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Recent advances in better Java class libraries and Just-in-Time (JIT)
compilation techniques have greatly improved the performance of Java to
match that of C/C++. To fully exploit Java’s multithreading feature on
clusters, an attractive goal is to extend the Java Virtual Machine (JVM) to
be “cluster-aware” so that a group of JVMs running on distributed nodes
can work together as a single, more powerful JVM to support true parallel
execution of a multithreaded Java application. In a cluster-aware JVM, the
Java threads created within one program can run on different cluster nodes
to achieve a higher degree of execution parallelism. The distributed system
would provide all the virtual machine services to Java programs, and should
be fully compliant with the Java language specification. We refer to such a
distributed system as a Distributed JVM (DJVM).

In our study, we solve the problem of transparent Java thread migration
in a JIT-enabled DJVM. The problem of thread migration is to suspend
a running thread in a multithreaded application on one node, and resume
its execution on a target node, such that the thread continues to execute
and communicate with other threads of the same application on different
nodes. In this act, the challenges lie in dealing with different types of pointers
associated with the context of the migratory thread. The JIT compilation
in JVM has made the native code of Java methods be dynamically placed,
thus the method pointer relocation becomes difficult. Shared Java objects
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must continue to be valid after thread migration, which calls for proper and
efficient memory consistency protocol in DJVM. The Java thread stack of the
migratory thread also imposes difficulty when it is relocated on the target
node.

Our study provides a new thread migration methodology by using JIT
compilers to tackle the above pointer problem. The native code instrumenta-
tion approach and the JIT recompilation approach are proposed to transform
the native thread context into a portable thread context that can be used
to efficiently relocate different types of pointers during thread migration. To
support the validity of object pointers after migration, we propose a global
object space (GOS) embedded in DJVM that can provide a single system
image (SSI) illusion to Java threads. This study presents the design, imple-
mentation, and analysis of our DJVM named JESSICA2. We provide in-
depth study on thread migration, as well as the optimization on distributed
object sharing in DJVM based on Java memory model. Performance study
has confirmed the efficiency of thread migration in JESSICA2.
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Chapter 1

Introduction

A computer cluster is a group of connected commodity computers working

together to appear as a single system [13]. The cluster is becoming the dom-

inant high-performance parallel architecture. There are 294 clusters among

the 500 most powerful computers in the world, according to the latest (Nov.

2004) top 500 supercomputer list [71]. The popularity comes from the fact

that clusters are cost-effective as all the hardware components are inexpen-

sive commodities.

Programming cluster is hard. The existing parallel languages or runtime

supports, such as Parallel Virtual Machine (PVM) [36], Message Passing

Interface (MPI) [49], and software Distributed Shared Memory (DSM) [4, 18,

47, 64, 66], are not easy to use. To use these tools, the end users must write

in special Application Programming Interfaces (APIs), explicitly partition

the workload and data on different nodes, and manually coordinate different

processes on cluster nodes. The lack of programmability has harmed the

productivity of applications to take advantage of the cluster hardware.

The Java programming language [37] has potential to be a better envi-

ronment for high-performance cluster computing. Java is well-known for its

clean and simple object semantics, cross-platform portability. It is ubiqui-

tous on nearly all computer architectures today. Recent results indicate that
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Java can deliver 65–90% of the best Fortran performance for a variety of

benchmarks [9] and can compete with the performance of C++ [50]. Multi-

threading is a built-in feature of Java to support concurrency programming,

which could make parallel programming in Java more nature. Due to the

large population of Java programmers, the productivity of cluster software

could be boosted by using Java.

Java programs are running on top of a Java Virtual Machine (JVM). The

current JVM technology is limited in supporting high-performance execution

of multithreaded Java applications. Standard JVMs, such as Sun JVM [61],

IBM’s JVM [67], etc., mainly emphasize on high-speed native execution on

single node. However, these systems cannot scale to large settings such as

clusters.

In our research, we study distributed Java Virtual Machine (DJVM)

which can provide a high-performance execution platform for multithreaded

Java applications on clusters. The research will encourage parallel program-

ming in Java to improve the productivity of cluster software.

The DJVM is a distributed system that consists of a group of “cluster-

aware” JVMs running on clusters working together as a single, more powerful

JVM. With a DJVM, the Java threads created within one program can run

on different cluster nodes in parallel. The DJVM system provides all the

virtual machine services to Java programs like a standard JVM, and is fully

compliant with the Java language specification. The DJVM approach allows

the existing multithreaded Java programs fully utilize the available comput-

ing resources in all participating nodes, unlike the stand-alone JVM which is

limited by all the available processors in a single server.

We believe that in order to exploit the enhanced computation powers

of clusters, and to make the system scalable, a DJVM needs the following

functions.

• High-speed native execution. To improve Java program’s performance,

a Just-in-Time (JIT) compiler should be incorporated in a DJVM. A
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JIT compiler dynamically translates Java bytecode into native code

during execution and runs many times faster than an interpreter [23,

61]. JIT compilation removes the time-consuming interpretation layer

between the application and the hardware. The hardware machine reg-

isters can be directly manipulated by the compiled native code. More-

over, larger scope of program code can be grouped together for code

optimization in JIT compilation mode.

• High parallelism. The cluster provides a large-scale parallel hard-

ware platform. To support the high-performance execution of mul-

tithreaded Java applications on such a platform, cluster-wide multi-

threading should be a built-in feature of the DJVM. With the feature,

Java threads can be efficiently mapped to different cluster nodes to

support large-scale parallel computation.

• Resource utilization and load balancing. Efficient resource utilization

and load balancing are essential for enabling large-scale multithreaded

Java applications to achieve scalable performance on clusters. The

system should support preemptive thread migration which allows a

thread to move between machines during its execution. In this way,

more advanced thread scheduling policy can be based on the migration

support to balance the system workload, and new idle machines can

dynamically join a program’s execution to improve the performance on

the fly.

• Efficient distributed object access. In traditional Java Virtual Machine,

all threads share a single heap for data accesses. To provide the same

support in a DJVM, a distributed shared heap that is accessible by all

distributed Java threads should be provided. Optimization techniques

need to be invested in reducing object sharing overheads.

• Programmability. No new APIs or language modifications should be
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introduced in order to use DJVM. The programmer can write the mul-

tithreaded Java programs in usual manner. The existing program that

can run on a single-node JVM can run on a DJVM without any modi-

fication. Single-system image illusion should be provided in the DJVM

to ensure the programmability.

There are several research projects targeting at multithreading support

on clusters using the DJVM concept [7, 8, 52, 74, 82]. Many of the useful

functions are missing in these prototypes. Firstly, the JIT compilation, which

is a key component for accelerating the Java’s execution speed, is not enabled

to support high-speed execution on clusters in most of these projects. Some

projects [8, 52, 82] run Java programs in interpretive mode. As a result, they

suffer from much slower execution speed. Secondly, load balancing mecha-

nisms are supported in a limited way. Most of the multithreading projects

on clusters, map each Java thread to a fixed node during its life time, i.e.,

once a thread is placed on a node, it is fixed until it terminates. There

is no support for re-mapping threads according to the system workload at

runtime. For a multithreaded Java application with imbalanced workloads

among threads, the overloaded nodes will slow down the execution time of the

whole application. Thirdly, the feature of dynamically loading Java classes

is disabled in some DJVM projects adopting static compilers. A few DJVMs

[7, 74] statically compile a Java program into a stand-alone parallel appli-

cation. The whole application package needs to be ready before execution.

Such an approach prohibits the dynamic loading of Java bytecode from a

remote machine. Thus they cannot be fully compliant with the Java lan-

guage specification. Fourthly, efficient object access is lacking in most of the

projects. Some DJVMs [52, 82] use page-based DSM to provide the object

sharing among cluster nodes. The page-based DSM technologies will suffer

false sharing problem in supporting the distributed shared object for Java,

since the access unit of the page-based DSM is a page, which is different from

a Java object. Other DJVMs [7, 74] link existing OO-based DSM libraries
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in the compiled binary to support distributed object sharing. Though the

OO-based DSM’s granularity matches a Java object, the objects stored in the

DSM are usually regarded as independent ones. The information of object

types and accessing thread is not easy to be passed to the underlying DSM

for optimizations on reducing object sharing overheads.

1.1 Research challenges

We identify the problem of supporting thread migration running in JIT com-

pilation mode as the most challenging problem to solve in the DJVM. Our

research will focus on finding efficient solutions to tackle this problem.

The problem of thread migration is to suspend a running thread in a

multithreaded application on one node, copy its context to a target node

and resume its execution, such that the thread continues to execute and

communicate with all the other threads of the same application among cluster

nodes. As JIT compilation has become the de facto execution mode of Java

programs in JVM, Java thread migration system is inevitable to be JIT-

enabled.

1.1.1 Existing technologies

In process migration systems [55], such as MOSIX [15], and OpenSSI [75],

the virtual space of a process in the source node is duplicated on the target

node in the same layout. Both virtual spaces on the source node and the

target node start from zero. Therefore the virtual memory addresses of all

the entities in the process, such as the code, the stack, and the data, remain

the same. These entities are accessed by the program through pointers, which

remain valid after migration.

Thread migration is different from process migration that it copies a

single thread’s context to a remote machine, instead of copying the whole

virtual address space. As the context is dynamically allocated on the target
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node, its offset could be different from that of the source node. The entities

in the context cannot be referred to by the original pointers. As a result,

resolution of pointers in the thread context becomes a critical problem in

thread migration system.

In the past, several distributed systems supporting C thread migration

have been proposed [6, 29, 44]. Three types of pointers in thread context

need to be resolved, namely, the code pointer, the data pointer, and the

intra-stack pointer.

• The resolution of code pointer. In the C thread migration system, since

the program code is statically linked, the code pointer is not a big prob-

lem when the whole program code is loaded in the same virtual address

on each node. The exceptional case in code pointer is the pointer to the

shared libraries. This case can be solved by similar solutions used in

loading the program code before execution in the OS [17]. The exter-

nal references to shared libraries have been included in the execution

binary, therefore the resolution module in thread migration systems

just needs to call the proper OS functions to resolve the entries to the

shared libraries or system calls.

• The interpretation of data pointer. When a migratory thread arrives

at the destination node, the system should guarantee that the data

pointers used by the thread still make sense. The resolution of the

data pointer can be solved by bringing the data copy to the desti-

nation node, and directing the data pointer to the virtual address of

the copy. However, since multithreading implies that the global data

are shared among the threads, memory consistency support should be

called for to ensure the correct communication of the threads based on

the shared variables. Usually, thread migration systems have an un-

derlying DSM support [6, 29, 44]. The data pointer in these systems is

usually interpreted as the global id of the data.
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• The handling of intra-stack pointer. The intra-stack pointer is the most

difficult one among the three types of pointers. Such pointers can point

to the local variables which are allocated in the thread stack, or they

can be the frame pointers generated by the compilers. The intra-stack

pointer will point to incorrect location after migration unless the thread

stack is allocated at the same virtual address on target node. Unlike

the code which is loaded once when the process is created on target

node, the thread stack on typical systems usually cannot guarantee to

be in the same virtual address as that in the source node because it is

allocated dynamically from the OS on the target node.

In MILLEPEE [44], a predefined number of thread stacks are allocated

at initialization time on every node. When a thread migrates to another

node, the stack with the same starting address reserved on the target

node will be used for the migratory thread. In this way, the intra-

pointers remain the same. However, it sacrifices the flexibility of thread

creation by fixing the total thread number. Also it consumes much

more resources than necessary since all nodes will reserve all thread

stacks, even some of which may not be used. Some systems get around

the pointer problems by disallowing the use of data pointers and intra-

stack pointers in migrated threads, or accepting undefined pointers

after migration [6]. In other systems, stack-related problems is solved

by preprocessing. For example, Arachne [29] is based on a thread

system called Ythreads, and restricts that the pointers in the threads

must be known at compilation time.

The supporting of Java thread migration is also a hot topic in mobile

agent systems. However, if we follow the traditional process migration tech-

niques, it is not appealing for Java thread migration. This is because we

need to migrate the whole JVM process even if we just want to migrate a

simple Java program. Copying only the context related to only Java byte-

code program without the underlying JVM process context is more compact
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and portable. In Sumatra [63], JVM interpreter was modified to support the

extraction and the restoration of Java thread context. Since the interpreter

directly operates on the Java thread context, and the interpreter calls a Java

method via its symbolic name, there is no pointer issue in interpreter-based

systems. However, the interpreter is slow for Java execution due to the in-

terpretation overhead. Such a solution for thread migration is inefficient.

Other approaches [65, 72] use preprocessors to rewrite bytecode programs

before execution. The thread migration logic is done at the application level.

Since Java bytecode has limitation in accessing the thread context, it usually

needs a long sequence of bytecode instructions for fetching one single item

such as the program counter (PC). The resulted program after rewriting is

usually inefficient.

1.1.2 New challenges

The Java thread migration in JIT-enabled DJVM has raised new challenges

compared to traditional thread migration systems. In the thesis, the following

issues are addressed.

• Java thread stack management in JIT-enabled JVM. Java programs

need a JVM process at runtime to support their execution, unlike the

stand-alone execution mode of C threads. In the JIT-enabled JVM, the

Java thread stack becomes native. The interleaving of frames created

by Java methods and the frames created by the JVM internal functions

makes it difficult to distinguish the boundaries among them. Also the

resolution of the pointers inside the native thread stack raises new

complexities compared with the C thread stack. Though no pointers to

local variables are used in Java, in each frame of the Java thread stack,

there is an operand stack used for storing the temporary computed

values. Under a JIT compilation environment, the operands in the

operand stack are not structured in a single data structure like the case
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in interpreters. They can be kept in stack slots or hardware registers.

Java threads access to these operands through pointers to memory or

registers, which makes the resolution of these new intra-stack pointers

difficult.

• Dynamic method resolution. In static languages like C, all user func-

tions are ordered statically in its binary file and are loaded into the

code area of main memory as a unit. The offsets of the C functions are

fixed on every node that loads it. For Java methods in JIT compilation

mode, things are different. During the execution of a Java application

on JVM, the Java methods are dynamically loaded and are compiled

by the JIT compiler. The memory for each method is allocated on

demand like the thread stack. It is now not possible to reserve the

same method address on all nodes. Or, we have to treat them like

shared library functions. We need to keep track of all the loaded Java

methods, and scan the whole code space to resolve all the references to

the method entries. Due to the huge memory consumption and search

overhead, the approach is also unacceptable. Given the JIT-enabled

execution environment, Java migration system needs new solutions for

relocating the migrated methods on the target node.

• Java object sharing. Migratory threads in DJVM need to share Java

objects with other threads in the distributed environment. Efficient

object sharing for distributed threads is essential for high-performance

multithreading on clusters. In order to support the single-system image

illusion to Java threads, the Java memory model should be followed

strictly in DJVM for object sharing. The memory model requires all

previous updates of Java objects be accessible to a thread after it enters

a critical section. On clusters, this would introduce communication

among the nodes in updating the object data. The direct use of existing

software DSM technologies to simulate the Java memory model, as used
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in previous thread migration systems, usually creates many redundant

communication messages among the clusters nodes. This is because

there is no channel for DJVM to pass the runtime information such as

object types and accessing threads to the underlying DSM. As a result,

efficient distributed object sharing is hard to achieve without designing

new protocols that can make use of JVM’s internal information.

1.2 Thesis statement and contributions

The dissertation studies the support for high-performance parallel execution

of multithreaded Java applications using DJVM on clusters. We build a

single-system image distributed Java Virtual Machine that supports large-

scale multithreading, cluster-aware JIT compilation, and load balancing on

clusters. The DJVM enables high-performance parallel Java computing using

multithreaded model on clusters. The system is able to support the parallel

execution of a single multithreaded Java application which scales to a few

hundreds of computing nodes. The research advances the current DJVM in

the speed, flexibility, and scalability.

Our study solves preemptive and transparent Java thread migration on

DJVM running in JIT compilation mode. To address the Java thread context

movement in thread migration, we proposed two efficient solutions, namely,

dynamic native code instrumentation, and JIT recompilation. Both ap-

proaches work at JVM level to extract and restore portable bytecode-oriented

thread context even when Java threads are running JIT-compiled methods.

In the dynamic native code instrumentation approach, we propose migration

points in the compiled native code. Through the method, we can achieve

thread context extraction and restoration with a short latency. In the JIT

recompilation approach, we eliminate the execution overhead resulted from

thread migration. The approach supports the full-speed native execution of

Java threads in the thread migration system. The execution overhead will
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only be charged when there is a thread migration. Both approaches intro-

duce novel uses of JIT compilers to support the strong mobility of threads.

The proposed thread migration techniques based on JIT compiler make it

possible for portable thread migration without sacrificing native execution

performance.

To address the problem of efficient distributed object sharing, we apply

adaptive protocols to realize the Java memory model on clusters. We ex-

plore the issues of supporting an efficient shared memory illusion for Java

applications on clusters inside DJVM. We extend the Java memory model

from single physical memory space to physically distributed memory space.

The research has shed lights on the performance bottleneck on execution of

multithreaded Java applications on clusters.

The following summarizes the main contributions of our research.

• To our best knowledge, our DJVM prototype JESSICA2 is the first

DJVM to integrate JIT compilation, thread migration, and distributed

object sharing in JVM to achieve large-scale high-performance Java

computing on clusters. We advance the current DJVM in execution

speed by enabling JIT compilation. We provide high parallelism, better

resource utilization and load balancing using thread migration. The

system provides an embedded global object space to support efficient

distributed object sharing and provide a single-system image illusion

for Java threads to access objects and perform I/O operations with

location transparency.

• We propose two new efficient approaches for solving the thread context

extraction and restoration under JIT compilation mode.

1. We propose dynamic native code instrumentation approach based

on JIT compiler to support native thread context extraction with

low migration latency. The approach makes it possible to extract

the high-level Java thread context efficiently from the raw thread
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execution context when the program is executed under JIT compi-

lation mode, and to relocate the Java methods on the target node.

The approach provides fast thread context extraction. We also

propose methods to select migration points based on the control

flow of the Java program to reduce the migration overhead. Such

an approach is valuable for systems that need frequent thread mi-

grations to enforce load balancing policies. The overhead charged

to the migration operations is small, and it won’t affect the overall

system performance.

2. We propose JIT-recompilation approach to support thread context

extraction and restoration in native thread stack, without the cost

of any prior code instrumentation. The approach enables extrac-

tion of Java thread context in the JIT-enabled DJVM. It ensures

the high-performance native execution of Java threads at the time

of no thread migration. We also propose migration latency hiding

in JIT recompilation approach by overlapping recompilation op-

erations on the source node and class loading on the target node.

The approach suits the systems that needs to migrate computa-

tion intensive threads to idle nodes infrequently. The migration

will occur less often in these systems, therefore only minor execu-

tion overheads in performing the thread migration operation will

be charged.

• We propose adaptive object home migration protocols in supporting

the efficient realization of Java memory model on clusters. By extend-

ing the Java memory model to the DJVM, we use object caching to

represent the working memory defined in Java memory model. Java

object type information and the statistic information from the JVM

threading system are used in our embedded global object space to re-

duce object sharing overhead. A number of optimizations, including

the object pushing, fast state checking, and socket caching, have been
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exploited in reducing the cost of accessing objects in the distributed

environment.

1.3 Organization of the thesis

The dissertation presents the design, implementation and analysis of a high-

performance Distributed Java Virtual Machine named JESSICA2 on com-

puter clusters. The organization is as follows.

Chapter 2 introduces the background of Java Virtual Machine and Dis-

tributed Java Virtual Machine. We then analyze the design issues of Dis-

tributed Java Virtual Machine and provide our design goal.

Chapter 3 discusses the related work of DJVM in details, and provides

classifications of them.

Chapter 4 describes the overview of JESSICA2 Distributed Java Virtual

Machine. We discuss the design rational, the architecture of JESSICA2, and

the overview of its two main building blocks, the thread system and the

distributed shared heap.

Chapter 5 presents the most distinguished feature of JESSICA2, i.e., its

thread migration system. We show how JIT compiler is used to support the

lightweight thread migration across cluster nodes. In this chapter, we first

present the solution of dynamic native code instrumentation scheme. We

step further to propose another advanced solution called JIT recompilation.

Chapter 6 presents the Global Object Space (GOS), an important fea-

ture of JESSICA2 that supports the transparent object access in cluster

environment. We introduce the Java memory model and its realization in

a distributed environment. We show the design architecture of the GOS.

The optimization techniques in reducing communication overhead will be

discussed.

Chapter 7 presents the performance results. We report the migration

overhead under the two thread migration techniques. We evaluate the effects
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of the optimization techniques in GOS. We give the results of the application

benchmarks and dynamic load balancing experiments.

Chapter 8 draws the conclusions and gives future directions for the re-

search on Distributed Java Virtual Machine.
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Chapter 2

Distributed Java Virtual

Machine

2.1 Background

Distributed Java Virtual Machine (DJVM) is the distributed system con-

sisting of a group of JVMs running cooperatively on different cluster nodes

to support the execution of one single multithreaded Java application. In

this section, we provide the background to help better understanding of the

discussion of DJVM in later chapters. The background includes Java pro-

gramming language, JVM, JIT compiler, clusters, single-system image, and

the parallel programming paradigms of Java.

2.1.1 Java and Java Virtual Machine

Java [37] is a popular general object-oriented programming language. It

supports multithreading programming at the language level. A Java program

comprises a number of reusable components called classes, which contain

both data and methods. Unlike most of other programming languages, a

Java source program is usually not directly compiled into native code running
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public mtApp extends Thread{

static final N=10;

static int sum=0;

int data;

private synchronized void add(){

sum+=id;

}

public void run(){

add();

}

mtApp(int i){data=i;}

static public void main(String [] args){

mtApp [] worker = new mtApp[N];

for (int i=0; i<N; i++){

worker[i] = new mtApp(i);

}

for (int i=0; i<N; i++){

worker[i].start();

}

try{

for (int i=0; i<N; i++){

worker[i].join();

}

}catch(Excpetion e){}

System.out.println("Sum="+sum);

}

}

Figure 2.1: A multithreaded Java program.

on the specific hardware platform. Instead, the Java compiler will by design

translate the Java source program into a machine-independent binary code

called bytecode. The bytecode consists of a collection of class files, each

corresponding to a Java class.

A JVM is used to provide the runtime environment for the execution of the
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Java bytecode. Once a JVM is designed on a specific computer architecture,

the computer can execute any Java program distributed in bytecode format

without recompilation.

Java supports multithreading at the language level. A Java thread class

is created by inheriting from the standard java.lang.Thread class or by im-

plementing a Runnable interface. The creation of a Java thread instance

from the its class is through the use of new operator. The execution logic

for the thread is defined in its run() method. Figure 2.1 shows an example

multithreaded Java application. It creates 10 worker threads. Each thread

adds its own data to the shared variable.

Java objects can be regarded as monitors. Each object has a header con-

taining a lock. A lock is acquired on entry to a synchronized method or

statement block, and is released on exit. Each lock is associated with a wait

queue. At Java language level, methods within a class declared with synchro-

nized keyword run under control of monitors to ensure that variables in the

critical sections are accessed exclusively. In the above example, the method

add is declared as synchronized method to ensure the atomic operation on

the shared variable sum .

The class java.lang.Object provides three additional methods to control

the wait queue within synchronized methods or statement blocks—wait, no-

tify, and notifyAll. The method wait causes the current thread to wait in

the queue until another thread invokes the notify method or the notifyAll

method; these two latter methods would wake up a single thread or all the

threads waiting on this object respectively.

Each Java object consists of data and methods. The object has a pointer

to a method table. The table stores the pointers to the object’s methods.

When a class is loaded into JVM, the class method table will be filled with

pointers to the entries of the methods. When an object is created, its method

table pointer will point to its class method table.

The heap is the shared memory space for Java threads to store the created
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objects. The heap stores all the master copies of objects. Each thread has

a local working memory to keep the copies of objects loaded from the heap

that it needs to access. When the thread starts execution, it operates on the

data in its local working memory.

PC

Stack

obj ref

PC

Stack

Java
Compiler

obj ref

app.classapp.java

Heap

Method area

Java Virtual Machine

Thread scheduler

Object Object

Class loader

Execution engine
...

method table

Figure 2.2: The architecture of Java Virtual Machine.

The JVM is a stack-oriented and multithreaded virtual machine. Figure

2.2 illustrates the architecture of the JVM. Inside a JVM, each thread has a

runtime data structure called the Java stack that holds the local variables.

The threads create Java objects in the heap and refer to the objects using

object references in the Java stack. All the created objects are accessible for

all the threads having the object references. The Java classes are loaded into

the method area. The PC of each thread is pointed to the code inside the
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method area.

while(bc != RET ){ //loops until meets bytecode RET

switch (bc){

case GETFIELD: //get the field data of an object

...

break;

case AALOAD: // load data from the object array

...

}

bc = getMextBytecode(); //fetch next bytecode instruction

}

Figure 2.3: The interpreter loop.

The execution engine is the “processor” of JVM. The earlier JVMs exe-

cute Java bytecode by interpretation. The method entries of the object are

set to a call to the interpreter with the method identification as the argu-

ment. The interpreter will create the data structures for the Java method

and simulate the semantics of the bytecode instructions by operating on these

data structures in a big loop as illustrated in Figure 2.3. The interpreter is

usually slow. It needs to resolve the object type and field offset every time an

object is accessed. It needs to lookup in the function table using the function

name every time a function is called. All such interpretation overheads will

largely slow down the program execution. To improve

the Java execution performance, the compiler-based approach was intro-

duced.

2.1.2 Just-in-Time Compiler

There are two main compiler-based solutions for the Java bytecode. The

first one is static compiler that compiles the whole Java source code before

execution. The result of the compilation is the stand-alone binary program,

which can run directly on the target platform. The approach is similar to
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traditional C/C++ compilers. The static bytecode compiler requires to have

all the bytecodes available for the offline compilation. The Caffeine [41]

bytecode-to-machine-code translator is an example of static Java compilers.

Microsoft’s Marmot [32] is another example of static optimizing compilers.

However, the Java’s dynamic characteristic allows the program to start

execution without all classes being available. This makes the static offline

compilation approach not appealing for Java bytecode that requires dynamic

class loading [26]. The concept of Java JIT compilation is therefore intro-

duced. The JIT compiler, sometimes called dynamic compiler, is a compiler

that produces native code from Java bytecodes during program execution.

The introduction of JIT compilation has raised new challenges for the com-

piler designers.

A JIT compiler compiles Java methods on demand. The method pointers

in the virtual method table will be set to the JIT compiler. The first time

a method is called, the JIT compiler is invoked to compile the method. The

method pointer then points to the compiled native code so that future calls

to the method will jump to the native code directly.

As the JIT compiler translates the bytecode into native code at runtime,

the overall execution time of JIT must include the JIT compilation time.

Thus JIT compiler itself must be lightweight so that it can be executed in fast

speed and use only small memory footprints. Researchers on JIT compiler

are seeking lightweight approaches for the following technique areas.

Register allocation

Register allocation is an old topic in compiler code generation. A famous

technique is to use Graph Coloring [3], a systematic technique for allocating

registers and managing register spills (store the register into a memory loca-

tion in order to free up a register). The priority based graph coloring requires

O(n2) time and the Youktown allocator requires O(n log n) time [21].

As the JIT compiler requires that the allocation algorithm be both effec-
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tive and lightweight, non-linear global register allocation algorithms, such as

Graph Coloring, are seldom used in the existing JIT compilers.

A priority-based scheme for register allocation is proposed for Intel JIT

compiler [2] for fast native code generation in Intel platform. In Latte JIT

compiler [81], a local register allocation based on the left-edge greedy interval

coloring algorithm is used for allocating registers inside a tree region.

Efficient register allocations are critical to the execution performance of

Java programs. If the operand in one instruction directly uses a hardware

register, the operation can be done inside CPU without the delay of fetching

data from the memory cache or memory.

Eliminating dynamic dispatch and method inlining

One of the key features of OO languages like Java is to encourage program-

mers to reuse the programs as much as possible. The other common phe-

nomenon is that programs written in OO languages especially Java usually

use many small method invocations for good modularity. Both the dynamic

dispatching of method and small method invocations will introduce large

function call overheads.

For the dynamic dispatching overhead, the static resolution analysis on

class hierarchy is often employed. Bacon proposed Rapid Type Analysis

(RTA) algorithm for computing live procedures and live classes in for OO

languages in his dissertation [11]. The subsequence optimization uses the

information produced by RTA algorithm to resolve virtual function calls.

However, the RTA algorithm need to have the entire program for analysis,

thus it is not directly applicable to Java JIT compilers. In dynamic lan-

guages like Java that supports dynamically loading code during runtime,

however, such analysis can be invalidated by later class loading and requires

re-computing the analysis results.

To eliminate the small method invocation overhead, method inlining is

often used. It tries to reduce the indirect method invocation overheads by
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expanding the body of a method at the place of a method invocation. In

IBM’s JIT compiler [67], static and nonvirtual method invocations are always

inlined. For the virtual method invocations, they choose to replace the call

to the target virtual method with two paths. The fast path uses the inlined

code and the slow path uses the original virtual method call. The fast path is

executed when it matches the actual method invoked at runtime. Otherwise

when other methods are called instead, the slow path will be used.

Exception handling

The exception handling is heavily used in Java, for example, the array bound

checking, null object checking, etc. For JIT compiler, the generated code

must preserve the semantics of the exception handling. Besides that, people

are searching for methods to eliminate unnecessary checking to improve the

running performance.

The Jalapeño JIT compiler [22] used hardware interrupt to catch the null

object reference and out-of-bound exception for arrays by arranging objects

and arrays in a special layout.

The basic idea of eliminating the array bound check is that if it can be

proved that the index is always within the correct range or that the earlier

check throws an exception, the bound check of the array can be eliminated.

The Intel’s JIT [2] uses a simple mechanism to eliminate bound checks of

indices that are constant. Gupta’s algorithm [38] reduces the program exe-

cution time through elimination of checks and propagation of checks out of

loops. The IBM’s JIT Compiler [67] developed a new algorithm by extending

Gupta’s algorithm and eliminated a broader range of cases of array access.

Variable escape analysis

The escape analysis for variables is to determine whether an object is local

to a method. If an object is local, it can be allocated on stack instead of

heap to save Garbage Collection so that it can achieve good locality.
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Choi et. al. [25] present a simple and efficient data flow algorithm for

escape analysis of objects in Java program to determine if an object can be

allocated on the stack or if an object is accessed only by a single thread during

its lifetime so that synchronization on it can be removed. The technology is

used in the Jalapeño JIT compiler [22].

Program hotspot detection

In the area of Java JIT compiler, to compile everything or to selectively

compile execution “hotspots” are two alternative approaches. The concept

of execution hotspot comes from the popular saying that ninety percent of

the execution time is spent on ten percent of the code [3], i.e., the hotspot.

As the JIT compilation time is counted in the overall execution time of

the whole program, it is appealing for a JIT compiler to wisely choose the

execution hotspot for compilation. A famous example using selective com-

pilation is Sun’s Java HotSpot JIT compiler [61]. The philosophy behind

Sun’s HotSpot is “Don’t optimize until you know you have a problem”. In

HotSpot, it will start interpretation first. Only after some profiling informa-

tion is gathered, will it start to select some class methods for compilation to

generate optimized native code. The method in detecting program hotspot in

HotSpot simply counts the number of method invocations in the interpretive

mode and sets a threshold for activating compilation.

There are other JIT compilers that compile everything before execution.

For example, in OpenJIT [53], when a method is invoked, it is hooked to

compile. After the compilation, the program will jump to the entry of the

compiled codes. IBM’s Jalapeño JVM [22] also compiles everything.

Summary

The JIT compiler is important for the performance a JVM. It is also the case

in a DJVM. In DJVM, to preserve the high-performance execution in the

local node, the efficiency of register allocation in JIT compilers should not
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be affected in generating native code that supports the distributed functions.

For example, to distinguish a local object from a remote object in DJVM,

the new native code generated by the JIT compiler should make efficient use

of registers to avoid writing data to memory heavily. The method inlining

should also be considered in DJVM if thread context is examined. The frame

created by the inlined method should be recovered in the walk of stacks. The

program hotspot detection can be used in DJVM for supporting the migration

of computation-intensive part of a thread. Escape analysis is important for

DJVM in its optimization of object access performance.

2.1.3 High-performance JVM on SMP

An Symmetric Multiprocessing (SMP) machine though expensive, can be a

potential high-performance platform for executing multithreaded Java appli-

cations. Besides the effort to map different Java threads in JVM to different

processors on an SMP machine, research in JVM has introduced several op-

timization techniques in supporting scalable performance on SMP servers.

The mapping of different threads to different processors in JVM usually

relies on the binding of native SMP-enabled thread libraries with the JVM

threading system. For example, the Sun Hotspot JVM [61] on Linux has

introduced Next Generation Posix Threads library, and Native Posix Thread

Library to enable fast thread scheduling on SMP machines.

The other effort is on reducing the synchronization overhead. The escape

analysis technique mentioned in previous section can also be used in saving

optimization overhead. This is because locking on thread-local objects can

be eliminated [25]. Less synchronization will make different processors on an

SMP machine be blocked less frequently.

On an SMP machine, with multiple processors sharing a memory, the

memory becomes a precious resource. Efficient Garbage Collection (GC) in

JVM is critical for achieving high-performance on SMP machines. GC should

be incremental in such systems to avoid long pause time of the processors. A

24



parallel incremental GC was designed by IBM for SMP servers [59]. In Sun’s

JDK 1.4.1, a new parallel Garbage Collector is introduced [56]. The parallel

GC collector tries to parallelize and scale young generation collections by

using multiple GC threads.

2.1.4 Clusters and Single-System Image

A computer cluster [5, 13, 45] is a group of computer nodes connected by a

fast network such as Ethernet or Myrinet that appear as a parallel computer.

Each cluster node is usually a commodity computer, such as a PC or a

workstation, which has its own processor and physical memory. The nodes

do not share a physical memory.

By using off-the-shelf components, a cluster provides a cost-effective alter-

native to a traditional supercomputer. A supercomputer tends to have large

memory and I/O capacity to support the processing of large-scale technical

computing problems. A single node in a cluster is limited in its computing

power and memory. However, a collection of nodes can provide much larger

computing power, memory, and aggregate disk and memory bandwidth. The

factor that limits the cluster to be a supercomputer is the network latency.

A cluster usually needs about 100–500 microseconds in delivering a single

message, while a supercomputer usually takes about 10 microseconds.

The research in clusters is towards making clusters as easy to use as a

single machine. A key requirement of a cluster is the Single-System Image

(SSI) [42]. An SSI is the illusion that a group of computing elements appear

to be a single resource. SSI can be implemented at different layers such as

the hardware, the operating systems, or the middleware.

The SSI on clusters offers the a number of benefits. For example, the

usage of the system resources is totally transparent to the user. The user

don’t need to care about the location of the computing resources. Therefore

the reliability and availability for computation can be improved. When a

computer node fails, the other node in the cluster can transparently take the
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job automatically. The SSI also simplifies the management of clusters. The

operator only needs to log on to a single machine to handle the entire cluster.

This can reduce the risk of operation errors.

2.1.5 Programming paradigms for parallel computing

Many programming paradigms exist for the parallelization of applications

on parallel computing architectures. The three major paradigms are data

parallel, message passing, and shared memory. In this section, we mainly

introduce examples using Java to explain these paradigms.

Data parallel

The data parallel paradigm is to apply the same operation on different data

sets residing on different cluster nodes.

One example language supporting the data parallel programming paradigm

is the HPJava language [24]. It extends ordinary Java with some shorthand

syntax for describing how arrays are to be distributed across processes. HP-

Java has no explicit interfaces for communication among processes. The

message passing code is generated transparently by the HPJava compiler for

communication.

The shortcoming of HPJava is that Java programmers need to master

HPJava’s specific syntax in order to exploit data parallelism and leverage

the cluster computing capability. Nevertheless, due to the high portability

of Java, HPJava could be favored by those who are familiar with the data

parallel paradigm and are willing to try Java.

Message passing

Message passing is probably the most popular paradigm for parallel program-

ming on clusters. In this paradigm, the programmers write explicit code to

send and receive messages for the communication and coordination among
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processes in a parallel application. Besides the famous socket interface to

support TCP/IP communication, Java programmers can also use some ad-

ditional high-level message passing mechanisms such as Message Passing In-

terface (MPI), Remote Method Invocation (RMI) [20], and Common Object

Request Broker Architecture (COBRA) [58].

MPI is a widely accepted interface standard for communication. One

implementation of MPI on Java is the mpiJava library [12]. It enables com-

munication in Java programs by introducing a new class called MPI. Using

mpiJava, the programmers need to handle data communication explicitly,

which is usually a complicated and error-prone task.

Java RMI is similar to remote procedure call, i.e., it enables a Java pro-

gram to invoke methods of an object in another JVM. RMI applications

use the client/server model. An RMI server application creates some ob-

jects, and publishes them for the remote RMI clients to invoke these objects’

methods. RMI provides the mechanism by which the server and the client

can communicate.

CORBA is an open, vendor-independent architecture for interfacing dif-

ferent applications over networks. Java also provides the Interface Descrip-

tion Language (IDL) to enable interaction between Java programs and CORBA-

compliant distributed applications. However, COBRA is also difficult for

programmers to master.

Shared memory

The shared memory paradigm assumes a shared memory space among the

cooperative computation tasks. The programmer does not need to write

explicit send or receive operations. The access to shared data is through the

normal read or read operations.

On an SMP where the physical memory is shared by nature, the mapping

of shared memory programming to the hardware is straightforward. A fa-

mous support for multithreading is the OpenMP specification [57]. OpenMP
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defines a set of compiler directives, together with the runtime support for

shared parallel memory programming using C/C++ or Fortan on SMP ma-

chines.

Clusters, on the other hand, do not possess a physically shared memory.

The communication between different nodes needs to use the network inter-

face. To support shared memory programming on clusters, software DSM

was proposed and it has been studied extensively during the past decade.

Orca [14] is one object-based DSM that uses a combination of compile-time

and runtime techniques to determine the placement of objects. TreadMarks

is a page-based DSM [4] that adopts lazy release consistency protocols and

allows multiple concurrent writers on a same page. Treadmarks uses the

hardware page-faulting support, therefore it can eliminate the overhead of

software checking on object status. Most of these systems support the C

programming language for writing parallel programs.

The research interest in supporting shared memory programming using

Java on clusters has increased. One important reason is that the multithread-

ing feature of Java fits this paradigm well in a single-node environment. Un-

like C programs that need external libraries to support multithreading, Java

includes this in its language definition. This makes the multithreaded pro-

gram uniform and highly portable. In a Java program, threads create their

objects in the heap. All the threads in the program can then access all ob-

jects through object references to the heap. Two threads can share an object

if they are both given the object reference. Java provides mechanisms to

protect the critical section of accessing the same object. The shared memory

paradigm is easy and convenient for normal Java programmers as they don’t

need to care about the explicit message sending and receiving operations.

All they need is just to use the Java language to declare a critical section

when accessing the shared object.

However, the current standard JVMs can only achieve limited parallelism

for multithreaded programs because they can only run on a single machine,
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such as an SMP machine with multiple CPUs. In recent years, there is

an increased research interest in building a JVM that can run on clusters.

We call such a JVM Distributed JVM. A few prototypes have been proposed

[8, 52, 82, 76, 7, 73, 31]. This dissertation will provide the in-depth discussion

on the design, implementation and performance of the area.

2.2 DJVM

Multithreaded programming in Java has become a norm, especially for server

side programming. The Java multithreading realizes a shared memory pro-

gramming model where Java threads access the created objects in a heap

without explicit data partitioning and message passing. Concurrent pro-

gramming in Java is much easier and more natural than in most other parallel

languages or runtime supports, such as Parallel Virtual Machine (PVM) [36],

MPI [49], or software Distributed Shared Memory (DSM) [4, 18, 47, 64, 66],

which rely on explicit data partition for different processors to achieve par-

allel execution.

Commercial pure Java servers are emerging in recent years to support

large-scale client connections and complex service logic. Pure Java applica-

tions [54] are those that depend on core Java APIs without using any native

methods and hardware platform-specific constants. Usually they are written

using Java’s multithreading feature, with each thread handling one client

connection. The service provided is usually computation-intensive. Differ-

ent threads will be loosely synchronous, i.e., they can carry out their task

independently without a global synchronization. For example, the W3C’s

Java Web Server Jigsaw [1] is written in Java. In Jigsaw Java threads is

used to handle simultaneous connections. JBoss [33] and Tomcat [34] are

two multithreaded Java application servers. They use thread pool to handle

the requests from their clients.

A DJVM is a cluster-wide virtual machine that supports parallel execu-
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tion of a multithreaded Java application. The DJVM creates an SSI illusion

for Java threads running on clusters. With the SSI created by the DJVM,

a multithreaded Java application runs on a cluster just as if it were running

on a single machine with improved computation power. The DJVM provides

the same virtual machine services to the Java threads inside the application.

Moreover, DJVM supports the scheduling of Java threads on cluster nodes

and provides location transparency on object access and I/O operations for

Java threads.

The analogical example is the distributed operating systems (DOS) [68]

to support the SSI view for processes. In the DOS, such as Sprite [60] and

Amoeba [69], the process can transparently access the resources of all the dis-

tributed computer nodes. The transparency means that no user involvement

is needed, such as using new APIs or new names to access a remote resource.

Though DOS and DJVM differs in their applications, both DOS and DJVM

share some of the common issues, such as performance, transparency, flexibil-

ity, reliability, and scalability. Table 2.1 summarizes the comparison between

DOS and DJVM.

DOS DJVM
Goal SSI for multiprocesing SSI for multithreading
Application
model

Many applications on one
DOS

An application on one
DJVM

Scheduling unit Process Thread
Sharing Explicit sharing through

IPC
Default object sharing

Implementation Kernel-level User-level
Common design
issues

Performance, transparency, flexibility, reliability,
and scalability

Table 2.1: Distributed Operating Systems versus Distributed Java Virtual
Machine

DJVM research is valuable for supporting high-performance multithreaded

computing. Java provides a highly portable language environment and built-
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in concurrent multithreading feature. A DJVM represents a more portable

and more user-friendly parallel shared memory environment. It therefore in-

herits the merits of shared memory programming compared to the message

passing programming for Java programmers.

The research on DJVM has some differences compared to that of JVM

on SMP machines. In general, more focuses are on the large-scale thread

scheduling and efficient distributed object sharing. It targets at the large-

scale multithreaded server applications. Table 2.2 summarizes the compar-

isons between JVM on SMP and DJVM on clusters.

JVM on SMP DJVM on clusters
Goal High-performance multithreading support
Hardware 10s of processors, more $,

physically shared memory (a
few GB), low communica-
tion latency

100s-1000s of nodes, less $,
physically distributed mem-
ory (4GB x number of
nodes), high communication
latency

Research focus JIT compiler, GC, synchro-
nization removal, thread
scheduling, Java libraries

large-scale thread schedul-
ing, efficient distributed ob-
ject sharing

Applications small-scale server applica-
tions

large-scale server applica-
tions

Table 2.2: JVM versus DJVM.

There exist a number of DJVM prototypes, including cJVM [8], JES-

SICA [52], Java/DSM [82], Hyperions [7], Jackal [73], JavaSplit [31], Java-

Party [62], etc. Some of them are not transparent to the Java programmers

and do not provide a runtime virtual machine, therefore in strict sense, they

are not DJVM. But they aim at the same purpose of supporting the high-

performance execution of multithreaded Java applications on clusters by dis-

tributing threads among cluster nodes. Below we try to have a closer look

at the DJVM from the viewpoint of the programmers and the designers.
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2.2.1 Programmer’s view of DJVM

From the programmers’ viewpoint, the ideal DJVM should be able to run

existing multithreaded programs without any modification to the source code.

The programmer therefore follows the usual manners without any new syntax

or library extension. The less ideal case is to provide new APIs or libraries

for the user to declare the shared code or objects that can be parallelized. In

this case, the programmer needs to manually specify the distributed aspects

in the program.

Besides the programming issues, the other aspect that the programmers

care about is the execution mode. Static compilation, which transforms the

Java program distributed in source code or bytecode format into an equiva-

lent stand-alone parallel binary program, is one choice for DJVM. The par-

allel binary program is executed directly on the hardware platform. Such an

approach does not realize a real DJVM. Its shortcoming is that the complete

program is needed before execution. It is therefore hard to support Java’s

dynamic feature such as dynamic class loading. On the other hand, virtual

machine support at runtime supports the dynamic features and is fully com-

pliant with the Java langauge. The DJVM of this type consists of a collection

of cooperated JVMs running on different cluster nodes. The Java program

can be dynamically loaded for execution in such DJVMs.

2.2.2 Designer’s view of DJVM

A JVM includes three main building blocks, i.e., the thread system, the heap

and the execution engine. From the viewpoint of DJVM designer, the three

major components need to be extended to enable the parallel execution of

Java threads in the distributed environment.

• Distributed thread scheduling. The thread scheduler decides which

thread to grasp the CPU and switches thread contexts inside the vir-

tual machine. The scheduler of a DJVM requires modifications to the
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virtual machine’s kernel. It should schedule the Java threads on clus-

ter nodes efficiently. Efficient scheduling requires the workloads of all

threads be evenly divided among the cluster nodes. Inefficient schedul-

ing can lead to an imbalanced state across the nodes, which results in

poor execution performance.

• Distributed shared heap. The heap is the shared memory space for Java

threads to store the created objects. The physical disjointness of mem-

ory spaces among cluster nodes is in conflict with the shared memory

view of Java threads. A shared memory abstraction should be reflected

in a DJVM so that threads among different nodes can still share the

Java objects. Efficient management of Java objects on clusters is crit-

ical to the reduction of communication overheads. Garbage collection,

operations on I/O objects should be included in the distributed shared

heap design.

• Execution engine. The execution engine is the processor of Java byte-

code. To create a high-performance DJVM, it is usually necessary to

have a fast execution engine. Therefore the execution of Java threads

in native mode is a must. As the threads and heap are distributed,

the execution engine should be able to distinguish local objects from

remote objects and carry out the appropriate actions accordingly.

2.3 Summary

The technologies of Java, distributed shared memory, Single-System Im-

age, and clusters, together form the context for the research in Distributed

Java Virtual Machine. Java bytecode programs are running on top of the

Java Virtual Machine. To improve the execution speed, JIT compilation

is used to compile Java bytecode on demand. JIT compilation emphasizes

lightweight techniques to reduce the additional overheads in dynamic com-
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pilation charged to the program execution. Java’s multithreading feature

provides a friendly way to write parallel programs using shared memory

paradigm. SSI is the ultimate goal of clusters. DJVM must provide SSI

illusion for Java programs on clusters.
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Chapter 3

Related work

In this chapter, we discuss the details of several existing related DJVM

projects. Finally we use the classification parameters discussed in previous

section to distinguish these systems.

3.1 cJVM

cJVM [8] was developed by the IBM Haifa Research Labs. It is a cluster-

aware JVM that provides SSI view of a traditional JVM for pure Java appli-

cations on cluster environments. Its purpose is to obtain improved scalability

for a class of multithreaded Java server applications on clusters such as Jig-

saw [1]. The pure multithreaded Java applications can be directly run on

cJVM without explicit coding or pre-processing.

The cJVM prototype was implemented by modifying the Sun’s reference

implementation for the JDK 1.2. It consists of a collection of cooperated JVM

processes on each cluster node. Each process runs in the Java interpreter loop

to execute the Java threads.

When a thread is created, a load balancing function will determine the

appropriate location for the thread. Then the thread is spawned on the cho-

sen node. The scheme belongs to the initial placement scheme in distributed
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thread scheduling. Initial placement scheme is the action of placing a thread

on one node when it is first created, and keeping the thread executing on the

same node during its whole life time.

To support the access to shared objects in the application by the Java

threads, cJVM uses a master-proxy model. In cJVM, when an object is

created in a node, the data on the node is called the master copy of the

object. Other nodes access the object via a proxy stored in their heap.

Therefore all the heaps in each cJVM process will work together to provide

the single monolithic heap illusion to the Java threads. The proxy and the

master are using the same object layout so that the thread can access the

object in a uniform way. The distinction of master and proxy is only visible

to the cJVM kernel and is transparent to the Java application.

To reduce the communication overhead in accessing a remote object,

cJVM uses smart proxies for accessing different objects. Smart proxies allow

multiple implementations for different objects of a given class. In cJVM,

three types of proxies are implemented, namely, the simple proxy, read-only

proxy, and proxy with locally invoked stateless methods. The types of prox-

ies applied to an object rely on the analysis done at the time of class loading.

The simple proxy is the default action that transfers every operation on an

object to the master. The read-only proxy assumes that the object is only

modified in the constructor, and it applies every read operation locally. The

proxy with locally invoked stateless methods is used for the operation of in-

voking a method on an object. Normally cJVM invokes a method on the

master object node, which is called method shipping. When a method is

stateless, i.e., it does not access to any field of an object, it is applied locally

on the proxy object.

Our system JESSICA2 differs from cJVM in supporting JIT compilation,

thread migration, and single I/O space support. In our system, the dis-

tributed shared object support in GOS uses an adaptive home protocol. It

is different from the cJVM’s master-proxy model since cJVM’s proxy model
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fixes the location of the master copy of the objects.

3.2 JESSICA

JESSICA [52] was developed by the System Research Group in the Depart-

ment of Computer Science of Hong Kong University. JESSICA stands for

“Java-Enabled Single-System Image Computing Architecture”. It is a mid-

dleware that runs on top of the standard UNIX operating system to support

parallel execution of multithreaded Java applications on clusters.

Similar to cJVM, JESSICA can transparently run multithreaded Java

applications written in normal fashion. The Java bytecode can be directly run

on JESSICA without any pre-precessing, and the threads are automatically

redistributed across the cluster to exploit real parallelism.

JESSICA supports preemptive thread migration which allows a thread to

freely move between machines during its execution. The migration scheme is

based on the delta execution [51]. The approach is to segment the execution

context of a migrating thread into sets of consecutive machine-independent

and machine-dependent frames. The migration unit is a set of machine-

independent frames, known as a delta set. Once the set of frames is con-

sumed on the remote machine, the control will return to the original node

to continue the execution of the machine-dependent frames. Through delta

execution, JESSICA can support the use of native methods in the multi-

threaded applications, since the native methods are executed on the original

nodes.

JESSICA achieves global object sharing based on the Treadmark DSM

[4]. In JESSICA, the DSM system is initialized among the set of nodes

involved in the execution of a multithreaded Java application. The heap

objects created by the threads are allocated from the underlying page-based

DSM. The Java monitors are implemented through the use of aquire/release

APIs in the DSM.
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The execution engine of JESSICA is the modified interpreter of Kaffe [80]

Version 0.9.1. JESSICA provides independent bytecode execution on each

node of the cluster. Multiple execution engines can proceed simultaneously

by having each engine operating on the execution stack of one of the threads.

The thread migration is implemented inside the execution engine. When the

bytecode for accessing object data, such as the GETFIELD, PUTFIELD,

etc., the interpreter will call the appropriate DSM functions in Treadmark

to fulfill the task.

Compared to JESSICA, our new system JESSICA2 supports JIT compila-

tion. The thread migration system in JESSICA2 introduces new technologies

to extract bytecode-oriented thread context from the native execution stack.

Unlike JESSICA, which realizes distributed object sharing based on page-

based DSM, JESSICA2 integrates the distributed object sharing in JVM

kernel and provides more optimizations to save communication costs.

3.3 Java/DSM

Java/DSM [82] is a DJVM that runs on a cluster of heterogeneous computers

based on an underlying Treadmark page-based DSM. Java/DSM requires the

threads in the Java program be modified to specify the location to run. This

violates the transparency or SSI requirement of DJVM. For the execution,

Java/DSM provides the virtual machine service to the Java bytecode without

any pre-compilation.

The design was based on the JDK 1.0.2 JVM. In Java/DSM, load dis-

tribution is achieved by remote invocation of Java threads. This belongs to

the initial placement scheme. Different from cJVM, the initial placement of

Java/DSM is not transparent.

The DSM is used to realize the distributed shared heap and class repos-

itory for Java program. Java/DSM relies heavily on the underlying DSM

to maintain the consistency of shared data. In Java/DSM, the heap is allo-
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cated using Treadmark’s shared memory allocation routine. All the classes

are also loaded into the Treadmark’s shared memory. Since Java/DSM aims

to support heterogeneous platform, it requires data conversion in the com-

munication between different machines.

Java/DSM also uses the interpreter for its execution engine. Since the

distinction of local objects and remote objects are done by the memory man-

agement module, the interpreter of the original JVM is virtually untouched.

Compared to Java/DSM, JESSICA2 supports JIT compilation. JES-

SICA2 does not need to manually specify the location of a thread, and is

more flexible and efficient because it can distribute the threads according to

the runtime system workload. The existing multithreaded Java applications

can run on JESSICA2 without any modification or preprocessing. JESSICA2

uses a global object space support in JVM to support object sharing among

the cluster nodes, which is different from Treadmark which uses a page-based

DSM for the same purpose.

3.4 Jackal

Jackal [73] was implemented by Vrije University. It is a compiler-driven

distributed shared memory implementation of the Java programming lan-

guage. Jackal adopts the static compilation approach. The multithreaded

Java application can be written in normal way, therefore it is friendly to the

programmer like cJVM and JESSICA. However it needs the complete Java

application before execution.

The front-end of Jackal accepts the unmodified Java code in bytecode

or source code format. The front-end will then generate an intermediate

language called Liberally Assembly Language (LASM) and feed it into the

back-end compiler of Jackal. The back-end will then perform multiple code

optimizations for sequential and parallel performance. The output of the

Jackal back-end will be the assembly code. The assembly code is then as-
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sembled and linked into the parallel native code using the native assembler

and linker respectively.

The thread management in Jackal follows the initial placement scheme.

When a Java thread is created, the Jackal runtime system intercepts the

events and finds an idle machine in the network in the round-robin fashion to

place the threads. Once the thread is placed, it stays in the same node during

its whole life time except some synchronization methods can be executed on

another node.

Jackal contains a runtime system that implements a DSM protocol for

variable-sized memory regions. The Jackal compiler stores Java objects in

the shared regions and augments the programs with access checks. These

access checks drive the memory consistency protocol.

The Jackal compiler implements several optimizations to reduce the over-

head of these software access checks. The Jackal source level analyzer enables

two fine-grained DSM optimizations. They are the object-graph aggregation

and synchronization method migration.

By using inter-procedure data access analysis, the static Jackal front-

end source compiler will detect situations where an access to some object is

always followed by the access to its child objects. An object is called the

child object if its reference is included in the fields on its parent object. In

this case, Jackal groups the parent object and its child objects as an object

graph. The object graph is then used as one unit for software access check.

The synchronization method migration combines multiple messages dur-

ing the execution of a synchronized Java method. Usually, a synchronized

method represents a critical section. It needs to acquire a lock, to access the

shared data, and to release the lock. All these operations will need many

network round trips. In Jackal, a special code will be generated for each syn-

chronized method to execute at runtime. The code will direct the execution

of the synchronized method to the node of the object that owns the lock.

The live variables will be packed during the migration of the method.
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As Jackal uses native code to run the application, there is no virtual

machine available during its execution. Therefore the execution engine of

Jackal, i.e., the static compiler, is only used during compilation time.

The major difference between Jackal and our system JESSICA2 is that

we use a virtual machine at runtime so that it can support Java’s dynamic

features. Similar to Jackal, JESSICA2 runs Java applications in native mode.

But JESSICA2 achieves this goal by using JIT compilation instead of static

compilation. There is no need of preprocessing of Java programs before

execution in JESSICA2. Also JESSICA2 supports thread migration.

3.5 JavaSplit

JavaSplit [31] was jointly developed by The IBM Haifa research and the Israel

Institute of Technology. JavaSplit is a bytecode rewriting compiler. It is

similar to static compilers such as Jackal and Hyperion. The major difference

between JavaSplit and the previous static compilers is that it transforms

the multithreaded Java bytecode into parallel bytecode instead of native

code. The resulting bytecode can then run on commercial advanced JVMs.

Therefore it can achieve high portability across existing platforms and allow

each node to run the JVM in its maximum performance.

JavaSplit supports the pure Java applications. During its execution,

JavaSplit provides a runtime environment to administrate a pool of worker

nodes. When a multithreaded Java application is submitted, it is first trans-

formed and combined with the runtime modules. The resulting code is then

sent to one of the worker nodes that starts a JVM to run the application.

The thread management in JavaSplit uses the simple initial placement

scheme. Each newly created thread is placed on one of the worker nodes

according to a plug-in load balancing function.

In the design of the distributed shared heap for the distributed threads,

JavaSplit integrates an object-based DSM implementing Lazy Release Con-
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sistency.

The execution engine of JavaSplit exists in its compilation phase. It is

based on the Bytecode Engineering Library [28]. The engine rewrites the

bytecode by linearly transforming each Java class into another class prefixed

with “javasplit”. For example, a class named “TestClass” will be renamed

to “javasplit.TestClass”. All the referenced class names are replaced with

the new javasplit names. The transformation on the bytecode performs five

tasks. It first replaces the creation of thread as the entry to a handler to

ship the thread to a remote node. Then it replaces the bytecode instruction

for synchronization, i.e., the MONITORENTER and MONITOREXIT, with

the appropriate synchronization handlers. Next, it replaces the object data

access bytecode such as GETFIELD, PUTFIELD, IALOAD, etc., with a

sequence of bytecode instructions that perform the state checking for memory

consistency. The following task is to augment the fields indicating the object

state. The final task is to insert the DSM utility methods in the new javasplit

class.

Different from JavaSplit, JESSICA2 supports the multithreaded Java ap-

plication using a virtual machine at runtime and supports thread migration.

The distributed object sharing is embedded in JVM, unlike JavaSplit, which

insert the consistency protocol in bytecode before executing the Java appli-

cation on clusters.

3.6 Others

Hyperion [7] provides a running support for multithreaded Java applications

upon an object-based DSM. Hyperion takes a static compiling approach. The

multithreaded Java source code is first compiled by the normal Java compiler

into bytecode. Then Hyperion provides a java2c compiler to compile the

bytecode into a parallel C program. Then the C program is compiled by the

C compiler and is linked with the PM2 run-time library into a parallel native
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application. Hyperion also adopts the initial placement for thread creation

and scheduling.

JavaParty [62] provides a pre-compiler and a runtime environment to

support the execution of multithreaded Java applications on clusters. It

is built on top of Java RMI. In the multithreaded Java program, JavaParty

introduces a new keyword “remote” to indicate that a class or a thread should

be distributed to remote cluster nodes. Therefore it requires the programmer

to manually partition the work into local operations and remote operations.

The JavaParty pre-compiler will generate new classes with Java RMI hooks

for those classes declared as remote class. JavaParty uses standard JVM to

run the generated new classes on clusters, with each node running a JVM.

The thread is created following the initial placement scheme. The distributed

shared heap is simply implemented on top of RMI following a strategy similar

to sequential consistency.

3.7 Classification of existing DJVM projects

By adopting the parameters from the viewpoint of the programmers and the

designers, we can classified the existing DJVM projects in Table 3.1.

From the table, we can see that most existing DJVMs aim to support the

transparent execution of multithreaded Java application without introduc-

ing special APIs or syntax. The multithreaded programming is therefore in

its usual manners. The exception cases are the Java/DSM and JavaParty.

Java/DSM needs the manual coding of where to put the thread, while Java-

Party requires the programmer to specify the local and remote classes using

the “remote” keyword.

For the execution mode, two main approaches exist. The cJVM, JES-

SICA, and Java/DSM follow the virtual machine approach by using a group

of dedicated JVMs to run the multithreaded Java application. JESSICA and

cJVM provide the SSI illusion for Java applications. Java/DSM, instead,
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DJVM Programming
(new API /
syntax)

Execution
environ-
ment

Thread
scheduling

Heap Execution
engine

cJVM
[8]

No SSI VM Initial place-
ment

Built-in
master-proxy
model for ob-
ject sharing.

Interpreter

JESSICA
[52]

No SSI VM Thread migra-
tion

Treadmark
page-based
DSM.

Interpreter

Java/DSM
[82]

Additional
APIs

VM Initial place-
ment, manu-
ally specifying
the location.

Treadmark
page-based
DSM

Interpreter

Jackal
[74]

No Static compi-
lation, stand-
alone parallel
binary

Initial place-
ment

Built-in OO-
based DSM

Static
compiler

JavaSplit
[31]

No Static compi-
lation, VM

Initial place-
ment

Built-in OO-
based DSM

Static
compiler

Hyperion
[7]

No Static compi-
lation, stand-
alone parallel
binary

Initial place-
ment

Linked with
OO-based
DSM

Static
compiler

JavaParty
[62]

Additional
Java syntax

Pre-
compilation,
VM

Initial place-
ment

RMI-based
object sharing

Static pre-
compilers

Table 3.1: Classification of existing DJVM projects.

does not provide such an illusion. The static compilation approach include

Jackal, Hyperion, JavaParty and JavaSplit. They use new pre-compiler or

static compiler to compile the multithreaded Java applications into a paral-

lel program. The slight differences between these projects are the resulting

code. Jackal and Hyperion generate the native code so that the compiled

result can be directly run on the cluster. JavaParty and JavaSplit generate

the Java bytecode instead. Therefore they can be executed on a group of

standard JVMs running on clusters.

Most of the DJVM projects just use the simple initial placement method

to schedule the remote thread. The exceptional case is our previous project

JESSICA, which adopts thread migration inside the JVM. It is promising for

supporting more advanced load balancing strategy.
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In the heap design, many DJVMs adopt the existing DSM to provide the

shared memory service. Java/DSM and JESSICA use a page-based DSM and

Hyperion uses an OO-based DSM. Such a design makes the system simple

but makes the optimization difficult. Some other systems implement their

own distributed shared heap. cJVM adopts a master-proxy model in building

its distributed shared heap. Jackal and JavaSplit implement similar services

as done in a OO-based DSM in its runtime environment.

In the static compilation based DJVM, the execution engine is the static

compiler, which transforms the bytecode into the parallel code. They include

Jackal, JavaSplit, Hyperion and JavaParty. Others using virtual machine

approach such as cJVM, JESSICA and Java/DSM mainly use the interpreter

as it is simple.

3.8 Summary

In this chapter, we studied the related research work on DJVM. cJVM ,

Java/DSM, and JESSICA use a runtime virtual machine to realize the SSI

illusion for multithreaded Java applications. Jackal, Hyperion, and JavaSplit

use a static compilation approach. We compared these systems with our JES-

SICA2 DJVM. Classification of these projects has been provided, according

to the different views of DJVM.
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Chapter 4

JESSICA2 Distributed Java

Virtual Machine

4.1 Our design rational

Our design will extend the JVM to be cluster-aware so that a set of cluster-

aware JVMs can form a DJVM to cooperate in one single computation task.

The rational is similar to that of a distributed operating systems [68]. The

extension will be made at the JVM kernel level, involving the modifications

of the execution engine, thread scheduler, and the heap.

4.1.1 Execution engine

A DJVM execution engine can be classified into four types: interpreter, Just-

in-Time (JIT) compiler, mixed-mode execution engine, and static compiler.

A Java bytecode interpreter for DJVM is relatively simple to implement. Yet

it suffers from the slow Java execution in interpretative mode and thus may

not be efficient enough for solving computation-intensive problems which are

the main targets of a DJVM. However, several DJVMs still use it, such as the

cJVM, Java/DSM and JESSICA, due to its simpleness. Static compilers, as
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used in Jackal [74] and Hyperion [7], although can achieve high-performance

native execution of Java threads, usually miss the dynamic JVM functional-

ities such as loading new Java classes from remote machines during runtime.

The mixed-mode execution engine, which is first introduced in Sun’s hotspot

compiler [61], is another possible solution to be adopted in a DJVM. But

rare existing DJVM adopts such an engine due to its complex structure in

JIT compilers and large overheads in switching between interpretive mode

and native mode, compared to the pure JIT compilation.

Dynamic or JIT compilers are rarely considered or exploited in previous

DJVM projects. The JIT compiler is simpler than the full-fledged static

compilers, but it can still achieve high execution performance. Therefore in

our DJVM, we adopt the JIT compiler as the execution engine.

4.1.2 Thread scheduler

In the DJVM design, two schemes are usually employed. They are initial

placement and thread migration. Initial placement is to place a thread on a

chosen node when it is first created. Once the thread is created on a node, its

location is fixed until it dies. Thread migration is to move a thread from one

node to another node during its execution. In this case, the thread context

should be able to cross the machine boundaries inside a cluster. In our

design for distributed thread scheduling, we combine the initial placement

and thread migration together to achieve higher resource utilization and load

balancing.

Many multithreaded applications usually have imbalanced workload for

each thread. For example, a Java stock server application may have many

threads computing different stock values and their execution time may vary

significantly. To achieve load balancing for these applications, we adopt a

lightweight and transparent Java thread migration mechanism to enable the

threads to move from one node to another during its execution.

Our strategy is to initially place the threads evenly on different cluster
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nodes when threads are created. When later the workloads of nodes become

imbalanced, thread migration will be used to help balance the whole system

workload. In other words, the thread migration mechanism in the system

helps to relocate threads after the initial placement. There are two key

observations in our thread migration system. Firstly, larger stack size which

results in large migration overhead. The overhead comes from the time to

analyze the stack frames. Secondly, the thread migration not only affects the

CPU workload, but also introduces uncertainties in the communication. For

example, the data objects will be randomly located on other nodes different

from the node on which the thread that needs to access them is currently

running due to the migration of the thread. This makes it difficult for the

design of efficient load balancing policies. In particular, we propose the

migration of threads that are executing its hotspot, a computation intensive

part without much distributed object access. The hotspot here is different

from general program hotspot that it tries to covers the distributed nature

of the Java program on DJVM. In our system, we employ simple heuristic

together with the bytecode analysis to support the hotspot detection and

migration.

4.1.3 Heap

When the threads are executing on different nodes, they need a distributed

shared heap so that the objects created by one thread can be seen by all.

The design of the heap provides distributed shared object services similar to

those of a multithreaded software DSM.

There exist a number of DJVMs [52, 82] that are directly built on top of

an unmodified software DSM. This approach simplifies the design and imple-

mentation of the distributed shared heap in DJVM as it only needs to call

the APIs of the DSM without worrying about the memory consistency issues.

For these systems, there is the issue of achieving good performance because

there tends to be a mismatch between the Java Memory Model (JMM) and
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that of the underlying DSM. The page-based DSM differs from Java mem-

ory model in the access unit. Even an OO-based DSM is used, the runtime

information at the JVM level cannot be easily channelled to the underlying

DSM, which could lead to poor running performance.

The other approach opts for a customized built-in distributed shared heap

that realizes the JMM. Because it is tightly coupled with the DJVM kernel,

it is possible to make use of the runtime information inside the DJVM to

reduce object access overheads. In current DJVM prototypes, cJVM and

JESSICA2 use such an approach. Several different optimization techniques

in reducing the communication overhead in these systems are proposed. The

shortcoming of this approach is that it needs to re-design the heap, which

makes the system more complex.

In our system, we go for a built-in distributed shared heap that realizes

the JMM. Our approach can make use of the runtime information inside the

DJVM to reduce the object access overheads as the mechanism is tightly

coupled with the DJVM kernel.

4.2 System architecture

JESSICA2 provides a user friendly Java computing environment. It accepts

normal multithreaded Java applications written in its usual fashion. The

programmer just assumes that the program is only run on one single JVM.

JESSICA2 can automatically exploit the strength of cluster to accelerate the

execution of the application while preserving the SSI illusion. There is no

need to pre-process or pre-compile the source code or class files for JESSICA2

to run a Java application.

Figure 4.1 shows the overall architecture of JESSICA2. The system runs

on clusters and it consists of a collection of modified JVMs that run in

different nodes and communicate with each other using TCP connections.

As the JVM is running on top of the operating systems, it is considered as a
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Figure 4.1: The system architecture.

middleware. Therefore our system provides the SSI view at the middleware

level without any modification to the underlying operating systems.

We call a node that starts the Java program the master node and the

JVM running on it the master JVM. All the other nodes in the cluster are

worker nodes, each running a worker JVM to participate in the execution of

a Java application. The worker JVMs can dynamically join the execution

group. The master JVM and worker JVMs are all full-fledged JVMs. They

differ only in the startup. The master JVM starts the Java application during

startup, while the worker JVMs wait in a loop for accepting incoming threads

from the master JVM. JESSICA2 supports running multiple threads in each

JVM. Therefore the number of threads is not limited to the number of nodes

in the cluster.

Inside the modified JVM, there are three main building blocks, namely,

the thread scheduler, the modified execution engine called JITEE, and the

Global Object Space (GOS) module.

The thread scheduler is in charge of applying the load balancing policy.
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It is only through maintaining a balanced load will the system be able to

achieve maximum efficiency for its applications. The policy is supported

by the thread migration mechanism, which moves the context of a thread

from one node to another node. Thread migration support is built in the

JVM kernel, by the cooperation of threading system and the execution en-

gine. Being transparent, the migration operation is done without explicit

migration instructions to be inserted in the source program explicitly by the

programmers.

The JITEE is to process the loaded Java bytecode and to compile it into

native code. It is the a key component in the JVM to hide the physical cluster

environment from the application. For example, by translating the bytecode

MONITORENTER, which enters a critical section, to a call for distributed

synchronization function, the Java thread running the code can extend its

synchronization capacity from a single node to a cluster. The JITEE also

generates native code to link the object access to the GOS service functions.

Moreover, thread migration in JESSICA2 heavily relies on JITEE to generate

supporting native code in order to extract and restore the thread context.

The GOS provides the distributed single heap to the Java threads. The

GOS preservers the Java memory model for concurrent access to the data

object. The detailed of the memory model will be discussed in Section 4.4.

Also GOS supports the distributed synchronization and provides support for

Java objects that are related to I/O operations including the file system I/O

and the networking I/O.

4.3 Thread migration

To efficiently schedule Java threads on clusters, one of the desired features

is to support the transparent thread migration. Thread is the fine-grained

computation unit. A thread has its own context, which includes the PC, the

stack, the register sets and the objects data it accesses. Thread migration is
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to support the movement of thread context across machine boundaries. The

mechanism offers the following benefits. Firstly, the system can maintain a

balanced workload by dynamically migrating threads from overloaded nodes

to underloaded nodes. Secondly, it can dynamically harvest newly available

nodes to join the parallel computation without the need to statically fix the

number of nodes before execution. Besides, thread migration can be useful

for providing fault tolerance, improving data access locality, etc [55].

Java thread migration can be realized in a non-transparent way. With

modest communication APIs such as send and receive, the programmer can

explicitly write the migration supporting code that packs the thread context

and sends them to a remote machine. On the remote machine, the program-

mer can write an unpack routine to restore the execution of the thread. For

example, consider a small Java code segment in Figure 4.2, which computes

some function using the values of i and j, and stores the result in an ob-

ject field val. When the migration happens after the second sentence, the

programmer can explicitly pack the value of i and j, together with the PC.

When the package is sent to a remote machine, a small routine can be used

to assign the packed values to the variables and jump to the stopped PC to

continue the execution.

// Java program example

1: i=1;

2: j=2;

// Migration here

3: obj.val = compute(i,j);

Figure 4.2: An example Java code used for thread migration.

A static compiler can be used to automatically generate the migration

supporting code at some potential migration points, e.g., the location imme-

diately before a method invocation. Many existing Java thread migration

systems follow such an idea [65, 72]. In these systems, often the Java source
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code or bytecode is statically analyzed and instrumented with the migration

supporting code. Such code usually supports the capturing of the snapshot

of the thread context and the restoration of the captured context. In this

way, the thread migration becomes transparent to users. The transparency

can save the programmer a lot of efforts in the work partition and data pack-

ing. Such an approach is portable since the resulted mobile code can be run

on all standard JVMs. However, it fails to support the dynamic feature of

Java such as dynamic class loading. The static compiler needs all the Java

class files available before the instrumentation because the instrumentation

can not be delayed until runtime. Also the migration supporting code needs

to be inserted at every potential migration point because there is no knowl-

edge of where to stop for migration at compilation time. Such code usually

causes significant runtime overheads in both time and space when there is no

thread migration. The time overhead comes from the execution of the sup-

porting code that checks the migration event and checkpoints the execution

trace. The space overhead comes from the blowup of the compiled code size

after the instrumentation. The other shortcoming of such systems is that it

is difficult for the Java source code or bytecode to directly manipulate the

stack frames of the thread. It often needs a lengthy sequence of bytecode to

simulate the operations such as capturing variable data and restoration of

thread stack [72].

The Java migration mechanism can be implemented efficiently by mod-

ifying a JVM. In this way, instead of using the application code to handle

the thread context, the JVM will deal with the capturing and restoration of

a thread’s context during runtime. Java’s dynamic class loading is therefore

preserved. Also the JVM can use its fast native code to support the context

saving and restoration. In an interpreter-based JVM, the approach is rather

straightforward [52, 63]. The JVM can delay the collection of context data

until the migration happens. It only needs one simple checking in the inter-

preter loop of the JVM. However, interpreter-based JVMs are relatively slow.
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It is therefore desirable to build the thread migration in a JIT compiler-based

JVM.

In our system, we introduce two new approaches in the JIT compiler-

based JVM. The first approach uses dynamic native code instrumentation in

a JIT compiler that mimics the bytecode instrumentation in a static compiler.

The Java methods are instrumented using optimized native code when it is

first translated into native code. The other approach is to use a recompilation

technique to derive the thread context from its runtime stack upon migration

request without the need to insert migration supporting code in the compiled

methods.

Both approaches distinguish our system from previous static compiler-

based bytecode instrumentation solutions [65, 72] and other JVM-level solu-

tions [52, 63]. It guarantees the high-performance JVM execution with JIT

compilation enabled.

4.4 Memory model

The JVM specification [48] specifies the JMM semantics of memory opera-

tions issued by Java threads. A Java program assumes that there is a single

heap visible to all the threads, which stores all the master copies of objects.

Each thread has a local working memory to keep the copies of objects from

the heap that it must access. In JIT-enabled JVM, this working memory can

be regarded as the machine registers. When the thread starts execution, it

operates on the data in its local working memory.

The Java memory consistency model describes how threads are allowed

to see the memory update in the distributed shared heap during the inter-

actions with other threads. The interaction is the thread synchronization.

Java threads use monitors to synchronize the concurrent thread execution

in a critical section. When entering a monitor, a lock operation is used, and

an unlock operation is used to exit the monitor. The thread synchronization
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order determines what a thread can read from an object. In the JMM defi-

nition, two rules are used for the interaction of lock and variable access. The

variable V should be considered as the object field below.

• Between a lock operation on a lock L by thread T and a subsequent

access to a variable V , thread T must load the master copy of V from

the heap into its working memory.

• Between a write on V and an unlock on L by thread T , thread T must

write back the modification of V into the heap.

The above definition specifies how a thread interacts with the memory

using lock. It does not explicitly tell how the Java threads share the objects

with each other. An equivalent description of the memory model is to use

the interaction of Java threads. If a thread T1 wants to see the previous

modification of a Java object by another thread T2, it requires that T2 exit

the critical section before T1 enters. When T2 exits the critical section

(unlock), its modification will be reflected in the heap, and T1 can see the

modification when it enters the critical section (lock). Figure 4.3 illustrates

the Java memory consistency. To see the write on variable X by thread

T1, thread T2 needs to acquire the lock, otherwise the update on X will be

invisible to it.

Java’s memory consistency model is similar to the release memory consis-

tency [4]. However there exists slight difference. The locking and unlocking

operations both by T1 and T2 can be done on different objects. In release

memory consistency, the locking and unlocking should be done on the same

object.

JMM sets a contract between the Java programmer and the JVM imple-

mentor. On one hand, JMM defines what behaviors the Java programmer

should expect from the multithreaded programs. The programmer should

ensure that proper synchronization be used to achieve the memory sharing

in the Java program. On the other hand, the JVM implementor should meet
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the memory model constraints in the design. In JVM implementation, to

execute the program efficiently, it usually relies on the extensive use of the

fast local working memory such as hardware registers for the thread. JMM,

however, requires threads to flush and reload its working memory upon syn-

chronization.

As DJVM tries to guarantee the SSI view for Java applications, the mem-

ory model of DJVM should be equivalent to that of JVM. The key to provide

JMM in DJVM is to generalize the concept of thread working memory from

registers to the local memory in the cluster node.

In the software DSM-based approach to realize the distributed shared

heap, the heap is initially allocated on the DSM. Later memory operations

are done on the allocated memory. The heap data structure of the original

JVM is barely modified.

In our system, the supporting of distributed shared heap is done by the

GOS layer. The GOS layer is embedded in the DJVM and becomes an exten-

sion to JVM kernel service. It can use the JVM’s threaded communication
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functions to transfer the shared data. Therefore the GOS is by nature mul-

tithreaded, which is superior to the DSM-based approach whose threading

system usually has a gap with the JVM’s threading system.

The implementation of the distributed shared heap does not need to touch

the original JVM heap structure. The extension can be done only on the

Java object header. By adding additional fields to support the memory

consistency, the original JVM heap and its operations, such as creation of an

object or accessing the object fields, can be kept unmodified.

The remote objects will be cached in a local JVM. The cached objects

are also kept in the local heap just as if they were normal objects. Therefore

the heap is logically divided into two areas. One is for keeping the normal

objects or the master objects, and the other for keeping the cached objects.

The distinction of local objects and remote objects can therefore be made via

checking the object header. When a remote object is accessed, it is directed

to the GOS functions, which in turn apply the memory consistency model

on the access and communicate with remote JVM when necessary.

Many state-of-the-art optimizing caching protocols are adopted in our

implementation. We employ an adaptive object home migration protocol to

address the problem of frequent write accesses to an object remotely, and

a time stamp based fetching protocol to prevent the redundant fetching of

remote objects.

4.5 Summary

In this chapter, we introduce the design rational, as well as the architecture of

JESSICA2 DJVM. JESSICA2 DJVM enables JIT compilation to speedup the

local execution performance in native mode. Transparent thread migration

is provided in JESSICA2 to support load balancing. Global object space is

embedded in JESSICA2 to support efficient distributed object access.
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Chapter 5

Transparent thread migration

5.1 System overview

We apply the JIT compilation technology to support thread migration. The

solution using JIT compilers is able to preserve the important features of Java

such as dynamic class loading. Two approaches are proposed in supporting

the thread state capturing and restoration. They are the Dynamic Native

Code Instrumentation (DNCI) and the JIT recompilation (JITR). DNCI in-

struments fine-grained native code to support thread state capturing only

when a Java method is compiled by the JIT compiler during execution time.

It is different from existing static compilation approaches which insert Java

source code or bytecode for supporting thread state capturing before execu-

tion. JITR further eliminates the cost of instrumented code by re-running

the JIT compiler to extract the bytecode-oriented thread context only at the

time of thread migration. In the JIT recompilation approach, we also intro-

duce latency hiding technique that overlaps the remote class loading and the

local recompilation during the migration operation.

The thread system provides multithreading support for Java. The sched-

uler is extended with the capability of thread migration, i.e., scheduling

thread from one node to another. The thread schedule now needs to scan its
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thread queue and select proper threads for migration. When a Java thread is

migrated to one node, a new native thread is bound to it. The native thread

will then be scheduled by the local thread scheduler.

Additional supports for thread context management are needed in the

threading system. The data structures for maintaining the thread state and

the thread queue, together with the thread synchronization functions, are

therefore needed to be changed. The thread state includes the new thread

flags, the distributed environment information, such as the source node and

target node of the thread, and the native thread IDs on different nodes.

These supports work together with the JIT compiler to provide a full thread

migration mechanism.

5.1.1 Java thread context in presence of JIT compilers

The JVM [48] is a stack-oriented and multithreaded virtual machine. It

supports the execution of simultaneous control flows, i.e., threads. Each

thread has a runtime data structure called Java stack to hold a sequence of

frames. A frame is pushed onto the Java stack upon a method invocation

and is popped off the stack when the method returns. A frame consists of

the following items: PC, the local variables in use by the current method,

the operand stack serving as a work space for bytecode instructions, and the

stack pointer of the operand stack.

As the JIT-enabled JVM runs the native code generated by the JIT com-

piler, the thread context is native, i.e., in a system-dependent form. The PC

will be the real instruction pointer of the target hardware architecture. The

thread stack will be native thread stack. Also hardware machine registers

will be allocated to hold the values of the variables. We call such a context

as a Raw Thread Context (RTC).

Consider the example program in Figure 4.2. Its simplified native code

on i386 platform is shown in Figure 5.1. When the migration request arrives

before the execution of the compute() method, i.e., at the first instruction, the
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;start migration here

1:push $0x2

2:push $0x1

3:push %esi ;%esi contains the object pointer "this"

4:call *%eax ;assuming %eax contains the method

;pointer to compute(int, int)

5:add $0x10,%esp

6:mov %eax,0x8(%esi)

Figure 5.1: Native code corresponding to the example Java program.

whole thread context at this point is scattered among the hardware registers

and memory. The PC is kept in the i386 register %eip. The object reference

“this” is kept in register %esi as shown in line 3. The stack variables and

local variables are kept in corresponding registers and memory slots too.

The situation is different from that of an interpreter-based JVM that has

well-defined data structures in the memory to store the thread context.

5.1.2 Design

In our design, we seek a portable thread context as the interface to glue

together independent JVMs running in different nodes. We call the context

bytecode-oriented thread context (BTC). The BTC consists of the identifi-

cation of the Java thread, followed by a sequence of frames. Each frame

contains the class name, the method signature, and the activation record of

the method. The activation record consists of bytecode PC, operand stack

pointer, operand stack variables, and the local variables encoded in a JVM-

independent format.

The BTC has the benefits of having the same portability as the bytecode.

Such a design will eliminate the JVM-dependent hardware context during the

migration operation. It shortens the thread context in an higher level format

thus saves the communication overhead during thread migration. It also
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makes it easy to relocate Java objects and methods when the execution of a

thread is restored on the destination JVM. Figure 5.2 shows the idea of our

design.

Frame{
method CPI::run()V@11
local=13; stack=0;
var:
arg0:CPI, 33, 0x8225400
local1: [D; 33, 0x8266cc0@2
local2: int, 2 

%esp+12: 0x8266bc0

%esp   : 0x00000000
%esp + 4: 0x82ca809
%esp + 8: 0x8225400

Raw Thread Context
Bytecode−oriented Thread Context

...

Restoration

Raw Thread Context

Extraction

%esp   : 0x00000000

%eax   =0x8623200

%esp + 8: 0x82440c0
%esp + 4: 0x8478039

%esp+12: 0x8453b30

Destination node
Source node

Figure 5.2: Transparent thread migration using JIT compilers.

Such a design raises two main challenges, i.e., how to transform the RTC

into BTC in a JIT compiler and vice versa. In both cases, we need to make

sure that the two types of thread context must be equivalent in semantics.

While transforming RTC to BTC, a thread is stopped for migration, but

its native PC in RTC may not be equivalent to a bytecode PC in the BTC.

Also the values of local variables in the RTC may be kept in machine registers.

As the BTC does not have the equivalent register sets, the transformation

needs to move the latest values of local variables from the registers to the

equivalent variables in the BTC.

Another difficulty is to determine the types of native stack operands. The

transformation of a value in the native operand stack needs the knowledge of

its type. The native operand stack only tells that an operand value is kept

in a specific stack slot, but it does not tell its type. A specific memory slot

could contain an object reference, an integer value, a float value, or other

types. For an object reference, we need to retrieve its type and keep the type

information together with the value in the BTC so that it can be resolved

on target node. Therefore we cannot simply copy all the values from the

native operand stack into BTC. During the execution of a Java thread the

stack operands are dynamically pushed into or popped from the thread stack.

For a same stack slot, the type of its variable varies from time to time. For
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example, the bytecode instruction “f2d”(convert float value to double value)

will pop off a float variable from operand stack and push a double operand

on the stack top. As a result, there is no static type information for the

operands stored in the native thread context. We need a way to find out the

type information of the operand stack at the stopped native PC.

In the RTC-BTC transform, or less formally, capturing, we proposed the

following two approaches by using the JIT compiler.

• DNCI. The Java methods are instrumented using optimized native code

to support the RTC-BTC transform when it is first translated into

native code by the JIT compiler.

• JITR. The RTC-BTC transform is done through the re-invocation of

the JIT compilation to derive the bytecode level information.

Intuitively, the DNCI approach mimics the static code instrumentation

that uses migration supporting code to save the execution trace during thread’s

execution. It differs from the static counterpart in using JIT compiler to gen-

erate the migration supporting code only for those methods actually being

executed. It tries to amortize the cost of the thread migration operation

in the thread’s execution. On the other hand, the JITR approach allows

the thread be executed in full speed in normal case without activating any

thread migration operation. Only when there is a migration request, will the

overhead be charged to the thread’s execution time.

In the second transformation direction, the higher-level BTC needs to be

converted to its native form, the RTC. The transformation needs to restore

the frames based on the calling orders in the BTC. The native PC in each

frame needs to be set according to the value of bytecode PC in the BTC.

Also the register contents at the restoration point should be recovered. Our

solution of the BTC-RTC transformation is based on JITR. In the BTC-RTC

transform, we use recompilation techniques again to restore the native thread

context. The register context is dynamically patched by code stubs in each
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frame that move the values in the input context into the machine registers

based on the recompilation of the Java methods given in the BTC. Therefore

both DNCI and JITR in RTC-BTC transformation share a common reverse

transformation. Since both DNCI and JITR generate the same bytecode

context, the BTR-RTC transformation works well with both DNCI and JITR

in the RTC-BTC transformation.

Thread Scheduler

Load balacing daemon

pointer
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Register
sets Bytecode−oriented

Thread Context
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Figure 5.3: System architecutre of thread migration system.

Figure 5.3 shows the architecture of the thread migration system. Two

JVMs are shown in the figure representing a source JVM (left) and a desti-

nation JVM (right) respectively.

The load balancing daemon is a thread inside the JVM. It is responsible

for applying load balancing policy. When it decides to migrate one thread,

the signal is sent to the thread scheduler. The thread scheduler will then

select a Java thread for migration based on some heuristics such as choosing

the thread with larger frame size, less object access, and longer execution

time. The chosen thread will then be removed from the JVM’s ready queue

into a migration queue. After the selection, the RTC-BTC transformation
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will be performed on the thread stack. The resulted BTC is then sent to the

destination JVM through TCP/IP communication. The destination JVM,

when receiving the incoming thread context BTC, will spawn a new thread.

The thread will load the necessary classes in the thread stack context and

resolve the reference variables. Native thread stacks will be restored by the

BTC-RTC transformation. After that, the migratory thread resumes its

execution on the destination node.

5.2 The DNCI approach

The general idea of DNCI is to use the JIT compiler to insert supporting

native code, which helps the RTC-BTC transformation, into the compiled

native code. The supporting code will save the most recent information of

variables in the stack during thread execution at some points, i.e., the latest

values will be written back to memory from registers. When the migration

request arrives, the thread scheduler can perform on-stack scanning to de-

rive the BTC from the RTC. During this process, we emphasize simple and

efficient solutions that solve the Java thread migration problem without in-

troducing large volume of auxiliary data structures and costly or unnecessary

transform functions.

5.2.1 Migration points and pseudo-inlining

The BTC requires that the bytecode PC be well-defined so that a thread

must be stopped at a point that has an equivalent bytecode PC. In other

words, the stopped point should be at the bytecode boundary. However,

when a thread is stopped by the scheduler and is chosen to be the migration

candidate, it is most likely running at some point of native code that is

not at the bytecode boundary. Since the stopped thread does not gain the

control of CPU, it is hard for the scheduler to control the stopped thread

to “slide” the execution of stopped thread by simulating the execution of
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native instructions from the stopped point to the next immediate bytecode

boundary. In our system, we insert checking at some specific points in the

native code of the stopped thread. Such points are called migration points.

The BTC will be consistent with the RTC at such points, i.e., the semantics

of the stack context are identical to both BTC and RTC at the migration

points. When the migration request is issued by JVM, the thread will delay

the acknowledgement until it reaches the next migration point.

Generally, all points at the bytecode boundary can be chosen as the mi-

gration points. However, checking at all points will degrade the execution

performance dramatically. We choose two types of migration points in our

system. The first type (referred to as M-point) is the site that invokes a

Java method. The second type (referred to as B-point) is the beginning of a

bytecode basic block pointed by a back edge, which is usually the header of

a loop. The concepts of migration points and dynamic code instrumentation

are illustrated in Figure 5.4. At the migration points, the register spilling

is to save the variable data from the registers to memory. This is needed

as the native code generated by JIT compiler makes use of the registers to

hold the variables. As stated in Section 5.1.2, type information of the stack

variables is needed for extracting the stack variable values from the memory.

Type spilling, which saves the types into memory, is introduced and it will

be discussed in detail in next section.

The insertion of M-point is necessary because we need to make sure that

a frame should have a consistent BTC before it is pushed in the stack so that

later capturing can get the correct BTC from the pushed stack frame. At

such points, we need to spill the values and types of variables, bytecode PC

and stack pointer to the memory slots in the thread stack. We also have one

test instruction to check if the migration request is issued.

The insertion of M-point will add overheads to the thread execution and

too many migration points inserted will lead to a performance degradation

caused by the blowup in code size. We observe that skipping migration check-
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push   %ebp
mov    %esp,%ebp
sub    $0x28,%esp
mov    0x8(%ebp),%esi
mov    0xc(%ebp),%eax
...
xor    %ebx,%ebx
jmp    0x81e0526
cmpl   $0xe200109e,0xffffffec(%ebp)
jne    lable 1
movl   $0x100,0xffffffe8(%ebp)
mov    %ebx,0xffffffe4(%ebp)
movl   $0x4,0xfffffff0(%ebp)
movl   $0x5,0xfffffff4(%ebp)
jmp    0x4009bde0 <migrate_stub>
lable1:
mov    0x812cdc0,%eax
movl   $0x11a,0xffffffe8(%ebp);
mov    %eax,0xffffffdc(%ebp)
mov    %ebx,0xffffffe0(%ebp)
...

   0 iconst_0
   1 istore_1
   2 goto 18

   5 getstatic #2
   8 iload_1

   9 invokestatic #3

  12 invokevirtual #4
  15 iinc 1 1
  18 iload_1
  19 bipush 30
  21 if_icmplt 5

B-point

M-point

M-point

ba
ck

 e
dg

e

Dynamic
native code

instrumentation

JIT compiler

migration checking

type spilling{
register  spilling {
start migration {

Figure 5.4: Dynamic native code instrumentation.

ing in short methods will not delay the migration response time too much.

Therefore we make the following decisions in our system: We treat Java li-

brary method invocations, which usually last for a relatively short time, as

“straight” code sequences, i.e., no migration points will be inserted before

such method invocations. Nevertheless, the advantage of such a decision is

that the context will become more portable as the context contains only ap-

plication methods. Moreover, such a decision can be generalized to inlined

methods which are typically tiny. As migration will not happen inside an in-

lined methods, no additional efforts are needed to transform an inlined stack

to a normal stack, unlike the deoptimization technique [40] which supports

the user’s request to breakpoint at inlined methods.

The B-point is selected to make a thread be able to respond to the migra-

tion request in a reasonable time when it is running inside a loop. However,

if we follow exactly the same techniques used in M-point, it will be much

66



costly for JIT compilers to perform so many memory operations at each it-

eration in a loop. We observed that no spilling is needed if no migration

request is issued. At the B-point, we check the migration request in first

native instruction. If no request happens at the migration point, no spilling

will be performed. Therefore during normal execution, each iteration in a

loop needs only one additional flag checking. Note that M-point can not

have such optimization, because not saving the most recent data in all the

previous frames in the stack context will result in incorrect stack capturing.

For example, consider the stack frames in Figure 5.5. The local variable i

of method a() is kept in register %ecx. If we do not synchronize the value

of i before entering method b(), when a migration request arrives during the

execution of method b(), the value i stored in frame created by method a()

will be incorrect.

a(){

0x9
%ecxa()

b()

stack

i:0x3
}

int i=0x3;
i+=6;
call b();

Figure 5.5: An example of stack frames.

As Java applications typically have many small-sized methods, if a JIT

compiler has inlining optimization, the migration checking can be eliminated

dramatically as many M-points will be eliminated. The threshold of the

size can be configured by the user before execution. For a JIT compiler

that does not introduce method inlining optimization, we propose a pseudo-

inlining technique to eliminate the checking overheads with the same effect

as inlining optimization. “Pseudo” means that the method is not actually

inlined by the compiler. Rather our M-point checking treats it as if it was

inlined (see Figure 5.6). A small-sized method is considered as an pseudo-
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call short_meth1()

call short_meth2()

call long_meth()

call short_meth3()

Dynamic code
instrumentation

check_migration
call short_meth1()
check_migration
call short_meth2()
check_migration
call long_meth()
check_migration
call short_meth3()

Pseudo-
inlining

check_migration
call short_meth1()
check_migration
call short_meth2()
check_migration
call long_meth()
check_migration
call short_meth3()

Figure 5.6: An example of Pseudo-inlining.

inlined candidate if the method contains no further method invocations. We

will not place any checking and spilling if the callee is an inlined candidate at

M-points. Also, no B-point checking will be inserted in an inlined candidate.

5.2.2 Type spilling

The thread context includes the values of stack operands together with their

types. In Sumatra [63], it is proposed to use a separated type stack operating

synchronously in the JVM interpreter during thread execution, so that at the

time of migration the operand type can be known. Although such a method

can be used in the case of JIT compilers, it doubles the operation time to

access the stack operand.

During dynamic native code instrumentation, we choose to perform the

type spilling at the migration points. The type information of stack operands

at migration points will be gathered at the time of bytecode verification

before compiling the Java methods. We use one single type to encode the

reference type of the stack operand as we can deduce the real type of a

Java object from the object header. We choose one encoding for each of

primitive types. Therefore, we can compress one type into 4-bit data. Eight

compressed types will be bound in a word, and an instruction to store this

32-bit machine word will be generated at the migration points to spill the

information to appropriate location in the current method frame. Figure 5.7

shows an example of saving the types of eight stack operands into current
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...
operand stack

int
float
int
int

L java.lang.obj

int

double
movl −30(%ebp), 0x1 D D 0 1 1 f 1

Figure 5.7: A type spilling example.

method frame. We use “1” to for the encoding of integer type including byte,

char, short, int, “D” for double, “F” for float, “2” for long, and “0”(zero)

for object reference. For typical Java methods, only a few instructions are

needed to spill the type information of stack operands in a method, which

results in better performance improvement than the synchronous type stack

method used in Sumatra.

5.3 The JITR approach

Another approach for the RTC-BTC transformation is to use JIT recom-

pilation. This section describes our experiences in the JIT recompilation

technique. Using this approach, the normal execution of Java thread will not

run any redundant migration supporting code as in the case of the previously

discussed DNCI approach. The capturing operation will happen only when

there is a migration request. The general idea of JIT recompilation is to play-

back the compilation of the stack frames and collect the BTC information

from the JIT compiler.

Figure 5.8 illustrates the detailed steps of the JIT recompilation. The

shadeless box represents the operations in the source JVM while the shaded

box represents the operations in the destination JVM.

The JIT recompilation consists of seven steps: the stack walk, frame seg-
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Breakpoint selection

BTC Parsing

TCP/IP

Thread creation Dynamic register patching

Frame rebuildingExecution continuing

bytecode PC positioningStack walk Frame segmentation

Type derivationTranslationNative code patchingClass loading

Figure 5.8: Transparent Java thread migration using JIT recompilation.

mentation, bytecode PC positioning, breakpoint selection, type derivation,

translation, and native code patching. We will elaborate them in details in

the following.

5.3.1 Stack walk

The stack walk is to traverse the native stack of the thread to be migrated and

collect the information of each frame into a frame link list. The information

includes the frame pointer (FP), the stack pointer (SP), the saved native PC,

and the address of stack slot storing the saved native PC. The information

will be used for later steps. During the walk, all the native frames including

those used by the JVM internal functions or the signal handlers will be

collected. Normally, a native frame is linked by its FP saved at the beginning

of a frame. We can then traverse the frame by following the FP pointer.

However, special handling is needed when there exist signal handlers inside

the stack. In Linux, the return address of the signal handler points to a code

segment on the stack. In the stack walk, we need to identify such a signal

handler by matching the native code segment and retrieve the original PC

from sigcontext parameter of the signal handler.
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5.3.2 Frame segmentation

The frame segmentation identifies the frames created by pure Java methods.

We call them Java-frames. The other frames created by the JVM internal

functions or Java native methods are called C-frames. The topmost consec-

utive Java-frames will be chosen for migration. Normally the frame layout

of a typical Java thread will be “C-frames, Java-frames, and C-frames”. The

topmost C-frames include the scheduling function and other JVM internal

functions. The followed Java-frames are the main body of the thread. The

bottom C-frames include some initialization functions of the JVM threading

system.

The identification of Java-frames is done by matching the native PC with

the code range in the Java method cache, which stores the native code infor-

mation of the compiled methods. When the native PC is found in one Java

method’s native code range, the Java method is identified. After the con-

secutive Java-frames are identified, a filter function will be applied on them

to mark those frames to be migrated. The filter allows only a part of the

frames be migrated. For example, only the frames created by the methods

that contain computation loops will be chosen. The default setting is to let

all the Java-frames be migrated.

The frame segmentation result is used by the thread scheduler to select an

appropriate thread for migration. Upon a migration request, the scheduler

will walk the stacks of all threads, and segment their frames. Simple heuristic

is used to detect the threads with a hotspot in the Java frames, by counting

the loop and the number of object access in the stack frames. Frames with

small number of object access and large number of loops will be considered as

hotspot. The thread with largest hotspot can be the candidates for migration.
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getstatic #2
iload_1

stop here

movl %0x54(%edx), %edx
movl (%ecx), %edx
movl −12(%ebp),%ecx

popl %esi
popl %edi
movl %ebp, %esp
popl %ebp
ret

popl %ebx

native code

return
breakpointbreakpoint

incl %ebx
cmpl $0x1e, %ebx
jl 0x82512432

iinc 1,1
iload_1

if_icmplt 5
bipush 30

block #3

block #1

block #2

bytecode

Figure 5.9: An example of native code PC positioning and breakpoint selec-
tion.

5.3.3 Bytecode PC positioning

The third step is to position the bytecode PC on the selected Java-frames.

The reason is that only when the bytecode PC is known can we get the

other information such as the operand stack size and the variable types in

the operand stack.

When the Java bytecode is compiled into native code, one bytecode in-

struction may correspond to a few native code instructions. There is no

simple one-to-one mapping of a bytecode instruction to a native code in-

struction. When the JIT compiler performs code optimization, the mapping

becomes many-to-many, i.e., several consecutive bytecode instructions will

match a sequence of native code instructions. In other words, a bytecode

block will match a native code block.

For example, in Figure 5.9, the two native code instructions in bold face in

the first native code box, i.e., “cmpl $0x1e, %ebx” and “jl 0x82512432”, cor-

respond to three bytecode instructions, “iload 1”, “bipush 30” and “if icmplt

5”. When the thread is stopped at the instruction “jl 0x82512432” in the

native code block, the native code PC does not match one single bytecode

PC in the bytecode block.

One approach to solve the positioning problem is to save mapping when
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the method is first compiled by the JIT compiler. However it needs to con-

sume much memory because all Java methods compiled need the storage even

if they are not involved in a migration act. To fit our purpose of full-speed

normal execution, we delay the extraction of this mapping until the method

is used in the migration frames.

When a thread is stopped at a native code PC, often it is unlikely to

hit the head boundary of the native code block to which the current PC

belongs. We therefore re-run the JIT compilation on the method, and save

the mapping at the offset of current native code PC during the native code

generation phase.

5.3.4 Breakpoint selection

At the stopped native code PC, the RTC may not have a corresponding

BTC. We need to delay the RTC-to-BTC transformation to the next con-

sistent native code PC, i.e., the next native code PC at which the RTC

has the corresponding BTC. The transformation will be carried out by set-

ting breakpoint at the next consistent position. In normal case, the native

code PC that maps to the next bytecode PC will be the breakpoint tar-

get. But there may be more than one target position in some cases. For

example, in Figure 5.9, there are two target native code positions caused by

the conditional jump instructions. For the compound branch bytecode in-

structions TABLESWITCH and LOOKUPSWITCH, which behave like the

switch statement in C, there may have many jump targets. All these target

bytecode PCs will be collected. After that, the type derivation and migration

supporting native code will be generated at these points.

5.3.5 Type derivation

At the breakpoint targets, we need to derive the types of local and stack

variables. Unlike our type spilling method used in DNCI, which saves the
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variable types at some migration points by the generated native code, we

derive the type information by simulating the simplified bytecode verification

on the Java method. In this step, no real verification on the type consistency

will be carried out since the method has been verified to be correct before.

Instead only the type information and stack operation will be updated along

the verification.

According to the JVM specification [48], at any given point in the pro-

gram, the operand stack is always of the same size and contains the same

types of values no matter what code path is taken to reach it. Therefore

we don’t need to follow exactly the execution path to reach the breakpoint

targets. We use breadth-first-search in the control graph of the bytecode pro-

gram to reach the breakpoint targets. Once a breakpoint target is reached,

the type information of the local and stack variables will be saved. Using

the information, we are able to proceed to the next step to generate the

migration supporting native code.

5.3.6 Translation

In this step, we run the JIT compilation code generator to generate the

new native code for the current method. For all the locations that are not

marked as breakpoints, the same native code will be generated as the original

compiled result. The new native code will include the supporting code at the

breakpoint targets.

At each breakpoint, native instructions that save the bytecode PC, the

Java stack pointer, the operand types and values into the thread’s private

area will be generated. Except the bottom frame, the native instructions will

be generated to simulate the epilogue of the current method. The instructions

will unwind the thread stack and return the control to the caller. The bottom

frame, instead, will return to the migration control function, which will then

pack all the thread context and send them to a destination JVM.
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5.3.7 Native code patching

After the new code with breakpoints has been generated, the thread’s native

stack will be patched so that when the thread is scheduled to run again, its

execution will base on the new native code for each frame. Here we have a

simple requirement on a JIT compiler that it should be is repeatable, i.e.,

it can re-generate the same instruction operator, same addressing format, at

the same offset from the entry of the method, for a same Java method. Based

on the original stopped native PC offset, we can get the new native PC.

Recall that we have collected the stack address storing the return address

in each frame during the stack walk. The native code patching step then

replaces all the native return addresses in the stack frames with the corre-

sponding new native PCs. Hence, when the thread is re-scheduled to run

again, the execution will go through the new generated native code. Eventu-

ally when the thread reaches one of the breakpoints, the migration handler

will start. BTC will be collected by the handler and sent to the destination

JVM.

5.3.8 Migration latency hiding

Though our JIT recompilation scheme does not introduce overheads when

there is no migration request, the overheads will occur at the time of mi-

gration. The overheads include the recompilation of all the methods inside

the selected frames. On the other hand, when restoring the thread context,

the destination JVM needs to load the Java classes from the local disk or

over the network. From our experiments, the class loading step could be the

dominant overhead in restoration phase.

We observed that once the frames in the thread context have been chosen

to be migrated, we can immediately send the Java class files needed in these

frames to the destination JVM. As shown in Figure 5.8, the dashed line

from the frame segmentation box to the class loading box represents the
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transmission of the class files to the destination JVM. After that, while the

source JVM is performing the JIT recompilation, the destination JVM can

pre-load all the class files into the method area. As a result, the latency of

a migration can be hidden by the overlapped operations of the source JVM

and destination JVM.

The migration latency hiding approach is not necessary for the DNCI

approach because its capturing operation is rather lightweight.

5.4 BTC-to-RTC transformation

The restoration of the thread is done through the BTC-to-RTC transforma-

tion. The destination JVM, after accepting the thread context BTC in the

JVM-independent text format, will run a parser to interpret the BTC into

an internal data structure for later processing.

Next, a new native thread will be created by the migration manager and

the created data structure will be assigned to it. The newly created thread

becomes the clone of the migrated thread in the destination JVM. The clone

thread will start the bootstrapping.

The clone thread then builds a sequence of stack frames with the return

addresses and the frame pointers properly linked, according to the call orders

in the input BTC. The recompilation of the frames in the destination JVM

will be carried out. The technique “dynamic register patching” to rebuild

register context just before the control returns to the restored points is shown

in Figure 5.10. In the figure, shaded areas represent the native codes. “Ret

Addr” is the return address of the current function call and “%ebp” is the

i386 frame pointer. The dynamic register patching module will generate

a small code stub using the register-variable mapping information at the

restored point of each method invocation. The thread execution will switch

to the code stub entry point for each method invocation. The last instruction

to be executed in the code stub will be a branching instruction to jump to
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the restored point of the method. To make our solution efficient, we allocate

the code stub inside the thread stack so that when the stub jumps to the

restored point, the code stub will be automatically freed to avoid memory

fragmentation caused by the small-sized code stub.

A trampoline function will then be used to swap the current stack frame

with the newly created stack frames. It also makes sure that upon completion

the thread will return the control to the closing handling function. The

closing handling function will collect the return data and notify the source

JVM. Then the thread can terminate its migration journey.

Method0()
{
...
restore_point0:
...
}

Method1()

restore_point1:
...

     trampoline();

Bootstrap()

...
{

}

}
     closing_handler();

{

frame 1

%ebp

Ret Addr

frame 0

%ebp

Ret Addr

trampoline()trampoline frame

bootstrap frame

%ebp

Thread Stack

St
ac

k 
gr

ow
th

jmpl restore_point1

reg2 <− value2
reg1 <− value1

reg1 <− value1

jmpl resotre_point0

Compiled methods
Code
Stub

Figure 5.10: An example of dynamic register patching on i386 architecture.
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5.5 Load balancing policy based on thread

migration

To support the distributed thread scheduling based on thread migration

mechanism, the scheduler will need to have the knowledge of system work-

load. This is done by creating a daemon thread for collecting the workload

information. Then the load balancing policy is enforced by the distributed

thread scheduler.

The load balancing policy adopts a scheme similar to the work stealing

[19]. A lightly loaded JVM will try to acquire computation threads from other

heavily loaded nodes periodically. The load information uses the centralized

strategy to store the CPU and memory usages on the master node. The

master node will periodically process the workload information based on a

predefined time interval. All the worker JVMs do not directly contact each

other for the exchange of workload information to save bandwidth. Instead,

the lightly loaded node will post its advertisement on the master node while

the heavily loaded node will try to acquire the information from the master

node. The subsequent thread migration will be negotiated between the lightly

loaded node and the heavily loaded node.

The worker JVM maintains its own workload by querying the CPU and

memory usage in local /proc file system. The state transition in a worker

JVM between heavy load and light load resembles the way of charging and

discharging the electricity capacity. In the charging phase, the JVM will

go in the direction of acquiring threads until some threshold is met. The

threshold is determined in the following way. First we average the values of

CPU usage, memory usage and the number of active threads over all nodes,

and we calculate the deviation of the workload. Then, the threshold will

be set to the value at the position configurable by the user, say top 20%,

based on the curve of the load distribution. When current node’s value is

greater than the threshold for two consecutive times, it will switch the state
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to heavy load. Then the discharging begins by migrating threads to lightly

loaded nodes. The change from light load from heavy load is vice versa.

The master node will not be a bottleneck caused by the load information

because only those worker nodes that have radical load changes (from heavy

load state to light load state or vice versa) will send the messages to it.

The radical change is detected by monitoring its active thread number, CPU

usage and memory usage in the worker node locally. For example, if active

thread number has been decreased due to the completion of a thread, the

event can be regarded as a radical change. Moreover, as the load information

is piggybacked in the package that exchanges object data between the master

node and the worker nodes, the centralized load balancing strategy can scale,

even in a cluster with a few hundred nodes.

5.6 Summary

In this chapter, we present the new use of JIT compilers in the JVM to

support transparent Java thread migration on clusters. The thread migra-

tion system uses a portable interface, the bytecode-oriented thread context,

for the movement of Java thread context. Our solution preserves high-

performance JIT compilation execution in the presence of thread migration.

Two approaches are proposed in supporting the transformation between

the raw thread context and the bytecode-oriented thread context, i.e., the

dynamic native code instrumentation and the JIT recompilation. The dy-

namic native code instrumentation is different from existing static compila-

tion approaches in that it instruments fine-grained native code on demand

at runtime so that it is able to preserve the important features of Java such

as dynamic class loading.

The JIT recompilation steps further and can eliminate the cost of instru-

mented code by re-run the JIT compiler to extract the bytecode-oriented

thread context at the time of migration. In the JIT recompilation approach,
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we also introduce latency hiding technique that overlaps the remote class

loading and the local recompilation during the migration operation.

The use of JIT compilers in thread migration has taken advantages of

the existence of compilers during runtime in a JVM. It therefore provides

more flexible support in thread migration than other static compiler based

approach because in those environments, it is unlikely to have the whole

static compiler embedded in the runtime environment. The JIT recompila-

tion approach can be generalized to support many other useful applications

such as debugging, profiling, and checkpointing without wasting spaces in

storing the compilation information in advance.
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Chapter 6

Global object space

6.1 System architecture of GOS

The goal of GOS is to provide location transparent object access services for

the Java threads in the DJVM. Since Java objects in JVM are allocated in

the heap, the GOS is built based on the design of the heap. Figure 6.1 shows

the architecture of GOS. The heap in each JVM will be divided into two areas

logically, namely the master heap area and the cache heap area. The master

heap area is used to store the original Java objects like the unmodified JVM

heap. Virtually all the master objects in all the JVM heaps together form

the distributed shared heap for JESSICA2. The node that holds the master

copy is called the home of the object.

Caching a remote master object in a JVM is adopted to reduce unneces-

sary network traffics in fetching the master object. The cache heap area in

the heap is used for allocating cached objects. The cached object is similar to

the master object except that it has different flags in the object header. The

operations to a remote object in a thread is then performed in the cached

object if the master object is resided on a remote node. The working memory

of a thread is then divided into two levels. The first-level working memory

is the same as the working memory in a single-node JMM. The second-level
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Figure 6.1: The architecture of Global Object Space

working memory corresponds to the cache heap area. A per-thread hash

table is used in GOS to support the enforcement of memory consistency of

the cached objects and provides quick lookup service for a cached object.

The GOS support is tightly coupled with the JVM kernel. A group

of GOS interfaces are provided to support the access to a cached object

by the Java threads. Such interfaces will be linked to the thread in the

code generation phase. Below the interfaces, GOS provides the memory

consistency protocol layer to enforce the JMM. In the design, we adopt an

adaptive object home migration protocol. To support the protocol, a number

of service functions for memory consistency together with appropriate data

structures are provided. The data packages generated by the GOS protocol

use a portable format as the representation of the Java object data or class

data. Each field in an object uses its index in the object fields as its unique

id. The id is more portable than using the memory offset. The unique field
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id is followed by the data type and the object data. The data packed will be

transmitted using the VM’s threaded TCP communication functions. Since

each Java thread will communicate with a remote JVM using the connection-

oriented TCP communication, we cache opened TCP connections to support

persistent connections to avoid the TCP startup overheads.

We adopt many state-of-the-art optimization techniques that are used in

traditional software DSM systems along all the layers of the GOS. These op-

timization techniques include object pushing, fast software state checking by

exploiting the JVM runtime information and JIT compiler techniques in the

implementation of the GOS. Object pushing is a kind of pre-fetching tech-

nique that exploits the connectivity of Java objects. Based on the internal

field definition of an object, we can aggregate the communication messages to

transfer several objects in one single message. The fast software checking is

to use the JIT compiler to generate native code for the object state checking

instead of simply directing it to the GOS interface functions.

The following sections will elaborate the details of GOS, including the

data structures, the protocol layer, and the optimization.

6.2 Memory consistency model and GOS data

structures

Release consistency is the most widely accepted relaxed consistency model

in the research of software DSM to reduce the remote memory access over-

heads. Release consistency uses three operations to structure the remote

memory access, i.e., ordinary memory access (read or write), acquire and

release. Intuitively, the acquire operation is to gain the exclusive access right

of the shared data, while the release operation is to relinquish the control.

The acquire and release operations by different processors are linked in the

following way. The acquire operation is used when a processor begins to

access the data that may depend on other processors and it requires that the
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update from previous processors be seen by the acquiring processor. When a

processor succeeds in the acquire operation, it can perform normal read and

write operations on the variables. After the current processor finishes its ac-

cess to the data, the release operation is used and it requires that the current

processor’s write updates be accessible by any processor issuing a subsequent

acquire. The home-based release consistency model is introduced based on

the release consistency model to reduce communication traffic in exchanging

the updated data, by maintaining a home for each page or object. All the

up-to-date data of a page or object can be reached from its home.

JMM is similar to home-based lazy release memory consistency model

[43]. It is natural to design of the protocol of GOS using the home-based

concept. In GOS design, for each O, there will be only one master copy among

all the cluster nodes. For a Java object O, the node that holds its master

copy is called the home of the object, denoted by HOME(O). A Java object

in GOS is then uniquely identified by the id of HOME(O) and the address

of its master copy. In other words, the pair (HOME(O), addr) identifies a

Java object, where addr is the address of the object in HOME(O).

Objects can be cached on other nodes, therefore we use a uniform header

for both master objects and cached objects. We extend the original Java

object header in JVM by adding a cache pointer at the original object header

to distinguish a cached object and a master object. Figure 6.2 shows the

data structure for Java object header in GOS. For a cached object, the cache

pointer will point to a shared cache header for all local threads that need

to cache the data from the home of the object. The cache header stores the

location information of the master object. The location information includes

the object id (the pair of id of the master host and the address of the master

object), the type of the object and a link list pointer. We also associate a

time stamp counter in the object header.

Unlike some implementations such as Hyperion [7], which use a single

cached copy for all the Java threads, we use different cached copies for differ-
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ent local threads. Firstly it is closer to the JMM that each thread has its own

working memory. Secondly it will prevent different threads from interfering

each other’s cached copies. For example, in the case of sharing a cached copy

by all local threads, if a thread enters a lock and tries to flush all the cache

data, it may flush the data that are still valid for other threads. Thirdly,

such a decision can lead to more fine-grained caching, as we have done for

huge array object. Each thread can cache the portion of a huge array which

it is interested in.
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Figure 6.2: Java object header in GOS.

Another important data structure in GOS is the hash table. The hash

table is used to record the cached object headers for a Java thread. Whenever

a remote object is cached in a local JVM, a cached object will be created for

the object as well as the cache header. The cache header will be kept in the

hash table. The objects having different home nodes will be kept in different

hash tables. Therefore when a cached object is searched, it will first locate

the right hash table using the id of its home. The hast table will be scanned

when applying the memory consistency protocol.
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6.3 Adaptive object home migration protocol

6.3.1 Protocol description

When the GOS interface functions are called, they will call the protocol

function in GOS to enforce the JMM model. In JESSICA2, we propose an

adaptive object home migration protocol based on the JMM model.

The location of a thread T is denoted by LOC(T ). If LOC(T ) is equal

HOME(O), its access to object O will follow the same rules in the single-

node JMM model, i.e., the access to O by T will go through the first-level

working memory and then the heap. Otherwise, the access of O by T will go

through three layers, first from the HOME(O) to the cache, then from the

cache to the first-level working memory of T .

According to the semantics of JMM, when a thread enters a monitor,

it should see the previous update on the objects that it will access. When

the home of an object is not resided on the same node in the DJVM, a

consistency protocol must be used to guarantee the access of correct data.

The consistency protocol can be realized by flushing and fetching the object

from its home. The flush operation is to invalidate all the cached objects

previously accessed by the thread. The fetching operation is to get the master

copy from the home node. In this way, when the thread entering the monitor

accesses a cached object, it will discover that the cached object is invalid and

it will call the protocol service function to fetch the data from the home node.

The flush and fetching operation therefore guarantees the JMM semantics.

When an object is intensively accessed by a remote thread, flushing and

fetching the object data from the master node can result in significant com-

munication cost, which in turn slows down the overall system performance.

To address such a problem, we introduce the adaptive object home mi-

gration protocol in the GOS design. Adaptive object home migration means

that we dynamically change HOME(O) to another node. We choose simple

heuristic method to adaptively update HOME(O) : if the number of the
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write accesses from a thread T dominates the total number of accesses to O

by all threads, HOME(O) will be set to LOC(T ). After the change, if O

is frequently accessed by the threads on the new HOME(O) in a period of

time, the communication cost to flush and to re-fetch O will be eliminated

since the accessing threads are in the same node as the master objects. This

could result in great message reduction during the execution of Java threads

in the DJVM.

To avoid the unnecessary fetching of O if C contains up-to-date data,

we use a time-stamp based validation protocol. We associate O with a time

stamp counter denoted by O.ts. Each time O is updated O.ts is increased

by one. C will keep the latest O.ts received from HOME(O) in C.ts. If

C.ts = O.ts, C will not be invalidated upon flushing.
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Figure 6.3: Object state transition in GOS.

Figure 6.3 shows the state transition of the object in GOS. Each directed

arc denotes a transition and the transition conditions and actions are specified

in each arc. The conditions and actions are separated by a solid line. W (i)

is the number of write access to object O by thread i. The number a is

the threshold between 0 and 1 that will trigger the object home migration

decision.

The master object has two states, namely the PRIVATE and EXPORT.
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When the reference of a master object is packed within other object data,

the master object is marked as exported, which means that the object will

be accessible by remote JVMs. The remote read/write will increase the

counter of the master object. When the write access from one remote thread

dominates the total write access to the object, the object will be migrated.

Therefore its state will change from EXPORT to CACHE VALID and the

header of the master object will be modified to be a cached object.

The cached object has three states: VALID, INVALID, and DIRTY. The

state VALID means that the cached object is valid for read and it is not

modified yet. The INVALID state means that the copy is obsolete. Later

access to the invalid copy will trigger the fetching of data from the home

node that stores the master copy. The DIRTY state means that the object

is modified.

6.3.2 Implementation

Object access

Each JVM in JESSICA2 has a daemon thread used to handle all the GOS

requests. A remote read operation will cause the daemon to locate the master

object, pack the data and send back the data. A remote write operation, on

the other hand, will cause the daemon thread to update the master object

using the data in the incoming messages.

When an object is accessed, the thread check its header to determine if

it is a master object or a cached object. The read access to a master object

will be done immediately without any additional checking. The write access

to the master object will add an additional operation to increase the time

stamp counter by one.

When an object is identified as a cached copy, the GOS service function

will be called through the GOS interfaces. The GOS service functions realize

the state transition according to Figure 6.3.
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If the cached object is in INVALID state, a remote read operation will

be issued through the threaded TCP communication to the remote JVM to

fetch the data from the master copy. Once the up-to-date data is received,

the state of the cached object will be changed to VALID. And the thread

can proceed to operate on the cached object normally.

The update of cached object data to the remote JVM uses the twin and

diff technologies that are often used in software DSM [4]. Twin is an identical

copy of an object. Diff is an operation to calculate the difference between

the twin copy and the original copy. As shown in Figure 6.3, a local twin

operation is used when the cached object state switches from VALID to

DIRTY, i.e., when the cached object is first written. The diff operation

is performed when the state switches from DIRTY back to VALID. For

example, suppose we have an object called data containing two integer fields

i, and j. Assume originally data = (i = 10, j = 20). When the execution of a

bytecode instruction PUTFIELD to set i to 15, a twin copy is created. The

modification on the object will be done on the original copy. At this time,

twin = (i = 10, j = 20) and data = (i = 15, j = 20). Then diff = (i = 15).

An individual update of a cached object will not be directly sent to the re-

mote JVM. According to the JMM, the thread can keep reading and writing

on its working memory unless there is a synchronization operation. There-

fore all the updates of the cached objects accumulated in a thread will be

propagated to the remote JVM when the synchronization happens. The

diffs of all the cached objects in a thread will be calculated at the time of

synchronization.

Adaptive object home migration

To support the adaptive object home migration protocol, we maintain a top

10 hit list for those master objects that are accessed by the remote threads.

Each item in the hit list maintains the number of remote writes and the

writing thread ids. The list can then be used to aid the detection of the
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dominant writer of an object. The list is updated when a node performs a

synchronization and flushes its data to the homes of all the objects. The

home of the object to be updated will update both the master copy of the

data and the hit list. Since only shared objects will be recorded in the list,

the size of the list will be small if the object sharing is not heavy. Other

objects that have never been shared will not appear in the list.

The adaptive object home migration protocol of JMM will be driven by

the thread synchronization events. The thread synchronization in GOS is

implemented in a distributed manner. The Java synchronization primitives

include lock(), unlock(), wait(), notify() and notifyAll(). The lock() func-

tion corresponds to the bytecode instruction MONITORENTER to enter a

critical section, and ulock() for MONITOREXIT to exit the critical section.

The other functions have no direct corresponding bytecode instructions, but

they are supported in the standard package java.lang supplied with the JVM

[48]. These include waiting on a monitor (Object.wait) and notifying other

threads waiting on a monitor (Object.notifyAll and Object.notify).

Unlike the approach adopted in previous DJVM that uses existing DSM

and passes these functions to the corresponding DSM synchronization APIs,

we build these synchronization inside the JVM locking mechanism and use

the threaded I/O interfaces inside JVM to handle the communication. No

broadcast will ever be used in all the functions. As Java synchronization

takes place on a Java object, we fix the JVM that owns the master copy

to be the lock manager on this object. The threads in the manager will

perform the synchronization in the normal way on the object. The threads

in the remote JVM, when trying to perform synchronization on a cached

object, will send the synchronization request to the manager. The manager

will place the synchronization request from the remote threads in the proper

queue of the synchronized object and return the synchronization result to

the remote threads. Through thread migration and object home migration,

we can distribute the homes of objects more evenly among the cluster nodes,
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therefore the workload arising from the thread system can be much more

balanced.

Once a lock is acquired by the thread, its previous updates should be

propagated to the master node. The diffs of the cached objects will be

calculated node by node. The diffs will be packed. The detection of dominant

writers are carried out after the diffs packing. Once an object is identified to

be written by a dominant writer following the heuristics in previous section,

the object home migration action will be taken. The cached object will be

switched to master object by changing its location information in the header

to point to the current node. Such information will be packed along with the

diffs, and the packages will be sent to remote hosts. On the other end, when

the node holding the previous master copy of the object receives the object

home migration message, it will allocate the cached header for the object

and fill in the new location information.

The object home migration needs to solve an additional problem. The

home migration operation is done at the time of critical section when the

thread acquires the lock. The reason is that it guarantees the operation

to be done atomically without affecting other threads if all the threads are

properly synchronized to access that shared object. The object home migra-

tion involves only two parties, i.e., the new home and the original home. No

broadcasting messages will be sent. Therefore, a third node that is trying

to access that master object after the home migration will still request the

original master node because it has no knowledge of such an object home

migration. To address such a problem, a home redirection message will be

replied to the requester by the old home node. Upon receiving such re-

directed message, the third party can update the home address of the cached

object and request the new home for up-to-date data. The home redirection

message will cause additional round trips. The problem, however, can be

suppressed by the accurate detection of the dominant writer. That is, if the

home migration mainly involves the objects that are accessed solely by one
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thread, it won’t cause other thread to encounter such a redirection problem.

Huge array caching

In Java, array is treated as an object conceptually. However special handing

is needed for array caching especially when the array is huge. In GOS, a huge

array (larger than 64K size) will not totally cached on a node. Instead, only

a range of the array will be cached. The cached array will have additional

fields in its header to define the range of the array.

The policy for choosing the array range to cache is based on the access

locality. The range can be expanded or changed dynamically. For example,

suppose we are caching the array range [1..100]. When a new access to

the cached array is at index 150, a remote fetch operation will be issued to

fetch the new range [150..200]. The two ranges [1..100] and [150..200] will be

merged. Thus the cached range becomes [1..200].

6.4 Optimization techniques

6.4.1 Software object state checking

Java threads access an object through an object reference. The reference can

be pointed to a master object or a cached object. As the cache granularity

of our GOS is an object, it cannot take advantage of the hardware page-

fault mechanism as used in the page-based DSM to detect the cache status.

To check the different states of a cached copy, we need to perform software

checking on every object access.

A naive implementation of global object access may direct all the object

access to a function call to handle all the object access no matter the object

is a master object or a cached copy. Such checking overheads may not be

noticed by the interpreter-based DJVM, because it is neglectable compared

with the interpretation overhead for each bytecode instruction. However, in
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JIT compiler enabled DJVM, as the thread execution speed improves, the ob-

ject checking by using a function call exhibits relatively high overheads. The

access to the master objects will also suffer from the slow function call. The

other extreme is to expand all such checking code in the compiled methods.

Such treatment will lead to a significant space overhead in the generated

native code which in turn burdens the hardware instruction cache during

execution.

Our design is a tradeoff between these two cases, we use JIT compiler to

generate native checking code to tell master objects from slave objects. One

comparison instruction and one branching instruction are needed in i386

architecture for such checking. The comparison instruction tests the least

significant bit (LSB) of the cache field inside the object header. If it is set,

then the object is a cached object and should call the checking function to

ensure that its state is valid after it returns.

Such a design alleviates the checking overhead on the master objects,

however the overhead of accessing a cached object remains. We observe that

if an object is cached by only a single local thread and it is set to dirty state,

only the cache flushing caused by a lock operation will change the state of

the object to invalid. By exploiting such a state transition behavior, we can

clear the LSB of the cache pointer pretending that the object is a master

object when the cached object is first turned into dirty state. The LSB of

the pointer will be set back at the time of flushing. Such method provides a

fast state checking for the cached objects.

6.4.2 Object pushing

As our GOS is embedded inside JVM, it is possible to get the definition of an

object from the object reference. For example, it is able to tell if a field in a

certain offset is an object reference. For page-based DSM, it will be difficult

to have such knowledge.

Object pushing is a kind of pre-fetching technique that exploits the con-
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nectivity of Java objects. Based on the parsing of the internal field definition

of an object, we can aggregate the communication messages to transfer sev-

eral objects in one single message. For example, if object A contains two

reference fields that point to object B and object C respectively. When A is

fetched, B and C are also fetched.

As the home copy holds the up-to-date information of the object, the

object references inside its fields will be more accurate than those in the

cached copies. Therefore we let the decision be made at the requested site on

which objects to be aggregated in the message. When remote JVM requests a

master copy of an object from the home node, the home node will decide that

some other objects which are associated with the requested object be pushed

to the requester. On the other hand, to avoid the overheads by pushing valid

cached copies in remote node which is redundant, we let the requester post

a filter list of valid objects in its own cache. The home node when pushing

objects, will prevent such valid objects from being packed in the message.

To hide the communication latency, we use the threaded-IO interface

inside the JESSICA2 to transfer the object data. When one thread is blocked

in sending object data, the thread will yield the CPU and let other thread

in the local JVM continue the execution. It is also superior to the approach

of simply adopting an existing object-based DSM without multithreading

support.

6.4.3 TCP connection caching and adaptive communi-

cation compression

In the GOS communication we use the reliable TCP connection for trans-

ferring data back and forth. The communication is multithreaded so that

when one Java thread is waiting for the communication, the other thread

can continue its computation.

As TCP is connection-oriented, it needs a startup time to create the con-

nection by handshaking between the source node and the destination node.
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If a thread opens a connection once it requests a remote object and closes

it once the data have been received, the startup time for all the connection

will introduce many overheads. In our GOS implementation, we introduce

a socket cache for thread communication. Once a connection is established

between one thread in local node to another thread in the remote node, the

connection will not be closed after their first communication. Instead, the

socket file handle will be cached respectively in each thread’s socket cache

list. Later communication between the two threads will re-use the socket file

handle. Thus the startup cost for TCP communication is eliminated in later

communication. The socket cache will be closed when one party exits.

Another optimization to exploit the TCP communication is to use data

compression. When we pack the object data in the buffer, we will adap-

tively compress the packed data before sending and uncompress them when

receiving. The compression uses the LZ compression algorithm [46]. Only

when the length of a message is between two thresholds will it be sent in

compressed form. The threshold selection takes advantages of the Maximum

Transfer Unit (MTU) of the underlying network. For example, it is usually

profitable to compress a message whose size is between 1500 bytes to 2000

bytes on fast Ethernet. The reason is that the LZ compression usually gives

about 60% compression ratio and such compression will usually reduce two

Ethernet frames into one frame. Thus the communication cost is reduced by

half in such cases.

6.5 I/O redirection

The SSI view of Java threads needs to perform I/O operations as if they were

running on a single JVM. Java realizes the I/O in its libraries. The basic

Java libraries include the java.lang, java.math, java.net, java.io, etc. To fulfil

the SSI requirement, we need to extend Java’s I/O libraries to make the I/O

operations appear to be performed on a single JVM. The extension is done
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at the native methods of the Java libraries, which can directly access the VM

kernel data structures.

The modifications include the I/O redirections for file I/O and the net-

work I/O. The I/O redirections will provide mechanism for an I/O operation

on a worker JVM to be passed to the master JVM when necessary. Some

I/O operations, such as the connectionless UDP messages, that can be done

without affecting the SSI view will be performed locally. Also the access to

I/O objects will be directed to the GOS service routine.

Basically all I/O libraries including the AWT or Swing GUI libraries

should be extended in order to support a wide range of GUI applications. In

our research we aim to prove the concept of I/O redirections only and do not

change all such libraries. This restricts some GUI applications from running

our DJVM.

The system clock interface for Java is System.CurrentTimeMillis(), which

returns the current time in the unit of millisecond to the user. To provide

a single clock, we use the clock at the master JVM as the standard clock

and introduce an adjustment for all other remote worker JVMs. When the

worker JVM registers to the master JVM, the adjustment for the clock is

piggybacked in the acknowledge message. The adjustment value received,

after subtracting the single-trip network latency from itself, is added to the

worker JVM’s clock. As the single-trip network latency of normal Fast Eth-

ernet is about 100 microseconds in Linux that is far below the unit of the

clock interface, it provides an accurate single clock for all the worker JVMs.

For the file I/O and network I/O, we take over the higher half word

of a 32-bit file handle to represent the id of the host that first opens the

file. Later read/write operations will be redirected to a host with the id

extracted from the file handle. A read-only open() operation of file system

I/O first checks the local disk before redirecting the request to the master

node. Other file I/O operations will always be directed to master node. For

network I/O operations, the connectionless open() also will be done by the
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local node without further forwarding as it does not need to keep the network

connection status inside kernel. The other operations such as TCP open()

will be redirected to the master JVM.

The master JVM creates a daemon thread to handle such I/O operations.

In case of long I/O operation such as reading long data or accept() which

needs to wait for incoming connections, the master JVM will spawn another

I/O thread to handle the request so that the services of master JVM will be

multithreaded.

6.6 Class loading

All the JVM in each node needs to load the Java classes of the running

application into their local method area. The initialization of classes on a

DJVM needs to guarantee that the Java classes are loaded and initialized,

so that the shared static fields of the class need to be consistent for all the

JVMs.

In our system, there is no assumption of a shared file system in the

implementation. The application class files can be duplicated in each node,

or they can be stored only in the master node. In the latter case, when a

worker JVM can not find a class file locally, it will request the class bytecode

from the master JVM on demand through network communication.

The initialization of Java classes will be guaranteed to be done only once

for all JVMs. When one worker JVM loads a class C, the modified JVM

class loader will first query the master JVM to check if C has been loaded

and initialized. All such queries from different JVMs will be sequentialized.

If the initialization of C has been done, the worker JVM will fetch the static

data of C, and copy them into local static data area.
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6.7 Garbage collection

Currently we only have each JVM perform the garbage collection locally

without exchanging garbage collection information. For the objects in the

master heap area that has been exposed to remote nodes, they will be scanned

by the original garbage collector and will not be garbage collected.

6.8 Summary

In this chapter, we introduce our design and implementation of GOS to

support the virtually shared heap for Java threads distributed among clus-

ter nodes. We propose our adaptive object home migration protocol based

on the Java Memory Model to efficiently realize the GOS by exploiting the

data access locality of Java objects. We also provide further optimization

techniques to reduce the overheads of GOS in every aspect, e.g., the ob-

ject checking in native code, the message number reduction, and TCP/IP

communication reduction.
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Chapter 7

Experiments

7.1 Environment setting

Our system JESSICA2 [76, 77, 78, 79] is based on the modification of an open-

sourced JVM Kaffe 1.0.6 version [80], which is compatible with JDK1.1 API.

Though Kaffe is not a high-performance JVM implementation compared to

the commercial JVM products, Kaffe provides all the necessary JVM services.

It includes the JIT compiler, the garbage collector, and the Java libraries.

There are quite a few academic projects based on Kaffe JVM, such as Latte

JVM [81] and Kaffe OS [10].

By using Kaffe, we do not mean to introduce new enhancements to VM

kernel technologies such as JIT compilation or garbage collection, which are

valuable for high-performance Java computing on a single machine. Instead

our focus is on extending the scale of the execution environment for a mul-

tithreaded Java application from a single node to a distributed environment

such as a cluster.

We use the HKU Gideon 300 Linux cluster [70] as our main experimental

platform. It consists of 300 nodes connected by a single, high-port density

Foundry Fastiron 1500 Fast-Ethernet switch. Each node is a standard PC

consisting of an Intel 2GHz Pentium 4 processor, a 512 Mbytes (PC2100)
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DDR SDRAM, and a 40GB IDE hard disk.

The Gideon cluster can be configured to run different Linux kernels. The

kernel version ranges from 2.2 to 2.4. In our experiment, we choose Linux

2.4.22 kernel, with gcc 2.95.3 compiler.

The performance study will evaluate the various factors that affect the

performance of a DJVM. Through the evaluation of thread migration, the

GOS optimization effects, and the application speedup, we can have a better

understanding of the efficiency of the DJVM, as well as its bottleneck.

7.2 Benchmarks

In our experiments, we use several sets of Java benchmarks. In this section,

we provide their detailed information.

7.2.1 SPECjvm98

SPECjvm98 [27] benchmark is a popular benchmark for measuring the per-

formance of JVM. Table 7.1 shows the brief description of each benchmark in

SPECjvm98 suit. To use the SPECjvm98 benchmarks, the JVM used needs

to be compatible with JDK 1.1 API or later. SPECjvm98 is used in our

experiments for measuring the thread migration overheads.

The benchmark compress implements a high-performance compression

algorithm, i.e., the modified Lempel-Ziv method (LZW). It finds common

substrings and replaces them with a code of variable size during the com-

pression.

The program jess stands for the Java Expert Shell System, which is based

on NASA’s CLIPS expert shell system. The system continuously applies a

set of rules to a set of fact lists in order to solve a set of puzzles commonly

used with CLIPS.

The program db simulates the operations on a memory resident database.

Its input includes a 1 MB file that consists of contact records, and a 19KB
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file that contains a stream of operations to perform on the input records.

The operations include adding, deleting, searching, and sorting.

The program javac is the Java compiler adopted from the JDK 1.0.2. The

program mpegaudio decompresses the ISO MPEG Layer-3 audio files. The

workload consists of about 4MB of audio data. Both raytrace and mtrt realize

a raytracer that renders a scene depicting a dinosaur. The raytrace program

is single-threaded, while the mtrt is a multithreaded program. The program

jack is a Java parser generator based on the Purdue Compiler Construction

Tool Set (PCCTS).

Benchmarks Description
compress Lempel-Ziv compression
jess Java expert shell system
db Simple memory resident database
raytrace Ray-tracing program
javac Java compiler from the JDK 1.0.2
mpegaudio Audio file decompression
mtrt Two-thread ray-tracing
jack Java parser generator

Table 7.1: Description of SPEC JVM98 benchmarks.

7.2.2 Multithreaded Java benchmarks

Another set of multithreaded Java benchmarking programs is collected from

different sources and it is used in our experiments to evaluate JESSICA2’s

performance in different aspects.

The π calculation (CPI) is a multithreaded Java program that calculates

an approximation of π by evaluating the integral. In CPI, the main thread

creates a number of worker threads, each accumulating the value of a part

of the integral. The sum of all the results from each thread will be the

approximation value of π.

The Successive Over-Relaxation (SOR) benchmark is a multithreaded
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Java program that does red-black successive over-relaxation on a 2-D ma-

trix. It is commonly used in scientific applications, such as finite difference

computation. Each thread is assigned with a sub-block of the 2-D matrix for

computation.

The All-pair Shortest Path (ASP) program is a multithreaded Java bench-

mark that calculates the shortest path between any pair of nodes in a graph

using a parallel version of Floyd’s algorithm. The algorithm uses a connec-

tivity matrix and keeps updating it to reflect the shortest known path in a

loop. Each thread in the program is responsible for computing the shortest

pathe from a subset of nodes assigned to it.

The N-Body simulation (NBody) program realizes the algorithm of Barnes

& Hut [16] to simulate the motion of particles in a 2D space due to gravita-

tional forces over a fixed amount of time steps. The Barnes-Hut method uses

a hierarchical tree to efficiently calculate the inter-particle distances among

the particles. In the multithreaded Java benchmark, the master thread cre-

ates a number of worker threads, and assigns each with a chunk of particles

for the force calculation. The iteration begins with the master thread build-

ing the Barnes Hut tree. The forces among the particles will be calculated by

the worker threads and the positions of the particles will be updated. In next

iteration, the master thread will rebuild the tree based the updated data.

The Traveling Salesman Problem (TSP) program is a multithreaded Java

application that finds the shortest route among a number of cities by visiting

all the cities and returning to the starting city. It is a famous NP-complete

problem. The multithreaded benchmark uses a parallel branch-and-bound

algorithms to solve the problem. Each thread is assigned with a different

starting city to search the shortest route. The shortest route found so far

will be used by all the threads in pruning the search trees.

The Parallel Adaptive Mesh Refinement (PAMR) simulation program is a

multithreaded Java application that simulates the computation on grid points

using Adaptive Mesh Refinement (AMR) method. The basic idea of AMR
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is to refine the more interesting regions at higher resolutions, while leaving

the less interesting parts of the domain at lower resolutions. The quality of

the approximate solution can be preserved while keeping the total number

of grid points small through AMR. In the multithreaded version, the PAMR

simulation, each thread is assigned with a part of the grid points and the

workloads of all the threads vary due to the different resolution requirements

on different grid points.

The N-Queen benchmark solves the problem of putting N queens in the

N × N chess board in a safe state. The state is safe if no two queens attack

each other, i.e., no two queens are placed on the same row, the same column,

or the same diagonal. The parallel program uses a branch-and-bound recur-

sive algorithm. The search space is divided by fixing some queens in fixed

columns. Each thread is responsible for searching in some sub-spaces.

The Raytracer is a multithreaded 3-D ray tracing program adopted from

the Java Grande Forum Multithreaded Benchmark (JGFMB) suit [30]. The

outermost loop of the benchmark is parallelized over rows of pixels. The

scene rendered contains 64 spheres, and is rendered at a resolution of N ×N

pixels.

The Series is another multithreaded Java benchmark from JGFMB, which

computes the first N fourier coefficients of the function f(x) = (x+1)x on the

interval [0..2]. Transcendental and trigonometric functions are heavily used

in the benchmark. The benchmark loops over the Fourier coefficients, with

each iteration being independent of every other loop. The work of the loop

is divided in blocks. Each thread is responsible for updating the elements of

the block assigned to it.

The Molecular Dynamics simulation (Moldyn) is another N-Body pro-

gram from JGFMB, which models particles interacting under a Lennard-

Jones potential in a cubic spatial volume with periodic boundary conditions.

It calculates the force on a particle in a pairwise manner. The benchmark

loops over all particles in the system. The loop is parallelized by dividing
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the range of the iterations between the threads in a cyclic manner to avoid

load imbalance.

7.3 Evaluation of thread migration

7.3.1 Thread migration overheads

In the experiment, our goal is to evaluate the effect of enabling thread mi-

gration on the thread execution performance. In our system, the thread

execution will be in two modes. One is the normal execution, in which the

thread executes its task according to the requirements of the program. The

other mode is the thread migration operation, which is introduced by our

DJVM for load balancing.

We measure the cost introduced by enabling the thread migration sup-

port in JESSICA2 during the normal execution of the thread. In the DNCI

approach, the time overheads of thread migration are mainly due to checking

at the migration points. In the M-points, the overheads include the spilling

of register values and variable types into the stack slots, and the checking of

migration flag. In the B-points, the overheads include the checking of mi-

gration flag only. The space overheads are mainly due to the instrumented

native code for both M-points and B-points. Such overheads are eliminated

in our JITR approach.

In the experiment, we disable the object checking in the GOS support

because the checking overhead is not relevant to the thread migration. We

use two sets of benchmarks in the measurement. One set is the SPECjvm98

benchmarks, while the other set includes some multithreaded Java programs

discussed in previous section.
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Using SPECjvm98 benchmarks

Though most of the applications in SPECjvm98 are not multithreaded, the

test can still show the overheads of thread migration on typical applications.

In the single-threaded SPECjvm98 benchmarks, the master thread can still

be migrated through DNCI. The overheads caused by the migration points

inserted in the master thread will be measured.

The initial heap size for JESSICA2 is set to 48MB and the benchmarks are

running on single node. We compared the differences in time and space costs

between enabling and disabling the migration checking at migration points.

The measurements on all the benchmarks in SPECjvm98 were carried out 10

times and the values were then averaged on one single node in the cluster.

Benchmarks Time (seconds) Space (native code / bytecode)
No migration Migration No Migration Migration

compress 11.31 11.39(+0.71%) 6.89 7.58(+10.01%)
jess 30.48 30.96(+1.57%) 6.82 8.34(+22.29%)
raytrace 24.47 24.68(+0.86%) 7.47 8.49(+13.65%)
db 35.49 36.69(+3.38%) 7.01 7.63(+8.84%)
javac 38.66 40.96(+5.95%) 6.74 8.72(+29.38%)
mpegaudio 28.07 29.28(+4.31%) 7.97 8.53(+7.03%)
mtrt 24.91 25.05(+0.56%) 7.47 8.49(+13.65%)
jack 37.78 37.90(+0.32%) 6.95 8.38(+20.58%)
Average (+2.21%) (+15.68%)

Table 7.2: The execution overheads of DNCI using SPECjvm98 benchmarks
on single node.

Table 7.2 shows the test results of DNCI approach on single node. The

space overheads are in terms of the average size of native code per byte-

code instruction, i.e., the blowup of the native code compiled from the Java

bytecode.

From the table we can see that the average time overhead charged to

the execution of Java thread with thread migration is about 2.21% and the

space overhead due to the generated native code is 15.68%. Both the time and

space overheads are much smaller than the reported results from other static

bytecode instrumentation approaches. For example, JavaGoX [65] reported
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that for four benchmarks (Fibo, qsort, nqueen and compress in SPECjvm98),

the additional time overhead ranges from 14% to 56%, while the additional

space cost ranges from 30% to 220%.

Though the overhead is much reduced in the DNCI approach, it can be

further improved by our JITR approach. The result of using JITR does not

introduce any overhead since there is no code instrumentation during the

normal thread execution.

Using multithreaded benchmarks

In the second benchmark set, we include four more multithreaded Java ap-

plications, namely, CPI, SOR, ASP, and NBody. The test is running on one

single node just like the SpecJVM98 benchmarks.
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Figure 7.1: Normalized execution time comparison during normal execution.

We first measure the time and space overheads caused by the two ap-

proaches in realizing the thread migration. Figure 7.1 shows the normalized
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Figure 7.2: Normalized space comparison during normal execution.

execution time comparison, and Figure 7.2 shows the normalized space cost

comparison. The execution time overheads and space overheads are mea-

sured during the normal thread execution without migration. In the figures,

“Kaffe” means the original unmodified JVM Kaffe version 1.0.6, “JITR”

means our JITR approach, and “DNCI” means the DNCI approach. The

Kaffe’s time and space are set to 100 in the y-axis. The results of the others

are shown as ratios over Kaffe’s values.

As expected, JITR does not introduce overheads in both time and space

during normal thread execution. Its execution time and space are the same

as those of the unmodified Kaffe JVM. The largest time overhead of DNCI

reaches about 16% in the SOR program. The space overhead in the NBody

program reaches about 13%. The result shows that JITR totally eliminates

the overhead introduced in the case of DNCI during normal thread execution

time.
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7.3.2 Migration latency and breakdown

We proceed to evaluate the cost of the migration operation using two nodes

running JESSICA2. It is measured in terms of migration latency. The latency

includes the time from the point of stack capturing in the source node to the

time when the thread has finished its stack restoration on the remote node

and has sent back the acknowledgement. In the experiment, we compare

the results of the DNCI approach and the JITR approach with/without the

latency hiding technique. We adopt the four multithreaded Java benchmarks

used in the previous overhead experiment, namely, CPI, SOR, ASP, and

NBody. The migration point is selected at the first Java frames in the thread

stack.
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Figure 7.3: The Java thread migration latency.

Figure 7.3 shows the execution time for the migration operations in three

cases. The “DNCI” means the DNCI approach. The “JITR” means JITR

approach. The “JITR + Preload” means the latency hiding technique is
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enabled in the JITR approach. The latency hiding proves to be effective in

all the four benchmarks. From the figure, the “JITR + Preload” can cut

the extra overhead caused by the recompilation to about a half compared to

that of the DNCI approach on average.

JITR(µs) CPI(1 frame) SOR(2 frames) ASP(1 frame) NBody(8 frames)
stack walk 7.35 11.73 12.94 13.73
segmentation 228.97 250.71 309.66 333.9
positioning 1002.46 3576.89 1466.72 5237.09
breakpoint 0.52 1 0.35 2.9
type derivation 5.2 8.11 3.64 28.51
translation 1047.36 3702.19 1485.17 6275.27
patching 0.07 0.1 0.1 0.12
parsing 141.6 141.6 138.59 338.46
thread creation 125.53 125.53 135.97 194.39
register patching 942.33 964.89 3000 11965.47
frame rebuilding 52.63 52.63 72.39 57.36
misc. IO 7173.66 9069.66 4255.32 5820.29

Table 7.3: Latency breakdown of JITR.

DNIC(µs) CPI(1 frame) SOR(2 frames) ASP(1 frame) NBody(8 frames)
capturing 74.47 168.88 86.11 356.37
parsing 122.46 150.07 124.42 362.3
thread creation 112.85 119.6 116.65 118.67
translation 949.51 2941.6 3193.41 5932.6
resolution 34.6 110.78 150.71 43.79
setup frame 16.13 107.6 92.33 22.14
misc. IO 8588.89 11138.21 6484.62 13460.13

Table 7.4: Latency breakdown of DNIC.

Table 7.3 and Table 7.4 show the detailed breakdown of thread migration

using JITR and DNCI respectively. In JITR part, the upper half of the steps

corresponds to the thread context capturing using the JITR approach. The

lower half is result of the restoration phase. The type derivation is much

lightweight that it needs only a few microseconds because it just linearly

scans the bytecode in Java methods. The most costly part in the capturing

phase is the positioning of bytecode PC and the translation. Because they

need to invoke the JIT compiler to recompile the methods in the captured
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frames. In the restoration phase, the register patching needs to compile the

Java methods. Thus it is costly in the restoration phase. The time for data

fetching of Java objects and the communication time for transferring the

thread context, is shown in last row. It is the dominant cost in the whole

latency. All the other steps are lightweight. Their time ranges from a few

microseconds to a few hundreds microseconds in the test.

In DNCI, the RTC-BTC transformation time is shown in the row named

“Capturing”. It does not have the other detailed steps like those in JITR

because it only needs to scan the memory and collect the context data. The

capturing time is proportional to the number of frames and the number

of variables inside the frames. But the time is much smaller than JITR,

because DNCI does not need to recompile the Java methods in its RTC-

BTC transformation. The more frames are included in the migrated thread,

the more time will be saved in DNCI compared to JITR.

There are slight time differences on the destination node between DNCI

and JITR in the steps of translation, resolution, and frame setup. This

is because in DNCI, when compiling the migrated frames, the native code

instrumentation is also invoked. The additional efforts in instrument the

native code in DNCI add some slight overheads to the restoration time.

7.4 Speedup of scientific applications

We use seven multithreaded scientific applications as our benchmarks to mea-

sure the speedup using JESSICA2. They are CPI, TSP, NBody, Raytracer,

Series, N-Queen, and Moldyn. In the test, we use up to 32 nodes on Gideon

cluster.

We run CPI with 9,000,000,000 iterations, TSP with 14 cities, NBody

with 640 particles in 10 iterations, Raytracer with a 150x150 scene containing

64 spheres, Series with data size 100,000, N-Queen with 16 × 16 board size,

and Moldyn with 4 ∗ 83 particles. Since the scientific applications have the
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characteristics of balanced regular iteration, not many migration operations

happen in the execution. Therefore we use JITR thread migration scheme

to test the speedup.
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Figure 7.4: Speedup measurement of Java applications

Figure 7.4 shows the speedup by comparing the execution time of JES-

SICA2 and that of Kaffe 1.0.6 (in a single-node) under JIT compilation mode.

From the figure, we can see nearly linear speedup in JESSICA2 for CPI and

Raytracer. The is due to the heavy computation/communication ratio in

these two applications. They are typical embarrassingly-parallel applica-

tions, with each thread computing independently with few interactions. In

the CPI, all threads are computing their partial result for π independently.

Only when the threads finish their jobs, will they enter a synchronization for

updating the shared data holding the value of π. In Raytracer, after receiv-

ing the messages of the scene data, all the threads can begin to render the

scene without communication with others.
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For TSP, N-Queen, and Series, the speedup curves show about 50% to

60% of efficiency on 8 nodes. But when the number of nodes increases to

32, the efficiency begins to drop by about 20%. The number of messages

exchanged between nodes in TSP has been increased because the migrated

threads have to access the shared job queue and to update the best route

during the parallel execution, which will result in flushing of working memory

in the worker threads. In N-Queen, the inner loop contains the checking of

the safety of queens in the 2-D array that represents the chess board. The

access to array has caused checking overheads which leads to a little slow

down.

The other class of applications exhibits small computation/communication

ratio. The examples are NBody and Moldyn in our test. These two ap-

plications are two variants of N-Body computation. The poor speedup is

expected, which is due to the frequent communications between the worker

threads and the master thread in updating the forces of the moving bodies,

and computing the Barnes-Hut Tree in each iteration.

From the test, we can conclude that the computation/communication

ratio is the dominant factor that limits the scale of multithreaded Java ap-

plications on DJVM. Our efforts in reducing communication cost in GOS

design and increasing execution speed through JIT compilation and thread

migration, therefore, address this problem so that more multithreaded Java

applications can be run efficiently on a DJVM.

7.5 Evaluation of GOS

Figure 7.5 shows the result of the GOS checking overheads for SPECjvm98

benchmarks on single node. We use JITR for thread migration. Therefore

there is no thread migration overhead involved in the test. The GOS checking

overheads come from the native code generated to check if an object is a

cached object before accessing its fields. From the table, we can see that
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the overheads in most of the benchmarks are below 10%. However, for the

program compress, due to the heavy array accessing of the compressed data in

the main compression loop, the slow down of compress reaches about 93.4%.

This calls for more advanced compiler analysis technologies for reducing array

checking time overheads.

Benchmark Time overhead
compress 93.4%
jess 7.2%
raytrace 10.2%
db 10.6%
javac 6.3%
mpegaudio 30.8%
mtrt 6.8%
jack 7.4%
Average 21.6%

Table 7.5: The time overheads for GOS checking using SPECjvm98 bench-
marks on single node.

We also evaluate the effect of GOS optimization techniques in reducing

the communication messages. We use the multithreaded Java programs in-

cluding TSP, NBody, SOR, and ASP.

We use 8 nodes in the test. The problem size for TSP is 14 cities. In

N-Body we use 512 objects. For SOR, we use a 2-D array of with size

2048x2048. For ASP, we use 512 cities. Figure 7.5 shows normalized result

of message reduction after applying the adaptive object home migration pro-

tocol (H), fast software checking (F), and object pushing (P) respectively.

The “H+P+F” means that all optimizations are enabled. Figure 7.6 shows

the corresponding execution time.

The adaptive object home migration protocol introduces significant mes-

sage reduction in SOR and ASP. Because in these applications, the object

accessing exhibits single-writer pattern, i.e., most of the objects in the shared

arrays are accessed only by one thread. After GOS discovers the pattern, the

homes of these objects will be dynamically changed to the nodes where the

accessing threads reside. As a result, the overall execution time also improves
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Figure 7.5: GOS optimization results in message reduction.

in both applications. For NBody and TSP, the effect of adaptive home mi-

gration is not obvious. In NBody, new objects are created in rebuilding the

Barnes & Hut tree. Therefore there are few objects that are repeatedly ac-

cessed by one single thread. In TSP, because it is computation intensive,

only limited objects such as the shortest path array are updated during the

execution. Therefore all the optimizations of GOS do not reduce the message

number. And it does not speedup the application.

In all the applications, the fast software checking doesn’t reduce the total

number of message size. But it reduces the execution time in NBody, SOR,

and ASP. In NBody, there are many accesses to the particle objects in each

iteration. In both SOR and ASP, arrays are extensively used in the com-

putation. Therefore the checking optimization improves the performance for

SOR and ASP much more than NBody.

The object pushing improves NBody due to the creation of large number
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Figure 7.6: GOS optimization results in execution time.

of new objects in the master thread. Though adaptive object home migra-

tion protocol cannot improve this case, the object pushing can improve the

situation by aggregating the object data in one single message. As a result,

the object pushing can reduce the message number in NBody by nearly 60%.

7.6 Dynamic load balancing experiment

In this section, we introduce several applications of thread migration in our

distributed JVM and evaluate the effect of thread migration.

7.6.1 Irregular multithreaded Java applications

We use two irregular multithreaded Java applications, TSP and PAMR. In

our test, the multiple threads will be spawned among the running nodes

when the application starts. We compare the difference between enabling and
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Figure 7.8: Execution time distribution of cluster nodes.

disabling thread migration after the initial spawning. The thread migration

is driven by a load balancing module that monitors the CPU and memory

usage of different nodes participating in the execution. The module will
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migrate threads from heavily loaded nodes to lightly loaded nodes when

there is imbalance among the nodes.

In TSP, we use 16 threads to compute the shortest path to cover the

13 cities. The execution time distribution of the 16 threads are shown in

Figure 7.7. We run the multithreaded TSP on 8 nodes and compare the time

distribution of initial placement and thread migration. Figure 7.8 shows the

result. From the figure, we can see that thread migration has made the

total execution time of different nodes more balanced than that of initial

placement. The standard deviation of initial placement is 438 seconds. By

thread migration, the deviation drops to 152 seconds. The total execution

time is therefore saved from 1203 seconds using initial placement to 793

seconds (saving about 33.6%) using thread migration.

In the PAMR simulation test, we use 64 threads to perform floating point

operations in an 8x8 mesh, each concentrating on one cell of the mesh with

few communication to each other. The required resolution for each cell of the

mesh is assigned with random number. The workload of each thread, which

is in terms of the number of floating point operations, varies dramatically, as

shown in Figure 7.9.

Figure 7.10 shows the speedup comparison of initial placement and thread

migration using up to 16 nodes. From the figure, we can see that thread

migration outperforms initial placement. The reason is that the initial place-

ment scheme has grouped some computation threads that happen to have

heavy workloads in the later computation while the thread migration scheme

can dynamically recover from such a situation to find some lightly loaded

nodes to share the heavy workload.

7.6.2 Non-dedicated environment

We run our test in a non-dedicated cluster environment, where different jobs

are submitted to time-share the resources in the cluster nodes. In the test,

we use 8 nodes from the Gideon cluster in our experiments. According to

117



 0

 5e+006

 1e+007

 1.5e+007

 2e+007

 2.5e+007

 1  6  11  16  21  26  31  36  41  46  51  56  61

W
or

kl
oa

d 
(F

P
 o

pe
ra

tio
ns

)

Thread

Thread workload distribution

Figure 7.9: Thread workload distribution of PAMR simulation.
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Figure 7.10: Speedup comparison of PAMR.

the cluster workload monitored, we choose two nodes that are heavily loaded,

while the others are lightly loaded. The 5-minute load average of the heavily

loaded nodes is larger than 3.0, while that of the lightly loaded nodes is below
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0.1. We then run our applications on such a non-dedicated environment and

observe its speedup with thread migration.

Four multithreaded Java applications are used in the test. They are

CPI, Raytracer, Series, and N-Queen. Except for N-Queen, the first three

benchmarks all have balanced workload. However, when all are running in a

non-dedicated environment, their speedups are affected by the varied system

workload in different nodes. The slowest node will slow down the execution

of the whole application. Figure 7.11 shows the speedup comparison between

using thread migration and disabling thread migration.
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Figure 7.11: Evaluation of thread migration in a non-dedicated environment.

From the figure, we can see that thread migration in DJVM can help

to reduce the execution time of the running multithreaded applications by

migrating threads from overloaded nodes to underloaded nodes, even if the

workload in original threads are balanced.
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7.7 Summary

In this chapter, we present the performance evaluation of JESSICA2 on Linux

clusters. We analyze the system overhead of providing the key feature of JES-

SICA2, i.e., the thread migration. Then we give the performance evaluation

of the GOS sub-system. We also compare the performance of JESSICA run-

ning in interpretive mode and that of JESSICA2 that runs in JIT compilation

mode to justify the use of JIT compilers in DJVM. Next we give the speedup

results of JESSICA2 on multithreaded Java applications to show the advan-

tages of a Distributed JVM. Finally we conduct experiments to show how

load balancing using the thread migration mechanism in JESSICA2 improves

the Java applications’ performance.

The performance evaluation proves that JESSICA2 is a high-performance

computing platform for multithreaded Java applications. Its JIT compiler-

assisted thread migration mechanism together with the optimization in dis-

tributed object sharing are the key factors to help improve the performance

of multithreaded Java applications.
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Chapter 8

Conclusions and future work

8.1 Conclusions

The goal of our research on DJVM is to exploit the power of PC clusters

for high-performance Java computing. In the JESSICA2 project, we re-

search on thread migration and distributed object sharing to support a high-

performance SSI cluster middleware. The system is built at the JVM level,

and it can transparently execute multithreaded Java applications in parallel

without requiring any modification to the Java source code or Java bytecode.

The novelty of our research lies in the application of a JIT compiler to

support the above two features. The following components of the original

single-node JVM have been modified or extended: the JIT compiler, the class

loader, the heap and the I/O class libraries. Our experimental results confirm

that it is feasible to deliver high performance for multithreaded execution

using Java through the support of a DJVM in a cluster environment.

The research will have strong impacts in the following areas.

• High-performance Java servers. Using message passing for implement-

ing distributed applications, such as the servers, is hard, since it needs

many programming efforts. The programmer needs to remember dif-

ferent APIs, partition the work load, and maintain the data consis-
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tency among the distributed nodes. The bad programmability in the

message passing tools has made the development of high-performance

distributed servers tricky and error-prone.

Today multithreaded programming using Java is frequently adopted in

server side programming with the increased popularity of Java, due to

its high portability, as well as the good programmability in supporting

OO programming. There is a need to provide a high-performance plat-

form for running such applications on a larger scale system than the

SMP machine. A DJVM answers this need. With the introduction of

the DJVM, the server programs can immediately benefit from such a

high-performance computing platform on low-cost clusters. The DJVM

automatically hides the machine boundaries in the distributed environ-

ment from the programmers, and provides support for automatic load

balancing among the running machines. Therefore, the effort to tune

the performance on clusters at the application level by the programmers

is released with the help of the DJVM.

• SSI cluster computing. SSI is the ultimate goal of a cluster, which al-

lows the user to control and program the cluster as a single machine.

Though SSI cluster can be realized at the hardware level, the operating

system level, or the application level, the middleware level is proved to

be more reliable and portable. It does not need to modify the under-

lying operating systems.

The DJVM realizes SSI at the middleware level. It provides the Java

programmers the ability to program cluster in the shared-memory paradigm.

The whole cluster is now abstracted as a single JVM that provides ex-

treme computation power, huge memory space, and strong I/O capa-

bilities. Such a friendly environment will make clusters more attractive

for high-performance computing in both sciences and business.

• Computation mobility. Computation mobility [35] mainly has two
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types, i.e., strong mobility and weak mobility. Strong mobility allows

the program context to move during execution. It is an attractive ser-

vice, based on which many useful functions can be realized, such as

load sharing, reconfiguration, and high availability.

Much attention has been paid on Java in supporting code mobility.

Our work provides a breakthrough in supporting the strong mobility

of Java threads in JIT-enabled JVM. In our work, the native code in-

strumentation approach and the JIT recompilation approach introduce

new methods in the transformation of a native thread context into a

portable thread context using JIT compilers. The technologies can be

adopted in Java mobile agent systems for achieving high-performance

native execution in JIT-enabled JVMs. Our work can also be used in

checkpointing Java threads for fault tolerance computing.

• Distributed object sharing. The usual software DSM to provide dis-

tributed object sharing normally requires that the programmers ex-

plicitly point out the shared objects using additional annotations or

using special DSM APIs. Our research provides the location trans-

parency for accessing Java objects on clusters. All the object sharing

and synchronization support is embedded seamlessly at the JVM level

without the involvement of the programmers.

The tight integration of distributed object sharing inside the DJVM

also provides a new direction for the research in DSM. Our research

shows that distributed object sharing tightly coupled with the lan-

guage semantics could provide more opportunities for reducing com-

munication overheads, and developing new consistency models. The

optimization techniques used in our work can be examples for such a

direction.
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8.2 Future directions

JESSICA2 has been developed for high-performance multithreaded Java com-

puting on clusters. It covers a lot of issues like distributed thread scheduling,

distributed object sharing, SSI and JIT compilation. Nevertheless, some

issues have not been addressed, which can become areas for our future study.

8.2.1 Distributed garbage collection (DGC)

Current JESSICA2 pins down the shared objects that are accessed by the

threads on multiple nodes to prevent them from being collected. Each local

JVM in JESSICA2 does garbage collection locally. This results in a waste of

memory to store the unused shared objects.

To support the garbage collection on the shared objects, efficient DGC

algorithms are needed. The requirement on DGC is that it should be accu-

rate and fast. DGC should be incremental and should not stop the whole

JESSICA2 when it does the garbage collection. This needs efficient data

structures and algorithms to scan and exchange the shared object data.

8.2.2 Advanced JIT compilation support

Current JESSICA2 uses the simple Kaffe JIT compiler as its execution en-

gine. The speedup of the JIT compiler versus the interpreter is significant in

Kaffe. However, compared to the advanced JVM JIT compiler, Kaffe’s JIT

compiler is less efficient.

Advanced JIT compilers can bring higher local execution performance for

DJVM, which will in turn benefit the execution performance of the multi-

threaded Java applications running on top of DJVM. To support the thread

migration in native mode, such advanced JIT compilers need to be modified,

which is more difficult than what we did in Kaffe’s JIT compiler.
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8.2.3 SSI GUI support

To provide the complete SSI illusion for a wider range of Java applications

such as the GUI applications, more supports are needed in Java I/O libraries

(such as the AWT or the Swing library). Also, in a large cluster environment,

the master node could easily turn into a bottleneck for I/O requests. New

techniques for duplicating the master node can be explored.

8.2.4 Optimization on I/O operations

Pure Java applications usually rely on thread pools to handle large-volume

of the external TCP connections. Current DJVM is restricted in supporting

the handling of the connections in parallel in each participating node. Most

of the TCP connection needs to be forwarded to the master node in order

to preserve the SSI. Changes in SSI illusion for multithreaded Java server

applications on clusters can be explored in a DJVM, in order to efficiently

handle the I/O in parallel. And the DJVM should be able to support the

execution of multiple different Java applications simultaneously, and protect

their shared data from each other.

8.2.5 SSI middleware for other languages

The practice of JESSICA2 can provide the insight in designing the SSI mid-

dleware for other languages such as C# (pronounced “C sharp”) [39]. C# is

a Java-like language that is an object-oriented and type-safed. C# includes

multithreading at its language level like Java. The architecture of C# re-

sembles Java in its portable intermediate code, Virtual machine architecture

and JIT compilers. As a result, the idea of DJVM can be applied to build a

distributed C# virtual machine for high-performance threaded computation

on clusters running Microsoft’s Windows operating systems.
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