
Distributed Lyapunov Functions in Analysis of

Graph Models of Software �

Mardavij Roozbehani1, Alexandre Megretski1, Emilio Frazzoli1, and
Eric Feron2

1 Laboratory for Information and Decision Systems
Massachusetts Institute of Technology (MIT), Cambridge, MA

mardavij@mit.edu, ameg@mit.edu, frazzoli@mit.edu

2 Department of Aerospace Engineering
Georgia Institute of Technology, Atlanta, GA

feron@gatech.edu

Abstract. In previous works, the authors introduced a framework for
software analysis, which is based on optimization of Lyapunov invari-
ants. These invariants prove critical software properties such as absence
of overflow and termination in finite time. In this paper, graph models
of software are introduced and the software analysis framework is fur-
ther developed and extended on graph models. A distributed Lyapunov
function is assigned to the software by assigning a Lyapunov function to
every node on its graph model. The global decremental condition is then
enforced by requiring that the Lyapunov functions on each node decrease
as transitions take place along the arcs. The concept of graph reduction
and optimality of graphs for Lyapunov analysis is briefly discussed.

1 Introduction

Verification of safety-critical software systems presents itself with many chal-
lenges, including verification of the functional requirements, line-by-line verifi-
cation of the code at the implementation level, and the need to prove absence of
run-time errors. Due to its great potential to address these issues, static analysis
has attracted computer scientists for decades. The book [13] provides an exten-
sive collection of available results and techniques developed by computer scien-
tists. Formal methods, including Abstract Interpretation [7], andModel Checking
[5, 6] were developed in this endeavor to advance software verification.

While software verification has attracted little attention in the control com-
munity, recently, there have been renewed efforts at establishing properties of
� This work was supported by the National Science Foundation (NSF-0715025). Any
opinions, findings, conclusions or recommendations expressed in this paper are those
of the authors and do not necessarily reflect the views of the supporting organization.

software systems by the combined use of abstractions and control theoretic prin-
ciples. Much of the relevant literature in that regard may be found in the recent
field of hybrid systems [10]. See for instance [8]. In general, it was found that
many methods developed in system and control theory for systems driven by
differential equations were in principle applicable to hybrid systems, possibly
at the price of having to re-develop some elements of theory, e.g. optimal con-
trol theory on hybrid systems [12, 4, 2], computation of Lyapunov functions for
hybrid systems [9], or control of hybrid systems using bisimulations [11].

The premise of using control theoretic tools for software verification is that
such tools appear to adapt very well for analysis of software in aerospace, au-
tomotive, and many other safety-critical systems. For instance, in flight control
systems, the software provides the control law to actuators that control the posi-
tion of surfaces based on the pilot input and the current states. Our proposition
is that since the embedded software implements a control law that is designed via
system theoretic tools, such tools are best suited for verification at the implemen-
tation level. The analysis relies on a discrete event dynamical systems modeling
of computer programs, and the verification method relies on numerical optimiza-
tion in searching for system invariants. This paper complements existing results
on software verification by further extending a previously established framework
for transferring control theoretic tools to software analysis. This paper focuses on
graph models in analysis of software systems via distributed Lyapunov functions.

1.1 Automated Software Analysis: Preliminaries

In this section we briefly review the principals of software analysis via dynamical
system models. Interested readers are referred to [17],[15],[16] for more details.

Computer programs as dynamical systems

Exact and abstract representations of computer programs We will consider mod-
els defined in general by a state space set X with selected subsets X0 ⊆ X of
initial states and X∞ ⊂ X of terminal states, and by a set-valued function f :
X → 2X , such that f(x) ⊆ X∞, ∀x ∈ X∞. Thus, a computer program P , repre-
sented by the dynamical system S(X, f,X0, X∞) with parameters X, f,X0, X∞
is understood as the set of all sequences X := (x(0), x(1), . . . , x(t), . . .) of ele-
ments from X, satisfying

x (0) ∈ X0, x (t+ 1) ∈ f (x (t)) ∀t ∈ Z+ (1)

Definition 1. Consider a computer program P and its dynamical system rep-
resentation S(X, f,X0, X∞). Program P is said to terminate in finite time if
every solution X ≡ x(.) of (1) satisfies x(t) ∈ X∞ for some t ∈ Z+.

Definition 2. Consider a computer program P and its dynamical system repre-
sentation S(X, f,X0, X∞). Program P is said to run without an overflow run-
time error if for every solution X ≡ x(.) of (1) and for every t ∈ Z+, x(t) does
not belong to a certain (unsafe) subset X− of X.

In addition to exact dynamical systems models of computer programs, we
also define abstracted models. We say that the model S(X̂, f̂ , X̂0, X̂∞) is an
abstraction of S(X, f,X0, X∞) (or simply an abstraction of P), if X ⊆ X̂, X0 ⊆
X̂0, X̂∞ ⊆ X∞, and f(x) ⊆ f̂(x) for all x ∈ X .

Proposition 1. [17] Consider a computer program P and its dynamical system
representation S(X, f,X0, X∞). Let S(X̂, f̂ , X̂0, X̂∞) be an abstraction of P . Let
X− and X̂−, representing the overflow regions of P and its abstraction respec-
tively, be such that X− ⊆ X̂−. Assume that absence of overflow has been certified
for the abstracted model of P. Then, an overflow RTE will not occur during any
execution of P . In addition, if finite-time termination has been certified for the
abstracted model, then program P will terminate in finite time.

1.2 Lyapunov invariants as behavior certificates

We introduce Lyapunov-like invariants as certificates for the behavior of com-
puter programs. We then describe the conditions under which, finding these
Lyapunov-like invariants can be formulated as a convex optimization problem.

Definition 3. A rate-θ Lyapunov invariant for system S(X, f,X0, X∞) is de-
fined to be a function V : X → R such that

V (x+)− θV (x) < 0 ∀x ∈ X, x+ ∈ f (x) : x /∈ X∞. (2)

where θ > 0 is a constant. Thus, a rate-θ Lyapunov invariant satisfies an in-
variant property (V (x+) − θV (x) < 0) along the trajectories of (1) until they
reach a terminal state.

Lemma 1. [15] Consider a computer program P , and its dynamical system
model S(X, f,X0, X∞) and assume that θ > 1. If there exists a rate-θ Lyapunov
invariant V : X → R, uniformly bounded on X, satisfying

V (x) < 0 ∀x ∈ X0 (3)

then P terminates in finite time.

Theorem 1. [15] Consider a program P , and let S(X, f,X0, X∞) be its dy-
namical system model. Let θ be constant and let V denote the set of all rate-θ
Lyapunov invariants for program P . An overflow run-time error will not occur
during any execution of P , if there exists V ∈ V satisfying

inf
x∈X−

V (x) ≥ sup
x∈X0

V (x) (4)

and at least one of the following three conditions holds:

(i) θ = 1 (5)
(ii) 0 < θ < 1 , and inf

x∈X−
V (x) ≥ 0 (6)

(iii) 0 < θ , and 0 ≥ sup
x∈X0

V (x) (7)

2 Graph Models in Analysis of Computer Programs

In this section we further extend and develop our software analysis framework
on graph models. Practical considerations such as expressivity, convenience for
automated parsing, existence of efficient relaxation techniques and compatibility
with available numerical optimization engines render graph models an efficient
and applicable model for analysis of real-time embedded software. In addition,
graphmodels provide a convenient platform for mapping the proofs of correctness
and certificates of performance from the model to the actual line of code at the
implementation level. We will also see that graph models allow for trading off
computational efforts at the parsing/modeling phase for computational efforts
at the convex optimization phase and vice versa.

A graph model is essentially a generalized version of the model previously
introduced for Linear Programs with Conditional Switching (LPwCS) [16], [17].
A graph model is defined on a directed graph G (N , E) with a set of nodes
(“effective” lines of code) N := {0, 1, . . . ,m} ∪ {��} , and a set of arcs E :=
{(i, j, k) | i ∈ N , j ∈ O (i)} , where O (i) is the set of all nodes to which transi-
tion from node i is possible in one time step. Multiple arcs between nodes are
allowed and the third element in the triplet (i, j, k) is the index of the k-th arc
between nodes i and j. This model, has state space X := N × Rn, with initial
and terminal subsets defined as

X0 := {0} × v0, v0 ⊆ Rn, X∞ := {��} × Rn

where v0 is a selected subset ofRn, constrained by linear, quadratic or polynomial
equalities and inequalities. On this graph, node 0 represents a (perhaps fictitious)
line containing all the available information about the initial conditions of the
continuous states. Node �� represents the terminal location and the definition of
X∞ as {��}×Rn implies that our characterization of the terminal states depends
only on the discrete component of the state space, i.e., a specific line of code,
and is not (explicitly) dependent on the analog components of the state space.
The set-valued map f : X → 2X , is defined by the transitions associated with
the arcs on this graph, subject to certain rules associated with each arc.

The only possible transition involving node 0 is a transition from node 0 to
node 1. The only possible transition from/to node �� is the identity transition to
node �� . Multiple arcs between nodes are allowed. The set A (i, j) := {1, .., κij}
denotes the set of all indices of the arcs from node i to node j, where κij denotes
the total number of arcs from node i to j. We denote the k-th arc from node
i to node j by (i, j, k) . We attribute two labels to every arc (i, j, k) on this
graph: (i) A transition label T k

ji, to be understood as an operator defined on Rn,
which represents a set-valued function mapping the state (i, v) to all possible
states (j, v), where v ∈ T k

jiv. (ii) A passport label Ik
ji, to be understood as the

indicator function of a semi-algebraic set, defined by a set of linear, quadratic,
or polynomial equalities and inequalities.

P k
ji :=

{
v | Hk

ji (v) = 0, Qk
ji (v) ≤ 0

}
, Ik

ji [v] :=
{
1 if v ∈ P k

ji

0 if v /∈ P k
ji

According to this definition, transition along arc (i, j, k) is possible if and only
if Ik

ji [v] = 1. A passport label I1k
ji ∧ I2k

ji is understood as I1
k
ji · I2k

ji. Finally,
the state transition map f : X → 2X is given by

f (i, v) =
{(

j, T k
jiv

) | j ∈ O (i) , Ik
ji [v] = 1

}
.

We have defined all the elements of the model. In reference to the graph model
of a computer program, we will use the concise notation G (N , E), with the
convention that the nodes and arcs of G are appropriately labeled to define a
valid model S (X, f,X0, X∞) according to our previous discussion.

Remark 1. Multiple arcs between nodes enable modeling “or” or “xor” type con-
ditional transitions. The passport labels associated with multiple arcs between
nodes are not necessarily exclusive. Thus, multiple transitions along different
arcs may be possible. This allows for nondeterministic modeling.

2.1 Lyapunov analysis of graph models

Consider a computer program P , and its graph model G (N , E) . We are inter-
ested in finding Lyapunov functions that prove certain properties of P . As we
described before, the state in this model is defined by x = (i, v) where i is the
discrete component and v is the continuous component of the state vector. We
define Lyapunov functions for this model in the following way:

V (x) ≡ V (i, v) := σi (v) (8)

where for every i ∈ N the function σk : Rn → R is a quadratic, polynomial or
an affine functional. This means that we assign a quadratic/linear/polynomial
Lyapunov function to every node i ∈ N on graph G (N , E) . We will refer to
Lyapunov functions defined according to (8) as node-wise Lyapunov functions.

Proposition 2. Let V (x) be defined according to (8). The Lyapunov invariance
condition

V (x+) < θV (x) ∀x ∈ X \ X∞, x+ ∈ f (x)

holds true if and only if

σj(T k
jiv)− θσi (v) < 0, ∀i ∈ N\ {��} , j ∈ O (i) , k ∈ A (i, j) , Ik

ji [v] = 1. (9)

Let Na :=
∑

(i,j)∈E
|A (i, j)| denote the total number of arcs on G (N , E), ex-

cluding the identity transformation arc (��,��) . Then, according to proposition
2 the Lyapunov invariance condition is enforced via Na constraints. Assume for
the moment that each σi is a quadratic functional, and also that

P k
ji [v] :=

{
v | Ek

i (v) = 0, Ik
i (v) ≤ 0

}
where Ek

i and Ik
i are quadratic functionals. Each of the constraints in (9) ex-

presses that a quadratic form must be negative whenever certain quadratic con-
straints are satisfied. Various forms of convex relaxations such as the S-Procedure

in positivity of quadratic forms can be employed to formulate (9) as a convex
optimization problem. In this case, the resulting optimization problem will be a
semidefinite program [1]. In the presence of polynomial constraints, or if we al-
low σi (v) to be polynomial functionals of v, the resulting optimization problem
can be formulated as a sum of squares program [14]. Similarly, linear invariants
subject to linear constraints lead to linear programming [3].

Finite-time termination In node-wise Lyapunov analysis of graph models,
we often do not impose the same invariance rate θ along all the arcs, as this may
lead to either infeasibility or to weak invariants. While computing the optimal
value of θ per arc is neither possible nor necessary, depending on the state
transitions along the arcs, certain choices of θ may be more reasonable than
others. The following theorem provides a finite-time termination criterion via
node-wise Lyapunov invariants defined on graph models.

Definition 4. A cycle Cm on a graph G (N , E) is an ordered list of m triplets
(n1, n2, k1) , (n2, n3, k2) , ..., (nm, nm+1, km) , where n1 = nm+1 and for all j ∈
{1, ...,m} we have (nj , nj+1, kj) ∈ E . A simple cycle is a cycle that does not visit
any node more than once. Thus, a simple cycle has the following property:

If (ni, ni+1, ki) ∈ Cm and (nj , nj+1, kj) ∈ Cm then
nj+1 = ni =⇒ i = 1 and j = m

Theorem 2. Consider a computer program P and its graph model G (N , E) .
Let V (i, v) := σi (v) be a variable-rate invariant defined on G, in the sense that

σ0 (v) < 0, ∀v ∈ v0 (10a)

σj(T k
jiv) < θk

jiσi(v), ∀i ∈ N\ {��} , j ∈ O (i) ,
k ∈ A (i, j) , v ∈ P k

ji [.]
(10b)

In addition, assume that V is bounded from below. Then, (10) proves that P
terminates in finite time if and only if for every simple cycle C ∈ G, we have∏

(i,j,k)∈C
θk

ij > 1, C ∈ G (11)

Proof. Proof of sufficiency proceeds by contradiction. Assume that (10) and (11)
hold, but P does not terminate in finite time. Then, there exists a sequence X ≡
(x(0), x(1), . . . , x(t), . . .) of elements from X satisfying (1) that does not reach
a terminal state in finite time. Let L : X → N be an operator mapping every
element x from X, to the discrete component of x. The sequenceLX ≡ (0, 1, . . .)
is then a sequence of infinite length that takes only finitely many different values.
Therefore, there exists at least one element which repeats infinitely often in X .
Let ω ∈ N\ {0,��} be an element that repeats infinitely often in LX and let
C [ω] denote the set of all cycles on G (N , E) that begin and end at ω. Define

θ = min
C∈C[ω]

∏
(i,j,k)∈C

θk
ij .

Note that (11) implies that θ > 1. Let W be a subsequence of X consist-
ing of all the elements from X that satisfy Lx = ω, and rename the analog
component of x at the k-th appearance of ω in LX by vk to obtain the se-
quence W := ((ω, v1) , (ω, v2) , ..., (ω, vt) , ...) . Then we have Vω (v1) < 0, and
Vω (vi+1) < θVω (vi) , and θ > 1. The result follows immediately from Lemma
1. It is easy to construct counter examples to prove necessity. We do not give a
counter-example here due to space limitation.

Absence of overflow The following result is a corollary of Theorems 1 and 2.

Corollary 1. Consider a program P and its graph model G (N , E) . Suppose
that the overflow limit is defined by a positive real number M. That is, X− :=
{x ∈ X | |xi| ≥ M} . Let V (i, v) := σi (v) be a variable-rate invariant defined
on G, as in (10a) and (10b). Assume that V (i, v) additionally satisfies

σi (v) >
∥∥∥ v

M

∥∥∥2

− 1 ∀v ∈ �i, i ∈ N\ {0,��} .

Then, an overflow runtime error will not occur during any execution of P . In
addition, if (11) holds, then P terminates in at most T steps, where

T =
∑
C∈G

logM − log supv∈v0
|σ0 (v)|

log θ (C) , θ (C) :=
∏

(i,j,k)∈C
θk

ij .

2.2 Towards Optimal Graph Models

Consider now the following two programs, P1 and P2.

program P1

loc 0 : % pre: x1, x2 ∈ [−100, 100] ;
loc 1 : while True,

loc 2 : if x2
1 − x2

2 ≤ 0

loc 3 :
x1 = 0.99x1 + 0.01x2;
x2 = −0.05x1 + 0.99x2;

else

loc 5 :
x1 = 0.99x1 + 0.05x2;
x2 = −0.01x1 + 0.99x2;

end

loc � : end

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

program P2

loc 0 : % pre: x1, x2 ∈ [−100, 100] ;
loc 1 : while True,

loc 2 : while x2
1 − x2

2 ≤ 0

loc 3 :
x1 = 0.99x1 + 0.01x2;
x2 = −0.05x1 + 0.99x2;

end

loc 4 : while x2
1 − x2

2 > 0

loc 5 :
x1 = 0.99x1 + 0.05x2;
x2 = −0.01x1 + 0.99x2;

end

loc � : end

The two programs P1 and P2 define exactly the same evolution path for the
state variables x1 and x2. In other words the set of all sequences X (P1) :=
(x(0), x(1), . . . , x(t), . . .) of the dynamical system model S1(X, f,X0, X∞) of
program P1, and the set of all sequences X (P2) := (x(0), x(1), . . . , x(t), . . .)
of the dynamical system model S2(X, f,X0, X∞) of program P2 are identical.
Thus, program P1 is correct if and only if program P2 is correct (indeed, both
programs are correct in the sense of absence of overflow and their trajectories
converge to the origin). Below, we construct the graph models of both programs
and discuss analysis of the models via Lyapunov invariants. Let T1 and T2 be the
transformations that take place upon leaving nodes 3 and 5 respectively, that is,

T1

[
x1

x2

]
=

[
0.99x1 + 0.01x2

−0.05x1 + 0.99x2

]
, and T2

[
x1

x2

]
=

[
0.99x1 + 0.05x2x2

−0.01x1 + 0.99x2

]
.

Also, define P :=
{
x | x2

1 − x2
2 ≤ 0

}
, Q :=

{
x | x2

1 − x2
2 > 0

}
, C1�� := ∅.

�
�

�

❅
❅

❅

�
�

�

❅
❅

❅

✍✌
✎�

✍✌
✎�

✍✌
✎�

✍✌
✎�

✍✌
✎�

✍✌
✎�

✍✌
✎�

✍✌
✎�

✍✌
✎�

✍✌
✎�

✍✌
✎�

✍✌
✎�

✍✌
✎�

0

2

1 ��

34

x ∈ P

x ∈ C1��

x /∈ C1��

0

2

1 ��

35

T1

x ∈ Px /∈ P

T2

x ∈ C1��

x /∈ C1��

5

T1

T2
x ∈ Q

x /∈ Q

x /∈ P

Fig. 1. Graph Models of Programs P1 (left) and P2 (right)

The graph models of programs P1 and P2 are shown in Figure 1. The graph
model of P1 is of degree 4, and the graph model of P2 is of degree 5 (nodes 0
and � are not counted). The transition labels associated with identity transitions
along the arcs are dropped from the diagrams. As discussed before, we assign a
quadratic Lyapunov function σi (x) := xTSix to every node on the graph and
write the Lyapunov invariance condition according to Proposition (2). For these

programs we get

For program P1

σ0 (x) < 0, s.t. x2 ∈ [
0, 104

]
σ1 (x) < σ0 (x)

σ2 (x) < σ1 (x) s.t. x /∈ C1��

σ3 (x) < σ2 (x) s.t. x2
1 − x2

2 ≤ 0

σ5 (x) < σ2 (x) s.t. x2
1 − x2

2 > 0

σ1 (T1x) < σ3 (x)

σ1 (T2x) < σ5 (x)

σ�� (x) < σ1 (x) s.t. x ∈ C1��

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

For program P2

σ0 (x) < 0, s.t. x2 ∈ [
0, 104

]
σ1 (x) < σ0 (x)

σ2 (x) < σ1 (x) s.t. x /∈ C1��

σ3 (x) < σ2 (x) s.t. x2
1 − x2

2 ≤ 0

σ4 (x) < σ2 (x) s.t. x2
1 − x2

2 > 0

σ2 (T1x) < σ3 (x)

σ5 (x) < σ4 (x) s.t. x2
1 − x2

2 > 0

σ4 (T2x) < σ5 (x)

σ1 (x) < σ4 (x) s.t. x2
1 − x2

2 ≤ 0

σ�� (x) < σ1 (x) s.t. x ∈ C1��

We can then use the S-Procedure to convert the above constraints on σi :=
xTSix to semidefinite constraints and solve for the parameters of Si. The result
of this experiment is somewhat surprising. Although the two programs define
the exact same trajectories for the state variables x1 and x2, the optimization
problem arising from node-wise quadratic Lyapunov invariant analysis on graph
model of P2 is feasible, while the optimization problem turns out infeasible
for P1. Interestingly, this has nothing to do with the fact that there are more
nodes in the graph model of P2, and that the Lyapunov function defined on the
graph model of P2 has more parameters. To understand this situation better,
we introduce the notions of reduction and minimality of graph models.

Definition 5. A node i ∈ N\ {0,��} is called a focal node, if there exists a
non-identity transition arc from node i to itself, that is,

∃k, s.t. (i, i, k) ∈ E and T k
ii �= I

A node i ∈ N\ {0,��} is called an auxiliary node if it is not a focal node, that is,

∀k : (i, i, k) ∈ E =⇒ T k
ii = I

Informally speaking, focal nodes are nodes with nontrivial self arcs and auxiliary
nodes are nodes without nontrival self arcs. A graph model of a computer program
P is called irreducible, if every node i ∈ N\ {0,��} is a focal node.

Consider a graph G (N , E) and let α ∈ N\ {0,∞} be an auxiliary node.
A reduced graph Gr (Nr, Er) can be obtained from G in the following way: 1.
Remove the auxiliary node α, and all the pertinent incoming and outgoing arcs
2. For every pair of arcs {(i, α, r) , (α, j, s)} where i ∈ I (α) and j ∈ O (α),
add a new arc (i, j, k) with the transition label T k

ji := T s
jαT

r
αi and passport

label P k
ji := P s

jαT
r
αi ∧ P r

αi. If Gr (Nr, Er) is a reduced graph model obtained
from G (N , E) , we write Gr ! G. An irreducible model of G can be obtained
by repeating the above process until every auxiliary node is eliminated. Note
that the irreducible graph of G is not unique, neither is its degree. Among all
the irreducible offspring graphs of G, we call the one(s) with minimal degree, a
minimal realization of G. The degree of a minimal realization of G, is called the
effective or minimal degree of G. Similarly, among all the irreducible offsprings
of G, we call the one(s) with maximal degree, a maximal realization of G. The
degree of a maximal realization of G, is called the maximal degree of G, and is
equal to the degree of G if and only if G is irreducible. If G is reducible, the
minimal or maximal realizations of G are may not be unique either. Note that if
Gr ! G, then Nr ⊂ N , while Er � E . Also note that the set of all reduced graphs
of G do not form an ordered set, in the sense that if Gr1 ! G and Gr2 ! G,
neither Gr1 ! Gr2 nor Gr2 ! Gr1 has to hold.

✍✌
✎�
3✍✌

✎�
5

✍✌
✎�

✍✌
✎�

✍✌
✎�

✍✌
✎�

✍✌
✎�

✍✌
✎�

✍✌
✎�

0

1

T2x ∈ P

T1x ∈ Q
T1x ∈ PT2x ∈ Q

��

T2x ∈ C1��

��

x ∈ C1��

x ∈ Px ∈ Q

T2 T1 T2 T1

T2

T1

A Minimal Realization of P1 A Maximal Realization of P1

��

T1x ∈ C1��

00

Fig. 2. Minimal and Maximal realizations of program P1

The graph model of Program P1 is of minimal degree 1, and maximal degree
2. A particular minimal and a particular maximal realization are show in Figure
2. It can be verified that the graph model of P2 is of minimal degree 2, and
maximal degree 3. The minimal realization of P2 can be obtained via a reduction
process that eliminates nodes 3, 5, and 1, exactly in that order. The maximal
realization of P2 can be obtained via a reduction process that eliminates nodes
2, and 4, exactly in that order.

The following theorem states that assigning node-wise Lyapunov functions to
graph models results in sufficient conditions for existence of Lyapunov invariants
within a specific class of functions, e.g. quadratic functions, that are weaker
than (i.e. always imply) the sufficient conditions imposed by assigning node-
wise Lyapunov invariants to reduced models of the same graph. In other words,
existence of node-wise Lyapunov invariants within a specific class of functions
for the reduced model is a necessary but not sufficient condition for existence
of node-wise Lyapunov invariants within the same class for the original graph
model of a computer program.

Theorem 3. Consider a computer program P , and its graph model G (N , E) .
Let Gr (Nr, Er) ! G (N , E) be any reduced model of G. If

V (i, v) := σi (v) , i ∈ N
is a nodewise quadratic Lyapunov invariant on graph G (N , E) , then there exists
a nodewise quadratic Lyapunov invariant Vr (i, v) that is valid on Gr (Nr, Er) .
However, if

Vr (i, v) := σi (v) , i ∈ Nr

is a node-wise quadratic Lyapunov invariant on graph Gr (Nr, Er) , a node-wise
quadratic Lyapunov invariant that is valid on G (N , E) may not even exist.

Proof. If Gr ! G, then there exists a sequence of reduced graph models Gi,
i = 1...q, where G1 = G, Gi+1 ! Gi, and Gq = Gr with the property that
|Ni+1| = |Ni|−1, that is, Gi+1 is obtained by removing one auxiliary node from
Gi. Further, assume that Gi+1 is derived from Gi by eliminating node n, and
that V is a Lyapunov invariant for G. Then,

Vn (T r
nmv)− θVm (v) < 0, m ∈ I (n) , r ∈ A (m,n) , Ir

nm [v] = 1,

Vl (T s
lnv)− θVn (v) < 0, l ∈ O (n) , s ∈ A (n, l) , Is

ln [v] = 1.

Necessary conditions for the latter conditions to hold are that:

Vl (T s
lnT

r
nmv)− θVn (T r

nmv) < 0, Is
ln [T

r
nmv] = 1,

m ∈ I (n) , l ∈ O (n) , s ∈ A (n, l) , r ∈ A (m,n) .

This, and the first set of conditions imply that:

Vl (T s
lnT

r
nmv)− θ2Vm (v) < 0, Ir

nm [v] = 1, Is
ln [T

r
nmv] = 1,

r ∈ A (m,n) , s ∈ A (n, l) .
By definition, this implies that Vl and Vm satisfy the Lyapunov conditions along
all the arcs that were added in the reduction process. Since Vl and Vm satisfy all
Lyapunov conditions along all the existing arcs (before reduction), we conclude
that V is also a Lyapunov invariant for the reduced model. The result holds by
induction. The proof also shows that

Vr (i, v) := σi (v) , i ∈ Nr

is a valid Lyapunov invariant on Gr.

In analysis of programs via Lyapunov invariants, an important issue is to
determine whether a computer program admits certain type of Lyapunov invari-
ants, e.g. quadratic, piece-wise quadratic, etc. For instance, consider programP1,
which is known not to admit a quadratic Lyapunov invariant, while a piecewise
quadratic Lyapunov invariant is known to exist. Recall that the graph model of
this program is of degree 4 (not counting nodes 0, and �), of minimal degree

1, and maximal degree 2. Theorem 3 states that a Lyapunov invariant cannot
be found by assigning four different quadratic Lyapunov functions to the four
nodes on the graph. However, a Lyapunov function may be found by assigning
two Lyapunov functions to each of the two nodes on the maximal realization of
P1. As far as existence of Lyapunov functions is concerned, assigning different
Lyapunov functions to an immediate graph model of a program is only as good
as assigning fewer many Lyapunov functions to its minimal realization. In other
words, more Lyapunov functions assigned to auxiliary nodes do not add more
flexibility/power in Lyapunov analysis. The latter statement of the theorem is
even more interesting since it states that performing analysis on reduced models
may even be beneficial. This is indeed the case for the program P1. Since P1

does not admit a quadratic Lyapunov invariant, the optimization problem aris-
ing from the original graph of P1 is infeasible. So is the optimization problem
arising from analysis of the minimal graph of P1. However, the optimization
problem arising from analysis of the maximal graph of P1 (which is of degree 2)
is feasible and a Lyapunov invariant was indeed found. On the other hand, since
the minimal graph of P2 is of degree 2, the optimization problem arising from
the original graph of P2 is readily feasible and a Lyapunov invariant is found.
Same is true for analysis of minimal and maximal realization of P2.

So far, we have established that, at least from a theoretical point of view, it is
beneficial to search for Lyapunov invariants on the reduced graph models rather
than the original graph models of computer programs. From an optimization
point of view, Theorem 3 compares two generally nonconvex optimization prob-
lems. It states that if the nonconvex optimization problem associated with the
original graph model is feasible, then so is the nonconvex optimization problem
associated with the reduced graph model. A natural question that arises here is
about the computational procedure that will be used to compute the Lyapunov
invariants on the two graph models. More specifically, the effects of convex re-
laxations on the computation of such invariants on the original and the reduced
models must be investigated. It is interesting that the statement of Theorem
3 remains valid even after convex relaxations are applied to these nonconvex
optimization problems. More specifically, the Lyapunov invariant Vr (i, v) can
be computed using the same convex relaxations that render the computation of
V (i, v) a feasible convex optimization problem. To make this concept clearer, let
us consider a specific case. Consider a graph G, and assume that Gr is obtained
by eliminating node 2, where, I (2) := {1} , O{2} := {3, 5} (this is like the graph
of program P1). Assume that each transition label Tji is a finite-dimensional lin-
ear operator defined by the matrix of Tji, and each passport label is defined
by a single quadratic constraint: Pji [u] =

{
u | uTQjiu ≤ 0

}
. The Lyapunov

conditions as imposed on G, are:

σ2 (T21v)− θσ1 (v) < 0, s.t. vTQ21v ≤ 0, (12a)

σ3 (T32v)− θσ2 (v) < 0, s.t. vTQ32v ≤ 0, (12b)

σ5 (T52v)− θσ2 (v) < 0, s.t. vTQ52v ≤ 0. (12c)

The Lyapunov conditions as imposed on the reduced model Gr, are:

σ3 (T32T21v)− θσ1 (v) < 0, s.t. vTQ21v ≤ 0, vTT T
21Q32T21v ≤ 0, (13a)

σ4 (T42T21v)− θσ1 (v) < 0, s.t. vTQ21v ≤ 0, vTT T
21Q52T21v ≤ 0. (13b)

Now, let each σi be a quadratic functional, σi (v) := vTPiv. Note that each of
the conditions in (12) express negativity of a quadratic form subject to a single
quadratic constraint, while each of the conditions in (13), express negativity of
a quadratic form subject to two quadratic constraints. It may be misleading to
think that using the S-Procedure as the convex relaxation method for (13) would
be more conservative than for (12). However, as we have already suggested, this
is not the case. Using the S-Procedure, conditions (12) are converted to LMIs
in the following way:

T T
21P2T21 − θP1 − τ21Q21 < 0, τ21 > 0, (14a)

T T
32P3T32 − θP2 − τ32Q32 < 0, τ32 > 0, (14b)

T T
52P5T52 − θP2 − τ52Q52 < 0, τ52 > 0, (14c)

while (13) becomes:

T T
21T

T
32P3T32T21 − θP1 − τ21Q21 − τ32T

T
21Q32T21 < 0, τ21 > 0, τ32 > 0, (15a)

T T
21T

T
52P5T52T21 − θP1 − τ21Q21 − τ52T

T
21Q52T21 < 0, τ21 > 0, τ52 > 0. (15b)

It is not difficult to see that if P1, P2, P3, P5, τ21, τ32, τ52 are a feasible solution
to the set of LMIs in (14), then P1, θP3, θP5, τ21, θτ32, θτ52 are a feasible
solution to the set of LMIs is (15): To obtain (15a) from (14), multiply (14b) on
both sides by T T

21/
√
θ and T21

√
θ, and add it to (14a). Inequality (15b) can be

obtained similarly. We have shown for a special case, that computation of the
Lyapunov invariants on the reduced graph is not more difficult than the original
graph. The result is true in general, and the same type of relaxations that make
convex optimization of the Lyapunov invariants feasible on the original graph,
are applicable to the reduced graph. In light of Theorem (3), the conclusion of
the above discussion is that analysis of the reduced models are always beneficial,
regardless of the convex relaxations that are used at the optimization phase.

3 Conclusions and Future Work

Concepts and tools from control and optimization can be exploited to build a
framework for software verification. This framework is particularly appealing for
analysis of safety-critical software in embedded systems. Our framework consists
of the following four procedures: 1. Model the software as a dynamical system. 2.
Given the functional and the safety specifications, formulate Lyapunov invariants
whose existence prove the desired properties of the model and hence, the program

itself. 3. Apply convex relaxations such that finding the proposed invariants can
be formulated as a convex optimization problem. 4. Use the relevant numerical
optimization tools, e.g. semidefinite programming, to compute these invariants.
In this paper, we focused on graph models of software and further developed
the framework on such models. Some future works include in-depth study of
optimality of graph models in the reduction process and improving scalability.
Computing the minimal and maximal degrees, and the corresponding realizations
of a computer program are interesting problems that arise in this context.

References

1. S. Boyd, L.E. Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities
in Systems and Control Theory. Society for Industrial and Applied Math., 1994.

2. A. Bemporad, D. Mignone, M. Morari. Moving horizon estimation for hybrid sys-
tems and fault detection. In Proc. American Control Conf., 1999, pp. 2471−2475.

3. D. Bertsimas, J. Tsitsikilis. Introduction to Linear Optimization. Athena Scientific,
1997.

4. M. S. Branicky, V. S. Borkar, S. K. Mitter. A unified framework for hybrid control:
model and optimal control theory. IEEE Trans. Automatic Control, 43(1):31-45,
1998.

5. E. M. Clarke, E. A. Emerson, A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. on Program-
ming Languages and Systems, 8(2): 244 - 263, 1986.

6. E. M. Clarke, O. Grumberg, D. A. Peled. Model Checking, MIT Press, 1999.
7. P. Cousot, R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proc. 4th
Symposium on Principles of Programming Languages, pp. 238–252, 1977.

8. S. Prajna, A. Jadbabaie, G. Pappas. A Framework for Worst-Case and Stochastic
Safety Verification Using Barrier Certificates. IEEE Trans. on Automatic Control,
52(8): 1415 - 1428, 2007.

9. M. Johansson, A. Rantzer. Computation of piecewise quadratic Lyapunov functions
for hybrid systems. IEEE Trans. on Automatic Control, 43(4):555-559, 1998.

10. R. Alur, G. J. Pappas (Eds.): Hybrid Systems: Computation and Control, Lecture
Notes in Computer Science, v. 2993, Springer Verlag, March 2004.

11. G. Lafferriere, G. J. Pappas, S. Sastry. Hybrid systems with finite bisimulations.
Hybrid Systems V, Lecture Notes in Computer Science, v. 1567, Springer 1999.

12. J. Lygeros, C. Tomlin, S. Sastry. Controllers for reachability specifications for hy-
brid systems. Automatica, 35(3):349-370, 1999.

13. D. A. Peled. Software Reliability Methods. Springer-Verlag, New York, NY, 2001.
14. P. A. Parrilo. Minimizing Polynomial Functions. In Algorithmic and Quantitative

Real Algebraic Geometry, DIMACS Series in Discrete Mathematics and Theoreti-
cal Computer Science, Vol. 60, pp. 83–99, AMS.

15. M. Roozbehani, É. Feron & A. Megrestki. Modeling, Optimization and Computa-
tion for Software Verification. In M. Morari & L. Thiele (Eds.): Hybrid Systems:
Computation and Control, Lecture Notes in CS 3414, Springer 2005, pp. 606–622.

16. M. Roozbehani, A. Megretski, E. Feron. Convex optimization proves software cor-
rectness. In Proc. American Control Conf., 2005, pp. 1395 - 1400.

17. M. Roozbehani, A. Megretski, E. Feron. Optimization of Lyapunov Invariants for
Certification of Software Systems. Submitted, IEEE Trans. Automatic Control,
2007.

