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Abstract—An information theoretic formulation of distributed
averaging is presented. We assume a network with m nodes each
observing an i.i.d. source; the nodes communicate and perform
local processing with the goal of computing the average of the
sources to within a prescribed mean squared error distortion.
The network rate distortion function R*(D) for a 2-node network
with correlated Gaussian sources is established. A general cutset
lower bound on R*(D) with independent Gaussian sources is
established and shown to be achievable to within a factor of 2
via a centralized protocol. A lower bound on the network rate
distortion function for distributed weighted-sum protocols that is
larger than the cutset bound by a factor of log m is established.
An upper bound on the expected network rate distortion function
for gossip-based weighted-sum protocols that is only a factor of
log log m larger than this lower bound is established. The results
suggest that using distributed protocols results in a factor of log m
increase in communication relative to centralized protocols.

I. INTRODUCTION

Distributed averaging is a popular example of the distributed
consensus problem, which has been receiving much attention
recently due to interest in applications ranging from distributed
coordination of autonomous agents to distributed computation
in sensor networks, ad-hoc networks, and peer-to-peer net-
works.

This paper presents a lossy source coding formulation of
the distributed averaging problem. We assume that each node
in the network observes a source and the nodes communicate
and perform local processing with the goal of computing the
average of the sources to within a prescribed mean squared
error distortion. We investigate the network rate distortion
function in general and for the class of weighted-sum pro-
tocols, including random gossip-based protocols.

Most previous work on distributed averaging, e.g., [1],
[2], has involved the noiseless communication and compu-
tation of real numbers, which is unrealistic. Recognizing
this shortcoming, the effect of quantization on distributed
averaging has been recently investigated. Our work is related
most closely to the work in [3]-[5]. Compared to [3], [4],
our information-theoretic approach deals more naturally and
fundamentally with quantization and provides limits that hold
independent of implementation details. Our results, however,
cannot be compared directly to results in these papers because
of differences in the models and assumptions. While the
work in [5] is information-theoretic, it deals with a different
formulation than ours and the results are not comparable.
Our formulation of the distributed averaging problem can be
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viewed also as a generalization of the CEO problem [6], where
in our setting every node wishes to compute the average and
the communication protocol is significantly more complex in
that it allows for interactivity, relaying, and local computing,
in addition to multiple access.

In the following section, we introduce the lossy averaging
problem. In Section III, we establish the network rate distor-
tion function for a 2-node network. In Section IV, we establish
a general cutset lower bound on the network rate distortion
function and show that it can be achieved within a factor of
2 using a centralized protocol. In Section V, we investigate
the class of distributed weighted-sum protocols. We establish
a lower bound on the network rate distortion function for this
class as well as an upper bound for gossip-based weighted-sum
protocols. The full paper is posted on arXiv.org [7].

II. LOSSY AVERAGING PROBLEM

Consider a network with m sender-receiver nodes, where
node i = 1,2,...,m observes an i.i.d. source X;. The nodes
communicate and perform local processing with the goal of
computing the average of the sources S = (1/m) > ", X;
at each node to within a prescribed distortion D. The fol-
lowing definitions apply to any set of correlated sources
(X1,X2,...,Xm). In Sections IV and V, we assume that
the sources are independent white Gaussian noise (WGN)
processes each with average power of one.

The topology of the network is specified by a connected
graph (M, &) without self loops, where M = {1,2,...,m} is
the set of nodes and £ is a set of undirected edges (node pairs)
{i,7}, i, € M for i # j. Communication is performed in
rounds and each round is divided into time slots. Each round
may consist of a different number of time slots, and each
time slot may consist of a different number of transmissions.
One edge (node pair) is chosen at each round and only one
node is allowed to transmit in each time slot. Without loss of
generality we assume that the selected node pair communicate
in a round robin manner with the first node communicating
in odd time slots and the second node communicating in
even time slots. Further, we assume a source coding setting,
where communication is noiseless and instant, that is, every
transmitted message is successfully received by the intended
receiver in the same time slot it is transmitted in.

Communication and computing are performed according to
an agreed upon averaging protocol that determines (i) the
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number of communication rounds 7', (ii) the sequence of edge
selections, and (iii) the block codes for each selected node
pair in each round used to perform communication and local
computation. The averaging protocol may be deterministic
or random. In a random protocol, the sequence of T edges
are selected at random. Given an averaging protocol with T’
rounds, we define an (Ry, Ra, ..., Rm,n) block code for a
feasible sequence of edge selections to consist of:
1. A set of encoding functions, one for each node in each
round and each time slot. Each encoding function assigns
a message to each node source sequence of block length
n and past messages received by the node. Let the number
of bits transmitted by node ¢ in round t = 1,2,...,7T
be nr;(t), where r;(t) is the transmission rate per source
symbol, then the total transmission rate for node ¢ is given
T

by R; := Zt=1 Ti(t)'
2. A set of decoding functions, one for each node. At the
end of round T, the decoder for node ¢ = 1,2, ..., m assigns
an estimate SJ := (Si1,S:2,...,Sin) of the average ST :=
(S1,52,...,S,) to each source sequence and all messages
received by the node.

The per-node transmission rate for the code is R :=
(1/m)>" | R;. The average per-letter distortion associated
with the code is defined as

1 m n 9

— E ((Sk — Sik)?) ,

o 2 2 B (81 = 5u)")
where the expectation is taken over source statistics. Note that
we are also averaging over the nodes. A rate distortion pair
(R,A) is said to be achievable if there exists a sequence of
(R1, R, ..., Rpy,n) codes with average per-node rate R such
that

hrrln_)solip p—— ;;E ((S;c Sik) ) <A.

The network rate distortion function for a given feasible
sequence of edge selections R(D) is the infimum over all
achievable rates R such that (R, D) is achievable. The network
rate distortion function R*(D) is the infimum of R(D) over
all averaging protocols. Clearly here we only need to consider
deterministic averaging protocols.

We are also interested in the expected network rate
distortion function for a random averaging protocol. We
consider the expected per-node transmission rate E(R) =
(1/m) > | E(R;), and the limit on the expected distortion
with respect to edge selection statistics E(A) specified by
the random averaging protocol. The expected network rate-
distortion function E(R(D)) for a random averaging pro-
tocol is defined as the infimum over all expected per-node
rate E(R) such that the pairs (R,A) are achievable and
E(A) < D. Clearly for any random averaging protocol,
R*(D) < E(R(D)). Further, any upper bound on E(R(D))
is an upper bound on R*(D).

Centralized versus Distributed Protocols: A goal of our work
is to quantify the communication penalty of using distributed
relative to centralized protocols. In a distributed protocol,
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such as the distributed weighted-sum protocol discussed in
Section V, the code used at each round does not depend on
the identities of the selected nodes. The code, however, may
depend on the round number. In a centralized protocol the
code can depend on the node identities. For example, a node
may be designated as a “cluster-head” and treated differently
by the protocol than other nodes.

III. R*(D) FOR 2-NODE NETWORK

Consider a network with 2 nodes and a single edge, and
assume (X1, X2) to be correlated WGN sources with average
powers P; and P, respectively, and covariance o12. Assume
each node wishes to compute the weighted sum g(X;, X2) =
a1 X1 + asXs, for some constants a; and ag, to within mean
squared error distortion D. In Section V, it will become clear
why we consider weighted-sum computation instead of the
less general averaging case.

For a 2-node network, there is only one round of communi-
cation with an arbitrary number of time slots. The interesting
case is when distortion is small enough such that each node
must transmit to the other node. The following proposition
establishes the network rate distortion function for this regime.

Proposition 1: The network rate distortion function for a
2-node network is

* 1 02y \ arasv/Pi P
) - s (1 S ) w0/

for D < min { (P, — 0%,/ P,) a3, (P> — 03,/ P1) a3}.

The converse follows by a cutset bound argument. Achiev-
ability is proved simply by having each node independently
compress its source and send the compressed version to the
other node using Wyner-Ziv coding [8]. Remarks:

1. In [9], Kaspi investigated the interactive lossy source coding
problem when the objective is for each source to obtain a
description of the other source. Our problem is different and
as such Kaspi’s results do not readily apply. In [10], the
interactive communication problem for asymptotically lossless
computation is investigated. Again their results do not apply
to our setting because they do not consider loss.

2. Finding the rate distortion function for a 3-node network
even with Gaussian sources is difficult because (i) several
feasible edge sequences are allowed and it is not a priori clear
which sequence yields the optimal rate, (ii) the codes allow
relaying in addition to interactive communication and local
computing, and (iii) it is not known if Gaussian random codes
are optimal. Results on a 3-node problem are reported in [11].

IV. LOWER BOUND ON R*(D)

Consider the m-node distributed lossy averaging problem
when the sources (X1, Xo,...,X,,) are independent WGN
processes each with average power one. We establish the
following cutset lower bound.

Theorem 1: The network rate distortion function R*(D) =
0 if D > (m — 1)/m? and is lower bounded by

1 m—1
*(D) > =1 —_—
B )_2Og<m2D

m—1
m2

) if D<
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Proof: Since only pairwise communications are allowed,
the number of bits transmitted by all nodes is equal to the
number of bits received by all nodes. Denote the number of
bits received by node i by R;. Let M; be the collection of in-
dices sent from nodes j € M\{i} to node i. Node 7 computes
an estimate S7;, which is a function of its source X} and the
received message M;. Let Uik == (1/m) 3 e pn iy Xik- We
bound the receiving rate as follows

1 1
R; > —H(M;) > EH(MHXZD > ﬁI( a5 M| X[h)

SlI—= 3=

NE

(MUsk) — h(U|UE™Y, X2, M3, ST))

>
Il
-

\Y
3=
[

(h(Uik) — M(Uix| Xik, Six))

>
Il
—

>

S|
NE

(h(Uik) — h(Sk — Sik)) > %log (m - 1) ,

m2Di

=
Il
—

where D; = (1/n) Y, E((Sk — Sik)?). Using Jensen’s
inequality, we have R*(D) > (1/2)log ((m — 1)/m2D). m
Remarks:

1. As can be readily verified from Proposition 1, the above
lower bound is achieved for m = 2.

2. The above cutset lower bound can be readily extended to
correlated WGN sources and weighted-sum computation. The
resulting bound is tight for m = 2 as shown in the previous
section.

A. Upper Bound on R*(D) for Star Network

Consider a star network with m nodes and m — 1 edges
& ={{1,2},{1,3},...,{1,m}}. We use a centralized proto-
col where node 1 is treated as a “cluster head.” The protocol
has T'=2m — 3 rounds. Inround ¢t = 1,2,...,m — 1, node
i =t + 1 compresses its source X; using Gaussian random
codes with average distortion (d/n) > ,_, E(X2) = d and
sends the index M;(X7}) to node 1. Node 1 finds the corre-
sponding reconstruction sequences X 7 (M;) and computes the

estimates
srom Lxn g lzm:)i’."
1= A T 2 il
1 1 N
a =X+ — Z 1
m m
JeEM\{1,4}
fori=2,3,...,m.Inround t =m — 1,m,...2m — 3, node

1 compresses the estimate U3, ;_; ; using Gaussian random
codes with average distortion (d1/n) Y ,_, E(U3,,_, 1)
and sends the index ]\Zf2m_t_1(U§Lm_t_L1) to nodes 2m—t—1.
Node i computes the estimate S = (1/m)X% + Aﬁ for
i=2,3,...,m, where U 71 is the reproduction sequence of U}
corresponding to the index M;. This establishes the following
upper bound on the network rate distortion function.

Proposition 2: The network rate distortion function for the
star network is upper bounded by

2(m —1)2
m3D

m—1
m2

R*(D) < mrgllog( ) for D <
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Note that the ratio of the upper bound to the cutset lower
bound for D < 1/m? as m — oo is less than or equal to 2.
Thus a centralized protocol can achieve a rate within a factor
of 2 of the cutset bound.

V. DISTRIBUTED WEIGHTED-SUM PROTOCOLS

Again assume that the sources (X1, Xo,...,X,) are inde-
pendent WGN processes each with average power one. We
consider distributed weighted-sum protocols characterized by
the number of rounds 7" and the normalized local distortion d.
Given a network, we define a distributed-weighted sum code
for each feasible edge selection sequence as follows. Initially,
each node i € M has an estimate S};(0) = X7i of the
true average ST. In each round, communication is performed
in two time slots. Assume that edge {7, } is selected in
round (¢ + 1). In the first time slot, node i compresses S (¢)
using Gaussian random codes with distortion D;(t + 1) =
(d/n) > p_, E(S%(t)), and sends the index M;(t+1)(S% (¢))
to node j at rate r = (1/2) log(1/d). In the second time slot,
node j similarly compresses S7(t) using Gaussian random
codes with distortion D;(t + 1) = (d/n) >;_; E(S%(1)),
and sends the index M;(t + 1)(S7;(t)) to node i at the same
rate 7. Upon receiving the indices, nodes 4 and j update their
estimates

1

BE+1) = 5530 + 5r—p S

B+ 1) = 3SR + 5 S0,

M
where 7 (t) and 5']”1 (t) are the reproduction sequences cor-
responding to M;(t + 1) and M;(t + 1), respectively.

At the end of round T, node i sets S7 = S5 (T) if it is
involved in at least one round of communication, and sets

= (1/m)S%(0), otherwise.

Define the rate distortion function for a distributed

weighted-sum protocol and a given edge selection sequence,
Rws (D), the weighted-sum network rate distortion function,
Rys(D), and the weighted-sum expected network rate dis-
tortion function for a random protocol, E(Rws(D)), as in
Section II.
Remark: Note that the weighted-sum code defined above does
not exploit the correlation between the node estimates induced
by communication and local computing. This correlation can
be readily used to reduce the rate via Wyner-Ziv coding.
However, we are not able to obtain general upper and lower
bounds on the network rate distortion function with side
information because the correlations between the estimates are
time varying and depend on the particular sequence of edges
selected.

Since the update equations for the distributed weighted-
sum protocols are linear, the initial estimates are WGN,
and Gaussian test channels with independent additive WGN
are used, the estimates S;1(t),..., S (t) are ii.d. and the
estimates S1x(t), ..., Smk(t) are jointly Gaussian. From this
point on we suppress the transmission symbol index k.
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A. Lower Bound on Riyg(D)

We establish a lower bound on Ri,q(D) that applies to
any network. Consider a distributed weighted-sum protocol for
a given network and a feasible sequence of edge selections.
Let ¢, be the 7-th time node ¢ is selected and 7; :=
{ti1, tiz, ..., tim, }, fori = 1,2,...,m, where T; := |T;| is
the number of rounds in which node 4 is selected. Then the
number of rounds T can be expressed as T = (1/2) >\, T5,
where the 1/2 factor is due to the fact that two nodes are
selected in each round. We shall need the following properties
of the estimate S;(t) to prove the lower bound.

Lemma 1: For a distributed weighted-sum protocol, the
estimate at node 7 at the end of round ¢ can be expressed
as

Z%ﬂ 0) + Zi(t),

where Z;(t) is Gaussian and independent of the sources
(X1,X2,...,Xmn). Furthermore, the diagonal coefficients sat-

isfy the property
1
’)’u(t) > 2_7' for t;, <t < tirt1 and T =1,...,T;.

Using this lemma, we can establish the following.
Lemma 2: Given 0 < D < (m—1)/m?, if a weighted-sum
protocol with T" rounds achieves distortion D, then

m 1
T>—log| —=———]).
T2 g<\/D+1/m>

Using these lemmas, we can establish the following lower
bound.
Theorem 2: Given 0 < D < (m — 1)/m?,
1 1 1
Rys(D)>=|(lo lo .
w2 () ()
Proof outline: Given a distributed weighted-sum protocol
with T" rounds and normalized local distortion d. Suppose that

the edge selected at round ¢;, - is {41, j2}, then at the end of
this round, the estimate for node j; is

Sj2 (tj1‘l') = (sz (tj1‘l' - 1) + Sj1 (tle - 1) + Wj1‘r)/27

where Wj,» ~ N (0,E (Sj,(tj,- —1)?) d/(1 — d)) . By in-
duction, we can show that the estimate of node i at time
t > t;,, has the form S;(t) = (1/2)8;(t)Wj,, + Si(t), where
Bi(t) >0, 37 | Bi(t) =1, and S;(t) is independent of W, .
Now we compute the distortion at the end of round T’

L3 B(s - si0)?)

-3 (o3 ) o s~ sen))

L ((%w)) . ng (s - Sumyy?)

d 1 & .
Z 21— 2D m ;E ((s - 8um2),

then

| V
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where the first equality follows by the Cauchy—Schwarz
inequality, and the last equality follows from Lemma 1.
We can repeat the above arguments for the second term

(1/m)> " E ((S - S‘i(T))Q) and we obtain

m m

1 E(S—8,(T > S > —d
m Z ( - Z 4m?2(1 — 22(k—1) ~ 4m’
i=1 =1 k=1

Thus, d < 4mD. The rest of the proof follows from Lemma 2.

|
Remark: The above lower bound and the cutset bound in
Theorem 1 differ by roughly a factor of logm. Given that
a centralized protocol for the star network can achieve within
a factor of 2 of the cutset bound, this suggests that the logm
factor is the penalty of using a distributed versus centralized
protocols.

B. Bounds on E(Rws(D))

In this section, we establish bounds on E(Rws(D)) for
gossip-based weighted-sum protocols [1] characterized by
(T,d,Q), where T is the number of rounds, d is the nor-
malized local distortion, and @ is an m X m stochastic matrix
such that Q;; = 0 if {4, j} ¢ £. Note that this also establishes
an upper bound on R*(D) because R*(D) < E(Rws(D)).

In each round of a gossip-based weighted-sum protocol,
a node i is selected uniformly at random from M. Node
i then selects a neighbor j € {j : {i,j} € &} with
conditional probability ;. This edge selection process is
equivalent to the asynchronous model in [1]. After the edge
(node pair) {i,j} is selected, the distributed weighted-sum
coding scheme previously described is performed. Let S(t) :=
[S1(t) Sa(t) ... Spm(t)]T and rewrite the update equations (1)
in the matrix form

Sit+1)=At+1)SEt) +W(t+1), @)
where (i) A(t+1) = I,,— 1 (e;—e;)(e;—e;)” with probability
(1/m)Q;;, independent of ¢, and (ii) W (¢+1) = W(t+1)e;+
W;(t + 1)e;, where e; and e; are unit vectors along the i-th
and j-th axes, and W;(t + 1) ~ N (0,E (S;(¢)%d/4(1 — d)))
and W;(t+1) ~ N (0,E (S;(t)%d/4(1 — ))) are independent
of past estimates.

Recall properties of the matrix A(t) from [1]. Let Q* be the
stochastic matrix that minimizes the second largest eigenvalue
of the matrix A := E(A(0)), and let Ay be the optimum second
largest eigenvalue, which is a function of the network topology.
We will need the following lower bound on the number of
rounds T to prove the lower bound on E(Rws(D)).

Lemma 3: Given a connected network, if a gossip-based
weighted-sum protocol (7', d, Q) achieves distortion D, then
T > ((m—1)/2)In((m—1)/mD).

We now establish an upper bound on distortion.
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Lemma 4: The average per-letter distortion of the gossip-
based weighted-sum protocol (T, d, Q) is upper bounded by

1 1
—E(IS(T) = JSO)) < — (1 +w)" ~1)
1 U
ml—X+u
where u := d/(2m(1 — d)) and J := (1/m)117.

Proof outline: Referring to the linear dynamical system
(2), express S(T') as S(T) = A(T,1)S(0) + Z(T), where
Z(T) = Y/ A(T,t +1)W(t) and

{A(tQ)A(tg —1)... A(ty)
I

u

1
(1+u)T + + A +u)T,

+ El—)\g—u

if tog > t1
Alta, t1) = )
if to < t1.
Consider the sum of distortions over all nodes
E (|[S(T) — J8(0)|1%)
= E (|A(T,1)S(0) — JS(0)[I*) + E (| Z(T)|?) -
We can show that
E (| A(T,1)8(0) — JS(0)|1?)
< AJE (/[S(0) — JS(0)||*) = (m — 1)A], and
t
1 m—1
2 < - t—T1
B(120)7) < Yu (5 + ")

=1
(14 (m = DA HE(I1Z(r - D)) -

By induction,

E(IZ(N]?) < A +u)"+(m—1) (A2 +u)"—1—(m—1)AZ,

fort=1,2,...,T — 1. Thus,

B(|Z(T)7) < ™= e (14 )T - )

b ()T )+ S (1= (e +w))
2

+%((A2+u)T—,\g‘).

The proof can be completed by combining the above results.
|
Using this lemma, we can establish the following.

Theorem 3: For a connected network with associated eigen-
value Ao,
(i) if a gossip-based weighted-sum protocol achieves distortion
D < 1/4m, then

m—1 m—1 1
E D)) > 1 I
(Rws(D)) = 2m (n mD ) (og 4mD) > and

(ii) there exists an m(D) and a gossip-based weighted-sum
protocol such that for all m > m(D),

E(Rws(D)) < —— (m %) (log

where Ay = 1 — \o.

ln(2_/D)>
m2)\2D ’
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Proof outline:

(i) We follow the distortion analysis in the proof of Theorem 2
to show that d < 4mD and then use Lemma 3.

(ii) We consider the optimal stochastic matrix Q* with eigen-
value Ay for the given network topology and set T' =
In(2/D) /X2, and d = m?X, D/ 1n(2/D). Then, we show that
limpm, 00 (1/mD)E (|S(T) — JS(0)||?) < 1. The average
distortion D is achievable for average rate

T 1 1 2

Since Gaussian sources are the hardest to compress, we can
show that the above upper bound is also an upper bound for
general, non-Gaussian sources.

Remarks:

1. For a complete graph, A =1 —1/(m — 1), and the upper
and lower bounds of Theorem 3 differ by a factor of loglogm
for distortion D = Q(1/mlogm) and by a constant factor,
otherwise. On the other hand, the lower bound of Theorem 2
is also a lower bound on E(Rws(D)). The above two lower
bounds differ by a constant factor for D = Q(m~¢) and ¢ > 0
and by a factor of (log(1/D)/logm) for D = o(m~°) and
c>0.

2. For the star network considered in Subsection IV-A, Ay =
1—1/(2(m — 1)) and the upper bound of Theorem 3 differs
from the upper bound in Subsection IV-A by a factor of
(loglog m)logm for D = Q(1/mlogm) and logm for D =
o(1/mlogm) and D = Q(m~°), ¢ > 0. The logm factor
quantifies the penalty of using the gossip-based distributed
protocols.

ln(2_/D)>
m2)\2D ’
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