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Abstract— In this paper we present a new information
consensus filter for distributed dynamic-state estimation. Es-
timation is handled by the traditional information filter, while
communication of measurements is handled by a consensus
filter. First and second-order statistics of local estimates are
discussed. It is shown that local information consensus filter
estimates are unbiased, and the actual variance of the local
estimation errors is comparable to a centralized estimate.
However, local agents believe their local estimates are less
accurate.

I. INTRODUCTION

There has been a recent surge of interest in distributed

sensor networks. This is due, in part, to cheaper processing

power, memory, communication, and sensing capability. This

paper will look at the problem of tracking a dynamic-state

with a distributed sensor network.

Recently, Xiao et al. introduced a distributed method,

for use in sensor networks, to estimate a static state using

a weighted least-squares approximation [1]. It is a novel

approach in that consensus filters [2], [3] are used in the

information space to communicate the information matrix

and information state in a distributed fashion. This solution,

however, is not easily ported over to the dynamic case

because of scaling issues from the consensus filters. One

proposed solution to the dynamic problem is presented in

Refs. [4]–[6], where a consensus filter is run directly on

the estimator state space variables. Because of this fact,

it is called the Kalman Consensus Filter. Another similar

approach decomposes the system into smaller overlapping

subsystems that are then combined through a consensus

communication scheme [7].

One question with these dynamic distributed estimators

concerns the statistical properties of the local estimates. The

optimality of the Kalman filter is well known [8]. How-

ever, in distributed implementations, there is a correlation

between local estimates (or tracks) [9]. In general distributed

networks, it is not possible to exactly determine this correla-

tion [10], [11]. Because of this unknown correlation, optimal

fusion of neighboring information into a local estimate is

not possible, which results in non-optimal local tracks. This

is not to say that these methods [6], [7] are futile. Just as

the extended Kalman filter has proved itself to be a reliable

approximation, these methods have been shown, in limited

settings, to work very well.
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Other techniques to accomplish distributed data fusion for

dynamic systems that rely on the inverse covariance filter

or information filter have been around for many years [12],

[13]. These methods do not use consensus filters, and they

run into the same issue of correlation between local agent

estimates. There have been attempts to resolve the track-to-

track correlation problem in this setting [10], [11], [14].

In this paper, a novel information consensus filter (ICF)

filter is presented that applies consensus filters to an in-

formation filter. Information filters and consensus filters are

discussed in Section II. The new ICF is presented in Section

III. A statistical analysis of the local tracks is given in Section

IV, which is followed by some explanatory simulations

in Section V. Unfortunately, we do not solve the problem of

data fusion with unknown track-to-track correlation. We do,

however, give insight into the statistical effects of consensus

filters in dynamic-state estimation, including the effects of

track-to-track correlation. We show the ICF estimate is un-

biased and the actual variance of the estimate is comparable

to a centralized estimate. However, agents believe their

respective local estimates are less accurate.

II. TWO DECENTRALIZED FILTERS

Two decentralized filters are now discussed: the probabilis-

tic information filter in Section II-A and the deterministic

consensus filter in Section II-B.

A. Information Filter

Assume each agent in the distributed sensor network

monitors the dynamic-state xk, whose evolution in time is

given by the discrete time model xk = Fkxk−1 + wk,

where Fk is the state transition matrix and wk is zero mean

white Gaussian noise with covariance matrix Qk. Agent i’s

measurement at time k follows the model zi,k = Hi,kxk +
vi,k, where Hi,k is agent i’s measurement model and vi,k

is zero mean white Gaussian noise with covariance Ri,k.

In a distributed information filter, each node monitors the

state xk by maintaining a local information filter. Agent i’s

local estimate is parameterized in information space using the

information vector ŷi,k , P−1
i,k x̂i,k and information matrix

Yi,k , P−1
i,k , where x̂i,k and Pi,k are, respectively, node

i’s estimate and covariance of the estimate error [15]. The

prediction step on the ith agent is given by

Yi,k|k−1 = Mi,k − Mi,kΣ
−1
i,kMi,k (1)

ŷi,k|k−1 = Yi,k|k−1FkY
−1
i,k−1|k−1ŷi,k−1|k−1, (2)
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where

Σi,k = Mi,k + Q−1
k ,

Mi,k = F−T
k Yi,k−1|k−1F

−1
k .

New measurements are fused into the local information state

estimate additively as

ŷi,k|k = ŷi,k|k−1 + ik (3)

Yi,k|k = Yi,k|k−1 + Ik, (4)

where the new information from the observations is

ik ,

n
∑

i=1

HT
i,kR

−1
i,kzi,k and Ik ,

n
∑

i=1

HT
i,kR

−1
i,kHi,k. (5)

Because the observation update is additive, the information

filter lends itself to distributed filtering. Any node running a

local information filter needs to collect the newly observed

information ii,k , HT
i,kR

−1
i,kzi,k and Ii,k , HT

i,kR
−1
i,kHi,k

from every sensor and add this information to the local

information state estimate. Notice, only the new information

is communicated; knowledge of teammate sensor models is

not needed, since the sensor model Hi,k is incorporated into

the new information ii,k and Ii,k .

For a fully connected network, the distributed information

filter is exactly equivalent to a centralized version (and

hence centralized Kalman filter [15]). However, when the

interaction topology is not fully connected, issues arise in

communicating the observations, and the distributed version

is no longer equivalent to the centralized version (cf. [10]–

[12]). In this paper, we use consensus filters to address the

issue of communicating new observations. Exactly how this

is done is discussed in Sec. III.

B. Consensus Filter

Consensus algorithms are decentralized methods for a

team of agents to agree on specific consensus states. In

a consensus filter, each agent exchanges information with

neighboring agents and not the entire team. Over time the

agents reach an agreement (or consensus) concerning the

consensus state [2], [3]. Furthermore, average consensus

occurs when the final consensus state is the average of the

initial values [16], [17].

Before presenting the consensus algorithm used in this

paper, some graph theory terminology is needed. At any

discrete-time instant τ , the communication topology between

n agents can be described by the graph G[τ ] = (V, E[τ ])
where V = {1, . . . , n} is the vertex set and E[τ ] ⊆ V × V

is the edge set. The ijth element of the adjacency matrix

A[τ ] of graph G[τ ] is Aij [τ ] = 1 if i 6= j and the edge

(j, i) ∈ E[τ ], otherwise Aij [τ ] = 0. From the adjacency

matrix one can construct the graph’s Laplacian matrix L[τ ]
as

Lij [τ ] =

{

−Aij [τ ] if i 6= j,
∑n

j=1,j 6=i Aij [τ ] if i = j .
(6)

In the consensus algorithm employed in this paper, each

agent in the network maintains a local copy of the consensus

state ξi ∈ R
m. Each agent i updates ξi using its neighbors’

consensus states according to the rule

ξi[τ + 1] = ξi[τ ] −
1

dτ

n
∑

i=1

Aij [τ ](ξi[τ ] − ξj [τ ]) (7)

where dτ ∈ [dmax,τ ,∞) and dmax,τ denotes the maximal

degree of G[τ ]. The consensus protocol given in Eq. (7) was

chosen by the need for discrete-time average consensus [17].

A nice distributed scheme to choose the weights dτ is to use

Metropolis weights [18].

After arranging the local information states into the vector

ξ[τ ] = [ξT
1 [τ ], . . . , ξT

n [τ ]]T , the update can be written as

ξ[τ + 1] = (Ψ[τ ] ⊗ I)ξ[τ ] (8)

where,

Ψ[τ ] = I−
1

dτ

L[τ ] , (9)

I is the appropriate size identity matrix, and ⊗ denotes the

matrix Kronecker product. Note that Ψ[τ ] defined in this

manner is a stochastic matrix.

We desire to ensure average consensus. We know that (7)

achieves average consensus when the following conditions

hold [17]:

1) G[τ ] τ = 1, . . . ,∞ are bidirectional graphs, and

2) there exists a T ≥ 0 such that for every interval [τ, τ +
T ] the union of the graphs over the time interval is

connected.

Exactly why average consensus is desired will be discussed

in the next section.

III. INFORMATION CONSENSUS FILTER

We now present the information consensus filter (ICF).

The ICF uses consensus protocol (7) on the information state

and information matrix in a decentralized information filter.

The consensus filter addresses the issue of communicating

new information throughout the network. The ICF is a dis-

tributed filter, where each agent maintains a local information

filter. In this paper, we assume that communication and

prediction updates are synchronized in the network.

There are three steps in the ICF: prediction, local measure-

ment update, and consensus update. The first (not necessarily

sequential) step of the ICF is the consensus update. Here,

each agent updates its local information state and matrix

using (7). The second step of the ICF is the measurement

update, where each agent i fuses only the local observations

ii,k and Ii,k . These are added to the local information state

and matrix instead of the global information ik and Ik (see

(3) and (4)). The third step of the ICF is the local prediction

step, and this step is exactly the information filter prediction

step given in (1) and (2).

The local ICF is summarized in Algorithm 1. In this

algorithm, τ is the time index for the consensus protocol,

and Tp ∈ Z
+ is the time interval between prediction updates.

The time index τ is faster than k; one time step k − 1 → k

is equivalent to Tp time steps of the consensus time index

τ → τ + Tp. This notation allows unit time intervals in both

τ and k making the following analysis less complicated.
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Algorithm 1 Information Consensus Filter

Initialization (for node i):

ŷi = y[0] Y = Y[0]

τ = 1 τp = τ + Tp

loop {Local iteration on node i}
1: Consensus Update

ŷi ⇐ ŷi −
1

dk

n
∑

i=1

Aij [τ ](ŷi − ŷj) (10)

Yi ⇐ Yi −
1

dk

n
∑

i=1

Aij [τ ](Yi − Yj) (11)

τ ⇐ τ + 1

2: if new observations are taken then

Measurement Update

ŷi ⇐ ŷi + ii Yi ⇐ Yi + Ii (12)

3: if time for a predication step (i.e., τ = τp) then

Prediction Step

Mi = F−T
k YiF

−1
k and Yi,tmp ⇐ Yi (13)

Yi ⇐ Mi − Mi(Mi + Q−1
k )−1Mi (14)

ŷi ⇐ YiFkY
−1
i,tmpŷi (15)

τp = τ + Tp

end loop

IV. ACCURACY OF FUSION PROCESS

Sensor fusion consisting of consensus filters applied di-

rectly to the information state and matrix will yield unbiased

and conservative local estimates. By conservative we mean

Y−1
i ≥ Ȳ−1

i , that is, Y−1
i less the true error covari-

ance Ȳ−1
i = E

{

(Y−1
i ŷi − x)(Y−1

i ŷi − x)−T )
}

is positive

semi-definite.

To evaluate the first and second order statistics of local

estimates, we will need the following Lemma:

Lemma 1. Suppose a network of n agents, where each

agent has the conservative and unbiased estimate of the state

x, parameterized in information space as ŷi and Yi for

i = 1, . . . , n. The convex combination of the agents’ local

estimates, given by

ŷ(n) , ω1ŷ1 + · · · + ωnŷn, (16)

Y(n) , ω1Y1 + · · · + ωnYn , (17)

where
∑n

j=1 ωi = 1 and ωi ∈ [0, 1] yields the unbiased

and conservative estimate x̂(n) = Y−1
(n)ŷ(n) with error

covariance matrix estimate P(n) = Y−1
(n) for any choice of

ωi such that
∑n

j=1 ωi = 1.

The proof of Lemma 1 is given in Ref. [19].

Assume the ICF has just completed Prediction Step 3,

and the prior estimates at each node are unbiased, conser-

vative, and equal, e.g., ŷj,k|k−1 = ŷi,k|k−1 and Yj,k|k−1 =

Yi,k|k−1 for all i, j. Because of this equality, the consensus

update in Step 1 ((10) and (11)) has no effect. Now assume

each node i makes the observation ii,k (and Ii,k) and locally

fuses this observation yielding ŷτ0

i,k|k and Yτ0

i,k|k, for all

i = 1, . . . , n, where τ0 indicates the time of the consensus

filter when the observations are fused. The local estimates,

which are not necessarily equivalent, are the best estimates

given the local observation. Also, the local estimate x̂τ0

i =
(Yτ0

i )−1ŷτ0

i is not equivalent to a hypothetical centralized

filter that fuses the observations from every node.

To evaluate the statistics of the local estimates, we look at

three situations in the next three sections: 1) the consensus

filters converge before the next prediction update, 2) the

consensus filters converge after the next prediction update,

and 3) the consensus filters do not converge. Each of the

next three sections shows that the ICF produces unbiased

and conservative local estimates. In each section, we com-

pare exactly how conservative the local covariance matrix

estimates are compared to that of a hypothetical centralized

filter. This comparison with a centralized filter shows how

much confidence is lost due to the consensus filters in the

ICF.

A. Consensus Filters Converge Before Prediction

Node i has the estimate ŷi,k|k with its respective informa-

tion matrix. We assume that the ICF now iterates enough so

that the consensus filters converge before the next prediction

step (i.e., Tp ≫ 1). Assuming the conditions for average

consensus are satisfied, each agent would have the estimate

ŷi,k|k = ŷi,k|k−1 +
1

n

n
∑

j=1

ij,k (18)

Yi,k|k = Yi,k|k−1 +
1

n

n
∑

j=1

Ij,k , (19)

where the covariance estimate of the local error is Y−1
i,k|k.

By Lemma 1, the local estimate x̂i,k|k = Y−1
i,k|kŷi,k|k is

unbiased and conservative. Notice that (19) differs from the

hypothetical centralized IF (Eq. (4)) by the scale factor 1
n

.

The ICF scales the new information by the inverse of the

size of the network. Compared to a centralized filter fusing

each agent’s measurements, the ICF is “less confident” about

the observations by an amount proportional to inverse of the

network size.

B. Consensus Filters Converge After Prediction

Following the ICF measurement update (Step 3), each

node has the local information state ŷi,k|k = ŷi,k|k−1 + ii,k
and information matrix Yi,k|k = Yi,k|k−1 + Ii,k. Each node

performs the prediction step (Step 4) of the ICF yielding

the local information state ŷi|k+1|k and matrix Yi|k+1|k. We

now assume that the ICF iterates sufficiently long for the

consensus filters to converge before the next measurement

update or prediction step. The converged information state
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and matrix at node i will be denoted respectively by

ŷc
i,k+1|k =

1

n

n
∑

i=1

ŷi,k+1|k (20)

Yc
i,k+1|k =

1

n

n
∑

i=1

Yi,k+1|k , (21)

where Yi,k+1|k = Mi,k+1 − Mi,k+1Σ
−1
i,k+1Mi,k+1 and

ŷi,k+1|k = Yi,k+1|kFkY
−1
i,k|kŷi,k|k . From Lemma 1, the

local estimate, x̂c
i,k+1|k = (Yc

i,k+1|k)−1ŷc
i,k+1|k with covari-

ance estimate (Yc
i,k+1|k)−1, is unbiased and conservative,

since it is the convex combination of n unbiased and con-

servative information states and matrices with coefficients

ωi = 1
n

, for all i = 1, . . . , n.

The loss in confidence of the ICF compared to a hypo-

thetical centralized filter is less intuitive in this case due to

the non-linear (information matrix) time update. The loss

is given by Yloss = Yk+1|k − Yc
i,k+1|k (where again

Yc
i,k+1|k = Yc

j,k+1|k for all i and j) which is

Yloss = Mk+1 −
1

n

n
∑

i=1

Mi,k+1

− Mk+1Σ
−1
k+1Mk+1 +

1

n

n
∑

i=1

Mi,k+1Σ
−1
i,k+1Mi,k+1. (22)

Assuming the centralized prior is equivalent to the local

priors, Yk|k−1 = Yi,k|k−1 for all i = 1, . . . , n, then the

first line in (22) shows that there is a loss from averaging

that scales the new information by the inverse of the size of

the network, since

Mk+1 = F−T
k+1(Yk|k−1 + Ik)F−1

k+1 (23)

1

n

n
∑

i=1

Mi,k+1 = F−T
k+1(Yk|k−1 +

1

n
Ik)F−1

k+1. (24)

The second line in (22) affects the loss from correlation

incurred between local measurements as they pass through

the common process model [9]. This correlation is not taken

into account in the ICF.

C. Consensus Filters Do Not Converge

We now address the more practical situation where the

consensus filters do not converge in between measurement

updates. What can we say about the local intermediate

estimates? In this scenario, we can show that the local

estimates are again unbiased and conservative. Define, the

transition matrix

Φ[τ, τ0] , Ψ[τ ] · · ·Ψ[τ0] .

Assuming no prediction step, at time τu, the information

state and information matrix are, respectively,

ŷτu

i,k|k =

n
∑

j=1

Φij [τu, τ0]ŷ
τ0

j,k|k (25)

Yτu

i,k|k =

n
∑

j=1

Φij [τu, τ0]Y
τ0

j,k|k (26)

where the superscripts on ŷτu

i,k|k and Yτu

i,k|k indicate the

consensus filter time index. Since Φ[τu, τ0] is a stochastic

matrix, we know from Lemma 1 that the local estimate is

unbiased and conservative for any τu.

Break up node i’s information matrix at time τu into two

different parts: one part is the information it has in common

with the rest of the network Yτu

∩,k|k, and the second part is

everything else Yτu

i\∩,k|k. We denote these divisions by

Yτu

∩,k|k = Yτ0

i,k|k−1 +

n
∑

j=1

min{Φj}Ij,k,

Yτu

i\∩,k|k = Yτu

i,k|k − Yτu

∩,k|k ,

where min{Φj} = min{Φ1j [τu, τ0], . . . ,Φnj[τu, τ0]} and,

again, we assume the local priors are equal, i.e., Yτ0

i,k|k−1 =

Yτ0

j,k|k−1.

Each agent performs a prediction step, which is followed

by a number of consensus filter iterations. This yields

Yτ
i,k+1|k =

n
∑

j=1

Φij [τ, τu]Mτu

j,k+1

−
n

∑

j=1

Φij [τ, τu]Mτu

j,k+1

(

Στu

j,k+1

)−1

Mτu

j,k+1 (27)

where

Mτu

i,k+1 = F−T
k+1Y

τu

i,k|kF
−1
k+1 (28)

Στu

i,k+1 = Mτu

i,k+1 + Q−1
k . (29)

The first term on the right hand side of (27) is

n
∑

j=1

Φij [τ, τu]Mτu

i,k+1

= F−T
k+1



Yτu

∩,k|k +

n
∑

j=1

Φij [τ, τu]Yτu

j\∩,k|k



F−1
k+1 ,

which is similar to the average in Eq. (24). Here, rather than

an average, there is a weighted average on the uncommon

information Yτu

j\∩,k|k. This first term indicates that the ICF is

conservative compared to the centralized filter by an amount

determined by the weighted average.

The uncommon information Yτu

j\∩,k|k is not mutually

independent for j = 1, . . . , n, and it is not taken into account

in the second term in (27):

n
∑

j=1

Φij [τ, τu]Mτu

i,k+1

(

Στu

i,k+1

)−1

Mτu

i,k+1 . (30)

Furthermore, there is an additional dependency incurred as

these values pass through the common process model [20].

These two dependencies are not known in general decentral-

ized networks and are one of the causes of the track-to-track

problem discussed previously. These dependencies are not

taken into account in the ICF. Similarly, the CI fusion method

will be subject to this same problem. A similar phenomenon

should occur with the KCF; however, since it is a state space

method, the exact effect is not straightforward.
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From the preceding work, it can be seen that the ICF filter

estimates are always unbiased and conservative, assuming

the priors are unbiased and conservative. Furthermore, the

conservative nature of the ICF comes from averaging, and

nodes in the ICF are “less-confident” about their local esti-

mate by an amount governed by a weighted average, which,

assuming the conditions for average consensus are satisfied

(cf. Section II-B), approaches a true average asymptotically.

V. SIMULATIONS

A. Unbiased

We show that the ICF estimate is unbiased. Both a

centralized (hypothetical) information filter and the ICF are

examined. The filter estimate, itself, is a random variable

because of the prior, the measurements, and the process

model. We sample the filter 2000 times using n = 30.

The prior estimate used to initialize the filters is x ∼
N ([3, 1]T , diag(2.5, 3)) where the mean [3, 1]T is the actual

initial location. The process model is given by F = [1, 1; 0, 1]
with a covariance Q = .1[.5, 1]T [.5, 1]. The observations

are one dimensional with a randomly generated model H

and the measurement covariance is R = 1 for every agent.

For both examples, there is only one measurement step and

one prediction step. The consensus filter in the ICF iterates

10 times prior to prediction and then 10 times after the

prediction step (i.e., Tp = 10). There is no measurement

update after the prediction step.

In Figure 1, the gray dots each represent one realization of

the filter. Figure 1a plots samples from the global (hypotheti-

cal) information filter. Figure 1b plots samples from the ICF.

The solid black line in both of these figures is the 50 percent

confidence region as indicated from the global information

filter covariance Y−1 (IF). The dashed solid black line is the

50 percent confidence region indicated from one node’s ICF

covariance estimate Y−1
i .

Notice that the actual distribution of the ICF filter estimate

is close to the global information filter distribution as seen

from the spread of the dots. However, because of the consen-

sus update, the local agents believe the covariance to be more

conservative, as seen from the dashed black line being wider

than the spread of dots. Remember, this discrepancy comes

because each agent thinks the measurement covariance is

scaled by the network size, and because there is unaccounted

correlation between agent’s information (cf. Section IV-C).

B. Information Loss

In Figure 2 we compare the actual differences in in-

formation for four scenarios: 1) the global (hypothetical)

information filter (IF), 2) the ICF where the consensus filters

converge prior to prediction (ICF 1), 3) the ICF where the

consensus filters converge after prediction (ICF 2), and 4) the

ICF with Tp = 1 (ICF). Since Tp = 1, there is one consensus

iteration for every measurement and prediction step. The only

differences in the model parameters, between here and those

in the last simulation, is R = 10 for each of the n = 3
agents. We plot the marginalized (1,1) element of agent 1’s

information matrix. The first point on each line is the prior

3.5 4 4.5
0

1

2

 

 

IF

(a) Centralized IF

3.5 4 4.5
0

1

2

 

 

ICF

IF

(b) ICF

Fig. 1: Here we sample the centralized IF and the ICF. Each

gray dot is one sample. The black solid line is the 50%

confidence region for the centralized IF. The dashed black

line is this 50% confidence region as believed by a local

agent.

k k+1

.2

.4

.6

Time (k)

In
fo

rm
a
ti

o
n

 

 

IF

ICF 1

ICF 2

ICF

Fig. 2: Here we plot the information Y as it evolves through

the ICF. IF is the centralized information filter. ICF 1 is

the ICF filter where the consensus filter converge prior to

prediction. The ICF 2 is where they converge after prediction.

The ICF is the true filter where the consensus filters have not

yet converged. It is plotted in k’s time units.

(equal for all agents). The second point is after measurement

update and one consensus update. The third point is after

a prediction step. The last point is after another consensus

update (this point is irrelevant for the IF).

The plot given is typical. The largest to smallest informa-

tion as believed by the filters is the IF, ICF 1, ICF 2, and

ICF. However, as we saw in the previous section we know

that the covariance of the actual ICF estimate is closer to the

IF covariance.

C. Complete system

We ran a simulation for τ = 200 time steps with Tp = 25.

The state observed is actually three dimensional, however, we

only plot the first dimension in Figures 3 and 4. The black

dots indicate the true state being tracked. Initially, the (true)

prior mean is [10,−3, 5]T . Each agent’s observations are

scalar with a random measurement model. At every time step

the consensus filter runs. The prediction step runs at every

τ = {25, 50, 75, . . .}, and the measurement update runs at

every τ = {26, 51, 76, . . .}. There are n = 5 agents with
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10

Time (τ)

x
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Fig. 3: The ICF in action. The black dot is the true state

being estimated and each line represents one local agent’s

estimate. It is plotted in the time units of τ .
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Fig. 4: Zoomed in look at Figure 3.

static bidirectional communication topology that is sparse

yet connected. In Figures 3 and 4 there is one line for each

agent’s estimates; the black marks indicate the true state

value.

In this scenario there is sufficient time for the consensus

filters to converge prior to the next prediction step. If the

network were larger this would most likely not be the case.

The ICF is able to accurately track the state.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a novel distributed

dynamic-state estimation method. We have presented a sta-

tistical analysis of this method. The method is unbiased and

conservative. The actual covariance of local estimates in this

filter is close to the centralized filter. However, the local

agent’s belief of this uncertainty is quite different from actual

variance of the estimate.

One possible improvement to the ICF is finding a way

to recover the centralized “hypothetical” estimate in a dis-

tributed manner. This actually is a problem in finding the

true error covariance of the estimate and not the estimate

itself, since the estimation is comparable to the centralized

filter. If the network size were known, simply scaling the

new information by the network size would cause the local

estimates to be over-confident before the consensus filters

converged. Because of the non-linear (in terms of the infor-

mation matrix) prediction step, resolving the issue after the

filters converge is not possible without extra information.

Also, there is a need for asynchronous local agents.

Both asynchronous communication and prediction steps are

needed. The asynchronous communication should easily be

handled using the knowledge that consensus filters converge

if the network topology is connected over a union of finite

topologies [17], [21], [22]. To handle asynchronous pre-

diction steps, the Kalman (information) filter delayed data

association problem should be a good starting point [23],

[24].
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