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Abstract

Vision problems ranging from image clustering to mo-
tion segmentation to semi-supervised learning can naturally
be framed as subspace segmentation problems, in which
one aims to recover multiple low-dimensional subspaces
from noisy and corrupted input data. Low-Rank Repre-
sentation (LRR), a convex formulation of the subspace seg-
mentation problem, is provably and empirically accurate
on small problems but does not scale to the massive sizes
of modern vision datasets. Moreover, past work aimed at
scaling up low-rank matrix factorization is not applicable
to LRR given its non-decomposable constraints. In this
work, we propose a novel divide-and-conquer algorithm
for large-scale subspace segmentation that can cope with
LRR’s non-decomposable constraints and maintains LRR’s
strong recovery guarantees. This has immediate implica-
tions for the scalability of subspace segmentation, which
we demonstrate on a benchmark face recognition dataset
and in simulations. We then introduce novel applications
of LRR-based subspace segmentation to large-scale semi-
supervised learning for multimedia event detection, concept
detection, and image tagging. In each case, we obtain state-
of-the-art results and order-of-magnitude speed ups.

1. Introduction
Visual data, though innately high dimensional, often re-

side in or lie close to a union of low-dimensional subspaces.
These subspaces might reflect physical constraints on the
objects comprising images and video (e.g., faces under
varying illumination [2] or trajectories of rigid objects [24])
or naturally occurring variations in production (e.g., digits
hand-written by different individuals [12]). Subspace seg-
mentation techniques model these classes of data by recov-
ering bases for the multiple underlying subspaces [10, 7].
Applications include image clustering [7], segmentation of
images, video, and motion [30, 6, 26], and affinity graph
construction for semi-supervised learning [32].

One promising, convex formulation of the subspace seg-
mentation problem is the low-rank representation (LRR)

program of Liu et al. [17, 18]:

(Ẑ, Ŝ) = argmin
Z,S

‖Z‖∗ + λ‖S‖2,1 (1)

subject to M = MZ + S .

Here, M is an input matrix of datapoints drawn from mul-
tiple subspaces, ‖·‖∗ is the nuclear norm, ‖·‖2,1 is the sum
of the column `2 norms, and λ is a parameter that trades
off between these penalties. LRR segments the columns
of M into subspaces using the solution Ẑ, and, along with
its extensions (e.g., LatLRR [19] and NNLRS [32]), admits
strong guarantees of correctness and strong empirical per-
formance in clustering and graph construction applications.
However, the standard algorithms for solving Eq. (1) are un-
suitable for large-scale problems, due to their sequential na-
ture and their reliance on the repeated computation of costly
truncated SVDs.

Much of the computational burden in solving LRR stems
from the nuclear norm penalty, which is known to encour-
age low-rank solutions, so one might hope to leverage the
large body of past work on parallel and distributed matrix
factorization [11, 23, 8, 31, 21] to improve the scalabil-
ity of LRR. Unfortunately, these techniques are tailored to
optimization problems with losses and constraints that de-
couple across the entries of the input matrix. This decou-
pling requirement is violated in the LRR problem due to
the M = MZ + S constraint of Eq. (1), and this non-
decomposable constraint introduces new algorithmic and
analytic challenges that do not arise in decomposable ma-
trix factorization problems.

To address these challenges, we develop, analyze, and
evaluate a provably accurate divide-and-conquer approach
to large-scale subspace segmentation that specifically ac-
counts for the non-decomposable structure of the LRR
problem. Our contributions are three-fold:

Algorithm: We introduce a parallel, divide-and-conquer
approximation algorithm for LRR that is suitable for large-
scale subspace segmentation problems. Scalability is
achieved by dividing the original LRR problem into compu-
tationally tractable and communication-free subproblems,
solving the subproblems in parallel, and combining the re-
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sults using a technique from randomized matrix approxima-
tion. Our algorithm, which we call DFC-LRR, is based on
the principles of the Divide-Factor-Combine (DFC) frame-
work [21] for decomposable matrix factorization but can
cope with the non-decomposable constraints of LRR.

Analysis: We characterize the segmentation behavior of
our new algorithm, showing that DFC-LRR maintains the
segmentation guarantees of the original LRR algorithm with
high probability, even while enjoying substantial speed-ups
over its namesake. Our new analysis features a significant
broadening of the original LRR theory to treat the richer
class of LRR-type subproblems that arise in DFC-LRR.
Moreover, since our ultimate goal is subspace segmentation
and not matrix recovery, our theory guarantees correctness
under a more substantial reduction of problem complexity
than the work of [21] (see Sec. 3.2 for more details).

Applications: We first present results on face clustering
and synthetic subspace segmentation to demonstrate that
DFC-LRR achieves accuracy comparable to LRR in a frac-
tion of the time. We then propose and validate a novel
application of the LRR methodology to large-scale graph-
based semi-supervised learning. While LRR has been used
to construct affinity graphs for semi-supervised learning in
the past [4, 32], prior attempts have failed to scale to the
sizes of real-world datasets. Leveraging the favorable com-
putational properties of DFC-LRR, we propose a scalable
strategy for constructing such subspace affinity graphs. We
apply our methodology to a variety of computer vision tasks
– multimedia event detection, concept detection, and image
tagging – demonstrating an order of magnitude improve-
ment in speed and accuracy that exceeds the state of the art.

The remainder of the paper is organized as follows. In
Section 2 we first review the low-rank representation ap-
proach to subspace segmentation and then introduce our
novel DFC-LRR algorithm. Next, we present our theoreti-
cal analysis of DFC-LRR in Section 3. Section 4 highlights
the accuracy and efficiency of DFC-LRR on a variety of
computer vision tasks. We present subspace segmentation
results on simulated and real-world data in Section 4.1. In
Section 4.2 we present our novel application of DFC-LRR
to graph-based semi-supervised learning problems, and we
conclude in Section 5.

Notation Given a matrix M ∈ Rm×n, we define
UMΣMV>M as the compact singular value decomposition
(SVD) of M, where rank(M) = r, ΣM is a diagonal ma-
trix of the r non-zero singular values and UM ∈ Rm×r and
VM ∈ Rn×r are the associated left and right singular vec-
tors of M. We denote the orthogonal projection onto the
column space of M as PM .

2. Divide-and-Conquer Segmentation
In this section, we review the LRR approach to subspace

segmentation and present our novel algorithm, DFC-LRR.

2.1. Subspace Segmentation via LRR

In the robust subspace segmentation problem, we ob-
serve a matrix M = L0 + S0 ∈ Rm×n, where the columns
of L0 are datapoints drawn from multiple independent sub-
spaces,1 and S0 is a column-sparse outlier matrix. Our goal
is to identify the subspace associated with each column of
L0, despite the potentially gross corruption introduced by
S0. An important observation for this task is that the pro-
jection matrix VL0V

>
L0

for the row space of L0, sometimes
termed the shape iteration matrix, is block diagonal when-
ever the columns of L0 lie in multiple independent sub-
spaces [10]. Hence, we can achieve accurate segmentation
by first recovering the row space of L0.

The LRR approach of [17] seeks to recover the row space
of L0 by solving the convex optimization problem presented
in Eq. (1). Importantly, the LRR solution comes with a
guarantee of correctness: the column space of Ẑ is exactly
equal to the row space of L0 whenever certain technical
conditions are met [18] (see Sec. 3 for more details).

Moreover, as we will show in this work, LRR is also
well-suited to the construction of affinity graphs for semi-
supervised learning. In this setting, the goal is to define
an affinity graph in which nodes correspond to data points
and edge weights exist between nodes drawn from the same
subspace. LRR can thus be used to recover the block-sparse
structure of the graph’s affinity matrix, and these affinities
can be used for semi-supervised label propagation.

2.2. Divide-Factor-Combine LRR (DFC-LRR)

We now present our scalable divide-and-conquer
algorithm, called DFC-LRR, for LRR-based subspace seg-
mentation. DFC-LRR extends the principles of the DFC
framework of [21] to a new non-decomposable problem.
The DFC-LRR algorithm is summarized in Algorithm 1,
and we next describe each step in further detail.

D step - Divide input matrix into submatrices: DFC-
LRR randomly partitions the columns of M into t l-column
submatrices, {C1, . . . ,Ct}. For simplicity, we assume that
t divides n evenly.

F step - Factor submatrices in parallel: DFC-LRR
solves t subproblems in parallel. The ith LRR subproblem
is of the form

min
Zi,Si

‖Zi‖∗ + λ‖Si‖2,1 (2)

subject to Ci = MZi + Si ,

1Subspaces are independent if the dimension of their direct sum is the
sum of their dimensions.



where the input matrix M is used as a dictionary but only
a subset of columns is used as the observations.2 A typical
LRR algorithm can be easily modified to solve Eq. (2) and
will return a low-rank estimate Ẑi in factored form.

C step - Combine submatrix estimates: DFC-LRR
generates a final approximation Ẑproj to the low-rank
LRR solution Ẑ by projecting [Ẑ1, . . . , Ẑt] onto the
column space of Ẑ1. This column projection technique is
commonly used to produce randomized low-rank matrix
factorizations [15] and was also employed by the DFC-
PROJ algorithm of [21].

Runtime: As noted in [21], many state-of-the-art
solvers for nuclear-norm regularized problems like Eq. (1)
have Ω(mnkM ) per-iteration time complexity due to the
rank-kM truncated SVD required on each iteration. DFC-
LRR reduces this per-iteration complexity significantly
and requires just O(mlkCi

) time for the ith subproblem.
Performing the subsequent column projection step is
relatively cheap computationally, since an LRR solver
can return its solution in factored form. Indeed, if we
define k′ , maxi kCi , then the column projection step of
DFC-LRR requires only O(mk′2 + lk′2) time.

Algorithm 1 DFC-LRR

Input: M, t
{Ci}1≤i≤t = SAMPLECOLS(M, t)
do in parallel

Ẑ1 = LRR(C1,M)
...

Ẑt = LRR(Ct,M)
end do
Ẑproj = COLPROJ([Ẑ1, . . . , Ẑt], Ẑ1)

3. Theoretical Analysis
Despite the significant reduction in computational com-

plexity, DFC-LRR provably maintains the strong theoreti-
cal guarantees of the LRR algorithm. To make this state-
ment precise, we first review the technical conditions for
accurate row space recovery required by LRR.

3.1. Conditions for LRR Correctness

The LRR analysis of Liu et al. [18] relies on two key
quantities, the rank of the clean data matrix L0 and the co-

2An alternative formulation involves replacing both instances of M
with Ci in Eq. (1). The resulting low-rank estimate Ẑi would have di-
mensions l × l, and the C step of DFC-LRR would compute a low-rank
approximation on the block-diagonal matrix diag(Ẑ1, Ẑ2, . . . , Ẑt).

herence [22] of the singular vectors VL0 . We combine these
properties into a single definition:

Definition 1 ((µ, r)-Coherence). A matrix L ∈ Rm×n is
(µ, r)-coherent if rank(L) = r and

n

r
‖V>L‖

2

2,∞ ≤ µ,

where ‖·‖2,∞ is the maximum column `2 norm.3

Intuitively, when the coherence µ is small, information is
well-distributed across the rows of a matrix, and the row
space is easier to recover from outlier corruption. Using
these properties, Liu et al. [18] established the following
recovery guarantee for LRR.

Theorem 2 ([18]). Suppose that M = L0 + S0 ∈ Rm×n
where S0 is supported on γn columns, L0 is ( µ

1−γ , r)-
coherent, and L0 and S0 have independent column support
with range(L0) ∩ range(S0) = {0}. Let Ẑ be a solution
returned by LRR. Then there exists a constant γ∗ (depend-
ing on µ and r) for which the column space of Ẑ exactly
equals the row space of L0 whenever λ = 3/(7‖M‖

√
γ∗l)

and γ ≤ γ∗.

In other words, LRR can exactly recover the row space
of L0 even when a constant fraction γ∗ of the columns has
been corrupted by outliers. As the rank r and coherence µ
shrink, γ∗ grows allowing greater outlier tolerance.

3.2. High Probability Subspace Segmentation

Our main theoretical result shows that, with high proba-
bility and under the same conditions that guarantee the ac-
curacy of LRR, DFC-LRR also exactly recovers the row
space of L0. Recall that in our independent subspace set-
ting accurate row space recovery is tantamount to correct
segmentation of the columns of L0. The proof of our re-
sult, which generalizes the LRR analysis of [18] to a broader
class of optimization problems and adapts the DFC analysis
of [21], can be found in the appendix.

Theorem 3. Fix any failure probability δ > 0. Under the
conditions of Thm, 2, let Ẑproj be a solution returned by
DFC-LRR. Then there exists a constant γ∗ (depending on µ
and r) for which the column space of Ẑproj exactly equals
the row space of L0 whenever λ = 3/(7‖M‖

√
γ∗l) for

each DFC-LRR subproblem, γ ≤ γ∗, and t = n/l for

l ≥ crµ log(4n/δ)/(γ∗ − γ)2

and c a fixed constant larger than 1.
3Although [18] uses the notion of column coherence to analyze LRR,

we work with the closely related notion of (µ, r)-coherence for ease of
notation in our proofs. Moreover, we note that if a rank-r matrix L ∈
Rm×n is supported on (1 − γ)n columns then the column coherence of
VL is µ if and only if VL is (µ/(1− γ), r)-coherent.
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Figure 1: Results on synthetic data (reported results are averages over 10 trials). (a) Phase transition of LRR and DFC-LRR.
(b,c) Timing results of LRR and DFC-LRR as functions of γ and n respectively.

Thm. 3 establishes that, like LRR, DFC-LRR can tol-
erate a constant fraction of its data points being corrupted
and still recover the correct subspace segmentation of the
clean data points with high probability. When the num-
ber of datapoints n is large, solving LRR directly may be
prohibitive, but DFC-LRR need only solve a collection of
small, tractable subproblems. Indeed, Thm. 3 guarantees
high probability recovery for DFC-LRR even when the sub-
problem size l is logarithmic in n. The corresponding re-
duction in computational complexity allows DFC-LRR to
scale to large problems with little sacrifice in accuracy.

Notably, this column sampling complexity is better than
that established by [21] in the matrix factorization setting:
we require O(r log n) columns sampled, while [21] requires
in the worst case Ω(n) columns for matrix completion and
Ω((r log n)2) for robust matrix factorization.

4. Experiments
We now explore the empirical performance of DFC-

LRR on a variety of simulated and real-world datasets,
first for the traditional task of robust subspace segmenta-
tion and next for the more complex task of graph-based
semi-supervised learning. Our experiments are designed to
show the effectiveness of DFC-LRR both when the theory
of Section 3 holds and when it is violated. Our synthetic
datasets satisfy the theoretical assumptions of low rank, in-
coherence, and a small fraction of corrupted columns, while
our real-world datasets violate these criteria.

For all of our experiments we use the inexact Aug-
mented Lagrange Multiplier (ALM) algorithm of [17] as
our base LRR algorithm. For the subspace segmenta-
tion experiments, we set the regularization parameter to
the values suggested in previous works [18, 17], while
in our semi-supervised learning experiments we set it to
1/
√

max (m,n) as suggested in prior work.4 In all ex-
periments we report parallel running times for DFC-LRR,

4http://perception.csl.illinois.edu/matrix-rank

i.e., the time of the longest running subproblem plus the
time required to combine submatrix estimates via column
projection. All experiments were implemented in Matlab.
The simulation studies were run on an x86-64 architecture
using a single 2.60 Ghz core and 30GB of main memory,
while the real data experiments were performed on an x86-
64 architecture equipped with a 2.67GHz 12-core CPU and
64GB of main memory.

4.1. Subspace Segmentation: LRR vs. DFC-LRR

We first aim to verify that DFC-LRR produces accuracy
comparable to LRR in significantly less time, both in syn-
thetic and real-world settings. We focus on the standard ro-
bust subspace segmentation task of identifying the subspace
associated with each input datapoint.

4.1.1 Simulations

To construct our synthetic robust subspace segmentation
datasets, we first generate ns datapoints from each of k
independent r-dimensional subspaces of Rm, in a manner
similar to [18]. For each subspace i, we independently se-
lect a basis Ui uniformly from all matrices in Rm×r with
orthonormal columns and a matrix Ti ∈ Rr×ns of inde-
pendent entries each distributed uniformly in [0, 1]. We
form the matrix Xi ∈ Rm×ns of samples from subspace i
via Xi = UiTi and let X0 ∈ Rm×kns = [X1 . . . Xk].
For a given outlier fraction γ we next generate an addi-
tional no = γ

1−γ kns independent outlier samples, denoted
by S ∈ Rm×no . Each outlier sample has independent
N (0, σ2) entries, where σ is the average absolute value of
the entries of the kns original samples. We create the input
matrix M ∈ Rm×n, where n = kns + no, as a random
permutation of the columns of [X0 S].

In our first experiments we fix k = 3, m = 1500, r = 5,
and ns = 200, set the regularizer to λ = 0.2, and vary the
fraction of outliers. We measure with what frequency LRR
and DFC-LRR are able to recover of the row space of X0

http://perception.csl.illinois.edu/matrix-rank
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Figure 3: Trade-off between computation and segmentation accuracy on face recognition experiments. All results are ob-
tained by averaging across 100 independent runs. (a) Run time of LRR and DFC-LRR with varying number of subproblems.
(b) Segmentation accuracy for these same experiments.

Figure 2: Exemplar face images from Extended Yale
Database B. Each row shows randomly selected images for
a human subject.

and identify the outlier columns in S, using the same crite-
rion as defined in [18].5 Figure 1(a) shows average perfor-
mance over 10 trials. We see that DFC-LRR performs quite
well, as the gaps in the phase transitions between LRR and
DFC-LRR are small when sampling 10% of the columns
(i.e., t = 10) and are virtually non-existent when sampling
25% of the columns (i.e., t = 4).

Figure 1(b) shows corresponding timing results for the
accuracy results presented in Figure 1(a). These timing re-
sults show substantial speedups in DFC-LRR relative to
LRR with a modest tradeoff in accuracy as denoted in Fig-
ure 1(a). Note that we only report timing results for values
of γ for which DFC-LRR was successful in all 10 trials,
i.e., for which the success rate equaled 1.0 in Figure 1(a).
Moreover, Figure 1(c) shows timing results using the same
parameter values, except with a fixed fraction of outliers
(γ = 0.1) and a variable number of samples in each sub-
space, i.e., ns ranges from 75 to 1000. These timing results
also show speedups with minimal loss of accuracy, as in all
of these timing experiments, LRR and DFC-LRR were suc-
cessful in all trials using the same criterion defined in [18]
and used in our phase transition experiments of Figure 1(a).

5Success is determined by whether the oracle constraints of Eq. (8) in
the Appendix are satisfied within a tolerance of 10−4.

4.1.2 Face Clustering

We next demonstrate the comparable quality and increased
performance of DFC-LRR relative to LRR on real data,
namely, a subset of Extended Yale Database B,6 a stan-
dard face benchmarking dataset. Following the experimen-
tal setup in [17], 640 frontal face images of 10 human sub-
jects are chosen, each of which is resized to be 48×42 pixels
and forms a 2016-dimensional feature vector. As noted in
previous work [3], a low-dimensional subspace can be ef-
fectively used to model face images from one person, and
hence face clustering is a natural application of subspace
segmentation. Moreover, as illustrated in Figure 2, a sig-
nificant portion of the faces in this dataset are “corrupted”
by shadows, and hence this collection of images is an ideal
benchmark for robust subspace segmentation.

As in [17], we use the feature vector representation of
these images to create a 2016 × 640 dictionary matrix, M,
and run both LRR and DFC-LRR with the parameter λ set
to 0.15. Next, we use the resulting low-rank coefficient ma-
trix Ẑ to compute an affinity matrix UẐU>

Ẑ
, where UẐ

contains the top left singular vectors of Ẑ. The affinity ma-
trix is used to cluster the data into k = 10 clusters (cor-
responding to the 10 human subjects) via spectral embed-
ding (to obtain a 10D feature representation) followed by
k-means. Following [17], the comparison of different clus-
tering methods relies on segmentation accuracy. Each of
the 10 clusters is assigned a label based on majority vote of
the ground truth labels of the points assigned to the cluster.
We evaluate clustering performance of both LRR and DFC-
LRR by computing segmentation accuracy as in [17], i.e.,
each cluster is assigned a label based on majority vote of
the ground truth labels of the points assigned to the cluster.
The segmentation accuracy is then computed by averaging
the percentage of correctly classified data over all classes.

Figures 3(a) and 3(b) show the computation time and the

6http://vision.ucsd.edu/˜leekc/ExtYaleDatabase

http://vision.ucsd.edu/~leekc/ExtYaleDatabase


segmentation accuracy, respectively, for LRR and for DFC-
LRR with varying numbers of subproblems (i.e., values of
t). On this relatively-small data set (n = 640 faces), LRR
requires over 10 minutes to converge. DFC-LRR demon-
strates a roughly linear computational speedup as a function
of t, comparable accuracies to LRR for smaller values of t
and a quite gradual decrease in accuracy for larger t.

4.2. Graph-based Semi-Supervised Learning

Graph representations, in which samples are vertices and
weighted edges express affinity relationships between sam-
ples, are crucial in various computer vision tasks. Classical
graph construction methods separately calculate the outgo-
ing edges for each sample. This local strategy makes the
graph vulnerable to contaminated data or outliers. Recent
work in computer vision has illustrated the utility of global
graph construction strategies using graph Laplacian [9] or
matrix low-rank [32] based regularizers. L1 regularization
has also been effectively used to encourage sparse graph
construction [5, 13]. Building upon the success of global
construction methods and noting the connection between
subspace segmentation and graph construction as described
in Section 2.1, we present a novel application of the low-
rank representation methodology, relying on our DFC-LRR
algorithm to scalably yield a sparse, low-rank graph (SLR-
graph). We present a variety of results on large-scale semi-
supervised learning visual classification tasks and provide a
detailed comparison with leading baseline algorithms.

4.2.1 Benchmarking Data

We adopt the following three large-scale benchmarks:

Columbia Consumer Video (CCV) Content Detection7:
Compiled to stimulate research on recognizing highly-
diverse visual content in unconstrained videos, this dataset
consists of 9317 YouTube videos over 20 semantic cate-
gories (e.g., baseball, beach, music performance). Three
popular audio/visual features (5000-D SIFT, 5000-D STIP,
and 4000-D MFCC) are extracted.
MED12 Multimedia Event Detection: The MED12 video
corpus consists of ∼150K multimedia videos, with an av-
erage duration of 2 minutes, and is used for detecting 20
specific semantic events. For each event, 130 to 367 videos
are provided as positive examples, and the remainder of
the videos are “null” videos that do not correspond to any
event. In this work, we keep all positive examples and
sample 10K null videos, resulting in a dataset of 13, 876
videos. We extract six features from each video, first
at sampled frames and then accumulated to obtain video-
level representations. The features are either visual (1000-
D sparse-SIFT, 1000-D dense-SIFT, 1500-D color-SIFT,

7http://www.ee.columbia.edu/ln/dvmm/CCV/

5000-D STIP), audio (2000-D MFCC), or semantic features
(2659-D CLASSEME [25]).

NUS-WIDE-Lite Image Tagging: NUS-WIDE is among
the largest available image tagging benchmarks, consisting
of over 269K crawled images from Flickr that are associated
with over 5K user-provided tags. Ground-truth images are
manually provided for 81 selected concept tags. We gener-
ate a lite version by sampling 20K images. For each image,
128-D wavelet texture, 225-D block-wise LAB-based color
moments and 500-D bag of visual words are extracted, nor-
malized and finally concatenated to form a single feature
representation for the image.

4.2.2 Graph Construction Algorithms

The three graph construction schemes we evaluate are de-
scribed below. Note that we exclude other baselines (e.g.,
NNLRS [32], LLE graph [28], L1-graph [5]) due to ei-
ther scalability concerns or because prior work has already
demonstrated inferior performance relative to the SPG al-
gorithm defined below [32].
kNN-graph: We construct a nearest neighbor graph by con-
necting (via undirected edges) each vertex to its k nearest
neighbors in terms of l2 distance in the specified feature
space. Exponential weights are associated with edges, i.e.,
wij = exp

(
−d2

ij/σ
2
)
, where dij is the distance between xi

and xj and σ is an empirically-tuned parameter [27].
SPG: Cheng et al. [5] proposed a noise-resistant L1-graph
which encourages sparse vertex connectedness, motivated
by the work of sparse representation [29]. Subsequent work,
entitled sparse probability graph (SPG) [13] enforced pos-
itive graph weights. Following the approach of [32], we
implemented a variant of SPG by solving the following op-
timization problem for each sample:

min
wx

‖x−Dxwx‖22 + α‖wx‖1, s.t. wx ≥ 0, (3)

where x is a feature representation of a sample and Dx is
the basis matrix for x constructed from its nk nearest neigh-
bors. We use an open-source tool8 to solve this non-negative
Lasso problem.
SLR-graph: Our novel graph construction method con-
tains two-steps: first LRR or DFC-LRR is performed on
the entire data set to recover the intrinsic low-rank cluster-
ing structure. We then treat the resulting low-rank coeffi-
cient matrix Z as an affinity matrix, and for sample xi, the
nk samples with largest affinities to xi are selected to form
a basis matrix and used to solve the SPG optimization de-
scribed by Problem (3). The resulting non-negative coeffi-
cients (typically sparse owing to the `1 regularization term
on wx in (3)) are used to define the graph.

8http://sparselab.stanford.edu

http://www.ee.columbia.edu/ln/dvmm/CCV/
http://sparselab.stanford.edu
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Figure 4: Trade-off between computation and accuracy for the SLR-graph on the CCV dataset. (a) Wall time of LRR and
DFC-LRR with varying numbers of subproblems. (b) mAP scores for these same experiments.

Table 1: Mean average precision (mAP) (0-1) scores for
various graph construction methods. DFC-LRR-10 is per-
formed for SLR-Graph. The best mAP score for each fea-
ture is highlighted in bold.

(a) CCV

kNN-GRAPH SPG SLR-GRAPH

SIFT .2631 .3863 .3946
STIP .2011 .3036 .3227
MFCC .1420 .2129 .2085

(b) MED12

kNN-GRAPH SPG SLR-GRAPH

COLOR-SIFT .0742 .1202 .1432
DENSE-SIFT .0928 .1350 .1525
SPARSE-SIFT .0780 .1258 .1464
MFCC .0962 .1371 .1371
CLASSEME .1302 .1872 .2120
STIP .0620 .0835 .0803

(c) NUS-WIDE-Lite

kNN-GRAPH SPG SLR-GRAPH

.1080 .1003 .1179

4.2.3 Experimental Design

For each benchmarking dataset, we first construct graphs
by treating sample images/videos as vertices and using the
three algorithms outlined in Section 4.2.2 to create (sparse)
weighted edges between vertices. For fair comparison, we
use the same parameter settings, namely α = 0.05 and
nk = 500 for both SPG and SLR-graph. Moreover, we set
k = 40 for kNN-graph after tuning over the range k = 10
through k = 60.

We then use a given graph structure to perform semi-
supervised label propagation using an efficient label prop-
agation algorithm [27] that enjoys a closed-form solution
and often achieves the state-of-the-art performance. We per-
form a separate label propagation for each category in our
benchmark, i.e., we run a series of 20 binary classification

label propagation experiments for CCV/MED12 and 81 ex-
periments for NUS-WIDE-Lite. For each category, we ran-
domly select half of the samples as training points (and use
their ground truth labels for label propagation) and use the
remaining half as a test set. We repeat this process 20 times
for each category with different random splits. Finally, we
compute Mean Average Precision (mAP) based on the re-
sults on the test sets across all runs of label propagation.

4.2.4 Experimental Results

We first performed experiments using the CCV benchmark,
the smallest of our datasets, to explore the tradeoff between
computation and accuracy when using DFC-LRR as part of
our proposed SLR-graph. Figure 4(a) presents the time re-
quired to run SLR-graph with LRR versus DFC-LRR with
three different numbers of subproblems (t = 5, 10, 15),
while Figure 4(b) presents the corresponding accuracy re-
sults. The figures show that DFC-LRR performs compara-
bly to LRR for smaller values of t, and performance grad-
ually degrades for larger t. Moreover, DFC-LRR is up
to two orders of magnitude faster and achieves superlinear
speedups relative to LRR.9 Given the scalability issues of
LRR on this modest-sized dataset, along with the compara-
ble accuracy of DFC-LRR, we ran SLR-graph exclusively
with DFC-LRR (t = 10) for our two larger datasets.

Table 1 summarizes the results of our semi-supervised
learning experiments using the three graph construction
techniques defined in Section 4.2.2. The results show that
our proposed SLR-graph approach leads to significant per-
formance gains in terms of mAP across all benchmarking
datasets for the vast majority of features. These results
demonstrate the benefit of enforcing both low-rankedness
and sparsity during graph construction. Moreover, conven-
tional low-rank oriented algorithms, e.g., [32, 16] would be
computationally infeasible on our benchmarking datasets,

9We restricted the maximum number of internal LRR iterations to 500
to ensure that LRR ran to completion in less than two days.



thus highlighting the utility of employing DFC’s divide-
and-conquer approach to generate a scalable algorithm.

5. Conclusion
Our primary goal in this work was to introduce a

provably accurate algorithm suitable for large-scale low-
rank subspace segmentation. While some contemporane-
ous work [1] also aims at scalable subspace segmenta-
tion, this method offers no guarantee of correctness. In
contrast, DFC-LRR provably preserves the theoretical re-
covery guarantees of the LRR program. Moreover, our
divide-and-conquer approach achieves empirical accuracy
comparable to state-of-the-art methods while obtaining lin-
ear to superlinear computational gains, both on standard
subspace segmentation tasks and on novel applications to
semi-supervised learning. DFC-LRR also lays the ground-
work for scaling up LRR derivatives known to offer im-
proved performance, e.g., LatLRR in the setting of stan-
dard subspace segmentation and NNLRS in the graph-based
semi-supervised learning setting. The same techniques may
prove useful in developing scalable approximations to other
convex formulations for subspace segmentation, e.g., [20].
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A. Proof of Theorem 3
Our proof of Thm. 3 rests upon three key results: a

new deterministic recovery guarantee for LRR-type prob-
lems that generalizes the guarantee of [18], a probabilis-
tic estimation guarantee for column projection established
in [21], and a probabilistic guarantee of [21] showing that
a uniformly chosen submatrix of a (µ, r)-coherent matrix
is nearly (µ, r)-coherent. These results are presented in
Secs. A.1, A.2, and A.3 respectively. The proof of Thm. 3
follows in Sec. A.4.

In what follows, the unadorned norm ‖·‖ represents the
spectral norm of a matrix. We will also make use of a tech-
nical condition, introduced by Liu et al. [18] to ensure that
a corrupted data matrix is well-behaved when used as a dic-
tionary:

Definition 4 (Relatively Well-Definedness). A matrix M =
L0 + S0 is β-RWD if

‖Σ−1
M VT

MVL0
‖ ≤ 1

β‖M‖
.

A larger value of β corresponds to improved recovery prop-
erties.

A.1. Analysis of Low-Rank Representation

Thm. 1 of [18] analyzes LRR recovery under the con-
straint O = DZ + S when the observation matrix O and
the dictionary D are both equal to the input matrix M. Our
next theorem provides a comparable analysis when the ob-
servation matrix is a column submatrix of the dictionary.

Theorem 5. Suppose that M = L0 + S0 ∈ Rm×n is β-
RWD with rank r and that L0 and S0 have independent
column support with range(L0) ∩ range(S0) = {0}. Let
S0,C ∈ Rm×l be a column submatrix of S0 supported on
γl columns, and suppose that C, the corresponding column
submatrix of M, is ( µ

1−γ , r)-coherent. Define

γ∗ ,
324β2

324β2 + 49(11 + 4β)2µr
,

and let (Ẑ, Ŝ) be a solution to the problem

min
Z,S

‖Z‖∗ + λ‖S‖2,1 subject to C = MZ + S (4)

with λ = 3/(7‖M‖
√
γ∗l). If γ ≤ γ∗, then the column

space of Ẑ equals the row space of L0.

The proof of Thm. 5 can be found in Sec. B.

A.2. Analysis of Column Projection

The following lemma, due to [21], shows that, with high
probability, column projection exactly recovers a (µ, r)-
coherent matrix by sampling a number of columns propor-
tional to µr log n.

Corollary 6 (Column Projection under Incoherence [21,
Cor. 6]). Let L ∈ Rm×n be (µ, r)-coherent, and let LC ∈
Rm×l be a matrix of l columns of L sampled uniformly with-
out replacement. If l ≥ crµ log(n) log(1/δ), where c is a
fixed positive constant, then,

L = Lproj , ULC
U>LC

L

exactly with probability at least 1− δ.

A.3. Conservation of Incoherence

The following lemma of [21] shows that, with high prob-
ability, L0,i captures the full rank of L0 and has coherence
not much larger than µ.

Lemma 7 (Conservation of Incoherence [21, Lem. 7]). Let
L ∈ Rm×n be (µ, r)-coherent, and let LC ∈ Rm×l be
a matrix of l columns of L sampled uniformly without re-
placement. If l ≥ crµ log(n) log(1/δ)/ε2, where c is a fixed
constant larger than 1, then LC is ( µ

1−ε/2 , r)-coherent with
probability at least 1− δ/n.

A.4. Proof of DFC-LRR Guarantee

Recall that, under Alg. 1, the input matrix M has been
partitioned into column submatrices {C1, . . . ,Ct}. Let
{C0,1, . . . ,C0,t} and {S0,1, . . . ,S0,t} be the correspond-
ing partitions of L0 and S0, let si , γil be the size of the
column support of S0,i for each index i, and let (Ẑi, Ŝi) be
a solution to the ith DFC-LRR subproblem.

For each index i, we further define Ai as the event that
C0,i is (4µ/(1− γi), r)-coherent, Bi as the event that si ≤
γ∗l, and G(Z) as the event that the column space of the
matrix Z is equal to the row space of L0. Under our choice
of γ∗, Thm. 5 implies that G(Ẑi) holds when Ai and Bi are
both realized. Hence, when Ai and Bi hold for all indices
i, the column space of Ẑ = [Ẑ1, . . . , Ẑt] precisely equals
the row space of L0, and the median rank of {Ẑ1, . . . , Ẑt}
equals r.

Applying Cor. 6 with

l ≥ crµ log2(4n/δ)/(γ∗ − γ)2 ≥ crµ log(n) log(4/δ),

shows that, given Ai and Bi for all indices i, Ẑproj equals
Ẑ with probability at least 1 − δ/4. To establish G(Ẑrp)
with probability at least 1− δ, it therefore remains to show
that

P
(
∩ti=1(Ai ∩Bi)

)
= 1−P

(
∪ti=1(Aci ∪Bci )

)
(5)

≥ 1−
t∑
i=1

(P(Aci ) + P(Bci )) (6)

≥ 1− 3δ/4. (7)

Because DFC-LRR partitions columns uniformly at ran-
dom, the variable si has a hypergeometric distribution with



Esi = γl and therefore satisfies Hoeffding’s inequality for
the hypergeometric distribution [14, Sec. 6]:

P(si ≥ Esi + lτ) ≤ exp
(
−2lt2

)
.

It follows that

P(Bci ) = P(si > γ∗l) = P(si > Esi + l(γ∗ − γ))

≤ exp
(
−2l(γ∗ − γ)2

)
≤ δ/(4t)

by our assumption that l ≥ crµ log2(4n/δ)/(γ∗ − γ)2 ≥
log(4t/δ)/[2(γ∗ − γ)2].

By Lem. 7 and our choice of

l ≥ crµ log2(4n/δ)/(γ∗ − γ)2

≥ crµ log(n) log(4/δ)/(1− γ),

each submatrix C0,i is (2µ/(1− γ), r)-coherent with prob-
ability at least 1 − δ/(4n) ≥ 1 − δ/(4t). A second ap-
plication of Hoeffding’s inequality for the hypergeometric
further implies that

P

(
2µ

1− γ
>

4µ

1− γi

)
= P(si < Esi − l(1− γ))

≤ exp
(
−2l(1− γ)2

)
≤ δ/(4t),

since l ≥ crµ log(4n/δ)/(γ∗ − γ)2 ≥ log(4t/δ)/[2(1 −
γ)2]. Hence, P(Aci ) ≤ δ/(2t).

Combining our results, we find

t∑
i=1

(P(Aci ) + P(Bci )) ≤ 3δ/4

as desired.

B. Proof of Theorem 5
Let I0 be the column support of S0,C , and let Ic0 be its

set complement in {1, . . . , l}. For any matrix S ∈ Ra×b
and index set I ⊆ {1, . . . , b}, we let PI(S) be the or-
thogonal projection of S onto the space of a × b matrices
with column support I, so that (PI(S))(j) = S(j), if j ∈
I and (PI(S))(j) = 0 otherwise.

B.1. Oracle Constraints

Our proof of Thm. 5 will parallel Thm. 1 of [18]. We be-
gin by introducing two oracle constraints that would guar-
antee the desired outcome if satisfied.

Lemma 8. Under the assumptions of Thm. 5, suppose that
C = MZ + S for some matrices (Z,S). If (Z,S) addition-
ally satisfy the oracle constraints

PL>0
Z = Z and PI0(S) = S (8)

then the column space of Z equals the row space of L0.

Proof By Eq. 8, the row space of L0 contains the col-
umn space of Z, so the two will be equal if rank(L0) =
rank(Z). This equality indeed holds, since

C0 = PIc0 (C) = PIc0 (MZ + S) = MPIc0 (Z),

and therefore rank(L0) = rank(C0) ≤
rank(MPIc0 (Z)) ≤ rank(PIc0 (Z)) ≤ rank(Z) ≤
rank(L0).
Thus, to prove Thm. 5, it suffices to show that any solution
to Eq. 4 also satisfies the oracle constraints of Eq. 8.

B.2. Conditions for Optimality

To this end, we derive sufficient conditions for solving
Eq. 4 and moreover show that if any solution to Eq. 4 satis-
fies the oracle constraints of Eq. 8, then all solutions do.

We will require some additional notation. For a matrix
Z ∈ Rn×l we define T (Z) , {UZX + YV>Z : X ∈
Rr×l,Y ∈ Rn×r}, PT (Z) as the orthogonal projection onto
the set T (Z), and PT (Z)⊥ as the orthogonal projection onto
the orthogonal complement of T (Z). For a matrix S with
column support I, we define the column normalized ver-
sion, B(S), which satisfies

PIc(B(S)) = 0 and B(S)(j) , S(j)/‖S(j)‖ ∀j ∈ I.

Theorem 9. Under the assumptions of Thm. 5, suppose that
C = MZ + S for some matrices (Z,S). If there exists a
matrix Q satisfying

(a) PT (Z)(M
>Q) = UZV>Z

(b) ‖PT (Z)⊥(M>Q)‖ < 1

(c) PI0(Q) = λB(S)

(d) ‖PIc0 (Q)‖
2,∞ < λ.

then (Z,S) is a solution to Eq. 4. If, in addition,
PI0(Z+Z) = 0, and (Z,S) satisfy the oracle constraints
of Eq. 8, then all solutions to Eq. 4 satisfy the oracle con-
straints of Eq. 8.

Proof The proof of this theorem is identical to that of
[18, Thm. 3] which establishes the same result when the
observation C is replaced by M.
It remains to construct a feasible pair (Z,S) satisfying the
oracle constraints and PI0(Z+Z) = 0 and a dual certificate
Q satisfying the conditions of Thm. 9.

B.3. Constructing a Dual Certificate

To this end, we consider the oracle problem:

min
Z,S

‖Z‖∗ + λ‖S‖2,1 (9)

subject to
C = MZ + S, PL>0

Z = Z, and PI0(S) = S.



Let Y be the binary matrix that selects the columns of C
from M. Then (PL>0

Y,S0,i) is feasible for this problem,
and hence an optimal solution (Z∗,S∗) must exist. By ex-
plicitly constructing a dual certificate Q, we will show that
(Z∗,S∗) also solves the LRR subproblem of Eq. 4.

We will need a variety of lemmas paralleling those de-
veloped in [18]. Let

V̄ , VZ∗U
>
Z∗VL0

.

The following lemma was established in [18].

Lemma 10 (Lem. 8 of [18]). V̄V̄> = VZ∗V
>
Z∗ . More-

over, for any A ∈ Rm×l,

PT (Z∗)(A) = PL>0
A + APV̄ −PL>0

APV̄.

The next lemma parallels Lem. 9 of [18].

Lemma 11. Let Ĥ = B(S∗). Then

VL0
PI0(V̄>) = λPL>0

M>Ĥ.

Proof The proof is identical to that of Lem. 9 of [18].

Define

G , PI0(V̄>)(PI0(V̄>))> and ψ , ‖G‖.

The next lemma parallels Lem. 10 of [18].

Lemma 12. ψ ≤ λ2‖M‖2γl.

Proof The proof is identical to that of Lem. 10 of [18],
save for the size of I0, which is now bounded by γl.
Note that under the assumption λ ≤ 3/(7‖M‖

√
γl), we

have ψ ≤ 1/4.
The next lemma was established in [18].

Lemma 13 (Lem. 11 of [18]). If ψ < 1, then
PI0((Z∗)+Z∗) = PI0(PV̄ ) = 0.

Lem. 12 of [18] is unchanged in our setting. The next
lemma parallels Lem. 13 of [18].

Lemma 14. ‖PIc0 (V̄>)‖
2,∞ ≤

√
µr

(1−γ)l

Proof By assumption, C = MZ∗ + S∗, rank(C0) = r,
and PIc0 (C) = C0 = PIc0 (C0). Hence, C0 = PIc0 (C0) =
MPIc0 (Z∗), and thus

V>C0
= PIc0 (V>C0

) = Σ−1
C0

U>C0
MUZ∗ΣZ∗PIc0 (V>Z∗).

This relationship implies that

r = rank(V>C0
) ≤ rank(PIc0 (V>Z∗)) ≤ rank(V>Z∗) = r

and therefore that PIc0 (V>Z∗) is of full row rank. The
remainder of the proof is identical to that of Lem. 13 of

[18], save for the coherence factor of (1 − γ)l in place of
(1− γ)n.

With these lemmas in hand, we define

Q1 , λPL>0
M>Ĥ = VL0

PI0(V̄>)

Q2 , λP(L>0 )⊥PIc0 ((I +

∞∑
i=1

(PV̄ PI0PV̄ )i)PV̄ )MĤPV̄

= λPIc0 ((I +

∞∑
i=1

(PV̄ PI0PV̄ )i)PV̄ )P(L>0 )⊥MĤPV̄ ,

where the first relation follows from Lem. 11. Our final
theorem parallels Thm. 4 of [18].

Theorem 15. Assume ψ < 1, and let

Q , (M+)>(VL0V̄
> + λM>Ĥ−Q1 −Q2).

If
γ

1− γ
<

β2(1− ψ)2

(3− ψ + β)2µr
,

(1− ψ)
√

µr
1−γ

‖M‖
√
l(β(1− ψ)− (1 + β)

√
γ

1−γµr)
< λ ,

and
λ <

1− ψ
‖M‖

√
γl(2− ψ)

,

then Q satisfies the conditions in Thm. 9.

Proof The proof of property S3 requires a small modifi-
cation. Thm. 4 of [18] establishes that PI0(Q) = λPMĤ.
To conclude that PI0(Q) = λĤ, we note that S∗i =
C − MZ∗ and that the column space of C contains the
column space of M by assumption. Hence, PMS∗i = S∗i
and therefore PI0(Q) = λPMĤ = λĤ.

The proofs of properties S4 and S5 are unchanged
except for the dimensionality factor which changes from n
to l.

Finally, Lem. 14 of [18] guarantees that the precondi-
tions of Thm. 15 are met under our assumptions on λ, γ∗,
and γ.


