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Abstract—We present a distributed algorithm for allocating
power among multiple interfering transmitters in a wireless
network using Orthogonal Frequency Division Multiplexing
(OFDM). The algorithm attempts to maximize the sum over
user utilities, where each user’s utility is a function of his total
transmission rate. Users exchange interference prices reflecting
the marginal cost of interference on each sub-channel, and then
update their power allocations given the interference prices
and their own channel conditions. A similar algorithm was
studied earlier assuming that each user’s utility function is a
separable function of the user’s rate per sub-channel. Here, we
do not assume this separability. We give a different algorithm
for updating each user’s power allocation and show that this
algorithm converges monotonically. Numerical results comparing
this algorithm to several others are also presented.

I. INTRODUCTION

Mitigating interference is critical to enable co-existence of
multiple wireless transmitters in a common spectrum band. In
an OFDM system interference can be controlled by adjusting
each user’s power allocation across the available sub-channels.
Ideally, this should be done to optimize an overall network
objective. In the absence of centralized control (e.g., in an ad
hoc network) this optimization must be done in a distributed
manner with limited information exchange. In this paper we
consider such a distributed algorithm. The objective is to
maximize total network performance, namely, total utility
summed over all users, where each user’s utility is a function
of his total rate summed over all sub-channels. Each user’s
transmission rate per sub-channel depends on the received
signal-to-interference plus noise ratio (SINR) on that sub-
channel.

The algorithm we study here is an iterative scheme in which
each user exchanges interference prices with neighboring users
on each sub-channel. Each price reflects the marginal cost
of increasing interference to that user on the particular sub-
channel. Given a set of interference prices, a user then updates
his power allocation. For example, one possibility is a ”best
response” update, in which the user maximizes his own utility
minus the “cost” associated with the interference prices. These
prices and the users’ power allocations are then iteratively
updated over time. This Asynchronous Distributed Pricing
(ADP) algorithm (with best response updates), was introduced
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in [1] for a single-channel wireless network and the OFDM
model studied here. 1

It was shown in [1] that the ADP algorithm for OFDM
converges with a specific class of channel-separable utilities,
i.e., each user’s utility is the sum over utilities associated with
each sub-channel. If a user’s utility is a function of his total
rate, then this limits the results in [1] to utility functions,
which are linear in rate. In this paper, we do not make this
restriction, i.e., we allow each user’s utility function to be a
non-separable function of the utilities (or equivalently, powers)
assigned across sub-channels. With non-separable utilities, we
give a modified version of the ADP algorithm and prove that
it converges under suitable conditions.

Other related work on distributed power allocation with
frequency-selective channels includes iterative waterfilling in-
troduced in [3]. In that algorithm nodes do not need to
exchange any information about interference levels, but in
general it may not converge or may converge to a sub-optimal
allocation (e.g., see [4]–[6]). Iterative waterfilling can be
viewed as a best response update in a non-cooperative game. In
[7] a repeated game for power allocation with non-cooperative
users is formulated, which enforces a Pareto efficient equi-
librium. That generally requires more information exchange
than required by the algorithms considered here. In [8] an
approach to distributed power allocation in a single channel
network is given based on a distributed gradient projection
algorithm. Our numerical results compare the performance of a
similar gradient algorithm for OFDM with the other distributed
algorithms presented.

In the next section, we state the model and the optimization
problem. We then decompose the problem into distributed sub-
problems for each user to solve. In Section III, we propose
a distributed algorithm and compare with some other existing
algorithms. Simulation results are presented in Section IV, and
conclusions are in Section V.

II. SYSTEM MODEL

We consider an OFDM wireless network with M distinct
pairs of transmitters and receivers. We will refer to each
transmitter-receiver pair as a “user”. All transmitters use the

1A similar algorithm for a single channel network was also studied in [2]
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same bandwidth of B Hz, which is is divided into K equal-
sized sub-channels (i.e., either tones or groups of adjacent
tones). Each sub-channel is modeled as a flat fading Gaussian
interference channel. The quality of service for each user
i is determined by a utility function ui(ci), which is a
monotonically increasing and concave function of user i’s rate
ci. User i’s rate is given by the Shannon capacity, assuming
interference is treated a noise, i.e.

ci =
K∑
k=1

B

K
log

(
1 +

pkiH
k
ii

n0 +
∑
j 6=i p

k
jH

k
ji

)
, (1)

where Hk
ij denotes the channel gain from transmitter i to

receiver j on sub-channel k, pki denotes the power transmitter
i allocates to sub-channel k, and n0 is the total noise power
for each sub-channel.

Let pi = {p1
i , p

2
i , · · · , pKi } denote the power profile of

user i and let P = {p1,p2, · · · ,pM} be the vector of power
profiles across all users. The optimization problem we would
like to solve is then given by

max
P

M∑
i=1

ui(ci(P)) (P0)

s.t.
K∑
k=1

pki ≤ Pmaxi for all i

pki ≥ 0 for all i and k

where Pmaxi denotes the power constraint of user i. Note that
in general even with a concave utility function, the objective of
Problem P0 is not concave in the power allocation and so may
have multiple local optima. In a centralized manner, a local
optimum can be found using standard optimization algorithms.
However, our focus is on a distributed solution.

Any local optimum P∗ = {p∗1,p∗2, · · · ,p∗M} of Problem P0

must satisfy the Karush-Kuhn-Tucker (KKT) conditions [9],
i.e. there exist unique Lagrange multipliers λi(i = 1, · · · ,M)
such that for all i = 1, · · · ,M :

∂ui(ci(P∗))
∂pki
∗ +

∑
j 6=i

∂uj(cj(P∗))
∂pki
∗ − µi + λki = 0, ∀k, (2)

µi

(
K∑
k=1

pki
∗ − Pmaxi

)
= 0, (3)

λki p
k
i = 0, ∀k, (4)

µi ≥ 0, and λki ≥ 0 ∀k. (5)

Using the KKT conditions, we now give a decomposition
of the original problem into M subproblems. Following [1]
we define the interference price πki for user i on sub channel
k as

πki = −∂ui(ci(P))
∂Iki (P−i)

(6)

where Iki (P−i) =
∑
j 6=i p

k
jH

k
ji is the interference power for

user i on sub-channel k, and P−i denotes the power profile
for all users other than user i. This interference price can be

viewed as marginal cost to user i per unit of interference power
on the k-th sub-channel. Let πi = {π1

i , · · · , πKi } denote the
vector of interference prices for a given user i.

Using (6), condition (2) can be written as

∂ui(ci(P∗))
∂pki
∗ −

∑
j 6=i

πkjH
k
ij = µi − λki ∀ i, k. (7)

Given fixed interference prices, and fixing the power profile of
each user except user i, it can be seen that (7) and conditions
(3)-(5) are the KKT conditions of the following optimization
problem.

max
pi

ui(ci(pi))−
K∑
k=1

pki

∑
j 6=i

πkjH
k
ij

 (Pi)

s.t.
K∑
k=1

pki ≤ Pmaxi ,

pki ≥ 0, for all k.

Moreover, the objective in this problem is strictly concave and
can be shown to have a unique optimal solution (satisfying the
KKT conditions).

We can view the preceding procedure as a decomposition
of the original problem P0 into M sub-problems, each with
the form of Problem Pi. In each sub-problem Pi, only user
i adjusts his power over all sub-channels. Of course, this
changes the utility objective for other users because of the
changing interference. The interference prices indicate this
effect to each user.

III. DISTRIBUTED PRICING ALGORITHMS

We are now ready to discuss distributed algorithms for
solving Problem P0. We begin by reviewing the ADP
algorithm from [1]. The main idea behind this algorithm is
for each user i to iteratively solve the sub-problems Pi given
the current interference prices and power profile of the other
users and then to recalculate the corresponding interference
price and repeat. Formally we summarize this as follows:

1) Each user i chooses an initial power profile pi satisfying
the power constraint.

2) Using (6), each user i calculates the interference price
vector πi given the current power profiles and announces
this to every other user.

3) At each time n, one user i is randomly selected to
maximize its payoff function si(pi) and update its power
profile, given the other user’s power profiles P−i and
price vectors π, i.e.,

pi(n+ 1) = arg max
pi∈Πi

si(pi; P−i(n)), (8)

where

si(pi; P−i) = ui(ci(P))−
K∑
k=1

pki

∑
j 6=i

πkjH
k
ij

 (9)
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and Πi denotes the set of feasible power allocations for
user i.

4) Go to step 2 and repeat.
In [1], a version of this algorithm was studied for both a
single channel (i.e. K=1) wireless network and a multi-channel
(i.e. OFDM) network. A key idea is to view the steps in
this algorithm as best response updates in a non-cooperative
game in which each player maximizes a pay-off function
given by (9). For a single channel network convergence of
the algorithm was proved by showing that under suitable
assumption this is a supermodular game. This analysis was
then extended to a multi-channel model assuming that each
users utility was separable across carriers.2 Here we do not
require separable utilities, which makes the corresponding
game no longer supermodular and so the analysis in [1] does
not apply.3

A. Modified ADP Algorithm

We now give a modified version of the ADP algorithm,
which we will show converges for the non-separable case.
There are two main modifications in this algorithm, which we
make to simplify the analysis.

The first modification is to linearize each users utility around
the current rate before calculating its best response as in (8).
In other words, when a user updates his power profile in step
3 at time n, he does this assuming that his utility is given by

ũi(ci(pi)) = ui(ci(pi(n)) + u′i × ci(pi) (10)

where u′i := u′i(ci(pi(n)). This linearization enables us to
write a user’s best response as

pki
∗

=
u′i∑

j 6=i π
k
jH

k
ij + µi − λki

− pki
γki

(11)

where µi and λki are the Lagrange multipliers as in (3)-(5) and
γki is the received SINR for user i on the k-th sub-channel. By
complementary slackness, if

∑K
k=1 p

k
i
∗
< Pmaxi , then µi = 0,

and if
∑K
k=1 p

k
i
∗ = Pmaxi , then µi > 0. If pki > 0, then

λki = 0, and if pki = 0, then λki > 0. Note that pki /γ
k
i is in

fact a constant independent of pi.
In the ADP algorithm each user allocates his power to max-

imize the pay-off si(pi) in (9) given the current interference
prices, which linearize the effects of that user’s interference on
other users. The difficulty in analyzing this is that when a user
makes a large change in the power allocated to a sub-channel,
this interference price may no longer accurately model its
effect on the other users’ utilities. Our second modification is
to replace this with a more conservative strategy in which each
user choses his new power profile to be a convex combination
of his best response and the current power profile, i.e.,

pi(n+1) = (1−αi)pi(n)+αi arg max
pi∈Πi

si(pi; P−i(n)), (12)

2For the multi-channel case, a relaxed version of this algorithm was studied,
in which the total power constraint for each node was relaxed by introducing
the “power price” which was adjusted over a slower time-scale.

3In the special case of two users and two channels this game can still be
shown to be supermodular by a suitable transformation of the strategy space.

where si is the users pay-off assuming the linearized utility
as in (10). Here αi ∈ (0, 1) is a fixed parameter that can
be viewed as a normalized step-size along the direction of
the (linearized) best response. Note that if αi = 1, then the
modified ADP becomes the original ADP for the linearized
utility.

To summarize, the modified ADP (MADP) algorithm can
be stated in the same way as the original one except that step
3 is replaced with the following step:

3’) At each time n, one user i is randomly selected to update
its power profile according to

pi(n+ 1) = pi(n) + αi(p∗i − pi(n)), (13)

where p∗i is given in (11).

B. Convergence Analysis of MADP Algorithm

Our main result, stated in Proposition 1 below is that
for small enough values of αi for each user i, the MADP
algorithm converges monotonically to a fixed point. Let U(n)
denote the total utility summed over all users before the n-th
iteration of the MADP algorithm.

Proposition 1: There exists an αi > 0 for each user i so
that {U(n)} is a monotonically increasing and convergent, i.e.,
U(n+ 1) ≥ U(n) for all n and U(n)→ U∗ as n→∞.

Since each user’s total power is bounded, the sequence
{U(n)} will also be bounded. Hence, showing that {U(n)} is
monotonically increasing implies that it is convergent. Thus to
prove this proposition we only need to show that {U(n)} is
monotonically increasing. To show this it suffices to consider a
given iteration n in which user i is selected to update its power
profile, and show that U(pi(n + 1)) ≥ U(pi(n)), where the
total utility U is now regarded as a function of pi because
only the power profile of user i is updated. The proof of
this can be found in the Appendix. In this proof, a bound
to ensure that the step size αi satisfies this proposition is
given. however numerical examples indicate that this bound
is quite conservative. Moreover, it requires global knowledge
to calculate.

Proposition 1 guarantees that the MADP algorithm will
converge. The next result characterizes the limit points of this
algorithm.

Proposition 2: If the MADP algorithm converges, it con-
verges to a solution satisfying the KKT condition of Problem
P0.

Proof: Assume that the algorithm converges to a fixed
point U∗ and let U(n) = U∗ for some time n. Then since
this is a fixed point, it follows that pi(n) = p∗i for every user
i. It can then be seen that for all i pi(n) must be an optimal
solution to Problem Pi given the other users’ current power
profiles and interference price vectors (note that at a fixed
point an optimal solution of Problem Pi with the linearized
utility will also be optimal without the linearization). Hence,
P(n) = {p1(n), · · · ,pM(n)} will satisfy the KKT condition
of Problem P0, because Problem P0 and Problem Pi share the
same KKT conditions for all i.
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Note that we are not claiming that the final solution is an
optimal solution to Problem P0, or even that it is a local
optimal.

C. Comparison of the MADP Algorithm with Alternative
Algorithms

In this section we briefly compare the MADP algorithm with
two other possibilities with similar overhead: the original ADP
algorithm and a distributed gradient projection algorithm.

The MADP algorithm is derived from the ADP algorithm.
From numerical simulation (some of which are reported in
the next section) the ADP algorithm still works well in most
cases, although we have not been able to prove convergence
in general. On the other hand for the MADP algorithm
Proposition 1 enables us to guarantee convergence. Another
advantage of the MADP algorithm compared to the ADP
is in terms of computing a user’s new power allocation.
For the ADP algorithm, this requires solving the non-linear
optimization problem in Problem Pi. In general this requires
using a numerical algorithm. For the MADP algorithm the
linearization of the utility simplifies this updating. Specifically,
one simply need to determine the dual variable µi and λki in
(11), which can be done easily. For example, the parameter µi
can be determined by the following iteration:

1) Initialize µi with any arbitrary µ0
i > 0.

2) Calculate the temporary pi
n by equation (11).

3) Reestimate µni by

µn+1
i =

[
µni + αµi(

K∑
k=1

pki
n − Pmaxi )

]+

where αµ is a step-size, which is required to be small
enough, and [•]+ = max{•, 0}.

It can be shown that µni converges to the desired limit very
fast.

Another alternative algorithm is a distributed gradient pro-
jection algorithm (see e.g. [10]). Given that the users exchange
interference prices, the algorithm can be directly applied here
(one update is done according to the current gradient of the to-
tal utility which each user can determine using the interference
price vectors from other users and the gradient of one’s own
utility function). Applying standard results from [10] it can
be shown that such an algorithm will converge monotonically
provided that a small enough step size is used. As with
the MADP algorithm, the limit will again satisfy the KKT
conditions for Problem P0 (and again it will not necessarily
be an optimal solution to the problem). Although both the
MADP algorithm and the gradient projection algorithm can
guarantee that the total utility is monotonically increasing, the
direction of update in the two algorithms is quite different. The
direction for the MADP algorithm is pointing to the optimum
of the (linearized) payoff function, which is an approximation
of the total utility. On the other hand, the gradient projection
algorithm always moves along the ascent direction of the
gradient. In Fig. 1 we illustrate this difference for a simple
case of 2 dimensions. With proper scaling, the direction of B
can be preferable to that of A.

Fig. 1. Illustration of the direction taken by the gradient projection algorithm
and the MADP algorithm. The arrow A indicates the direction for the gradient
projection algorithm, while the arrow B is the direction taken by the MADP
algorithm (which attempts to move toward the optimum point x*).

IV. SIMULATION RESULTS

In this section we provide some simulation results, which
compare the convergence of the MADP algorithm with the
ADP and gradient projection algorithms. In the simulation
model 10 transmitter-receiver pairs (users) share 10 subchan-
nels. The users are randomly placed within an area, which is
1 km × 1 km, and the sequence of users who update powers
at each iteration is also randomly generated.

The sub-channel gains are assumed to be iid Rayleigh
random variables, where the mean is determined by distance
attenuation. Namely, the average channel gain is h(d) =
h0( d

100 )−4, where d is the separation in meters and h0 is the
reference channel gain at a distance of 100 m, which is the
minimum separation between a paired transmitter and receiver.
The maximum power, noise, and h0 are selected so that the
average received SNR at 100 m is 300 (about 25 dB). The
utility function is u(c) = 1 − exp(−0.1c), which is assumed
to be the same for all users.

Fig. 2 shows total utility versus number of iterations for
a particular model realization, starting from all-zero power
profiles. For this example the ADP converges rapidly and
monotonically to the stationary point. The MADP converges
more slowly than the ADP in this example. Here the update
coefficient α = 0.2, which is much larger than the value of
α needed to guarantee monotonic convergence in the proof
of Proposition 1. Even so, the results show that the MADP
curve is relatively smooth and monotonic. Faster convergence
can be obtained by increasing α; however, further simulations
have shown that the MADP can exhibit oscillations, and may
not converge. In contrast, we have observed in additional
simulations that the ADP always converges monotonically.

The gradient projection algorithm converges much more
slowly than the MADP algorithm. This is partially due to the
small step-size selected, which is needed for monotonic con-
vergence. Increasing the step-size can speed up convergence
somewhat, although it is still significantly slower than that
shown for the other algorithms. These results also indicate
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Fig. 2. Illustration of convergence for the ADP, MADP, and gradient
projection algorithms.

TABLE I
NUMBER OF ITERATIONS REQUIRED FOR CONVERGENCE AVERAGED OVER
100 CHANNEL REALIZATIONS. STEP-SIZES ARE α = 0.2 FOR THE MADP

AND 5× 10−7 FOR THE GRADIENT ALGORITHM.

Threshold MADP ADP Gradient
1% 72.92 39.71 > 98.99

0.5% 102.71 46.32 > 147.42
0.1% 180.02 61.6 > 230.36

TABLE II
NUMBER OF ITERATIONS REQUIRED FOR CONVERGENCE AVERAGED OVER
100 CHANNEL REALIZATIONS. STEP-SIZES ARE α = 0.4 FOR THE MADP

AND 1× 10−6 FOR THE GRADIENT ALGORITHM.

Threshold MADP ADP Gradient
1% 56.17 39.24 > 90.07

0.5% 72.98 47.03 > 130.85
0.1% 122.12 62.43 > 230.38

that the different algorithms can converge to different limits.
Tables I and II compare the time it takes for each algorithm

to converge when averaged over 100 channel realizations. For
a particular realization we define convergence as occuring
when the difference in total utility between two consecutive
iterations is less than a threshold (e.g., 1%, 0.5%, or 0.1%).
Of course, the convergence time for the MADP and gradient
projection algorithms depends on the step-size. A smaller step-
size gives a longer convergence time, but the utility increases
more smoothly to the stationary value.

V. CONCLUSIONS

We have presented a distributed power control algorithm,
the MADP algorithm, for a wireless network with frequency-
selective channels. The algorithm is a modification of the
ADP in [1], in which users announce the marginal cost per
unit interference power as a set of interference prices, and
each user updates a power profile given a set of interference
prices and knowledge of incoming and outgoing channels. In
the MADP the best response objective is linearized, and a

partial step in that direction is taken. We have shown that
the MADP converges monotonically provided that the steps
are sufficiently small. Furthermore, because the steps can be
much larger than in a gradient projection algorithm, the MADP
algorithm is less likely to converge to a suboptimal local
maximum due to a bad initialization.

The proof of convergence for the MADP algorithm relies
on a rather conservative estimate of the maximum step that
can be taken at each iteration. An open issue is how to choose
this step to optimize the convergence speed. Extensions to
other network models with different performance objectives
and constraints are also interesting topics for future work.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: Our goal is prove that U(pi(n+ 1)) ≥ U(pi(n)).
To do this we will use the following lemma to bound U(pi(n+
1)):

Lemma 1 (Descent Lemma [10]): If F : <n 7→ < is
continuously differentiable and its gradient has the following
property

‖∇F (x)−∇F (y)‖2 ≤ K‖x− y‖2 ∀x, y ∈ <n (14)

then

F (x+ y) ≤ F (x) + y′∇F (x) +
K

2
‖y‖22 ∀x, y ∈ <n

Property (14) is a constraint that ∇F be Lipschitz continuous.
One sufficient condition for Lipschitz continuity is that the
L2-norm of the Hessian matrix of F is bounded, in which
case this bound can be used for the Lipschitz constant K. It
can shown that is true for U(pi). Specifically, there exists a
constant BUi which upper bounds the L2-norm of the Hessian
matrix of U(pi) independent of others’ power profiles.

Applying the Descent Lemma to −U(pi), we get

U(pi(n+ 1))
≥ U(pi(n)) + [pi(n+ 1)− pi(n)]′∇pi

U(pi(n))

− BUi
2
‖pi(n+ 1)− pi(n)‖22.

Hence to show U(pi(n+ 1)) ≥ U(pi(n)), it suffices to show
that

[pi(n+ 1)− pi(n)]′∇pi
U(pi(n))

≥ BUi
2
‖pi(n+ 1)− pi(n)‖22.

(15)

Using the power update strategy in (13), the inequality in (15)
is equivalent to

[p∗i − pi(n)]′∇pi
U(pi(n)) ≥ αi

BUi
2
‖p∗i − pi(n)‖22, , (16)

where pi
∗ is given in (11).

Note that

∂U(pi)
∂pki

∣∣∣
pi=pi(n)

= u′i ·
1

1 + γki
· γki
pki (n)

−
∑
j 6=i

πkjH
k
ij , (17)
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where πki is defined in (6). Substituting this for the components
of ∇pi

U(pi(n)), the left hand side (LHS) of (16) can be
simplifed as follows

LHS =
K∑
k=1

(u′i ·
1

1 + γki
· γki
pki (n)

−
∑
j 6=i

πkjH
k
ij)(p

k
i

∗ − pki (n))

=
K∑
k−1

∑
j 6=i π

k
jH

k
ij

pki (n) 1+γk
i

γk
i

(
u′i∑

j 6=i π
k
jH

k
ij

− pki (n)
γki

− pki (n))

· (pki
∗ − pki (n))

=
K∑
k=1

∑
j 6=i π

k
jH

k
ij

pki (n) 1+γk
i

γk
i

(pki
∗ − pki (n))2 +

K∑
k=1

1

pki (n) 1+γk
i

γk
i

· u′i(µi − λki )∑
j 6=i π

k
jH

k
ij + µi − λki

((pki
∗ − pki (n))

=
K∑
k=1

∑
j 6=i π

k
jH

k
ij

pki (n) 1+γk
i

γk
i

(pki
∗ − pki (n))2

+
K∑
k=1

µi − λki
pki (n) 1+γk

i

γk
i

(pki
∗ − pki (n))2 (18)

+ (µi − λki )
K∑
k=1

(pki
∗ − pki (n))

=
K∑
k=1

∑
j 6=i π

k
jH

k
ij + µi − λki

pki (n) 1+γk
i

γk
i

(pki
∗ − pki (n))2

+
K∑
k=1

(µi − λki )(pki
∗ − pki (n)). (19)

Next we consider two cases for the values for the values of
the Lagrange multiplies in this expression.

Case 1: If µi = 0 and λki = 0 for all k, (19) can be written
as

LHS =
K∑
k=1

∑
j 6=i π

k
jH

k
ij

pki (n) 1+γk
i

γk
i

(pki
∗ − pki (n))2. (20)

Note that∑
j 6=i π

k
jH

k
ij

pki (n) 1+γk
i

γk
i

=
u′i

pki
∗ + pki (n)/γki

· 1
pki (n)(1 + γki )/γki

≥ u′imin
Pmaxi + (n0 +

∑
j 6=i P

max
j Hk

ji)/H
k
ii

· Hk
ii

(n0 +
∑
j 6=i P

max
j Hk

ji)(1 + Pmaxi Hk
ii/n0)

> 0.

Therefore, there exists a minimum value Ai =
mink(

∑
j 6=i π

k
jH

k
ij)/(p

k
i (n) 1+γk

i

γk
i

), which is positive and
independent of other users’ power profiles and interference
price vectors. Then the left hand side of (16) can be lower

bounded as

LHS ≥ Ai
K∑
k=1

(pki
∗ − pki (n))2 = Ai‖p∗i − pi(n)‖22. (21)

Hence in this case choosing αi ≤ min{ 2Ai

BUi
, 1} ensures that

the inequality (16) will be satisfied.
Case 2: If µi > 0 or λki > 0 for some k, i.e.,

∑K
k=1 p

k
i
∗ =

Pmaxi ≥
∑K
k=1 p

k
i (n) or pki = 0 ≤ pki (n), then

K∑
k=1

(µi − λki )(pki
∗ − pki (n))

= µi

K∑
k=1

(pki
∗ − pki (n)) +

K∑
k=1

λki (pki (n)− pki
∗
)

≥ 0.

Therefore, (19) can be lower bounded as

LHS =
K∑
k=1

∑
j 6=i π

k
jH

k
ij + µi − λki

pki (n) 1+γk
i

γk
i

(pki
∗ − pki (n))2. (22)

As in Case 1, we can lower bound the quantities
(
∑
j 6=i π

k
jH

k
ij+µi−λki )/(pki (n) 1+γk

i

γk
i

) by the positive constant
Ai. The lower bound of the left hand side of (16) then becomes

LHS ≥ Ai
K∑
k=1

(pki
∗ − pki (n))2 = Ai‖p∗i − pi(n)‖22. (23)

Setting αi ≤ min{ 2Ai

BUi
, 1} again ensures the desired inequal-

ity.
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