
Distributed Key Certification Using
Accumulators for Wireless Sensor Networks

Jun-Young Bae1(B), Claude Castelluccia2, Cédric Lauradoux2,
and Franck Rousseau1

1 Grenoble Institute of Technology, Grenoble Informatics Laboratory – CNRS,
UMR 5217, 38402 Saint Martin D’Hères, France
{jun-young.bae,franck.rousseau}@imag.fr

2 INRIA, 655 Avenue de L’Europe, 38334 St Ismier, France
{claude.castelluccia,cedric.lauradoux}@inria.fr

Abstract. In this work, we propose a key certification protocol for wire-
less sensor networks that allows nodes to autonomously exchange their
public keys and verify their authenticity using one-way accumulators. We
examine and compare different accumulator implementations for our pro-
tocol on the Sun SPOT platform. We observe that our protocol performs
best with accumulators based on Elliptic Curve Cryptography (ECC):
ECC-based accumulators have roughly the same speed as Secure Bloom
filters, but they have a smaller memory footprint.

Keywords: Wireless sensor networks · One-way accumulators

1 Introduction

Wireless Sensor Networks (WSNs) are envisioned as a key part of what is now
known as the Internet of Things (IoT). In a few years from now, large sensor
networks, composed of myriads of inexpensive low-power and energy-constrained
wireless nodes, will be commonplace. However, wireless communications are easy
to eavesdrop and manipulate, thus more prone to serious attacks. Securing com-
munications in wireless sensor network is, therefore, of utmost importance.

Two critical issues in WSNs are key distribution and certification. They are
mandatory in order to establish confidentiality in the network. Over the last
decade, symmetric cryptography was, by far, the most popular primitive used
for key distribution and certification since asymmetric cryptography was con-
sidered to be computationally too heavy to handle for low-power sensor nodes
(e.g. [7,9]). However, at the end of the last decade, Elliptic Curve Cryptography
(ECC) started to be deployed on sensor nodes [15] which showed that asymmet-
ric cryptography is feasible in WSNs.

If the cost of asymmetric cryptography is now no more an issue, there is still
the problem of certifying the public keys of the nodes. We cannot simply pre-
install the public key of the Certificate Authority (CA) and the digital certificates
that guarantee the authenticity of the public keys of the nodes: any nodes that
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014
I. Stojmenovic et al. (Eds.): MOBIQUITOUS 2013, LNICST 131, pp. 500–511, 2014.
DOI: 10.1007/978-3-319-11569-6 39

Distributed Key Certification 501

are certified by the same CA would potentially be able to communicate with each
other, even if they are not supposed to be in the same network (e.g. your nodes
would start communicating with your neighbor nodes, because they are produced
and certified by the same manufacturer). A solution to this problem would be to
allow the owner of the network to act as the CA and pre-install within each of
the nodes the necessary cryptographic materials. However, this solution would
not scale up for large number of nodes. Moreover, if the only way to install
the cryptographic materials within the nodes is through the wireless medium,
because they are located in places that are inaccessible (e.g. embedded inside
walls), an attacker may initiate a Man-in-The-Middle (MiTM) attack and swap
the public key and the certificates of the owner with its own. The contribution
of this paper is to break through this problem by proposing a distributed key
certification protocol based on one-way accumulators that is fully autonomous
and does not require the use of CAs and certificates.

Accumulators are space/time efficient data structures that are used in order
to verify if an element belongs to a predefined set. Several accumulator designs
are available, ranging from RSA-based accumulators [2] to Secure Bloom fil-
ters [11]. We have studied and evaluated these different designs by implementing
them on the Sun SPOT platform in order to determine which one is the most
practical for our protocol in terms of processing speed, memory footprint, data
transmission, and energy efficiency. We observe that our protocol has the best
overall performance with ECC-based accumulators.

All the hypothesis used throughout this paper, for the nodes and the adver-
sary, are defined in Sect. 2. The accumulators, as well as our protocol for distrib-
uted key certification, are described in Sect. 3. A brief security analysis of our
protocol is available in Sect. 4. The performance evaluation and the impact of
the choice of accumulators are discussed in Sect. 5. Previous work in the exist-
ing literature are reviewed in Sect. 6. Finally, Sect. 7 concludes our work and
proposes future research directions.

2 Assumptions

In this work, we focus on securing large multi-hop networks that may be deployed
alongside other unrelated networks. Wireless sensor nodes are low-power embed-
ded devices. A gateway is used in order to collect data and/or relay traffic from
the nodes that may be placed at any arbitrary position and may even be mobile.
We need to be able to distinguish between different legitimate networks in order
to prevent unwanted information leakage or unwillingly transiting external traffic
(i.e. waste energy). We also need to prevent attackers from joining or tampering
with the network.

2.1 Node Model

We assume that the nodes are interface-less: no physical interaction with the
node is possible and the only way to communicate with them is through the

502 J.-Y. Bae et al.

wireless medium. This assumption is realistic considering the cases of intelligent
buildings and IoT, in which nodes might be, for example, embedded inside walls.
Manufacturers also tend to integrate various sensors into a single chip (System-
on-Chip) so that they are easier to miniaturize, mass-produce, and deploy in a
non-invasive way. We assume that these nodes are produced and distributed in
batches by the manufacturer. This is a reasonable assumption, considering that
manufacturers would probably not sell cheap, mass-produced nodes individually,
and that at least a few nodes are needed in order to build a practical multi-
hop WSN. We also consider that customizing nodes with specific cryptographic
materials at production time is not much of a limitation. This process is already
quite common for certain chip manufacturing, in which unique identifiers or
calibration data are loaded after fabrication.

2.2 Attacker Model

Our solution is designed to deal with three particular threats: Node injection,
Node capture, and Denial-of-Service.

Node injection – The adversary must not be able to inject its own node in
the network.

Node capture – The adversary can gain full control of a node since we
assume that the nodes are not tamper-resistant. This implies that all the node
secrets are exposed to the adversary. In order to measure the resistance of a pro-
tocol, the number of communications that can be eavesdropped by the adversary
after the capture of a node, is considered (see [8]). It does not include the com-
munications of the compromised node.

Denial-of-Service (DoS) – The adversary may attempt to exhaust the
resources of the nodes by sending bogus messages or requests. The protocol
must protect all the computationally intensive operations: the adversary must
not be able to trigger them easily.

We have considered that two attacks were outside the scope of this paper.
A Relay attack is the most basic form of a MiTM attack. They can be used in
order to mount more sophisticated attacks such as Wormhole attacks or DoS.
Various solutions to this problem have been proposed [12,20]. In Replication
attacks, the adversary injects nodes in the network that are copies of a legitimate
node. Specific solutions to this problem exist [18].

3 Accumulator-Based Protocol

After reviewing the principles of different one-way accumulators, we describe
how to choose and use them in order to verify keys in the context of sensors
networks.

3.1 One-Way Accumulator

One-way accumulators are authenticated data structures similar to Bloom fil-
ters [3]. They were introduced by Benaloh and de Mare [2] under the name of

Distributed Key Certification 503

Accumulated Hashing. The purpose of an accumulator is to allow a user to decide
whether an item belongs to a given set or not. This probabilistic data structure
is known to be efficient in time and space at the cost of a probability of false
positives.

Let us define two sets A and B. A is the set of the accumulator and B is the
set of the items to be accumulated. An accumulator for set S ⊂ B of i items vi

is denoted zi. Accumulators are based on commutative functions.

Definition 1. Function F : A × B → A is said to be commutative (or quasi-
commutative [2]) if: F (F (a, b), c) = F (F (a, c), b),∀a ∈ A and b, c ∈ B.

All accumulators implement the following components:
Key-Gen(s,Kpriv, f) – Given security parameter s, master key Kpriv, and key

derivation algorithm f , it generates all the required key materials.
Build-Acc(z0, v1, · · · , vm) – From a commutative function, seed z0 ∈ A and

m items vi ∈ B, value zm is computed recursively:

zi = F (zi−1, vi), i in 1, · · · ,m.

Gen-Wit – Membership witness wi is a value associated with each value vi

accumulated in z. The witness is used during the verification of vi.
Authenticate(zm, vi) – It decides whether item vi belongs to accumulator

zm. When a witness is needed, Authenticate verifies if the following equality is
satisfied: zm ?= F (wi, vi).

For simplicity, we use the notation z throughout the paper instead of zi.

3.2 Choosing an Accumulator

In this section, we present the available implementation choices for an accumu-
lator based on asymmetric or symmetric cryptography.

Asymmetric Accumulators. In the original paper [2], Benaloh and de Mare
suggested to use the modular exponentiation as a quasi-commutative function
in order to create a one-way accumulator: F (a, b) = ab mod n, with a ∈ A and
b ∈ B. For an appropriate choice of n, this function is one-way as long as the
RSA assumption [19] holds. The Benaloh and de Mare accumulator works as
follows:

Gen – This function generates all the values required by function F . Let us
define n = pq as the product of two safe primes p, q of approximately the same
size. Further details on the security issues concerning the choice of n can be
found in the original paper. We only review its main ideas in this section.

Build-Acc – Seed z0 is also needed in order to bootstrap the accumulator.
Therefore, value zi is computed recursively: zi = F (zi−1, vi).

Gen-Wit – With each value vi belonging to accumulator z, we associate wit-
ness denoted wi. Witness wi corresponding to item vi is a partial accumulator
that includes all the values in z except vi.

504 J.-Y. Bae et al.

Authenticate – Value vi that belongs to z verifies the following equation:

F (wi, vi) = wvi
i mod n =

(
z0

)∏m
j=1 vj mod n = z.

Other quasi-commutative functions have been proposed [1,26]. The scalar-
point product over elliptic curves is a natural choice. Let us denote a as a scalar
and P , Q as two points of an elliptic curve such that: Q = aP. The Elliptic Curve
Discrete Logarithmic Problem guarantees that it is computationally infeasible to
deduce a from the knowledge of P and Q [13]. Therefore, Authenticate function
for an ECC-based accumulator z, item vi, and witness wi, is:

F (wi, vi) = viwi =

⎛

⎝
m∏

j=1

vj

⎞

⎠ z0 = z.

Symmetric Accumulators. A symmetric-key accumulator equivalent to the
Benaloh and de Mare accumulators was proposed by Nyberg [17]. It is based
on cryptographic hash functions and has a much simpler Authenticate function,
because it does not require partial accumulators. The connection between Nyberg
accumulators and Bloom filters was later made by Yum et al. [25] who also
demonstrated that Bloom filters are better cryptographic accumulators than
Nyberg accumulators in terms of the minimal false positive rate. In parallel
and independently of the Nyberg’s results, Goh proposed Cryptographic/Secure
Bloom filters [11] with applications to private information retrieval in databases.

A symmetric accumulator is considered here as a �-bit vector, z = (z1, · · · , z�)
with zi ∈ F2. The support of an �-bit vector, denoted as supp(z), is the set of
the non-zero coordinate indexes: supp(z) = {i ∈ [1, �], zi �= 0}.

Build-Acc(z0, v1, · · · , vm) – The creation of the accumulator is done for m
items (keys) using the following recursion: zi = zi−1 ∨ g(vi), i in 1, · · · ,m with
∨ the bitwise inclusive-or operator and g is a function from B to A.

Authenticate(z, vi) – We can observe from the previous equation that:

supp(z) = supp(zm−1) ∪ supp(g(vi)).

Therefore, item vi ∈ B belongs to z if: supp(g(vi)) ⊂ supp(z).
For Bloom filters, Key-Gen function must generate k secrets keys, Ki from

secret s. If H is a cryptographic hash function that can be keyed, function g is
defined by:

supp(g(vi)) = {H(Ki, vi), i ∈ 1, · · · , k}.

The differences between Bloom filters and Secure Bloom filters are: (a) the use
of HMAC-SHA-1 as a hash function and (b) the use of implementation trade-offs
in order to reduce the number of computed hashes [14]. It is worth mentioning
that many libraries use cryptographic hash functions for Bloom filters instead
of universal hash functions.

Distributed Key Certification 505

False Positive Probability. Since accumulators are probabilistic data struc-
tures, they have to be carefully designed in order to control their false positive
probability. Bari and Pfitzmann have shown how to reduce the false positive
problem to the strong RSA assumption under certain conditions [1]. Benaloh
and de Mare have shown that the false positive probability is negligible for
|n| ≥ 1024 bits. The same can be said about accumulators based on the 160-bit
prime field ECC. For Bloom filters, the false positive probability p is shown to

be: p =
(
1 − [

1 − 1
�

]km
)k

[3].

3.3 Protocol

The protocol described in this paper is based on three functions: initialization,
ownership transfer, and node-to-node key verification.

Initialization – The manufacturer assigns to each node Ni a pair of pub-
lic/private keys denoted as (PKNi

, SKNi
). The public keys of all nodes PKNi

belonging to the network are accumulated in z. In addition, the manufacturer
generates a public/private key pair for the gateway and includes the public key
of the gateway in accumulator z (i.e. the gateway is considered as any other
node). The manufacturer stores z in every node. In addition, every node is set
up with all the values needed for the accumulator including the witness wi.

Ownership transfer – The final user of the network uses a gateway in
order to manage and monitor the network. In order to transfer the ownership,
the manufacturer provides the public/private key pair of the gateway to the final
user. We assume that at a given time there is only one owner. The manufacturer
needs to address two issues before transferring the ownership to the final user:
(a) the gateway must be able to distinguish the nodes that belong to the network
and (b) the nodes must recognize the public-key of the gateway. The first issue is
solved by transferring z and all the necessary parameters from the manufacturer
to the gateway. The gateway can then execute the Authenticate function just like
any other node. The second problem is solved by including the public key of the
gateway in z.

Node-to-node key verification – As shown in Fig. 1, the nodes exchange
their public-keys PKNi

with their corresponding witnesses wi. They then execute
the Verify function described in Algorithm 1. When a node determines that a
public key belongs to the accumulator, it stores it as an entry in table T . The
Lookup(T, PKNi

) function verifies if the node has already verified the public
key of node Ni. The Put(T, PKNi

) function adds the public key of the node to
the table. Once the nodes have mutually verified their public keys with Verify,
they can establish a symmetric key through the Elliptic Curve Diffie-Hellman
(ECDH) key agreement protocol [16].

4 Security Analysis

Our protocol inherits the major security properties of one-way accumulators:
“one-way-ness” and resistance to forgery [1,2].

506 J.-Y. Bae et al.

N1 N2

(PKN1 , SKN1), z, w1 (PKN2 , SKN2), z, w2

PKN2 ,w2←−−−−−−−−−−−
z, PKN2 , w2

PKN1 ,w1−−−−−−−−−−−→
z, PKN1 , w1

Fig. 1. Key certification protocol based on accumulators.

Algorithm 1. Verify(z, PKN1 , w1) function (N1 by N2).
if Lookup(T ,PKN1)= false then

if Authenticate(z, PKN1 , w1)= true then
Put(T , PKN1)

end if
else

Do nothing (key already verified)
end if

Node injection – The first attempt of the adversary might be to send its
own public key and witness. In this case, the security of our protocol is reduced
to the security of the accumulator.

Node capture – Due to the “one-way-ness” of accumulators, the capture of
a node does not compromise the communications of other nodes: only the keys
of the captured node are compromised.

Denial-of-Service (DoS) – The goal of the adversary is to make the nodes
waste precious resources (e.g. energy). In order to achieve this goal, computa-
tionally expensive operations are triggered. We assume that the most expensive
operation is ECDH and our protocol prevents an adversary to trigger useless
ECDH computations. The lookup table T prevents the replay of correct mes-
sages that cause the exhaustion of node resources.

Please note that since the manufacturer produces each batch of nodes with
distinct, pre-installed accumulators, the problem of “promiscuous” connections
between certified nodes that should not belong to the same network, as well as
the MiTM attack during the wireless pre-installation of cryptographic material
that were mentioned in Sect. 1 become irrelevant.

5 Performance Evaluation

We have implemented the one-way accumulators of Benaloh and de Mare (we
will call them RSA and ECC-based accumulators) and the Secure Bloom filter

Distributed Key Certification 507

(hereafter simply referred to as Bloom filter) in Java ME1 on Sun SPOTs2.
Each Sun SPOT comes with a 180 MHz 32-bit ARM920T processor, 512 kB
RAM, 4 MB Flash memory and a 3.7 V rechargeable 750 mAh lithium-ion bat-
tery. They have an integrated TI CC2420 radio chip operating in the 2.4 GHz
band and compliant with IEEE 802.15.4. They also come with a readily avail-
able security API3. The elements accumulated in our implementation are 160-bit
Elliptic Curve (EC) public keys using the secp160r1 curve domain parameters4.
We have used the SHA-1 hashing algorithm5 that generates 160-bit hash codes.

Once we have implemented all the different accumulators, we have measured
the time that the various computations and transmissions within our protocol
take in order to evaluate the total time required for a node-to-node key verifica-
tion on Sun SPOTs. The entire node-to-node key verification between two Sun
SPOTs (let us call them SPOT 1 and SPOT 2) using asymmetric accumulators
(RSA-based and ECC-based accumulators), can be divided into four steps:

1. SPOT 1 sends its public key PK1 and its witness w1 to SPOT 2.
2. SPOT 2 executes Verify(z, PK1, w1).
3. SPOT 2 sends its public key PK2 and its witness w2 to SPOT 1.
4. SPOT 1 executes Verify(z, PK2, w2).

Node-to-node key verification using Bloom filters would only differ by the lack
of witnesses in each step. We can see that step 3 to 4 is simply a repetition of step
1 to 2. Therefore, we have implemented step 1 and 2 to run between two SPOTs
and we have then measured the duration of each step. Table 1 outlines the values
of the parameters used for the different accumulator implementations. These
values ensure an equivalent level of security for each implementation. Table 2a
shows the results for each step with the implementations based on asymmetric
accumulators and Bloom filters. For each measurement, one thousand 160-bit
EC public keys have been accumulated. The time necessary for a node-to-node
key verification between two SPOTs is obtained by multiplying the total time
by two (e.g. 1.4 × 2 = 2.8 s for the key verification using Bloom filters).

The time that step 2 takes mostly consists of the execution time of the
Authenticate function in Verify (see Sect. 3.3). We should also note that, although
the time that step 2 takes when using Bloom filters is slightly less than when
using ECC-based accumulators, it becomes equivalent or longer once p is set to
2−90 or less.

We have also estimated the energy consumption on the Sun SPOT based on
the duration of each steps of the node-to-node key verification (cf. Table 2b).
The most “energy-efficient” key verifications are the ones using Bloom filters
and ECC-based accumulators. The extra energy that the key verification using
ECC-based accumulators requires from step 1 to 3 compared with the one using
1 http://www.oracle.com/technetwork/java/javame/
2 http://www.sunspotworld.com/
3 http://java.net/projects/spots-security
4 http://www.secg.org/collateral/sec2 final.pdf
5 http://www.ietf.org/rfc/rfc3174.txt

http://www.oracle.com/technetwork/java/javame/
http://www.sunspotworld.com/
http://java.net/projects/spots-security
http://www.secg.org/collateral/sec2_final.pdf
http://www.ietf.org/rfc/rfc3174.txt

508 J.-Y. Bae et al.

Table 1. Parameter values used in the accumulators.

Accumulator Parameter Value

RSA-based Length of n 1024 bit

ECC-based Curve domain parameters secp160r1

Bloom Value of p 2−80

Table 2. Duration and energy consumption of node-to-node key verification.

Bloom filters is due to the additional exchange of witnesses. However, the amount
of energy consumed in step 4 of the key verification using Bloom filters would
grow as the execution time of the Verify function increases due to a lower p.

Table 3a outlines the size of the public/private keys, accumulators and wit-
nesses, used in node-to-node key verification. We can notice that much less mem-
ory is required in order to store asymmetric accumulators than Bloom filters.
The advantage of using an ECC-based accumulator is apparent here, since it is
only (48 + 48)/14427 ≈ 1/150 of the size of a Bloom filter. Additionally, the

Table 3. Memory footprint of node-to-node key verification.

Distributed Key Certification 509

size of Bloom filters rapidly increases as more elements are accumulated since
they need to increase the number of bits per element in order to maintain their
false positive probability [3]. Since the size of asymmetric accumulators is con-
stant regardless of the number of accumulated elements, we can conclude that
asymmetric accumulators have much better scalability in terms of accumulator
size compared to Bloom filters. From the memory usage measurements shown in
Table 3b, we can see that the two most “memory-efficient” key verifications are
the ones using Bloom filters and ECC-based accumulators. However, the mem-
ory required in step 4 of the key verification using Bloom filters would increase
if the number of accumulated keys increases or if p is set lower.

6 Related Work

Key establishment and distribution are critical problems in WSNs that have been
deeply investigated by the community. Two schools are in competition on this
topic: symmetric cryptography and asymmetric cryptography. Our work natu-
rally belongs to the latter. Due to the lack of space, we will only briefly review
the work based on asymmetric cryptography. We encourage the readers who are
interested in further details on the work based on symmetric cryptography to
consult [4,8] for a complete survey.

Asymmetric cryptography (more specifically, RSA-based cryptosystems) was,
for a while, considered infeasible for sensor nodes. TinyPK [24] was the first
attempt to implement a public-key infrastructure in WSNs. It uses the classi-
cal Diffie-Hellman (DH) protocol and a CA in order to certify the keys. The
performance results were relatively modest and not promising for a practical
application. Since then, TinyECC [15] and NanoECC [22] libraries proved the
feasibility and the efficiency of ECC on sensor nodes. Low-cost hardware exten-
sions have also been demonstrated [10,23]. The ECDH protocol has also been
put into practice on WSNs. For example, Sun et al. used a “self-certified” ECDH
protocol along with a polynomial-based weak authentication scheme in order to
thwart DoS attacks initiated by bogus ECDH requests [21]. Our approach is the
natural extension of these work: accumulators eliminate the need for CAs and
certificates during key establishment.

7 Conclusion and Future Work

In this paper, we have proposed a key certification protocol that does not require
CAs and certificates, in which nodes can autonomously verify the authenticity
of the public keys they exchange using one-way accumulators. Our results show
that the exchange and verification of public keys between two wireless sensor
nodes can be performed within few seconds, while consuming little energy. Our
analysis of the existing accumulators lets us conclude that ECC-based accumu-
lators are best suited for our protocol since they perform as fast as Bloom filters
while having a memory footprint that does not increase with the number of
accumulated elements.

510 J.-Y. Bae et al.

Our next immediate objective is to study how our protocol can be adapted
for current WSN standards (802.15.46, RPL7 etc.). Although many nodes pro-
duced nowadays are as powerful as Sun SPOTs (e.g. STM32W8, albeit without
a Java Virtual Machine), our protocol should also be tested on nodes with less
processing power. Another issue that needs to be addressed is that our protocol
cannot safely add and remove nodes from the network. Using dynamic accumu-
lators [6] that allow you to add and remove elements may be a solution to this
problem, but security flaws have been found in these designs [5].

Acknowledgement. This work was partially supported by the French National
Research Agency projects ARESA2 and IRIS under contracts ANR-09-VERS-017 and
ANR-11-INFR-016 respectively, and the European Commission FP7 project CALIPSO
under contract 288879.

References

1. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997)

2. Benaloh, J.C., de Mare, M.: One-way accumulators: a decentralized alternative to
digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
274–285. Springer, Heidelberg (1994)

3. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13, 422–426 (1970)

4. Buttyan, L., Hubaux, J.-P.: Security and Cooperation in Wireless Networks. Cam-
bridge University Press, Cambridge (2007)

5. Camacho, P., Hevia, A.: On the impossibility of batch update for cryptographic
accumulators. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010.
LNCS, vol. 6212, pp. 178–188. Springer, Heidelberg (2010)

6. Camenisch, J.L., Lysyanskaya, A.: Dynamic accumulators and application to effi-
cient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, p. 61. Springer, Heidelberg (2002)

7. Chan, H., Perrig, A.: PIKE: peer intermediaries for key establishment in sensor
networks. In: INFOCOM, March 2005, pp. 524–535. IEEE (2005)

8. Chan, H., Perrig, A., Song, D.: Key distribution techniques for sensor networks. In:
Raghavendra, C.S., Sivalingam, K.M., Znati, T. (eds.) Wireless Sensor Networks,
pp. 277–303. Springer, New York (2004)

9. Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor
networks. In: ACM Conference on Computer and Communications Security - CCS
2002, November 2002, pp. 41–47. ACM (2002)

10. Fan, J., Batina, L., Verbauwhede, I.: HECC goes embedded: an area-efficient imple-
mentation of HECC. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS,
vol. 5381, pp. 387–400. Springer, Heidelberg (2009)

6 http://www.ieee802.org/15/pub/TG4.html
7 http://www.ietf.org/rfc/rfc6550.txt
8 http://www.st.com/web/en/catalog/mmc/FM141/SC1169/SS1581

http://www.ieee802.org/15/pub/TG4.html
http://www.ietf.org/rfc/rfc6550.txt
http://www.st.com/web/en/catalog/mmc/FM141/SC1169/SS1581

Distributed Key Certification 511

11. Goh, E.-J.: Secure indexes. Cryptology ePrint Archive, Report 2003/216. http://
eprint.iacr.org/2003/216/ (2003)

12. Gollakota, S., Ahmed, N., Zeldovich, N., Katabi, D.: Secure In-Band wireless pair-
ing. In: USENIX Security Symposium, August 2011

13. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, New York (2004)

14. Kirsch, A., Mitzenmacher, M.: Less hashing, same performance: building a better
Bloom filter. Random Struct. Algorithms 33(2), 187–218 (2008)

15. Liu, A., Ning, P.: TinyECC: a configurable library for elliptic curve cryptography
in wireless sensor networks. In: International Conference on Information Processing
in Sensor Networks - IPSN 2008, April 2008

16. NIST National Institute of Standards and Technology. Recommendation for
Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography
(Revised). NIST Special Publication 800-56A, March 2007

17. Nyberg, K.: Fast accumulated hashing. In: Gollmann, D. (ed.) FSE 1996. LNCS,
vol. 1039, pp. 83–87. Springer, Heidelberg (1996)

18. Parno, B., Perrig, A., Gligor, V.D.: Distributed detection of node replication
attacks in sensor networks. In IEEE Symposium on Security and Privacy - S&P
2005, May 2005

19. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)

20. Singelée, D., Preneel, B.: Key establishment using secure distance bounding pro-
tocols. In: International Conference on Mobile and Ubiquitous Systems - MobiQ-
uitous 2007, August 2007

21. Sun, K., Liu, A., Xu, R., Ning, P., Maughan, W.D.: Securing network access in
wireless sensor networks. In: ACM Conference on Wireless Network Security -
WISEC 2009, March 2009

22. Szczechowiak, P., Oliveira, L.B., Scott, M., Collier, M., Dahab, R.: NanoECC:
testing the limits of elliptic curve cryptography in sensor networks. In: Verdone,
R. (ed.) EWSN 2008. LNCS, vol. 4913, pp. 305–320. Springer, Heidelberg (2008)

23. Verbauwhede, I.: Low budget cryptography to enable wireless security. In: ACM
Conference on Wireless Network Security, Invited talk, June 2011

24. Watro, R.J., Kong, D., fen Cuti, S., Gardiner, C., Lynn, C., Kruus, P.: TinyPK:
securing sensor networks with public key technology. In: ACM Workshop on Secu-
rity of Ad Hoc and Sensor Networks - SASN 2004, October 2004

25. Yum, D.H., Seo, J.W., Lee, P.J.: Generalized combinatoric accumulator. IEICE
Trans. Inf. Syst. E91.D(5), 1489–1491 (2008)

26. Zachary, J.: A decentralized approach to secure management of nodes in distributed
sensor networks. In: IEEE Military Communications Conference - MILCOM ’03,
October 2003

http://eprint.iacr.org/2003/216/
http://eprint.iacr.org/2003/216/

	Distributed Key Certification Using Accumulators for Wireless Sensor Networks
	1 Introduction
	2 Assumptions
	2.1 Node Model
	2.2 Attacker Model

	3 Accumulator-Based Protocol
	3.1 One-Way Accumulator
	3.2 Choosing an Accumulator
	3.3 Protocol

	4 Security Analysis
	5 Performance Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References

