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Abstract—Linearly constrained minimum variance (LCMV)
beamforming is a popular spatial filtering technique for signal
estimation or signal enhancement in many different fields. We
consider distributed LCMV (D-LCMV) beamforming in wireless
sensor networks (WSNs) with either a fully connected or a tree
topology. In the D-LCMV beamformer algorithm, each node
fuses its multiple sensor signals into a single-channel signal
of which observations are then transmitted to other nodes.
We envisage an adaptive/time-recursive implementation where
each node adapts its local LCMV beamformer to changes in
the local sensor signal statistics, as well as to changes in the
statistics of the wirelessly received signals. Although the per-node
signal transmission and computational power is greatly reduced
compared to a centralized realization, we show that it is possible
for each node to generate the centralized LCMV beamformer
output as if it had access to all sensor signals in the entire
network, without an explicit computation of the network-wide
sensor signal covariance matrix. We provide sufficient conditions
for convergence and optimality of the D-LCMV beamformer.
The theoretical results are validated by means of Monte-Carlo
simulations, which demonstrate the performance of the D-LCMV
beamformer.

EDICS: SAM-BEAM Beamforming, SAM-MCHA

Multichannel processing, SEN Signal Processing for Sensor

Networks

Index Terms—Wireless sensor networks (WSNs), LCMV beam-
forming, distributed beamforming, signal enhancement, dis-
tributed signal estimation
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I. INTRODUCTION

A. Distributed signal estimation in wireless sensor networks

A wireless sensor network (WSN) consists of a collection

of sensor nodes that are connected with each other through

wireless links. Each node is equipped with one or more sensors

and has computing capabilities for local signal processing. The

sensor nodes collect observations of a physical phenomenon

and collaborate with each other to perform a certain signal

processing task, e.g., localization, detection or estimation of

certain signals or parameters. Some approaches require a so-

called fusion center (e.g., [1]–[6]) that gathers all the sensor

signals, whereas other algorithms are distributed such that all

processing happens inside the network (e.g., [7]–[23]). The

latter is usually preferred, especially when it is scalable in

terms of communication bandwidth and processing power.

Most of the WSN literature focuses on distributed param-

eter estimation (DPE), where a parameter vector with fixed

dimension is iteratively estimated by letting nodes exchange

intermediate local estimates (see e.g. [7]–[12]). However, in

this paper we focus on distributed signal estimation (DSE) or

signal enhancement, which relies on in-network signal fusion

based on spatial filtering or beamforming techniques [4], [5],

[14]–[27]. Rather than performing an iterative estimation of

each individual sample of the desired signal, DSE algorithms

iteratively improve the in-network fusion rules in a time-

recursive fashion. DSE algorithms typically operate at higher

data rates (compared to DPE algorithms) and often require

specific network topologies such as, e.g., fully connected, star,

or tree topologies to avoid feedback in the signal fusion paths

[1]–[5], [14], [15], [18], [25], [28]. In such topology-controlled

networks, the true benefit of a distributed implementation then

lies in the in-network fusion/compression of the collected

sensor data, i.e., nodes exchange only single-channel (scalar)

signal observations instead of multi-channel (vector) signal

observations. Even in small-scale networks, this can yield an

important reduction in communication bandwidth, in particular

for data-intensive tasks such as, e.g., audio processing [20]–
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[22], [24], [27].

If all raw sensor signals are gathered in a fusion center,

traditional (centralized) beamforming techniques can be used

to obtain an enhanced signal, based on the estimated co-

variance between all possible sensor signal pairs. Distributed

(in-network) beamforming, on the other hand, is a more

challenging problem since each node only has access to a

subset of the sensor signals, such that the full covariance

matrix cannot be estimated directly. A training phase could

be used to construct this matrix, but this approach heavily

affects adaptability and flexibility, even in slowly varying

scenarios. Therefore, distributed beamforming is often based

on suboptimal heuristics to maintain this adaptability and

flexibility, and its performance then often heavily depends

on the chosen network hierarchy or topology [17]–[19], [26].

However, under certain assumptions, it is possible to design

optimal distributed beamformers or DSE algorithms that are

fully adaptive (see, e.g., [14]–[16], [20]–[22], [28]).

B. Contribution

In this paper, we consider linearly constrained minimum

variance (LCMV) beamforming (see, e.g., [29], [30]), which

aims at minimizing the output variance of a spatial filter

under a set of linear constraints, e.g., to obtain a distortionless

response for certain desired source directions, and/or to ob-

tain a zero-response in the direction of interfering undesired

sources. We will apply this LCMV beamformer in a distributed

context, i.e., in a WSN with physically distributed nodes, and

without a fusion center. We consider fully connected broadcast

networks where each node has multiple sensors, as well as

partially connected networks with a tree topology. We refer

to the algorithm developed here as distributed LCMV (D-

LCMV) beamforming or the D-LCMV beamformer. In the

D-LCMV beamformer, each node locally fuses its multiple

sensor signals into a single-channel signal, and then transmits

this signal to other nodes. These nodes combine this fused

signal with their local sensor signals to generate the final

beamformer output. Although the per-node signal transmission

and computational power is greatly reduced compared to a

centralized realization, we show that it is possible for each

node to generate the centralized LCMV beamformer output

as if it had access to all sensor signals in the entire network,

without an explicit computation of the network-wide sensor

signal covariance matrix. Furthermore, we will demonstrate

with numerical experiments that the D-LCMV beamformer

often even outperforms the centralized beamformer in case of

finite sample sizes due to the fact that the former operates on

smaller covariance matrices, which is numerically favorable.

The proposed D-LCMV beamformer is an iterative algo-

rithm that is akin (but not equivalent) to block coordinate

descent type algorithms, where a different block of optimiza-

tion variables is updated in each iteration (corresponding to

the different nodes in the network). We provide sufficient

conditions for convergence and optimality of the D-LCMV

beamformer in fully connected broadcast networks and in

networks with a tree topology. These sufficient conditions and

the corresponding proofs also give insights on how suboptimal

points can occur, and how these can be avoided.

C. Relation to prior work

Distributed LCMV beamforming has also been considered

in [16], but the problem statement in this paper is signif-

icantly different. The algorithm in [16] is referred to as

linearly-constrained distributed adaptive node-specific signal

estimation DANSE (LC-DANSE) which is an extension of

the (unconstrainted) DANSE algorithm (see, e.g., [14]). The

‘node-specific’ aspect in LC-DANSE refers to the fact that

each node estimates a different signal, i.e., has a different set of

constraints. A desired source for one node, e.g., can then be an

interferer for another node and vice versa, yielding a different

beamformer output in each node. The LC-DANSE algorithm

requires multi-channel per-node signal transmissions, where

the number of channels is equal to the number of sources

that are incorporated in the linear constraints. The D-LCMV

beamformer, on the other hand, has only single-channel per-

node signal transmissions, and is still able to obtain optimal

performance independent of the number of sources or con-

straints. This greatly reduces the communication bandwidth

requirement, especially in scenarios where the beampattern

must be controlled by multiple constraints. However, unlike

in LC-DANSE, the beamforming output in each node will

be exactly the same, i.e., the node-specific aspect is removed.

Therefore, D-LCMV is neither a generalization of LC-DANSE

(it does not allow node-specific beamformer outputs), nor a

special case of LC-DANSE (it does not require multi-channel

per-node signal transmission). Only in a scenario with one

single linear constraint, i.e., the same constraint for all nodes

in the LC-DANSE case, both algorithms are equivalent.

D. Outline

The outline of the paper is as follows. In Section II,

we introduce our notation and we briefly review centralized

LCMV beamforming. In Section III, we describe the D-

LCMV beamforming algorithm in a fully connected broadcast

network, and we state the convergence and optimality results.

Section IV contains the convergence proof of the D-LCMV

beamformer. In Section V, we address the application of D-

LCMV in networks with a tree topology. In Section VI, we

demonstrate the performance of the D-LCMV beamformer

with Monte-Carlo simulations. Finally, conclusions are drawn

in Section VII.

II. CENTRALIZED LCMV BEAMFORMING

Consider a WSN with a set of wireless sensor nodes

K = {1, . . . ,K}. Node k collects observations of an Mk-

channel sensor signal yk, which is assumed to be stationary

and ergodic (since the algorithms envisaged in this paper

are adaptive, short-term stationarity is actually sufficient).

The Mk channels of yk usually correspond to Mk different

sensor signals at node k (note that each observation yk[t] for

t = 0 . . .∞ is an Mk-dimensional vector). We assume that

yk is a complex-valued signal to allow for frequency-domain

description, e.g., in the short-time Fourier transform (STFT)

domain. We define the M -channel signal y as the stacked

version of all yk’s, where M =
∑

k∈K Mk.
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The centralized LCMV beamformer ŵ is defined by the

following optimization problem [29]:

ŵ =arg min
w

E{|wHy|2} (1)

s.t. CHw = f (2)

where C is an M × Q constraint matrix, f is a non-zero Q-

dimensional response vector, E{.} denotes the expected value

operator and superscript H denotes the conjugate transpose

operator. Note that the cost function (denoted as J(w) in the

sequel) defines the variance of the beamformer output signal

d = wHy, which can also be written as

J(w) = E{|d|2} = E{|wHy|2} = wHRyyw (3)

with Ryy = E{yyH}. The closed-form solution of (1)-(2) is

well-known, but its derivation is briefly repeated here as we

will need some intermediate results in the sequel. The solution

of (1)-(2) can be found by determining the stationary points

of the Lagrangian [30]

L(w,λ) = wHRyyw − λH
(
CHw − f

)
−
(
CHw − f

)H
λ

(4)

where the Lagrange multipliers are stacked in the Q-

dimensional vector λ. By setting the gradient to zero, these

stationary points can be found as the solution of the following

system of equations
{

Ryyw −Cλ = 0

CHw = f
(5)

where 0 denotes an all-zero vector of appropriate dimension.

Assuming both Ryy and C have full rank, then the centralized

LCMV beamformer is the unique solution of the system of

linear equations (5), and is given by

ŵ = R−1
yy C

(
CHR−1

yy C
)−1

f . (6)

Due to ergodicity of y, the matrix Ryy can be estimated by

time-averaging over N observations of y, i.e.,

Ryy ≈
1

N

N−1∑

t=0

y[t]y[t]H (7)

where y[t] denotes an observation of y at sample time t. To

cope with (slow) variations in the sensor signal statistics, the

centralized LCMV beamformer (6) is often implemented as

an adaptive/time-recursive beamformer, where Ryy and ŵ are

updated regularly based on the most recent observations of y,

to improve the estimation of future samples of the beamformer

output d̂ = ŵHy (see, e.g., [31]). We envisage a similar time-

recursive context in this paper, i.e., the D-LCMV beamforming

algorithm will regularly update the local fusion rules of the

nodes based on the most recent observations of yk and the

signals obtained from the other nodes.

It is noted that, in order to compute (7), all nodes need to

transmit N observations of their node-specific yk to a central

processor, after which (7) and (6) can be computed. This

requires a significant computational power at the central node

(O(M3) due to the matrix inversion), and more importantly,

it requires a large communication bandwidth, especially in a

multi-hop transmission mode where sensor nodes have to for-

ward the observations of their neighbors (and their neighbors’

neighbors, etc.) in addition to their own local observations. It

will be shown that the D-LCMV algorithm is able to generate

samples of the optimal LCMV beamformer output d̂ = ŵHy

without computing the full covariance matrix Ryy .

III. DISTRIBUTED LCMV (D-LCMV) BEAMFORMING IN

FULLY CONNECTED BROADCAST NETWORKS

A. Algorithm description

In this section, we consider a fully connected broadcast

network, i.e., a signal transmitted by a node can be received by

all other nodes in the network (the generalization to partially

connected networks will be addressed in Section V). The goal

is now to achieve the centralized LCMV beamformer (6) and

to generate observations of the corresponding beamformer

output d̂ = ŵHy at each node, without letting each node

broadcast all Mk channels of the multi-channel (vector) signal

yk. Instead, each node k will only transmit observations of a

single-channel (scalar) signal zk which is a linear combination

of its sensor signals, i.e., zk = rH
k yk where rk is a fusion

vector. This results in a data compression with a factor Mk.

It is clear that, if the centralized LCMV solution ŵ were

known, then rk should be equal to the part of ŵ that is applied

to yk such that d̂ = ŵHy =
∑

k∈K zk. However, we aim for

an adaptive algorithm, where all signal statistics and fusion

vectors are estimated and updated adaptively without prior

training. The issue is then that the matrix Ryy cannot be

estimated directly since none of the nodes have access to the

full signal y.

In the distributed LCMV (D-LCMV) beamformer to be

described, the rk’s at the different nodes are iteratively

computed. Therefore we will add an iteration index i, i.e.

zi
k = ri H

k yk. It is important to note that, even though

we add an iteration index i to zk, this does not mean that

each individual observation zk[t] (for t = 0 . . .∞) will be

iteratively recomputed/retransmitted for each increment of i.

Instead, we envisage a time-recursive implementation where

an update of ri
k into ri+1

k at sample time t0 will only impact

the fusion and compression of future sensor observations (for

t > t0) whereas previously collected sensor observations (for

t ≤ t0) are neither recompressed nor retransmitted. Due to

this time-recursive implementation, the amount of data that

is transmitted over the wireless links does not depend on the

number of iterations performed by the algorithm.

All the zi
k’s are stacked in the K-dimensional vector zi and

we define zi
−k as the vector zi with zi

k removed. Node k has

access to yk and zi
−k, yielding an (Mk +K−1)-channel input

signal for node k (see also Fig. 1):

ỹi
k =

[
yk

zi
−k

]
. (8)

In the D-LCMV beamformer, each node k computes a local

LCMV beamformer w̃i
k based on its local input signal ỹi

k,

where w̃i
k is partitioned as

w̃i
k =

[
wi

k

gi
−k

]
(9)
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Rx
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Fig. 1. The signal generation within node k of a fully connected broadcast
network.

such that w̃i H
k ỹi

k = wi H
k yk + gi H

−k zi
−k. We define wi as the

stacked version of all wi
k’s, i.e.,

wi =




wi
1

wi
2

...

wi
K


 . (10)

Similarly, we define the partitioning of the constraint matrix

C =




C1

C2

...

CK


 (11)

such that CHwi =
∑

k∈K CH
k wi

k. By introducing the com-

pressed constraint vector ci
k = CH

k wi
k, we define the com-

pressed constraint matrix

C
i
=




wi H
1 C1

wi H
2 C2

...

wi H
K CK


 =




ci H
1

ci H
2

...

ci H
K


 . (12)

We define C
i

−k as the matrix C
i

with row k removed. Finally,

we define

Di
k =

[
Ck

C
i

−k

]
. (13)

Based on the above notation, the D-LCMV beamforming

algorithm is described in Table I. The D-LCMV beamformer

sets ri
k = wi

k, i.e., wi
k acts both as a part of the local

beamformer, and as a fusion vector to generate the signal zi
k

of which observations are transmitted to the other nodes. The

computation of zk and d at node k is schematically depicted

in Fig. 1. At any point in the iterative process, each node

generates the same beamformer output signal

d = wi H
k yk +

∑

l∈K\{k}

zi
l =

∑

k∈K

wi H
k yk = wi Hy . (18)

In Subsection III-B it is proved that wi → ŵ for i → ∞,

under certain conditions.

It is noted that (15) is the solution of a local LCMV

beamforming problem involving the local sensor signals yq

and the zi
k signals received from the other nodes, i.e., node q

essentially solves

min
w̃q

w̃H
q Ri

ỹq ỹq
w̃q (19)

s.t. Di H
k w̃q = f . (20)

The main intuition behind the D-LCMV beamforming al-

gorithm is the observation that (19)-(20) is a compressed

notation of the following constrained optimization problem in

the network-wide optimization variable w:

min
w,g1,...,gK

wHRyyw (21)

s.t. CHw = f (22)

∀ k ∈ K\{q} : wk = wi
kgk (23)

where the second set of constraints is due to the fact that

node q can only apply a scaling to zi
k = wi H

k yk if k 6= q.

Since node q implicitly solves (21)-(23), the constraints (2)

are satisfied in each iteration of the D-LCMV beamforming

algorithm. The D-LCMV beamforming algorithm essentially

solves (21)-(23) multiple times while changing the node index

q in each iteration. This is akin to an alternating optimization

(AO) or block coordinate descent-type algorithm. However,

the important difference is that certain subsets of optimization

variables are not truly fixed, but constrained to a 1-dimensional

subspace instead. Note that, even though (19)-(20) and (21)-

(23) are equivalent, the former does not require global knowl-

edge of the network-wide covariance matrix Ryy .

Remark I: It is re-iterated that each iteration of the algo-

rithm is performed on a different time segment of the signals

in y, i.e., zi
k and zi+1

k will actually contain compressed sensor

signal observations at different points in time. This can also

be seen in the sample indices used in step 3, which are in-

cremented together with the iteration index i. Therefore, each

observation of yk is only compressed and transmitted once.

This corresponds to an adaptive time-recursive implementation

where the signal statistics and the corresponding beamformer

are regularly updated based on previous observations, to com-

press and fuse future sensor signal observations.

Remark II: The broadcast of the ci+1
q ’s and gi+1

−q ’s requires

some minor additional communication bandwidth which is

negligible compared to the broadcast of MN samples of

the zk’s, ∀ k ∈ K. It is noted that the transmission of the

gi+1
−q ’s could in principle be omitted, since the update (15)

does not change under a non-zero scaling of the wi
k’s or

zi
k’s, and therefore the algorithm will eventually converge

to the same set of wi
k’s. However, transmitting the gi+1

−q ’s

has the advantage that it allows all the nodes to immediately

adjust their local beamformer coefficients to always satisfy the

constraints at any time, i.e., also when the algorithm has not

converged yet.

Remark III: It is noted that the g1, . . . , gK can be fixed

to one in the local LCMV problem (21)-(23) so that all

the gi+1
−q ’s are effectively all-ones vectors and can be left

out. This may indeed also yield a convergent algorithm.

However, it will significantly decrease the convergence speed

due to the reduction of degrees of freedom in each iteration.

Secondly, and more importantly, the algorithm can get stuck

in a suboptimal equilibrium point due to insufficient degrees
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TABLE I
DESCRIPTION OF THE D-LCMV BEAMFORMING ALGORITHM IN A FULLY CONNECTED BROADCAST NETWORK.

1) Set i← 0, q ← 1, and initialize all w0
k, ∀ k ∈ K, with random entries.

2) Each node k ∈ K broadcasts the constraint vector ci
k = CH

k wi
k to all other nodes.

3) Each node k ∈ K broadcasts N new compressed sensor signal observations zi
k[iN + j] = wi H

k yk[iN + j]
(where j = 1 . . . N ) to all other nodes.

4) Each node k ∈ K generates the beamformer output signal d corresponding to this block of observations:

d[iN + j] = wi H
k yk[iN + j] +

∑

l∈K\{k}

zi
l [iN + j] . (14)

5) Node q performs the following tasks:

• Re-estimate Ri
ỹq ỹq

= E{ỹi
qỹ

i H
q } based on the N new observations of ỹi

q, similarly to (7).

• Construct Di
q from Cq and the ci

k’s, ∀ k ∈ K\{q}.
• Compute the local LCMV beamformer w̃i+1

q as

w̃i+1
q =

[
wi+1

q

gi+1
−q

]
=
(
Ri

ỹq ỹq

)−1

Di
q

(
Di H

q

(
Ri

ỹq ỹq

)−1

Di
q

)−1

f . (15)

• Update the vector ci
q to ci+1

q = CH
q wi+1

q .

• Broadcast the vectors ci+1
q and gi+1

−q to all the other nodes.

6) Each node k ∈ K updates its local copies of the ci
k’s, ∀ k ∈ K\{q}, according to

C
i+1

−q = diag
(
gi+1
−q

)H
C

i

−q (16)

where diag (x) is the operator that converts a vector x into a diagonal matrix (such that the k-th diagonal

element correpsonds to the k-th entry in x).

7) Let gi+1
−q = [gi+1

1 . . . gi+1
q−1 gi+1

q+1 . . . gi+1

K ]T , then each node k ∈ K\{q} updates its wi
k according to

wi+1

k = gi+1

k wi
k . (17)

8) i← i + 1 and q ← (q mod K) + 1.

9) Return to step 3.

of freedom. For example, consider the case where Mk = 2,

∀ k ∈ K, and Q = 2, i.e., each node has 2 sensors and there

are two linear constraints. In this case, it is clear that the

D-LCMV beamformer cannot perform any update since the

degrees of freedom at each node are fully spent to satisfy the

linear constraints.

Remark IV: The operation that dominates the computational

complexity of the D-LCMV beamformer is the inversion of the

(Mk+K−1)×(Mk+K−1) covariance matrix Ri
ỹq ỹq

in (15).

Since the inversion of a P ×P matrix has complexity O(P 3),
and since the centralized LCMV beamformer inverts an M ×
M covariance matrix Ryy where M ≫Mk + K − 1, the D-

LCMV beamformer has a significantly reduced computational

power (at the cost of a slower tracking, see Subsection VI-F).

B. Conditions for convergence of the D-LCMV beamformer

To investigate the performance of the algorithm, we neglect

estimation errors in Ri
ỹq ỹq

due to the use of a finite observation

window (see step 5 of the algorithm). Therefore, the theoretical

analysis is only asymptotically valid (i.e., for large N ). Under

this assumption, the convergence and optimality of the D-

LCMV beamformer is described in the following theorem,

which is proven in Section IV.

Theorem III.1. The D-LCMV beamformer wi converges to

the centralized LCMV beamformer ŵ, i.e.,

lim
i→∞

wi = ŵ (24)

if the following (sufficient) conditions are both satisfied:

1) Ryy = E{yyH} has full rank.

2) ∃ ǫ > 0,∃ L ∈ N : i > L⇒ σQ

(
C

i
)

> ǫ

where σQ (X) denotes the Q-th largest singular value of X

and where C
i

is (12) with row k removed.

The first condition is required to guarantee that the cen-

tralized beamformer (6) is uniquely defined. It is usually

satisfied in practice due to uncorrelated sensor noise. If Ryy

is rank-deficient, a minimum-norm LCMV solution should

be used instead of (6), which is outside the scope of this

paper. The second condition is more technical, and states

that the compressed constraint matrix C
i

should not approach

(column) rank deficiency if i → ∞ (note that it implies that

the number of constraints Q should not exceed the number of

nodes K). This second condition is usually satisfied in practice

if the number of constraints is much smaller than the number

of nodes (Q≪ K). This follows from the intuitive argument

that the probability of having a rank-deficient C
i

is smaller
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when the number of rows (K) is much larger than the number

of columns (Q). If Q ≈ K, problems may arise due to an ill-

conditioned C
i
, which is explained in the proof of Theorem

III.1. In this case, simulations indicate that convergence still

holds, but optimality may be lost (see Section VI).

Remark V: It is noted that C
i

has at least rank 1 since in

every iteration i, the sum of its rows is equal to fH , which is

assumed to be a non-zero vector (to avoid the trivial solution

ŵ = 0). Therefore, the second condition is automatically satis-

fied if Q = 1, in which case Ryy having full rank is sufficient

for the D-LCMV beamformer to converge to the centralized

LCMV beamformer. Note that the so-called minimal variance

distortionless response (MVDR) beamformer is a special case

of the LCMV beamformer with Q = 1, and so a distributed

MVDR beamformer that always converges can be realized as

long as Ryy has full rank (see also [22]).

Remark VI: How to proactively avoid suboptimal equilibria

is still an open question (these appear quite frequently if

Q ≈ K). Nevertheless, a suboptimal equilibrium can be easily

detected by monitoring whether σQ(C
i
) → 0, and then a

retroactive measure can be taken to exclude it (note that C
i

is known to each node). For example, a node k can split its

local wi
k into two linearly independent components (assuming

Mk > 1)

wi
k = wi

k,1 + wi
k,2 (25)

and transmit two zi
k-signals, i.e., zi

k,1 = wi H
k,1yk and zi

k,2 =

wi H
k,2yk. The D-LCMV beamformer can then continue as if

these two signals are transmitted by two different (virtual)

nodes (details are omitted). This increases the number of rows

of C
i
, and therefore usually also increases its column rank

such that σQ(C
i
) > ǫ. Preferably, the two components wi

k,1

and wi
k,2 are chosen such that σQ(C

i
) is maximized. This fix

can be applied each time σQ(C
i
) → 0, until convergence to

ŵ. Note that increasing the number of zi
k’s requires a larger

communication bandwidth. However, this is only temporary,

because once the suboptimal point has disappeared, the two

local filters wi
k,1 and wi

k,2 can be added again to transmit

a single zi
k-signal. The same suboptimal equilibrium cannot

reappear due to the monotonic decrease of the cost function

(3) in each iteration of the D-LCMV beamformer (cfr. the

proof of Theorem III.1).

IV. PROOF OF CONVERGENCE

Before proving Theorem III.1, we need another theorem that

considers the following AO procedure (based on (21)-(23)):

1) Initialize i ← 0, q ← 1, and initialize w0 as a random

M -dimensional vector.

2) Obtain wi+1 as the solution of the following constrained

optimization problem:

wi+1 = arg min
w

J(w) (26)

s.t. CHw = f (27)

∀ k ∈ K\{q}, ∃ gk ∈ C : wk = wi
kgk . (28)

3) i← i + 1 and q ← (q mod K) + 1.

4) Return to step 2.

Then the following lemma holds:

Lemma IV.1. If Ryy has full rank and the sequence {wi}i∈N

is generated by the AO procedure defined above, then

lim
i→∞

‖wi+1 −wi‖ = 0 . (29)

Proof: For the sake of an easy exposition, we will only

prove the theorem for the real-valued case. The complex case

can be easily transformed in a real-valued problem statement1,

for which the proof below still holds.

Since wi always satisfies the constraints (27) and (28), ∀i >

0, and since the new wi+1 minimizes the cost function under

the same constraints, it must hold that J(wi+1) ≤ J(wi),
∀ i > 0. Therefore, and since the cost function J(w) is

bounded below by zero, the limit limi→∞ J(wi) must exist

and is finite. Therefore
∞∑

i=0

(
J(wi)− J(wi+1)

)
= J(w0)− lim

i→∞
J(wi) <∞ . (30)

Define pi = wi+1 − wi, i.e., at iteration i, the above AO

procedure takes a step in the direction pi, starting at the point

wi. Define the function f(t) = J(wi+tpi), then its derivative

is given by
df(t)

dt
= ∇J(wi + tpi)T pi (31)

where ∇J(w) denotes the gradient of J in the point w.

Since both points wi and wi+1 (for i > 0) satisfy all

constraints (27)-(28), and because the constraints are linear, all

combinations wi+tpi, ∀t ∈ R, will also satisfy the constraints

(27)-(28). Therefore, and since wi+1 = wi + pi is the point

that minimizes J(w) under the constraints (27)-(28), we have

df(t)

dt

∣∣∣∣
t=1

= 0 . (32)

The latter, together with (31) implies that

∇J(wi+1)T pi = 0 . (33)

Using the fact that ∇J(w) = 2Ryyw, it can be verified that

J(wi)− J(wi+1) = pi T Ryyp
i −∇J(wi+1)T pi . (34)

With (33), we obtain

J(wi)− J(wi+1) = pi T Ryyp
i ≥ λmin‖p

i‖2 (35)

where λmin denotes the smallest eigenvalue of Ryy . Summing

both sides of the inequality (35) up to infinity, and using (30)

and the fact that λmin > 0 (Ryy is full rank), we obtain

∞∑

i=0

‖pi‖2 <∞ (36)

and therefore (29) must hold.

From these results, we can easily obtain the following

corollary.

Corollary IV.2. If Ryy has full rank and the sequence

{wi}i∈N is generated by the D-LCMV beamforming algo-

1E.g., by applying similar transformations as in the appendix of [32].
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rithm, then

lim
i→∞

‖wi+1 −wi‖ = 0 . (37)

Proof: This is straightforwardly proven by observing

that the updates of the AO procedure from Lemma IV.1

are equivalent to the updates of the D-LCMV beamforming

algorithm.

It is noted that this lemma does not claim that the D-LCMV

beamformer (or the equivalent AO procedure) converges.

Before continuing with the proof of the main convergence

theorem, we first introduce some extra notation that will be

needed in the proof. Define the block-diagonal compression

matrix Wi such that C
i
= Wi HC, i.e.,

Wi = Blockdiag
(
wi

1,w
i
2, . . . ,w

i
K

)
(38)

=




wi
1 0 . . . 0

0 wi
2 0

...
. . .

...

0 0 . . . wi
K


 . (39)

Similarly, we define

Wi
k = Blockdiag

(
wi

1, . . . ,w
i
k−1, IMk

,wi
k+1 . . . ,wi

K

)
(40)

i.e., the matrix Wi where wi
k is replaced by an identity matrix.

Notice that, with this definition, Ri
ỹ1ỹ1

= Wi H
1 RyyW

i
1 and

Di
1 = Wi H

1 C (this only holds for node k = 1, since there is

an additional permutation involved when k 6= 1).

We now prove the main theorem.

Proof of Theorem III.1: We first analyze the situation

where the D-LCMV beamforming algorithm has converged to

an equilibrium, and we prove that this equilibrium corresponds

to the centralized LCMV solution ŵ, assuming the conditions

listed in Theorem III.1 are satisfied. Secondly, we show how

this analysis can be modified to incorporate the situation

where D-LCMV is not in equilibrium, and we show that

this situation cannot last, i.e., D-LCMV must converge to the

optimal solution.

Assume the D-LCMV beamforming algorithm is in an

equilibrium at iteration i, i.e., wi+n = wi, ∀ n ∈ N.

Furthermore, assume without loss of generality that node 1
performs an update at iteration i. Hence, node 1 computes

w̃i+1
1 according to (15) with q = 1, which is the solution of a

local LCMV problem. Therefore, it must satisfy the following

system of linear equations (similar to (5)):
{

Ri
ỹ1ỹ1

w̃i+1
1 −Di

1λ1 = 0

Di H
1 w̃i+1

1 = f
(41)

where we introduced the (implicit) Lagrange parameter vector

λk, corresponding to node k. It is noted that the Lagrange

parameters also change over the different iterations, but we

omit the iteration index for the sake of an easier notation. By

using Ri
ỹ1ỹ1

= Wi H
1 RyyW

i
1 and Di

1 = Wi H
1 C, we can

rewrite the upper part of (41) as

Wi H
1

(
RyyW

i
1w̃

i+1
1 −Cλ1

)
= 0 . (42)

Since the algorithm is in equilibrium, we know that w̃i+1
1 =[(

wi
1

)T
1 1 . . . 1

]T
, and hence we know from selecting the

first M1 equations of (42), that

E1Ryyw
i = C1λ1 (43)

where Ek is a selection matrix that selects the rows from Ryy

corresponding to yk, i.e.,

Ek =
[

O
Mk×

∑
k−1

l=1
Ml

IMk
O

Mk×
∑

K

l=k+1
Ml

]
(44)

where OP×N denotes an all-zero P × N matrix. The com-

pressed equations of (42) can then be written as

Wi HRyyw
i = C

i
λ1 (45)

where we have included an extra compressed equation by left-

multiplying (43) with the row vector wi H
1 .

In the next iterations, the other nodes will also perform

updates. Since the algorithm is in equilibrium, similar expres-

sions as (43) and (45) can be derived for other nodes k 6= 1,

yielding

EkRyyw
i = Ckλk (46)

Wi HRyyw
i = C

i
λk (47)

which holds ∀k ∈ K. Stacking the equations in (46), ∀k ∈ K,

yields

Ryyw
i =




C1λ1

...

CKλK


 . (48)

Notice that each node k can choose a different λk. However,

if we can prove that λk = λq = λ, ∀ k, q ∈ K, then

(48) shows that wi satisfies the linear system of equations

of the centralized LCMV beamformer given in (5) (notice

that the lower part of (5) is always satisfied since the D-

LCMV beamformer ensures that the constraints CHwi = f

hold ∀ i ∈ N\{0}). The fact that λk = λq = λ, ∀ k, q ∈ K,

can be easily shown by noting that (47) holds for all λk’s, and

that it has a unique solution due to the fact that C
i

has full

rank ∀ i ∈ N (second condition of the theorem). This proves

that wi = ŵ in equilibrium.

Secondly, we prove that the sequence {wi}i∈N indeed

converges to an equilibrium state. We again assume that node

1 performs an update at iteration i, and we proceed until

iteration i + K such that each node has performed an update.

In each iteration, we again extract a set of equations, similar

to (47)-(48). However, the full set of equations given in (47)

and (48) only holds after convergence to an equilibrium, i.e., if

w̃i+1

k =
[(

wi
k

)T
1 1 . . . 1

]T
, ∀k ∈ K. When the algorithm has

not converged to an equilibrium, the set of equations, stacked

for the different nodes over the K previous iterations, must be

modified to

Ryyw
i + δi =




C1λ1

...

CKλK


 (49)

∀ k ∈ K :
(
C

i
+ ∆i

k

)
λk = Wi HRyyw

i + ρi
k (50)
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where δi, ρi
k and ∆i

k compensate for the fact that w̃i+n
k 6=[(

wi+n−1

k

)T
1 1 . . . 1

]T
for n = 1, . . . ,K. Because of Corol-

lary IV.2, we know that ‖wi+1−wi‖ becomes infinitesimally

small when i→∞. Therefore, w̃i
k →

[(
wi−1

k

)T
1 1 . . . 1

]T
,

and hence

lim
i→∞

‖δi‖ = 0 (51)

and

∀ k ∈ K : lim
i→∞

‖ρi
k‖ = 0, lim

i→∞
‖∆i

k‖F = 0 (52)

where ‖.‖F denotes the Frobenius norm. From (52) and (50),

and since σQ(C
i
) > ǫ (assuming i > L), we find that

∀ k, q ∈ K : lim
i→∞

‖λk − λq‖ = 0 . (53)

Therefore, and because of (51), the system of equations (49)

converges to (5) when i→∞. Since the lower set of equations

in (5) is always satisfied in the D-LCMV algorithm, all the

λk’s, ∀ k ∈ K, must converge to the λ that solves (5), and

therefore limi→∞ wi = ŵ.

V. D-LCMV BEAMFORMING IN A NETWORK WITH A TREE

TOPOLOGY

The D-LCMV beamforming algorithm can also be applied

in a network with a tree topology (the choice for a tree topol-

ogy will be motivated later). For the time being, we assume

that each connected node pair has a reserved communication

link, allowing each node to transmits a different signal to each

of its neighbors. We denote zi
kq as the signal of which node

k transmits N observations to node q during iteration i in

the algorithm. This signal is a fusion of node k’s own sensor

signals yk and all the signals that node k obtains from its

neighbors (excluding node q), i.e.,

zi
kq = wi H

k yk +
∑

l∈Nk\{q}

zi
lk (54)

where Nk denotes the set of neighbors of node k and wi
k

denotes an Mk-dimensional fusion vector, which also acts

as part of the beamformer coefficients in w (similarly to D-

LCMV in fully connected networks). The generation of z31,

z32 and z34 at node 3 of the example network shown in Fig.

2, is schematically depicted in Fig. 3.

An important observation here is that zi
qk is excluded from

the summation in (54), which is due to two reasons. First,

inclusion of zi
qk in zi

kq would yield a causality issue since

an observation of zi
kq could then not be computed without the

corresponding observation of zi
qk and vice versa, resulting in a

chicken-and-egg problem. Secondly, if zi
qk would be included

in zi
kq , a feedback path would exist between node k and node

q. Indeed node q will then receive an input signal zi
kq which

then partly depends on its own local parameter wi
q due to

the inclusion of zqk, which contains wi H
q yq. Therefore, if

node q would optimize wi
q with respect to its current input

signal statistics, these statistics will immediately change after

the update of wi
q, and therefore wi

q instantaneously becomes

suboptimal again. This affects the monotonic decrease of the

cost function (3) (see the proof of Theorem III.1).

4

9

5
6

7

8

3
2

1

Fig. 2. Example of a network graph with tree topology with 9 sensor nodes.

To node 4

To node 2

To node 1From node 1

From node 4

From node 2

d

y3

w3

z23 z34

z13 z31

z32 z43

Fig. 3. Signal generation within node 3 of the network shown in Fig. 2.

The exclusion of zi
qk in the summation in (54) is referred

to as transmitter feedback cancellation (TFC) in [15]. Note

that, due to the fact that the network has a tree topology,

there are no cycles in the graph2, hence all other possible

feedback paths are automatically avoided if TFC is applied.

To improve the communication bandwidth efficiency, node k

can also broadcast the same signal zi
k = wi H

k yk +
∑

l∈Nk
zi
lk

to all of its neighbors. Neighbor q can then subtract its own

transmission signal from zi
k to obtain zi

kq . This is referred to

as receiver feedback cancellation (RFC) in [15]. However, ad-

ditional measures need to be taken to circumvent the chicken-

and-egg problem (we refer to [15] for more details). Due to

the theoretical equivalence between TFC and RFC, we only

focus on the TFC formulation as given in (54).

Let zi
→k denote the signal vector in which all zi

qk, ∀q ∈ Nk

are stacked. The zqk’s are ordered such that zmk is above

znk if m < n. This ordering also gives a unique label from

{1, . . . , |Nk|} to each branch of the tree that is connected to

node k (these labels will be used later). Similarly to (8), we

(re-)define

ỹi
k =

[
yk

zi
→k

]
(55)

which is a vector containing all the signals that are available

to node k.

Consider the network graph cut that only goes through the

link (k, q), dividing the network in two sets of nodes on both

sides of the cut. Denote Vkq as the set that contains node k,

2Note that, although a fully-connected network graph has many cycles,
feedback cannot occur in the D-LCMV algorithm for fully connected net-
works, since the transmission signal zi

k
of node k does not contain signal

components that node k has received from other nodes. For the same reason,
causality problems are also not an issue.
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and denote Vqk as the set that contains node q. We then define

ci
kq =

∑

l∈Vkq

ci
l =

∑

l∈Vkq

CH
l wi

l . (56)

We define C
i

→k as the stacked version of all ci H
qk ’s, ∀q ∈ Nk,

based on the same ordering as the corresponding zi
qk’s in the

vector zi
→k. With this, we (re-)define the matrix Dk (compare

with (13)):

Di
k =

[
Ck

C
i

→k

]
. (57)

Example: Consider the network graph depicted in Fig.

2, and consider node 4 in particular. The signal that node

3 transmits to node 4 is equal to

zi
34 = wi H

3 y3 + zi
13 + zi

23

and

zi
→4 =




zi
34

zi
64

zi
84

zi
94


 .

The graph cut through edge (3,4) yields two sets of nodes

V34 = {1, 2, 3} and V43 = {4, 5, 6, 7, 8, 9}. This yields

ci
34 = ci

1 + ci
2 + ci

3

ci
43 = ci

4 + ci
5 + ci

6 + ci
7 + ci

8 + ci
9 .

We also observe that

C
i

→4 =




ci H
34

ci H
64

ci H
84

ci H
94


 =




ci
1 + ci

2 + ci
3

ci
5 + ci

6 + ci
7

ci H
8

ci H
9


 .

With the notation introduced above, we can define the

D-LCMV beamforming algorithm for networks with a tree

topology, of which the algorithm description can be found in

Table II. To simplify the algorithm description, we have not

included the computation and the required data dissemination

to construct the C
i

→k’s, i.e., the algorithm description assumes

that C
i

→k is always up to date when node k performs an

update. This requires some minor communications between

certain nodes, each time a node in the network performs an

update. Step 2 also omits some (practical) details about the

data flow of the zi
kq signal observations, for which the order

should satisfy the dependencies in the definition of the zi
kq’s,

as given in (54). Indeed, the construction of zi
kq requires other

z-signals unless node k is a leaf node, i.e., a node with a

single neighbor. Therefore, there is a first data flow from the

leaf nodes towards the root node(s), followed by a second data

flow from the root node(s) towards the leaf nodes. We refer

to [15] for a detailed description of the data flow for signal

fusion in networks with a tree topology.

It is noted that the convergence conditions in Theorem III.1

are not sufficient anymore in a tree topology. Instead, we will

have to replace the second condition by a per-node condition,

as explained in the following theorem.

Theorem V.1. The D-LCMV beamformer applied in a network

with a tree topology converges to the centralized LCMV

beamformer if the following (sufficient) conditions are both

satisfied:

1) Ryy = E{yyH} has full rank.

2) ∃ ǫ > 0,∃ L ∈ N,∀ k ∈ K :

i > L⇒ σQ

([
ci H

k

C
i

→k

])
> ǫ

where C
i

→k is the stacked version of all ci H
qk ’s, ∀ q ∈ Nk, as

defined in (56), and where ci
k is defined in (12).

The proof of this theorem is omitted but follows a very

similar strategy as the proof of Theorem III.1, as given in

Section IV, again relying on a monotonic decrease of the cost

function (3). From the conditions stated in the theorem, it

is again observed that the algorithm will always converge in

the case of a single constraint (Q = 1) (see also Remark

V). It is noted that the second condition can only be satisfied

if the number of neighbors of each node is larger than Q-

1. Since every tree has leaf nodes, i.e., nodes with a single

neighbor, this implies that Q ≤ 2. Similar problems arise for

each node that has a small number of neighbors, compared

to the number of constraints Q. A possible solution to this

problem was already given in Remark VI, which also applies

here.

It is noted that the D-LCMV beamformer applied in a

network with a tree topology does not require any assumptions

on the updating order of the nodes. This is different from the

unconstrained minimum mean square error-based algorithm in

[15], where convergence can only be proven if the update order

of the nodes follows a path in the tree.

VI. SIMULATIONS

In this section, we provide Monte-Carlo (MC) simulations

of the D-LCMV beamformer, and compare it with the corre-

sponding centralized LCMV beamformer.

A. Generation of sensor signal observations

In each MC run, a new scenario is created, which al-

ways contains 20 localized source signals defined by a 20-

dimensional stochastic variable x. The observations of x are

drawn from a uniform distribution over the interval [−0.5; 0.5],
and they are independent over time and over the 20 entries in

x. The 20 sources are observed by a WSN with K nodes,

each having Mk = 6 sensors (and therefore M = 6K). The

source signals impinge on the different sensors with a different

magnitude (we assume instantaneous mixtures without delays),

yielding 20 M -dimensional steering vectors from the sources

to the M sensors, which define the columns of the M × 20
steering matrix A. The entries of A are also drawn from

a uniform distribution over the interval [−0.5; 0.5]. The M

sensors collect an observation at sampling instant t, generated

as

y[t] = Ax[t] + n[t] (61)

where x[t] is the t-th sample of x and where n[t] is drawn

from a zero-mean uniform distribution with half the power
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TABLE II
DESCRIPTION OF THE D-LCMV BEAMFORMING ALGORITHM IN A NETWORK WITH A TREE TOPOLOGY.

(It is assumed that C
i

→q is always up to date when node q performs an update)

1) Set i← 0, q ← 1, and initialize all w0
k, ∀ k ∈ K, with random entries.

2) ∀ k ∈ K: use (54) to compute/transmit N new observations zi
kl[iN + j] (for j = 1 . . . N ), ∀ l ∈ Nk (details

omitted).

3) Each node k ∈ K generates the beamformer output signal d corresponding to this block of N observations:

d[iN + j] = wi H
k yk[iN + j] +

∑

l∈Nk

zi
lk[iN + j] . (58)

4) Node q constructs Di
q from Cq and C

i

→q, re-estimates Ri
ỹq ỹq

= E{ỹi
qỹ

i H
q } based on the N new

observations of ỹi
q (similarly to (7)), and computes w̃i+1

q as

w̃i+1
q =

[
wi+1

q

gi+1
q

]
=
(
Ri

ỹq ỹq

)−1

Di
q

(
Di H

q

(
Ri

ỹq ỹq

)−1

Di
q

)−1

f . (59)

5) Node q disseminates the entries of gi+1
q to the corresponding branches (see next step).

6) Each node k ∈ K\{q} updates its wi
k according to

wi+1

k = gi+1
q (n) wi

k (60)

where gi+1
q (n) is the n-th entry in gi+1

q and n is the label of the branch of node q to which node k belongs.

7) i← i + 1 and q ← (q mod K) + 1.

8) Return to step 2.

of the source signals in x (this models spatially uncorrelated

sensor noise).

B. Performance measures

To assess the performance of the D-LCMV beamformer, we

compute the difference between the output SNR (in dB) of the

D-LCMV beamformer and of the corresponding centralized

LCMV beamformer, over the different iterations, i.e.,

∆SNRi = 10 log
(
wi HRyyw

i
)
− 10 log

(
ŵHRyyŵ

)
. (62)

Ideally, this difference converges to ∆SNRi →0 dB. Fur-

thermore, we also compute the averaged squared difference

between the beamformer coefficients of the D-LCMV and the

centralized LCMV beamformer over the different iterations,

i.e.,
1

M
‖wi − ŵ‖2 . (63)

C. Simulation results in a fully connected broadcast network

The D-LCMV beamformer is simulated in a fully connected

broadcast network based on the sensor signals generated as in

(61). The constraint matrix C is always chosen as the first Q

columns of A, and the response vector f = [1 . . . 1]T . This

corresponds to the case where the desired output response is

a mixture of the first Q source signals of x. The estimation of

the correlation matrices is based on a temporal averaging over

N = 10000 samples, which are looped for t > 10000, i.e.,

the same set of samples is used in every iteration. The latter

allows to analyze the algorithm as if the covariance matrix are

estimated perfectly in each iteration. In Subsections VI-E and

VI-F, we simulate a more realistic sliding-window scenario

using a different set of samples in each iteration. For each

choice of K and Q, we perform 100 MC runs, and we show

the median of the resulting performance curves.

The results for a network with K = 8 and K = 20 nodes

are shown in Fig. 4 and 5, respectively. In each figure, we show

the results for a number of constraints equal to Q = 1, 3 ,5,

. . ., K − 1, K. The results for Q = 1 and Q = K are plotted

in blue (dashed line) and in red (dot-dashed line), respectively.

For all other values of Q, we plot the results as a thin blue line

(omitted in the legend) or as a thick green line (for the largest

Q in the list that still yields convergence). In the lower plot,

we also show the 25% and 75% percentiles for the dashed

blue, the dot-dashed red and the green thick lines (these are

omitted in the upper plot for the sake of intelligibility).

From these figures, we observe that the convergence speed

decreases for larger Q, i.e., a small number of constraints

yields a faster convergence. Naturally, also the value of K

influences the convergence speed, i.e., more nodes require

more iterations to reach the centralized LCMV beamformer.

Furthermore, we observe that the D-LCMV beamformer con-

verges to a beamformer different from the centralized LCMV

beamformer if Q = K, and in most cases also if Q = K−1. In

general, we can state (as a rule of thumb) that the centralized

LCMV beamformer is achieved whenever Q ≤ K
2

. However,

this is a conservative rule, and in many cases optimal perfor-

mance is achieved, even when Q > K
2

(see, e.g., the green

curve in Fig. 5).
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Fig. 4. Assessment of the D-LCMV beamformer over different iterations in
a fully connected broadcast network with K = 8 nodes.
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Fig. 5. Assessment of the D-LCMV beamformer over different iterations in
a fully connected broadcast network with K = 20 nodes.

D. Simulation results in networks with a tree topology

We performed the same MC simulations in networks with

a tree topology, for the same parameter settings as in the

previous subsection. However, every MC run was simulated

in a different random tree (where the number of nodes K is

fixed). The results for networks with K = 8 and K = 20
nodes are shown in Fig. 6 and 7, respectively. It is noted that

the number of input signals per node is much smaller in a tree

topology (compared to a fully connected topology). If Q is

larger than the number of available input signals at a particular

node, its local LCMV problem has no solution. Therefore, we

have only simulated the cases Q = 1, Q = 2 and Q = 4. As

explained in Section V, the sufficient conditions for optimality

given in Theorem V.1 can only be satisfied for Q ≤ 2, which

is why the experiments with Q = 4 do not converge to the

centralized solution.

It is noted that the experiments where Q = 1 always

converge (as predicted by the theory in Section V). However,
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Fig. 6. Assessment of the D-LCMV beamformer over different iterations in
a tree topology network with K = 8 nodes.
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Fig. 7. Assessment of the D-LCMV beamformer over different iterations in
a tree topology network with K = 20 nodes.

in the case where Q = 2, we have often observed that the

algorithm gets stuck in a suboptimal point. Therefore, we have

applied a fix (see Remark VI) to push the algorithm out of

this suboptimal point. In each experiment, the fix is applied

in iteration 200 (and the iterations thereafter). This is clearly

visible in the figures, where the green lines reach a suboptimal

steady-state until i = 200, after which they start converging

again towards the optimal solution. It is noted that this fix

requires a (temporary) increase in communication bandwidth.

Note that a similar fix could be applied for the case with Q = 4
(requiring an even larger temporary increase in communication

bandwidth).

E. Influence of sample size N

In this section, we investigate the influence of the sample

size N , i.e., the number of (compressed) sensor observations

that are transmitted in between two iterations of the D-LCMV

beamformer to estimate the local covariance matrix Ri
ỹq ỹq

at
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Fig. 8. Assessment of the adaptive D-LCMV beamformer and the
adaptive centralized LCMV beamformer for different sample sizes N ∈
{10000, 5000, 1000, 300}. The plots show the median over 200 MC runs.

the updating node q. Note that N will depend on the dimension

of Ri
ỹq ỹq

, i.e., a larger covariance matrix requires a larger

sample size N to obtain a sufficiently accurate estimate.

The simulation scenario is exactly the same as in the previ-

ous two experiments, but instead of iterating over the same set

of N observations, we now generate N new observations of

the sensor signals y in each iteration (for different values of

N ∈ {10000, 5000, 1000, 300}). The results over 200 MC runs

are shown in Fig. 8 for an adaptive D-LCMV beamformer in

a fully-connected network with K = 8 nodes and with Q = 2.

We compare the performance with the corresponding adaptive

centralized LCMV beamformer which also uses sample sets

of N sensor observations per update. It is not surprising that

the performance improves if a larger value of N is chosen

since this reduces the variance of the estimation error on the

entries in the covariance matrices.

An important observation is that the D-LCMV beamformer

outperforms the centralized beamformer for finite sample

sizes. This has also been observed in other distributed beam-

former or signal estimation algorithms (see, e.g., [14], [16],

[32]). This is due to the fact that the D-LCMV beamformer

operates on smaller covariance matrices, whereas the central-

ized beamformer operates on a single covariance matrix with

a large dimension. Estimation of small covariance matrices

requires less data, and the resulting estimates are numerically

more robust to matrix inversion compared to larger covariance

matrices.

F. Adaptive scenario

To investigate the tracking performance of the D-LCMV

algorithm, we again simulate the same scenario as in the

previous subsections (here in a fully-connected network with

Q = 2, K = 8, and N = 5000). However, this time the last

18 columns of A in (61) are initially set to zero, meaning that

there is no spatially correlated noise. After every 20 iterations,

we ‘activate’ 3 additional localized noise sources by filling

the corresponding steering vectors in A with non-zero entries.
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N
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i
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Output SNR

 

 

Adaptive D−LCMV beamformer

Adaptive centralized LCMV beamformer

Fixed LCMV beamformer

Fig. 9. Assessment of the adaptive D-LCMV and centralized LCMV
beamformers in a dynamic scenario. The plot shows the median over 200
MC runs.

This means that the input SNR will decrease after every 20

iterations, and the (D-)LCMV beamformer needs to adapt to

the changing sensor correlations. The resulting output SNR

is shown in Fig. 9 where we compare the adaptive D-LCMV

beamformer with the adaptive centralized LCMV beamformer,

as well as with a fixed (non-adaptive) LCMV beamformer. The

latter is computed based on an a-priori training with 200000

observations of the initial scenario. Since 200000 ≫ N , the

fixed LCMV beamformer has the best performance in the intial

scenario. However, once the scenario changes (i.e., more noise

sources are added), the adaptive beamformers immediately

start outperforming the fixed beamformer. Not suprisingly,

it is observed that the D-LCMV beamformer has a slower

tracking performance than the centralized LCMV beamformer,

which results in the SNR dips in Fig. 9. However, note

that the D-LCMV beamformer requires roughly 6 times less

communication bandwidth and 50 times less computational

power (see Remark IV).

VII. CONCLUSIONS

In this paper, we have considered distributed LCMV (D-

LCMV) beamforming in fully connected broadcast WSNs or

tree topology WSNs, where each node fuses multiple signals

into a single-channel signal that is transmitted to the other

nodes. Although the per-node signal transmission is greatly

reduced, we have shown that it is possible for each node

to generate the centralized LCMV beamformer output as if

it has access to all sensor signals in the entire network.

We have provided sufficient conditions for convergence and

optimality of the D-LCMV beamformer. We have provided

Monte-Carlo simulations to demonstrate the performance of

the D-LCMV beamformer in different scenarios where the

number of constraints and the number of nodes is varied.
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