
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1994

Distributed Lock Management for Mobile Transactions Distributed Lock Management for Mobile Transactions

Jin Jing

Omran Bukhres

Ahmed K. Elmagarmid
Purdue University, ake@cs.purdue.edu

Report Number:
94-073

Jing, Jin; Bukhres, Omran; and Elmagarmid, Ahmed K., "Distributed Lock Management for Mobile

Transactions" (1994). Department of Computer Science Technical Reports. Paper 1172.

https://docs.lib.purdue.edu/cstech/1172

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

DISTRIBUTED LOCK MANAGEMENT
FOR MOBILE TRANSACTIONS

Jin Jing

Omran Bukhres

Ahmed Ebnagarmid

CSD-TR·94-073

October 1994

To appear in the 15th International Conference on Distributed Computing Sys

tems, Vancouver, BC, Canada, June 1995

Distributed Lock Management

for Mobile Transactions

Jin Jing Omran Bukhres Ahmed Elmagarmid

Department of Computer Sciences

Purdue University

West Lafayette, IN 47907

Abstract

In a mobile computing environment, a user carrying a portable computer can execute a mobile trans

action by submitting the operations of the transaction to distributed data servers from different locations.

The mobility of transaction hosts introduces new issues concerning the efficiency of transaction lock man

agement in the distributed data servers. For example, even in a fully replicated database environment,

read locks of a transaction may be executed at different servers, because these operations may be sub

mitted from different locations. The distribution of read locks implies that extra messages are required

to release these locks when the mobile host decides to commit the transaction. In this paper, we present

a new lock management scheme which allows a read unlock for an item to be executed at any copy site

of that item; the site may be different from the copy site on which the read lock is set. The scheme,

therefore, utilizes the replicated copies of data items to reduce the message costs incurred by the mobility

of the transaction host. We demonstrate this idea in an optimistic locking algorithm called 02PL-MT.

Like its counterpart algorithm 02PL, presented in [4] for a conventional distributed database system,

02PL-MT grants read locks immediately on demand and defers write locks until the commitment time.

However, 02PL-MT requires the transmission of fewer messages than 02PL in a mobile environment

in which data items are replicated. The idea presented in this paper can also be used to improve the

efficiency of other distributed lock protocols (e.g., pessimistic locking) in a mobile environment, if the

number of read operations dominates that of write operations.

Index terms: distributed lock management, database transaction management, replicated data, opti

mistic locking, mobile computing system.

1 Introduction

Advances in wireless networking technology have engendered a new computing paradigm, called mobile

computing, in which users carrying portable devices have access to a shared infrastructure independent of

their physical location.

Following the concepts and terms introduced in [5, 3, 2], a mobile computing environment consists of two

distinct sets of entities: mobile hosts and fixed hosts. Some of the fixed hosts, called Mobile Support Stations

(MSSs), are augmented with a wireless interface to communicate with mobile hosts, which are located within

a radio coverage area called a cell. A mobile host can move within a cell or between two cells while retaining

its network connections.

The mobile computing paradigm introduces new technical issues in the area of database systems [5, 1].

For example, techniques for traditional distributed database management have been based on the assumption

that the location of and connections among hosts in the distributed system do not change. However, in mobile

computing, these assumptions are no longer valid. Mobility of hosts engenders a new kind of locality that

migrates as hosts move. As a consequence, existing solutions for traditional distributed database management

may not be readily applicable to the mobile computing environment. In particular, migrating localities may

introduce extra communication costs in fixed networks.

Consider the impact of the mobility of transaction hosts on the management of read locking/unlocking in

a read-one write-all concurrency control protocol. Suppose that a mobile host always issues read operations

to the data server in its MSS and the server will always execute the read lock at the local copy (if it exists).

Over time, read locks for a t'"ransaction may be executed in different data server sites due to the migration of

the host of the transaction. The distribution of read locks requires additional message transmissions among

these data servers over fixed networks for the execution of read unlock operations.

In this paper, we present a new lock management scheme which allows a read unlock for an item to

be executed at any copy site of that item; the site may be different from the copy site on which the read

lock is set. Our proposed scheme, therefore, utilizes the replicated copies of data items to reduce the

message costs incurred by the mobility of the transaction host. We demonstrate this idea in an optimistic

locking algorithm called 02PL-MT. Like its counterpart algorithm 02PL, which was presented in [4] for a

conventional distributed database system, 02PL-MT grants read locks immediately on demand and defers

write locks until commitment time. However, in a mobile environment where data items are replicated,

02PL-MT requires fewer messages than 02PL. The method can also be used to improve the efficiency of

other distributed lock protocols (e.g., pessimistic locking) in a mobile environment where read operations

outnumber write operations.

In a mobile computing system, the mobility factor is of the utmost importance in the design of a dis

tributed algorithm. Because the physical distance between two points does not necessarily reflect the network

distance, the communication path can grow disproportionately to actual movement. For example, a small

movement which crosses network administrative boundaries can result in a much longer path. In a longer

network path, communication traverses more intermediaries and consumes more network capacity. This

mobility of hosts means that even a short transaction may involve a long communication transmission.

Some of the problems involved in supporting transaction services in a mobile environment have been

identified recently in [5, 1, 8]. A prototype of transaction service for mobile hosts is currently being imple

mented on the Code file system [6, 8]. This prototype uses the optimistic concurrency control method in [7]

to enforce the serializable execution of transactions submitted from mobile hosts. The optimistic concurrency

control method is generally suitable for applications of low data contention.

The method presented in this paper assumes that read locks are executed immediately when read opera

tions are performed in data servers. The transactions are thus guaranteed to fetch consistent copies of data

2

items during their execution. This advantage is somewhat diluted by the fact that data items may be subject

to lengthy blocks during periods of disconnection by the mobile hosts. This problem can be addressed through

a timeout mechanism which allows data servers to unilaterally abort transactions whose hosts have been

disconnected for a designated timeout period. The mechanism may accept user-specified timeout parameters

so that mobile hosts can effectively support user applications during periods of disconnection.

The remainder of this paper is organized as follows. Section 2 introduces the system model and relevant

terminology. In Section 3, we describe an 02PL-MT algorithm for distributed lock management that offers

low message cost. Section 4 presents an analytical model of message cost which is used in Section 5 to

compare the 02PL-MT and 02PL algorithms. Concluding remarks and directions for future work are

offered in Section 6.

2 The Mobile Transaction Model

Figure 1 presents a general 'mobile database system model similar to those described in [5, 3, 2] for mobile

computing systems. In this model, both a database server and a database are attached to each fixed host. A

database server is to support basic transaction operations such as read, write, prepare, commit, and abort.

Each MSS has a coordinator which receives transaction operations from mobile hosts and monitors their

execution in database servers within the fixed networks. Transaction operations are submitted by a mobile

host to the coordinator in its MSS, which in turn sends them to the distributed database servers within the

fixed networks for execution. For example, the coordinator will send a read operation to a local server if the

copy to be read is in the local site. Similarly, for a commit operation, the coordinator monitors the execution

of 2PC protocol over all the servers involved in the execution of the transaction.

A mobile host may submit transactions in one of two ways:

1. An entire transaction may be submitted in a single request message; the whole transaction thus becomes

one submission unit. The mobile host also delivers execution control to its coordinator and awaits the

return of the results of the transaction execution.

2. In contrast, the operations of a transaction may be submitted in multiple request messages. A sub

mission unit thus consists of one operation (e.g., read) or a group of operations; the mobile host

interactively submits the operations of a transaction to its coordinator. A subsequent operation can be

submitted only after those previous have been executed and the results returned from the coordinator.

While the first approach involves a single coordinator for all the operations of a transaction, the second

approach may involve multiple coordinators because of the mobility of the host. For example, a mobile host

may move into a new cell after it obtains the results of previously submitted operations. In the new cell, it

will submit the remainder of the transaction operations to the coordinator in the appropriate new MSS. The

first approach is described in [9] and related issues regarding the interface between the mobile host and the

coordinator are discussed. Our proposed model employs the second approach to transaction submissions.

This approach supports the interactive execution of transactions and therefore offers increased flexibility in

3

MSS: Mobile Support Station
Wireless Cell

M1H: Mobile Transaction Host
.................................

Wireless Cell

'.

M1H

°
° MTH

M1H

°

.. '..........................

° MTH

'.

.., Wireless Cell
MTH

o.

M1H

°

....

-..

.............. ,

M1H

°

.·······················8
;' 0 •....•. "

~M1H d I

MTH

Figure 1: Mobile Database System Model

transaction computations. In this paper, we assume that a mobile host can move away from its current cell

only after it has received results for all operations submitted from that cell. In practice, however, a mobile

host may move at any time [2]. It may move away from its current cell after it submitted an operation and

before receiving a reply from the coordinator. In this case, additional procedures are needed to locate the

mobile host and convey to it the results of submitted operations. For the sake of simplicity, we will ignore

this case in the rest of this paper. However, we believe that the discussion and solutions presented below

will remain applicable with the incorporation of these procedures.

We also assume that only one transaction may be initialized by a mobile host at any time. That is, a

mobile host can initialize a transaction only after the previous transaction has finished. The transaction

submitted from the mobile host is termed a mobile transaction and the host is called a mobile transaction

host. A mobile transaction consists of a set of read and write operations which are encapsulated by a

BEGIN_TRANSACTION statement and an END_TRANSACTION statement,

4

3 An 02PL-MT Algorithm For Mobile Transactions

3.1 Motivation

In this subsection, we will provide an example to illustrate the impact of transaction host mobility on the

efficiency of an optimistic two phase lock algorithm. The algorithm used in the example, 02PL, was presented

in [4].

The 02PL algorithm uses an "optimistic" read-one write-all concurrency control approach. A read lock

must be obtained immediately from the local or nearest copy site for each read operation; write locks for

replicated copies are deferred until the beginning of the commit phase is reached. The basic idea underlying

02PL is to set locks immediately within a site (it is possible if data items are replicated), where doing so is

cheap, while taking a more optimistic, less message-intensive approach across site boundaries [4].

In a mobile computing environment, however, the mobility of transaction hosts may increase message

costs for the lock managem«::nt approach used in the 02PC algorithm.

Example 3.1 Consider a mobile database system, presented in Figure 2, where data items X and Yare

replicated in sites A, B, and C; data item Z has one copy in site C. The mobile transaction host for Tl

requests a Read(X) operation in site A and then moves to site B to request a Read(Y) operation in site

B. After the host moves to site C, it requests Write(Z) and Commit operations. To read each item, the

coordinator in each site immediately requests a read lock and read operation in the local server. At commit

time, however, the coordinator in site C needs to send two commit (or unlock) messages to servers A and B

for the release of read locks.

The above example shows that, with the introduction of mobile transaction hosts, the read-one write

all 02PL approach involves extra message transmissions for read operations even in a replicated database

environment. In contrast, in traditional distributed database systems, the positions of transaction host and

transaction coordinator are assumed to be fixed during the execution of a transaction. In this case, no extra

message transmission are needed for read operations.

These additional message transmissions can obviously be avoided through an even more optimistic ap

proach which defers read locks until commit time. Increasingly optimistic approachs, however, carry with

them increasingly high transaction abort rates. This method has therefore not been pursued here.

This research therefore seeks a new algorithm for mobile transactions which requires fewer message

transmissions than 02PL but retains a comparable degree of optimism. The latter stipulation means that

a read lock should be obtained immediately for each read operation, while write locks are deferred until the

moment of commitment.

3.2 The 02PL-MT Algorithm

In this subsection, we will describe a read-one write-all algorithm which we have called 02PL-MT (Optimistic

2 Phase Locking for Mobile Transactions). The algorithm requires fewer message transmissions than 02PL

while retaining a comparable degree of optimism.

5

Server A
(2) T1 moves from A to B

Server B

(In Cell A) (In Cell B)

Xa (1) T1: Lock(Xa); Xb (3) T1: Lock(Yb);

Ya Read(Xa); Yb
Read(Yb);

--

(6) T1: Unlock(Xa);

Commit;

Mobile Transaction T1:

'.

(7) T1: Unlock(Yb); ~

Commit;

(4) T1 moves

from B to C

Begin_Transaction

Read(X); /* executed at Server A; */

Read(Y); /* executed at Server B; */

Write(Z); /* executed at Server C; */

Commit;

End_Transaction;

..............> : Message Transmission

----,..,. : Mobile Transaction Host Movement

Xc

Yc

Zc

ServerC

(In Cell C)

(5) T1: Lock(Zc);

Write(Zc);

Unlock(Zc);

Commit;

Figure 2: A Mobile Transaction Example

6

The proposed algorithm employs a very simple method to restrict the number of extra read unlock

messages. Rather than sending a read unlock to the remote copy server where the read lock is set, 02PL

MT simply allows the unlock operation to be executed at the local or nearest copy server of the item. In

the case of Example 1, instead of requesting unlock(Xa) and unlock(Yb) in servers A and B, 02PL-MT will

execute Unlock(Xc) and Unlock(Yc) in local server C at commit time, necessitating no message transmissions.

This method is not in itself sufficient to ensure the correctness of a read-one write-all approach. Before

it can be applied to the reduction of extra unlock messages, the following issues must be explored.

• Read locks must be guaranteed to remain in effect at remote sites when the coordinator decides to

release the locks and commit a transaction locally.

• An update transaction must be able to determine that the item to be updated has not been locked by

other transactions for reading if the read lock and unlock are executed at different sites. Such a check

should be of low mes,sage costs too.

• A mechanism must be provided to remove the pending read locks at remote sites at the proper time,

if the continuation of such locks will affect the execution of other transactions.

An exploration of the first of these issues begins with the observation that, in 2PL, a lock should be held

until no new lock request is needed. Without this stipulation, the serializability of transaction execution

cannot be ensured. While this can be enforced by holding all locks until the commit time of a transaction,

this condition cannot be confirmed for read locks set at remote sites without the use of extra message

transmissions. However, we can still ensure the correct semantics of read locks if the copy version of the

item to be unlocked is unchanged from its state at lock time. An unchanged copy version number implies

that the item has not been updated by other transactions since it was locked. At the point of commitment,

we can compare the copy version number of an item at the local site with that obtained from another copy

site at lock time. If the two numbers match, we can conclude that the serialization order of transactions is

the same as that in a conventional lock/unlock scheme in which the read unlock is always executed at the

same copy site as the lock is set.

To address the second issue listed above, we first review how traditional read-one write-all algorithms

such as 02PL request a write lock for an item from all copy sites. In these algorithms, a write lock request

(and the new updated value, if any) is sent to all copy sites. Each copy site then determine whether the write

lock can be granted. If no pending read lock is set on the copy, the copy site grants the request immediately

and sends a reply message to the transaction coordinator (or host). Otherwise, the request is blocked at the

copy site. The transaction coordinator collects reply messages from these sites. Once all sites reply to the

request, the transaction coordinator concludes that there is no pending read lock at any copy site and the

write lock has been granted. Thus, only one round of message exchanges is needed between the coordinator

and any copy site for a write lock request.

However, if the locking and the unlocking of a read operation are executed at different sites (or servers),

a single message exchange between the coordinator and a copy site is insufficient. In fact, if a read lock has

been set at a copy site, the write lock request can neither be granted immediately nor be blocked at that

7

site. This complication arises because the copy site cannot know whether the read lock has been released

and the read unlock has been executed at a different site. The copy site must first obtain information from

the coordinator about the status of the copy before it can release the read lock and grant the write request.

To gather this information, the coordinator must collect unlock information from all the copy sites involved

in the first-round message exchange. If any site indicates that the unlock has been executed, the coordinator

then can send a message to first copy site, allowing the write lock request to be granted.

Thus, to allow the distribution of read lock/unlock operations in different sites, two rounds of message

exchanges are required. These exchanges permit the transaction coordinator to decide whether a write lock

request can be granted by the copy sites. Because 02PL permits all write locks to be defered until commit

time, these message exchanges can actually be merged into the regular 2PC protocol. That is, in the first

phase of 2PC, the coordinator collects the read lock/unlock information from all copy sites. The coordinator

cannot enter into the second phase of 2PC until all sites vote" yes" and eac.h read lock is matched by one

read unlock on the item to be updated. In the second phase, the write locks are set and the updates are

enforced.

In the above method, although write locks are not granted during the first phase, all copy sites must

still perform all other functions required by the standard 2PC (e.g., the checking of integrity constraints for

each updated data item). As in the standard 2PC, these functions should be performed in the temporary

workspace of each copy site. These actions prepare servers to enforce write operations (including the granting

of write locks) at all copy sites during the second phase of 2PC.

To guarantee the enforced write operations, a new lock mode, called" write intend" or W _1NTEND,

must be used to lock the copy at all sites before these sites reply to the write request in the first-round

message exchange. A requested W _1NTEND is compatible with a granted R-LOCJ((read lock) but

not with a granted W J NTEND or W-LOCJ((write lock). A granted W _INTEND is, however, not

compatible with a requested R-LOCK or a requested W J NTEND or W _LOCK. When a read request

is granted at a copy site, R-LOCK is set on the copy. When the first phase of a write request arrives at a

copy site, a W J NTEND is set on the copy if no other W _1NTEND or W _LOCK applies to that copy.

Otherwise, the first phase of the write request is blocked at the site. This scenario implies that two different

writes are requesting the lock. If there is a R-LOCK on the copy, the first phase of the write request will

immediately set the W_1NTEND on the copy. After the coordinator decides to commit the transaction

in the second phase, the W J NTEND is upgraded to W _LOCJ(and the update is enforced at the copy.

Thus, the granted W _1NTEND will prevent any new requested R_LOCK or W _LOCK from being granted

in the copy. Otherwise, the decision of the coordinator to grant the write locks will not be valid. The lock

compatibility matrix appears in Figure 3.

Finally, let us consider the issue raised by the third point enumerated above. After read unlocks are

executed at a copy site other than the read lock copy sites, read locks may be pending at these sites. The

pending read locks can be removed when another transaction prepares to update the copy. As in the two

phase commit/write lock protocol described above, a transaction can obtain a write lock and update an item

only if it finds that each read lock at a copy site is matched by a read unlock at some site. Therefore, it is

safe to remove the pending read lock before an update transaction can obtain the write lock on that item.

8

Tj(lock) W_INTEND R_LOCK W_LOCK

Ti(request)

W_INTEND No Yes No

R_LOCK No Yes No

W_LOCK No No No

Figure 3: Lock Conflict Matrix

The pending period begins at the commitment of the read transaction and ends at the first write lock by

another transaction. It is obvious that the pending read lock does not block either other read lock requests

or write lock requests. Thus, there is no blocking drawback to having a pending read lock on the copy of an

item until the copy is updated.

Algorithm Summary: We shall now summarize the 02PL-MT algorithm (a detailed description is avail

able in Appendix A).

A mobile transaction host sends each read request to the coordinator in its MSS and waits for the returned

copy to arrive from the coordinator. The host stores the updated values in a local workspace and defers

write lock requests until the commit phase is reached. The transaction coordinator forwards read operations

to the local or nearest copy server where the read locks will be set. When the commit operation is requested,

the coordinator requests write locks in all updated copy servers and executes read unlock operations in the

local or nearest copy servers. Due to the mobility of the host during the execution of the transaction, the

read lock and the read unlock for an item may be executed on two different copy sites. A unlock operation is

valid only if the version of the copy to be unlocked is the same as that at the lock time. Write locks on items

are obtained through the two phase commit procedure. That is, in the first phase, the coordinator collects

the read lock/unlock information from all copy servers. The coordinator can not enter into the second phase

until all servers vote "yes" and each read lock is matched by one read unlock on the item to be updated. If

there is a read lock that has not been matched by a read unlock on an item to be updated, the coordinator

is required to wait for the unlock operation from any of the copy servers of the item. In the second phase,

the write locks are set and the updates are enforced.

9

Parameters

h

Pu

N

r

Nu

m

ma

Table 1: Model Parameters

Description

Update mobile transaction arrival rate

Read-only mobile transaction arrival rate

Average number of items accessed per trans.

Average number of items updated per update trans.

Probability of read hit at local site

Probability of each write conflicting with reads

Average number of reads conflicting with a write

Number of server sites

Average number of replicated copies per item

Average number of sites updated by per update trans.

Probabilrt,Y of mobility of transaction host

Probability of moving away from lock server

Probability of moving back to lock server

Probability of moving away from copy server

Probability of moving back to copy server

Values/Expressions

2 update transaction/sec

20 read-only transaction/sec

10

5

0~h~1

0.2

2

20

1 ~ r ~ N

r ~ Nu ~ N

o ~ m ~ 1

m[(N - 1)/(N - 1)]

m[1/(N - 1)]

m[(N - r)/(N - 1)]

m[r/(N - 1)]

4 An Analytical Model

In this section, we shall develop an analytical model to represent message costs over fixed networks for both

the 02PL and 02PL-MT algorithms. This model is intended to facilitate a comparison of the magnitude

of message costs between the two algorithms. In particular, we wish to demonstrate how the parameters of

mobility and replication affect the message costs of two algorithms, to discover those circumstances in which

02PL-MT offers lower message costs than 02PL, and to quantify the magnitude of the cost differences.

In our model, without loss of generality, we assume that there are N data servers, with each server

attached to an MSS. In fact, some servers may be attached to fixed hosts which have no wireless communi

cation interface. Our model can be generalized to include this case by assigning each of these servers to its

closest MSS. Update mobile transactions and read-only mobile transactions arrive in Poisson distributions

with an average arrival rate of .xu and .xr, respectively. The data are randomly accessed or updated by a

transaction. The average number of items accessed by update or read-only transaction is n op ' The average

number of items updated by update transaction is nu . Each update transaction only updates a subset of its

read set; i.e., nu ~ n op •

The probability that a read operation hits a copy at the local server is h. The probability that a

write operation conflicts with a read operation is Pu. When an update transaction writes a data item, the

transaction may conflict with more than one transaction holding a read lock on the data item. We let n c

represent the average number of read operations conflicting with the write operation.

10

A data item may be replicated at several servers. The average number of replicated copies per item is

represented as r. Let Nu be the average number of server sites where updates are performed by each update

transaction. The average number will be between rand N.

We assume that, after each request has been performed by a server and acknowledged by a coordinator,

the mobile transaction host may move away from the current cell (or server). The probability of mobility of

each transaction host is m.

If a mobile transaction host were to randomly move into a new cell (or server), the probability that the

host moves from a server with a copy of an item to a server with no copy of the item is m[(N - r)j(N - 1)],

denoted by ml. The probability that the host moves from a server with no copy of an item to a server with

a copy of the item is m[r j(N - 1)], denoted by m ~ . The probability that the host moves away from a server

where a lock is set on an item is m[(N - l)j(N - 1)]' denoted by mo. Finally, the probability that the host

moves back to the server where a lock is set on an item is m[lj(N - 1)], denoted by m ~ .

Table 1 provides a sUII!mary of all the parameters described above.

We now derive the basic expressions that describe the message costs for both the 02PL and 02PL-MT

algorithms. In these expressions, we ignore the message costs for aborted transactions and consider only the

message costs among data servers over MSSs. Our analytical model will not treat the message costs between

mobile hosts and MSSs.

02PL: For each read request, if there is probability h that the copy is at the local server, then the probability

that the request will be unfulfilled by the local server is 1 - h. The expected number of messages per second

for read requests is:

(Au +Ar)nop(l- h).

When the commit operation (the ENDYRANSACTION operation) is requested, the deferred write

locks and updates will be executed along with the procedure of 2PC protocol. The number of messages

involved in the 2PC protocol, which is dependent upon the number of update transactions and the average

number of servers updated by each transaction can be expressed as:

4Au N u .

The coordinator also sends read unlock operations to all servers where read locks have been set for the

commitment of both update and read-only transactions. The expected number of messages for those read

operations for which locks are hit but unlocks are missing is:

Au(nop-nu)hmo + Arnophmo,

and the expected number of messages for those read operations for which both locks and unlocks are

missing is:

In the above expressions, we do not count those reads which have been upgraded to writes by an up

date transaction. That is, for each update transaction, we need send read unlocks for only (nop-nu) read

operations.

11

Totally, the expected number of messages transmitted per second for the 02PL algorithm is given by the

expression:

M02PL

+(Au + Ar)nop (l - h)

+Au(nop - nu)hmo

+Arnophmo

+Au(nop - nu)(l - h)(l - m~)

+Arn op (l - h)(l - m~)

4AuN u + (2R + U)(l- h) + Rhm (1)

02PL-MT: As was the case with 02PL, the expected number of messages per second for read requests is:

However, the number of messages for the commitment of update transactions will be:

4AuN u + Aunupunc

where Aunupunc is the number of messages sent by copy sites to the coordinator for unlock operations in

the first phase of the commit protocol. In 02PL-MT, the transaction coordinator collects all the replies for

the prepare requests and waits for read unlock messages if a write is blocked by some unlocked reads during

the first phase of the commit protocol.

Instead of sending unlocks to the server where the read locks are set, 02PL-MT sends read unlocks to

the local or nearest copy site of the items. The expected number of messages for those read operations for

which locks are hit but unlocks are missing at the local copy of the items is:

Au(nop-nu)hml + Arnophml'

and the expected number of messages for those read operations for which both locks and unlocks are

missing at any copy of the items locally is:

Au(n op-nu)(l - h)(l - m~) + Arn op (l - h)(l- m ~) .

Thus, the total expected number of messages transmitted per second for the 02PL-MT algorithm is given

by the expression:

M 02PL -MT

12

+Arnophml

+Au(nOp - nu)(1 - h)(1 - m~)

+Arnop (1 - h)(1 - m~)

4AuNu + AUnupunc + (2R+ U)(1- h) + Rm(h - (r/N))

5 Results

(2)

In this section, we analyze and compare the message costs of the 02PL and 02PL-MT algorithms on the

basis of the two equations developed in the last section. Our analysis and comparison are divided into three

categories according to the parameter of data replication; These categories include (1) fully replicated case,

(2) non-replicated case, and. (3) partially replicated case.

Case I: Fully Replicated

When each item is fully replicated at every server (i.e., r = N), the probability of a read hit at a local site

is always equal to 1 (h = 1) and the number of sites updated per update transaction will be N (Nu = N).

Thus, from Equations 1 and 2, we derive the following expressions for message cost for the fully replicated

case:

(3)

and

(4)

Using the parameter values provided in Table 1, we have

M!J2PL = 160 + 210m and

M{J2PL-MT = 164

Figure 4 shows the message cost behavior of both algorithms as the mobility parameter rises from 0 to 1.

As we can see, Mb2PL (solid line) increases as m grows. M{J2PL-MT (dashed line), however, is independent

of the parameter m. Mb2PL-MT is slightly larger than Mb2PL only for very small m when Pu > 0, but not

greater than Mb2PL for all m when Pu = O. This can be explained as follows. In the fully replicated case,

02PL-MT does not involve extra message transmissions for read operations (including read locks and read

unlocks), even though the host may move during the execution of a transaction. The only message cost for

02PL-MT is for the commit operation. The first phase of the commit protocol in 02PL-MT will collect all

13

M

480

320

160

02PL-MT

02PL

--

... ~ . ~ ~ . ~ ~ : ~ .., .

PnNc=O

0.25 0.5 0.75 1 m

Figure 4: Results for Fully Replicated Data

14

unlock information from servers. This operation includes one round of message transmission between the

coordinator and the servers as well as an extra transmission for each unlocked read which is in conflict with a

write in the update transaction. Recall that, in 02PL-MT, after receiving replies from the servers in the first

phase, the coordinator will await an additional message for the execution of a read unlock operation, if any

read lock has not been matched by a read unclock. The total number of extra transmissions will be Aunupunc.

In contrast, the commit protocol in 02PL is a standard 2PC protocol, with exactly two rounds of message

transmission. Therefore, M!J2PL-MT is not greater than MfJ2PL when Pu = O. Furthermore, because the

number of extra transmissions is small in comparison to the number required by unlock operations in 02PL

due to mobility, Mb2PL-MT is slightly larger than Mb2PL only for very small m.

Case II: Non-Replicated

When no item is replicated (i.e., r = 1), from Equations 1 and 2, we derive the following message cost

expressions:

and

M(J2PL-MT

4Au Nu + (2R + U)(1- h) + Rhm

+(2R+ U)(1- h) + Rm(h - liN)

+(2R+ U)(1- h) + Rmh(whenN ~ 1)

(5)

(6)

When considering the scenario which corresponds a set of values: h =0.4, Nu =5 (other parameters are

from Table 1), we have:

MlhpL = 84m + 298 and

MP)2PL-MT = 84m + 302

Figure 5 shows the message cost behavior of both algorithms as the mobility parameter rises from 0 to

1. In the two scenarios, M(J2PL-MT is very close to M(J2PL and both MP)2PL-MT and M 02PL increase

at the same rate as m grows. In fact, in the non-replicated case, both 02PL and 02PL-MT should send

unlock operations to remote lock sites after the host moves away from the lock site. The commit operation in

02PL-MT requires additional extra message transmissions for each conflicting unlocked read operation. The

15

M

480

320

160

..........

02PL-MT

02PL

...................
................ -.........................

0.25 0.5 0.75 1 m

Figure 5: Results for Non-replicated Data

16

total number of extra message will be >'unupunc. In contrast, the commit operation in 02PL involves exactly

two rounds of message transmission. Thus, the difference between M C12PL -MT and M C12PL is >'unupunc (=

4), which is independent of the parameter m.

Notice that, in the non-replicated case, an optimization can be made to eliminate the >'unupunc extra

message transmission in 02PL-MT. Since, in the non-replicated case, an unlock operation must be executed

at the same site as the lock operation, the 02PL-MT algorithm can adopt the approach of waiting for unlock

operations in the first phase of the commit protocol. That is, a prepare request will be blocked at the site

where a unlocked read is conflicting with a write request in the update transaction. Recall that, in the 02PL

MT algorithm for replicated cases, a prepare request will always be replied to, and the coordinator must

await an extra message in the first phase of the commit protocol only if a read lock has not been matched

by a unlock. This optimization removes any differences between the 02PL-MT and 02PL algorithms in the

non-replicated case.

Case III: Partially Replicated

When items are partially replicated (i.e., 1 < r < N), from Equations 1 and 2, we derive the following

message cost expressions:

and

M ~ J 2 P L - M T

4>'uNu + (2R + U)(I- h) + Rhm

+(2R + U)(1 - h) + Rm(h - rlN)

M ~ 2 P L + >'unupunc - Rm(rIN)

(7)

(8)

First, consider a scenario with parameters having values of: r = 5, h = 0.5, and Nu = 10 (other parameters

are from Table 1). We have:

M ~ J 2 P L = 105m + 295 and

M ~ 2 P L - M T = 105m + 295 + 4 - 52.5m = 52.5m + 299

Consider a second scenario with parameters having values of: r = 10, h

parameters are from Table 1). We have:

M ~ 2 P L = 168m + 206 and

M ~ J 2 P L - M T = 168m + 206 + 4 - 105m = 63m + 210

17

0.8, and Nu 15 (other

320 L:-:":..,-:0:••~ ••~ ••-:7••::'•• ::'•• ~•••::-:•.••••••....•••••

M

480

160

02PL-MT

02PL

r=5,h=O.5,Nu=1O

I
.........

...............................~ .

r=lO,h=O.8,Nu=15

.

0.25 0.5 0.75 1 m

Figure 6: Results for Partially Replicated Data

18

Figure 6 shows the message cost behavior of both algorithms for both scenarios as m goes from 0 to 1.

From Figure 6, we observe that: (1) when the replication parameter r increases, MfJ2PL (or M ~ 2 P L - M T)

decreases; (2) for the same m, the difference between M ~ 2 P L and M ~ 2 P L - M T increases when r increases;

and (3) M~2PL-MT is smaller than M ~ 2 P L for most values of the parameter m.

These observations can be explained as follows. First, when the replication parameter r increases, the read

hit parameter h also increases. The increase in h will reduce both M ~ 2 P L and M ~ 2 P L - M T ' Second, when

r increases, the probability m ~ that the host moves back to a copy site increases. In contrast, the increase

in r does not increase the probability m ~ that the host will move back to a lock copy server. Therefore, the

increase in r will reduce the number of message transmissions for unlock operations in 02PL-MT but not

in 02PL. Thus, for the same m, the difference between M ~ 2 P L and M ~ 2 P L - M T increases when r increases.

Third, once again, 02PL-MT requires fewer message transmissions for unlock operations than 02PL for

most values of the parameter m, because for a replicated case (i.e., r> 1), m~ is always larger than m ~ . In

this case, the unlock operations in 02PL-MT requires fewer message transmissions than those in 02PL.

6 Conclusions

In this paper, we have presented a new lock management scheme suitable for the mobile computing environ

ment. The scheme allows a read unlock for an item to be executed at any copy site, regardless of whether

that site is different from the copy site in which the lock is set. The scheme utilizes the presence of replicated

copies of data items to reduce the read unlock message cost incurred by the mobility of transaction hosts

over fixed networks.

We have demonstrated the practicality of this idea via an optimistic locking algorithm called 02PL-MT.

The idea can also be used to improve the efficiency of other distributed lock protocols such as pessimistic

locking in a mobile environment, if the number of read operations dominates that of write operations. This

condition is required because write locks have to be executed with two round message exchanges, although

read locks and read unlocks can be executed at any item copy site.

Some enhancements may be made to the scheme presented in this paper. For example, in the first phase

of the commit protocol in 02PC-MT, rather than awaiting each read unlock operation from the servers,

the coordinator can wait for the commit operation of a transaction which is conflicting with the update

transaction. The commit operation implies that the read unlock operations have been executed. This

enhancement can reduce message cost for the write lock request, when the update transaction has conflicting

operations with another transaction on more than one locked item in one site.

In this paper, we have ignored an important issue for distributed lock management in mobile environment,

which is the unilateral abortion of mobile transactions by servers. A data server may decide to abort a mobile

transaction which is involved in a deadlock or for which its host has disconnected from servers for a long

period of time. The abortion enables the server to release the data resources locked by the transaction. In

both cases, the data server needs to inform other remote servers of the abortion, if these servers are also

holding locks for the transaction. Such information about the lock locations (or lock distribution), however,

may not be available to each data server unless it is disseminated to servers by the mobile transaction host

19

(or coordinator) for each operation. In a traditional distributed database system, the information can easily

be obtained from the transaction coordinator, which is in a fixed host. To abort a mobile transaction,

therefore, extra communication costs are entailed in searching for any remote servers that have the locks

set for the transaction. Notice that, when a mobile transaction host aborts its transaction, these costs do

not arise, because the host issues these transaction operations and is always aware of the locations of these

locks. Possible solutions to this issue may use the search strategy or the always-inform strategy presented in

[2] to locate the current transaction coordinator (or the transaction proxy) and obtain the required location

information. We plan to address this issue and compare various possible alternative strategies for this

problem in a future paper.

References

[1] R. Alonso and H. Korth. Database issues in nomadic computing. In Proceedings of the ACM SIGMOD

Conference on Manage'f!l-ent of Data, pages 388-392, 1993.

[2] B. R. Badrinath, A. Acharya, and T. Imielinski. Structuring distributed algorithms for mobile hosts.

In Proc. of the 14th International Conference on Distributed Computing Systems, Poznan, Poland, June

1994.

[3] D. Barbara and T. Imielinksi. Sleepers and workaholics: Caching strategies for mobile environments. In

Proceedings of the ACM SIGMOD Conference on Management of Data, pages 1-12, 1994.

[4] M. J. Carey and M. Livny. Conflict detection tradeoffs for replicated data. ACM Trans. Database Syst.,

16(4):703-746, Dec. 1991.

[5] T. Imielinski and B. R. Badrinath. Wireless mobile computing: Challenges in data management.

Communication of ACM. (to appear).

[6] J. Kistler and M. Satyanaranyanan. Disconnected Operation in the Coda File System. ACM Transactions

on Computer Systems, 10(1), February 1992.

[7] H. Kung and J. Robinson. On optimistic methods for concurrency control. ACM Trans. Database Syst.,

6(2):213-226, June 1981.

[8] Q. Lu and M. Satyanaranyanan. Isolation-only transactions for mobile computing. ACM Operating

Systems Review, 28(3), 1994.

[9] L. Yeo and A. Zaslavsky. Submission of transactions from mobile workstations in a cooperative multi

database processing environment. In Proc. of the 14th International Conference on Distributed Computing

Systems, Poznan, Poland, June 1994.

20

Appendix A: The 02PL-MT Algorithm

At Each Transaction Host:

• For each read operation: send a read request to the coordinate server in its MSS and wait for the

returned copy from the server.

• For each write operation: store the updated value in a local workspace without any remote request.

• For each end_transaction operation (commit or abort): send it to the coordinate server in its MSS

and wait for the acknowledgement.

At Each Transaction Coordinator:

• Whenever a read operation is received, do the following: if a copy of the data item is found in the local

site, then execute the read and read lock locally. Otherwise, send the read request to the nearest copy

server. The request i"s ,blocked until an acknowledgment along with the copy of the item is returned.

• Whenever a commit operation is received, do the following:

1. send a PREPARE request to copy sites where there is at least a copy to be updated. For each data

item read by the transaction, if the copy sites to be updated do not contain any copy of the data

item, then a PREPARE request also needs to be sent to a local or nearest copy site of the item.

A PREPARE request includes all the information about the copies to be updated and read in the

transaction. From these information, the copy site will receive the necessary write lock and read

unlock requests.

2. if all of these servers answer YES for the PREPARE requests, check if a write lock for each item to

be updated can be granted as following:

(a) if each read lock operation at a copy site can be matched by a unlock operation from any

other copy site for every item to be updated, then send COMMIT requests to these copy

sites to be updated. That is, all of the write locks have been granted and the transaction

can update the items and commit. The coordinator also informs the transaction host of the

commitment of the transaction.

(b) if any lock operation at a copy site can not be matched by a unlock operation from any other

copy site for one item to be updated, then wait for another YES acknowledgement message

piggybacked with new unlock information from any copy site of this item and then go back

to step 2.(a). If a NO is received during the waiting, then go to step 3.

3. if any of these copy sites returns NO, then send ABORT requests only to these sites which have

voted YES for updates. The coordinator also informs the transaction host of the abortion of the

transaction.

• Whenever a abort operation is received, simply send the ABORT request to all copy sites in which the

operations of the transaction have been executed.

At Each Database Server:

• Whenever a read request is received from a coordinator, do the following: if the copy is not locked

with a W _!NTEND or a W _LOC!{, then grant R-LOCJ{ on the copy, add the lock information for

the copy. and return OK acknowledgement along with the copy.

• Whenever a PREPARE request is received from a coordinator, do the following:

21

1. if the transaction in the site has been aborted, then reply the request with NO.

2. For each read unlock request: if the copy of item in the site has a version number which is different

from that in the locked copy, then reply the request with NO and abort the transaction in the

site. Otherwise, set the unlock information at the copy. The information will indicate for which

transaction the unlock is requested.

3. For each write lock request: if the copy of item are not locked with any W _1NTEN D or W _LOGJ(,

then grant W J NTEND on the copy. Otherwise, the request is blocked until W _1NTEND or

W .LOGJ(is released.

3. If both step (2) and step (3) finish successfully, send YES to the coordinator.

• Whenever a COMMIT request is received from a coordinator, do the following: for each copy of item

to be updated, release R.LOGKs on the copy if any, clear any read lock/unlock information for the

copy, upgrade W _1NTEND lock to W _LOGKlock , and then enfore the update on the copy. After

the update finishes, release the W _LOGJ{ .

• Whenever a ABORT request is received from a coordinator, release any R.LOGK or W_INTEND

on the copy set by fo.r the transaction and abort the transaction in the site.

o

22

	Distributed Lock Management for Mobile Transactions
	Report Number:
	

	tmp.1307986960.pdf.6j9as

