
0.0

1.0

2.0

3.0

4.0

Of
flo

ad
ed

 co
m

pu
ta

tio
ns

 (G
FL

OP
S)

×106

(a)

Fog node ID
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Of
flo

ad
ed

 co
m

pu
ta

tio
ns

 (G
FL

OP
S)

×106

(b)

Fog node ID
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Of
flo

ad
ed

 co
m

pu
ta

tio
ns

 (G
FL

OP
S)

×106

(c)

Fog node ID
0.0

0.5

1.0

1.5

Of
flo

ad
ed

 co
m

pu
ta

tio
ns

 (G
FL

OP
S)

×106

(d)

Fig. 6: Amount of computations at individual fog nodes for the considered schemes: (a) GANC, (b) RAND, (c) RANDP, and (d) DINA-O.

0

1

2

3

4

5

Alexnet NiN ResNet32 VGG16

Im
pr
ov
em

en
t (
tim

es
)

GANC RAND RANDP

(a)

0

1

2

3

Alexnet NiN ResNet32 VGG16

Im
p
ro

v
e
m

e
n
t
(t

im
e
s
)

GANC RAND RANDP

(b)

0

1

2

3

4

Alexnet NiN ResNet32 VGG16

 Im
pr

ov
em

en
t (

tim
es

)

GANC RAND RANDP

(c)

0

1

2

3

4

Alexnet NiN ResNet32 VGG16

Im
p
ro

v
e
m

e
n
t
(t

im
e
s
)

(d)

Fig. 7: Improvement of DINA against the other schemes in terms of: (a) total execution time, (b) transmission time, and (c) queuing time.
(d) Improvement of DINA over ECDI-L [7] in terms of total execution time.

VI. RELATED WORK

A few solutions in the literature have targeted DNN

inference acceleration similar to this work. Among them,

MoDNN [30] discusses a DNN partitioning and offloading

scheme for mobile devices in a local cluster, connected through

high-rate WiFi links. It partitions DNNs with a layer-aware

scheme that leverages efficient representations, with the goal

of reducing synchronization overhead. DINA adopts a similar

partitioning approach, but operates on a tiered network, whose

wireless links have significantly less bandwidth. Neurosur-

geon [3] divides DNN computation between mobile devices

and the cloud. It continuously monitors network conditions and

offloads layers by minimizing latency or energy consumption,

based on predictions from profiling data. DADS [7] splits a

DNN into two partitions, one processed at the edge and the

other at the cloud. It takes a graph-theoretic approach based on

finding minimum cuts, which allows to precisely characterize

DNNs described by a DAG. This work also considers a two-

tier network but operates at a finer granularity than [3, 7], as

it considers partitions smaller than a single layer. Moreover,

the model here characterizes queuing that could occur at

resource-constrained fog nodes, as opposed to the unlimited

resources in the cloud. DDNN [16] is a framework for DNN

computation across devices in three tiers: a local network,

the edge, and the cloud. DNN inference takes place over

stages (i.e., a set of consecutive layers) based on a certain

prediction confidence. This requires a special training of the

neural network; therefore, it cannot be used for pre-trained

networks as those considered in this article. Lin et al. [17] also

consider a three-tier network and DNN partitioned into stages.

They propose algorithms to minimize latency and maximize

throughput by considering each network tier as a whole.

Instead, this work offloads DNN partitions to individual nodes,

by explicitly keeping their resource utilization into account.

Other techniques for DNN inference acceleration include:

pruning, which discards parameters from the source DNN [30];

model quantization, which restrict weights into discrete val-

ues [45]; and model compression, which removes redun-

dancy [46]. However, these approaches reduce the accuracy

of the DNN inference tasks; in contrast, this work leverages a

pre-trained network as it is, without transforming the original

model nor requiring re-training.

VII. CONCLUSION

This article introduced DINA, a distributed solution based

on matching theory for joint partitioning and offloading of

DNN inference tasks in fog networks. The objective was to

reduce the total computation time while increasing the utiliza-

tion of the resources in the network. Extensive simulations

have demonstrated that DINA achieves a significant reduction

in the total execution time due to fine-graining partitioning

and effective adaptation to varying network conditions. In

particular, the performance of DINA is up to 5 times better

than other heuristics as well as 2.6 to 4.2 times faster than

the state of the art. A promising future work is implementing

DINA as a software framework for heterogeneous embedded

devices. Another interesting research direction includes ad-

dressing distributed learning instead of DNN inference.

ACKNOWLEDGMENT

This work was partially supported by the Academy of

Finland under grants number 299222 and 319710.

REFERENCES

[1] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A
survey of deep neural network architectures and their applications,”
Neurocomputing, vol. 234, pp. 11–26, 2017.

[2] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things
(IoT): A vision, architectural elements, and future directions,” Future

Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660, 2013.
[3] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and

L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” in ACM ASPLOS ’17. New York, NY, USA: ACM,
2017, pp. 615–629.

[4] Opensignal, “State of Mobile Networks: USA (January 2018),” https://
www.opensignal.com/reports/2018/01/usa/state-of-the-mobile-network,
online; Accessed July 31, 2019.

[5] OnePlus, “OnePlus 7 Pro Tech Specs,” https://www.oneplus.com/7pro?
/specs#/specs, online; Accessed July 31, 2019.

[6] NVIDIA Corporation, “Jetson Nano Developer Kit,” https://developer.
nvidia.com/embedded/jetson-nano-developer-kit, online; Accessed July
31, 2019.

[7] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive DNN surgery
for inference acceleration on the edge,” in IEEE INFOCOM 2019 - IEEE

Conference on Computer Communications, April 2019, pp. 1423–1431.
[8] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation

offloading for mobile-edge cloud computing,” IEEE/ACM Transactions

on Networking, vol. 24, no. 5, pp. 2795–2808, October 2016.
[9] P. Mach and Z. Becvar, “Mobile edge computing: A survey on ar-

chitecture and computation offloading,” IEEE Communications Surveys

Tutorials, vol. 19, no. 3, pp. 1628–1656, thirdquarter 2017.
[10] H. Cao and J. Cai, “Distributed multiuser computation offloading for

cloudlet-based mobile cloud computing: A game-theoretic machine
learning approach,” IEEE Transactions on Vehicular Technology, vol. 67,
no. 1, pp. 752–764, Jan 2018.

[11] C.-H. Hong and B. Varghese, “Resource management in fog/edge
computing: A survey on architectures, infrastructure, and algorithms,”
ACM Computing Surveys, 4 2019.

[12] J. Konečný, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
arXiv preprint arXiv:1610.02527, 2016.

[13] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[14] Y. Han, X. Wang, V. Leung, D. Niyato, X. Yan, and X. Chen, “Conver-
gence of edge computing and deep learning: A comprehensive survey,”
arXiv preprint arXiv:1907.08349, 2019.

[15] J. Mao, X. Chen, K. W. Nixon, C. Krieger, and Y. Chen, “MoDNN:
Local distributed mobile computing system for Deep Neural Network,”
in Design, Automation Test in Europe Conference Exhibition (DATE),

2017, March 2017, pp. 1396–1401.
[16] S. Teerapittayanon, B. McDanel, and H. T. Kung, “Distributed deep

neural networks over the cloud, the edge and end devices,” in The

37th IEEE International Conference on Distributed Computing Systems

(ICDCS 2017), June 2017, pp. 328–339.
[17] C.-Y. Lin, T.-C. Wang, K.-C. Chen, B.-Y. Lee, and J.-J. Kuo, “Dis-

tributed deep neural network deployment for smart devices from the
edge to the cloud,” in Proceedings of the ACM MobiHoc Workshop on

Pervasive Systems in the IoT Era, 2019, pp. 43–48.
[18] A. E. Roth and M. A. O. Sotomayor, Two-Sided Matching: A Study

in Game-Theoretic Modeling and Analysis, ser. Econometric Society
Monographs. Cambridge University Press, 1990.

[19] Z. Han, Y. Gu, and W. Saad, Matching Theory for Wireless Networks.
Cham: Springer International Publishing, 2017.

[20] J. Zhao, Y. Liu, K. K. Chai, Y. Chen, and M. Elkashlan, “Many-to-many
matching with externalities for device-to-device communications,” IEEE

Wireless Communications Letters, vol. 6, no. 1, pp. 138–141, Feb 2017.
[21] J. Zhao, Y. Liu, K. K. Chai, M. Elkashlan, and Y. Chen, “Matching with

peer effects for context-aware resource allocation in D2D communica-
tions,” IEEE Comm. Lett., vol. 21, no. 4, pp. 837–840, April 2017.

[22] B. Di, L. Song, and Y. Li, “Sub-channel assignment, power allocation,
and user scheduling for non-orthogonal multiple access networks,” IEEE

Transactions on Wireless Communications, vol. 15, no. 11, pp. 7686–

7698, Nov 2016.
[23] Z. Qin and J. A. McCann, “Resource efficiency in low-power wide-area

networks for IoT applications,” in The 2017 IEEE Global Communica-
tions Conference (GLOBECOM 2017), Dec 2017, pp. 1–7.

[24] “IEEE standard for adoption of OpenFog Reference architecture
for fog computing,” https://ieeexplore.ieee.org/servlet/opac?punumber=
8423798, pp. 1–176, Aug 2018, IEEE Std 1934-2018.

[25] M. F. Hanif and P. J. Smith, “On the statistics of cognitive radio capacity
in shadowing and fast fading environments,” IEEE Transactions on

Wireless Communications, vol. 9, no. 2, pp. 844–852, February 2010.
[26] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,

2016, http://www.deeplearningbook.org.
[27] A. Goldsmith, Wireless Communications. Cambridge University Press,

Sep. 2005.
[28] S. Ko, K. Huang, S. Kim, and H. Chae, “Live prefetching for mobile

computation offloading,” IEEE Transactions on Wireless Communica-

tions, vol. 16, no. 5, pp. 3057–3071, May 2017.
[29] A. Mukherjee, “Queue-aware dynamic on/off switching of small cells

in dense heterogeneous networks,” in 2013 IEEE Globecom Workshops

(GC Wkshps), Dec 2013, pp. 182–187.
[30] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning

convolutional neural networks for resource efficient inference,” arXiv

preprint arXiv:1611.06440, 2016.
[31] R. Mehmood and J. Crowcroft, “Parallel iterative solution method

for large sparse linear equation systems,” University of Cambridge,
Computer Laboratory, Tech. Rep. UCAM-CL-TR-650, Oct. 2005.

[32] T. Muhammed, R. Mehmood, A. Albeshri, and I. Katib, “SURAA: A
novel method and tool for loadbalanced and coalesced SpMV compu-
tations on GPUs,” Applied Sciences, vol. 9, no. 5, 2019.

[33] D. Gale and L. S. Shapley, “College admissions and the stability of
marriage,” The American Mathematical Monthly, vol. 69, no. 1, pp. 9–
15, 1962.

[34] A. E. Roth and M. Sotomayor, “Two-sided matching,” ser. Handbook
of Game Theory with Economic Applications. Elsevier, 1992, vol. 1,
ch. 16, pp. 485–541.

[35] F. Echenique and J. Oviedo, “A theory of stability in many-to-many
matching markets,” Theoretical Economics, vol. 1, no. 2, pp. 233–273,
Jun. 2006.

[36] M. Pycia and M. B. Yenmez, “Matching with externalities,”
Available at SSRN 2475468, May 2015. [Online]. Available: https:
//ssrn.com/abstract=2475468

[37] K. Bando, R. Kawasaki, and S. Muto, “Two-sided matching with
externalities: A survey,” Journal of the Operations Research Society of

Japan, vol. 59, no. 1, pp. 35–71, 2016.
[38] E. Bodine-Baron, C. Lee, A. Chong, B. Hassibi, and A. Wierman, “Peer

effects and stability in matching markets,” in Algorithmic Game Theory,
ser. Lecture Notes in Comp. Sci., vol. 6982, 2011, pp. 117–129.

[39] A. E. Roth and J. H. V. Vate, “Random paths to stability in two-sided
matching,” Econometrica, vol. 58, no. 6, pp. 1475–1480, 1990.

[40] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[41] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, and T. Darrell,
“BDD100K: A diverse driving video database with scalable annotation
tooling,” arXiv preprint arXiv:1805.04687, 2018.

[42] M. S. Elbamby, M. Bennis, W. Saad, M. Latva-aho, and C. S. Hong,
“Proactive edge computing in fog networks with latency and reliability
guarantees,” EURASIP Journal on Wireless Communications and Net-

working, vol. 2018, no. 1, p. 209, Aug 2018.
[43] Y. Yu, J. Zhang, and K. B. Letaief, “Joint subcarrier and CPU time

allocation for mobile edge computing,” in 2016 IEEE Global Commu-

nications Conference (GLOBECOM), Dec 2016, pp. 1–6.
[44] R. Dolbeau, “Theoretical peak flops per instruction set: a tutorial,” The

Journal of Supercomputing, vol. 74, no. 3, pp. 1341–1377, Mar 2018.
[45] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training

deep neural networks with binary weights during propagations,” in
Advances in Neural Information Processing Systems 28, 2015, pp. 3123–
3131.

[46] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” Published as a conference paper at ICLR 2016, 2015.

