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ABSTRACT Distributed Machine Learning (DML) is one of the core technologies for Artificial Intelligence

(AI). However, in the existing distributed machine learning framework, the data integrity is not taken into

account. If network attackers forge the data, modify the data, or destroy the data, the training model in

the distributed machine learning system will be greatly affected, and the training results are led to be

wrong. Therefore, it is crucial to guarantee the data integrity in the DML. In this paper, we propose a

distributed machine learning oriented data integrity verification scheme (DML-DIV) to ensure the integrity

of training data. Firstly, we adopt the idea of Provable Data Possession (PDP) sampling auditing algorithm

to achieve data integrity verification so that our DML-DIV scheme can resist forgery attacks and tampering

attacks. Secondly, we generate a random number, namely blinding factor, and apply the discrete logarithm

problem (DLP) to construct proof and ensure privacy protection in the TPA verification process. Thirdly,

we employ identity-based cryptography and two-step key generation technology to generate data owner’s

public/private key pair so that our DML-DIV scheme can solve the key escrow problem and reduce the cost

of managing the certificates. Finally, formal theoretical analysis and experimental results show the security

and efficiency of our DML-DIV scheme.

INDEX TERMS Distributed machine learning, public auditing, data integrity, bilinear mapping,

identity-based cryptography.

I. INTRODUCTION

Artificial Intelligence (AI) has become a hot research spot

in academia and IT industry in recent years. AI can help to

solve various problems in people’s real life, such as shopping

recommendation, navigation, face recognition, and automatic

driving. Hence, the research on artificial intelligence has

important theoretical value and practical significance.

Machine Learning (ML), as the core technology of AI,

is the fundamental way to make computers and networks

intelligent. The application of machine learning spans all

fields of artificial intelligence. For example, face recognition,

navigation, and automatic driving can be realized through

machine learning technology.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chi-Yuan Chen .

Due to the poor efficiency of traditional machine learn-

ing technology, this technology cannot deal with large data,

especially when the training data reaches the Peta Byte (PB)

level or even larger. In order to solve the problem, some

well-known companies such as Google and Microsoft have

set up large-data-based machine learning and artificial intel-

ligence research institutions to do the further research on

distributed machine learning technology. Meanwhile, the

Chinese Computer Society also treats the distributed machine

learning technology as an important research area and the

trend of big data.

A. RELATED WORK

1) DISTRIBUTED MACHINE LEARNING

Recently, the framework of distributed machine learning

technology mainly includes the MapReduce-based system,
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the graph model-based abstraction system, and the parame-

ter server system. MapReduce-based systems, which include

Hdoop [1] and Spark [2], are widely implemented with

their practical algorithms. However, the two systems run

slowly than other specially designed distributed machine

learning algorithms. Graph model-based abstraction systems,

which include Graphla [3] and Pregel [4], apply better par-

allel machine learning algorithms and flexible computation

scheduling. However, in the systems, it is difficult to abstract

the representation of the graph and rewrite the pattern of

the graph. Also, the graph model-based abstraction system

is more complicated than other systems. Compared with the

previous two types of systems, the parameter server system

architecture [5]– [9] can be efficiently and flexibly adopted

to the parallel strategy of multiple machine learning algo-

rithms. Moreover, with the open source, more and more

people and companies use the structure of parameter server

system.

FIGURE 1. System model of the parameter server.

As shown in Fig.1, the parameter server system consists of

three entities, which are the Data server (DS), Worker nodes

(WNs), Parameter server (PS).

In the parameter server system, multiple worker nodes

perform calculations at the same time to ensure the high

parallel efficiency for the system. Moreover, the training

data are stored in the data server so as to reduce worker

nodes’ overhead of local storage. Hence, the parameter server

system has become the mainstream framework for distributed

machine learning.

However, in the parameter server system, it is not taken into

account for the integrity of training data in DS. If network

attackers forge the training data, modify the training data,

or destroy the training data, the training model in the param-

eter server system will be greatly affected, and the training

results are led to wrong. Therefore, it is extremely important

to protect the integrity of training data.

2) DATA INTEGRITY PROTECTION SCHEME IN

CLOUD COMPUTING

In cloud environment, the Provable Data Possession (PDP)

integrity verification scheme is most effective. The PDP

scheme adopts the sampling auditing, so it does not need to

download all the data when performing data integrity veri-

fication. Thus, communication overhead is greatly reduced.

In 2007, Atenies et al. [10] proposed first public sampling

auditing scheme, named Provable Data Possession (PDP),

with Homomorphic tag based on RSA. However, the first

PDP scheme did not support dynamic auditing and data pri-

vacy protection. In 2008, Atenies et al. [11] further proposed

their dynamic auditing scheme. However, their scheme was

only partially dynamic, and did not provide data privacy

protection. In 2009, full dynamic PDP scheme was proposed

by Erway et al. [12].

However, in the PDP scheme, there is a data privacy

protection problem, which means the privacy of data will

be disclosed in the TPA verification process. In order

to achieve privacy protection, researchers proposed many

privacy-preserving public auditing schemes based on PDP.

In 2010, first privacy preserving PDP scheme was proposed

by Wang et al. [13]. In their scheme, the authors applied inte-

grating Homomorphic authenticator with the random mask-

ing technique to ensure the data privacy protection. In 2012,

Zhu et al. [14] proposed a privacy-preserving public audit-

ing scheme to support dynamic data operation. In 2013,

Wang et al. [15] proposed a privacy-preserving public audit-

ing scheme with a random masking technique to blind the

response data. In 2017, Yu et al. [22] applied the concept

of perfect data privacy-preserving for remote cloud stor-

age auditing and proposed a new construction of ID-based

protocol with key-homomorphic cryptographic primitive.

Yan et al. [16] proposed a Remote Data Possession Check-

ing (RDPC), which could withstand forgery attack, replace

attack, and replay attack. However, the RDPC scheme did not

support privacy protection. In 2018, Sookhak et al. [17] pro-

posed a different authentication data structure with D&CT.

In their D&CT structure, the authors introduced the logical

subscript (LI) and version number (VN) of the data block

to proficiently support dynamic data for normal file sizes.

The authors also applied large-scale data storage to greatly

reduce the computation and communication overhead for

auditors and cloud servers. However, the authors did not

consider the data privacy in the auditing process. In 2019,

Zhao et al. [18] proposed a user stateless privacy-preserving

public auditing scheme with the rank-based authenticated

skip list. Yan et al. [19] proposed a public auditing scheme

with the designated verifier. The data owner could designate

one trusted person to check data. However, the scheme did

not support privacy protection.

Also, most PDP schemes rely on Public Key Infrastructure

(PKI), which may cause the key escrow problem and the

certificate management overhead. In PKI, the Key Generate

Center (KGC) is required to manage and store all users’
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public/private key pairs, hence the KGC may control all

public/private key pairs, which may cause the key escrow

problem. To solve the key escrow problem and reduce the cost

of managing the certificates, in 2015, Wang [20] proposed an

identity-based distributed provable data possession scheme

in multi-cloud storage to implement data integrity verifica-

tion. In 2016, Wang et al. [21] proposed a proxy-oriented

data uploading and remote data integrity checking model

with identity-based public key cryptography. In 2016,

Zhang et al. [22] proposed an ID-based public auditing

scheme in multi-user scenario. However, Zhang’s scheme

did not resolve key escrow problem, and could not sup-

port privacy protection. In 2017, Yu et al. [23] proposed

a remote date integrity auditing scheme with perfect data

privacy preserving with identity-based cryptosystems. How-

ever, Yu’s scheme relied on PKI. In 2018, Li et al [24]

proposed a certificateless public integrity checking scheme.

The scheme released certificate management, and resolved

key escrow problem by adopting certificateless signature

and two-part private key. However, in the process of user

revocation, computation cost was relatively huge. In 2019,

Shen et al. [25] proposed their scheme to solve the problem of

sensitive information sharing in the process of data integrity

auditing. The proposed auditing scheme could realize the

secure sharing of sensitive information. However, the scheme

relied on PKI. Li et al. [26] proposed an efficient identity-

based provable multi-copy data possession scheme to release

heavy communication and computational cost caused by PKI.

Zhu et al. [27] proposed a secure and efficient data integrity

verification scheme for Cloud-IoT to reduce the computa-

tional overhead. However, the scheme did not resolve the key

escrow problem.

B. OUR CONTRIBUTIONS

In order to protect the integrity of training data in distributed

machine learning system, in this paper, we propose the dis-

tributed machine learning oriented data integrity verification

scheme (DML-DIV). To the best of our knowledge, our

DML-DIV scheme is the first scheme in distributed machine

learning area to apply public sampling auditing algorithm and

ensure the integrity of training data. The main contributions

of our DML-DIV scheme are as follows.

(1) In our DML-DIV scheme, we propose a data integrity

verification scheme based on distributed machine learning.

Our DML-DIV scheme can ensure the integrity of training

data, resist forgery attack and tampering attack. In DML-DIV

scheme, we first employ data owner’s private key to con-

struct data signature, then apply sampling technique and PDP

technology to generate proof, finally apply bilinear mapping

algorithm to verify the proof.

(2) Our DML-DIV scheme can guarantee the privacy of

training data during the public sampling auditing process.

Firstly, the data server adds a blinding factor to proof. Then

the data server encrypts blinding factor, and sends the proof

and blinding factor to the TPA. Finally, based on the discrete

logarithm problem, the TPA and Network Attackers cannot

decrypt the blinding factor to disclose the secret of training

data.

(3) Our DML-DIV scheme can solve the key escrow

problem and reduce the cost of managing the certificates.

In DML-DIV scheme, we adopt identity-based cryptography

algorithm to construct data owner’s public/private key pair,

so that all entities can verify the data owner’s public key with-

out certificates. Firstly, the KGC generates partial long-term

private key for the data owner. Then, the data owner generates

his private key with partial long-term private key. Finally,

the KGC cannot figure out the data owner’s private key with

partial long-term private key.

(4) We formally prove DML-DIV scheme is correct, can

resist forgery and tampering attack, ensure the privacy protec-

tion in the TPA verification process, and solve the key escrow

problem. In addition, we evaluate the performances of our

DML-DIV scheme and show the efficiency of our DML-DIV

scheme.

The rest of paper is organized as follows. In section 2,

we introduce some basic knowledge and assumptions for

this paper. Our DML-DIV scheme is proposed in section 3.

In section 4, we give formal proof on our scheme to ensure the

security goals. In section 5, wemake performance analysis on

our scheme. Finally, we make a conclusion in section 6.

II. PRELIMINARIES

In this section, we introduce the basic mathematic algorithms

and problems applied in the following paper.

A. BILINEAR MAPPING [28]

Definition 1: Let G1 and G2 be two multiplicative cyclic

groups of a large prime order p, a pairing is a bilinear map

e : G1 × G1→ G2. It satisfies the following properties:

Bilinear: e(ua, vb) = e(u, v)ab,∀u, v ∈ G1; a, b ∈ Zp.

Non-Degeneracy: ∃u, v ∈ G1, thus e(u, v) 6= 1 ∈ G1.

Computability:∀u, v ∈ G1, there is a polynomial time

algorithm to calculate e(u, v).

Safety: It is difficult to calculate the discrete logarithm

problem in G1 and G2.

B. DISCRETE LOGARITHM PROBLEM(DLP) [28]

Definition 2: Let α ∈ Z∗p , and G1 be a multiplicative cyclic

group, known g, gα ∈ G1, for any polynomial time adversary,

the advantage of solving the value α is negligible. The prob-

ability of Probabilistic Polynomial Time (PPT) algorithm A

successfully solving the DLP is AdvDL = Pr[A(g, gα) = α :

α ∈ Z∗p], which is negligible. The probability comes from

the random selection of α on Z∗p and the random selection of

algorithm A.

C. COMPUTATIONAL DIFFIE-HELLMAN

PROBLEM(CDHP) [29]

Definition 3: Let a, b ∈ Z∗p , and G1 be a multiplicative

cyclic group, given P,Pa,Pb ∈ G1, for any polynomial time

adversary, it is feasible in calculation to solve Pab ∈ G1.

The probability of Probabilistic Polynomial Time (PPT)
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algorithm A successfully solving the CDH problem is

AdvCDHP = Pr[A(P,Pa,Pb) = Pab : a, b ∈ Z∗p ], which is

negligible. The probability comes from the random selection

of a, b on Z∗p and the random selection of algorithm A.

D. CO-COMPUTATIONAL BILINEAR DIFFIE-HELLMAN

PROBLEM(CO-CDH) [30]

Definition 4: Let a ∈ Z∗p , and G1,G2 be two multiplicative

cyclic groups, given P,Pa ∈ G1,Q ∈ G2, for any polynomial

time adversary, it is feasible in calculation to solve Qa ∈

G2. The probability of Probabilistic Polynomial Time (PPT)

algorithm A successfully solving the Co-CDH problem is

AdvCo−CDH = Pr[A(P,Pa,Q) = Qa : a ∈ Zp], which is

negligible.

E. RANDOM ORACLE MODEL [30]

Definition 5: Existential unforgeability of data owner’s pri-

vate key under security game is defined as follows:

Setup: The challenger runs Join algorithm and sends public

key to the adversary A, and keeps secret key.

Queries: The adversary A can ask two queries to the

challenger.

a) Hash Queries: The adversary A requests hash value

based on an identity at most pH times of his choice

ID1, · · · , IDpH ∈ {0, 1}
∗. The challenger computes QID, and

sends hash value to A.

b) Private key queries: The adversary A requests pri-

vate key based on an identity at most times of his choice

ID1, · · · , IDps ∈ {0, 1}
∗. The challenger computes SID , and

sends private key to A.

Output: The adversary A outputs a pair (SID,Pk, ID),

where ID is not any of ID1, · · · , IDpH . The adversary A wins

the game if Verify (SID,Pk, ID) = valiad holds.

We define AdvA to be the probability that A wins in the

above game.

Definition 6: The privacy protection of training data under

security game is defined as follows:

Setup: The challenger C runs the Setup algorithm to gen-

erate public parameter u ∈ G1, where G1 is a multiplicative

cyclic group.We assume e (H1 (X) , syPQ) is the data server’s

private key, and R = ur is the corresponding public key.

Queries: The adversary A queries the public key of the

random number c ∈ Zp.

Output: The adversary A can obtain the data server’s pri-

vate key r ′.

We let Adv = Pr
[

r ′ = r
]

− 1/2. We say the TPA and

Network attacker cannot obtain the data if the function Adv is

negligible for any polynomial-time adversary A.

III. OUR DML-DIV SCHEME

A. SYSTEM MODEL

In our DML-DIV scheme, as shown in Fig.2, the system

model consists of four entities which are the Data Server

(DS), Third Party Auditor (TPA), Data Owner (DO) and Key

Generate Center (KGC).

FIGURE 2. System model of our DML-DIV Scheme.

KGC: The KGC is an authority that manages the data

owner’ s partial secret key. First, the KGC generates master

secret key and public key. After receiving ID from the data

owner, the KGC generates corresponding partial secret key

for the data owner with the data owner’s ID and master key.

DO: The data owner is responsible for collecting training

data and uploading them to the data server. The training data

may come from computers or mobile terminals.

DS: The data server is a cloud service provider that stores

the training data from data owner. The data server accepts

the challenge initiated by the TPA, generates proof, and

sends proof to the TPA. The data server runs the protocol

faithfully and proves that training data is stored correctly and

completely.

TPA: Third party auditor (TPA) can verify the integrity of

the training data stored in the data server. The TPA initiates a

challenge to the data server, and receives a response from the

data server. The TPA can carry out public auditing with the

data owner’s public key.

B. AN APPLICATION EXAMPLE

Based on the system model, our DML-DIV scheme can

be applied in distributed machine learning algorithms for

prediction, recommendation and classification. One of the

examples is advertising recommendation application, which

is illustrated in Fig.3.

In advertising recommendation application, the users are

data owners who register a web application, data server is the

Amazon service provider who stores the user’s data, the KGC

is an application developer who generates the user’s key, and

the TPA is a trusted third party who verifies the integrity of

data stored in Amazon.
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FIGURE 3. Advertising recommendation application.

Firstly, the application developer runs Setup algorithm to

generate and distribute private/public keys, and determine

initial parameters. Secondly, the users generate signatures

of advertisement clicking data, and upload data and signa-

tures to Amazon service provider. Thirdly, the TPA sends

challenge to Amazon service provider, and Amazon ser-

vice provider sends proof to the TPA to verify the integrity

of data. Fourthly, the TPA sends the results to users and

worker nodes. Once the data is lost or damaged, worker

nodes stop working. Then, worker nodes load data from

Amazon, run Distributed Delayed Block Proximal Gradi-

ent Algorithm to obtain parameters, and push parameters

to parameter server. Hence, the parameter server updates

the original parameters with parameters from worker nodes.

Finally, the application recommends favorite advertisement

to the users based on the training results.

The distributed machine learning algorithm [8] that we use

to train model is as follow:

C. THREAT MODEL

In our DML-DIV scheme, we define the threat model in

terms of the Key Generate Center (KGC), Data Owner

(DO), Data Server (DS), Third Party Auditor (TPA), Network

Attackers (NA).

KGC: The KGC is semi-honest, which means it will gen-

erate the data owner’s partial key, but it may figure out data

owner’s partial key.

DO: The data owner honestly collects training data and

uploads training data to the data server.

DS: The data server is semi-honest. That is, it performs

operations in accordance with the agreement with the data

owner. But in order to maintain the reputation, it may conceal

to data owner when the training data is lost or corrupted.

At that time, the data server may attempt to forge proof to

pass the auditing of the TPA.

TPA: The TPA is credible, and faithfully enforces the

agreement. However, the TPA is curious about training data

and tries to obtain the training data in the verification process.

Algorithm 1 Delayed Block Proximal Gradient

Task Scheduler:

1: part features into b rangesRj,. . . ,R

2: issue LoadData() to all workers

3: for iteration t = 9, . . . , T do

4: pick random range Ri
5: issue WorkerIterate(t) to all workers

6: end for

Worker r = 1, . . . ,m:

1: wait until all iterations before t − τ are finished

2: function LoadData()

3: load a part of training data

4: end function

5: function WorkerIterate(t)

6: compute first-order gradient g
(t)
r and diagonal

second

7: order gradient u
(t)
r on range Ri

8: push g
(t)
r and u

(t)
r to parameter servers

9: pull w
(t+1)
r from parameter servers

10: end function

Parameter Servers:

1: function ServerIterate(t)

2: aggregate g(t)←
∑m

r=1 g
(t)
r w

(t)←
∑m

r=1 w
(t)
r

3: ω(t+1)← arg minu �(u)+ 1
2η
‖w(t) − ηg(t) + u‖2H

4: where H = diag(h(t)) and ‖x‖2H = xTHx

5: end function

NA: Network Attackers attempt to obtain the private key

of the data owner, and disclose the secret of training data

by intercepting the proof. In addition, Network Attackers

attempt to tamper with and forge data proof and signature

proof, and they may launch the tempering attack and forgery

attack.

D. NOTATION

The symbols in our DML-DIV scheme are shown in the

Table 1.

TABLE 1. Symbols explanation.

E. DETAILS OF OUR DML-DIV SCHEME

In this section, we propose the detail construction of our

DML-DIV scheme. The scheme includes six steps: Setup,
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Key extra, Tag generation, Challenge, Proof generation, and

Proof verification.

1) SETUP

Let G1 and G2 be two multiplicative cyclic groups with the

same prime order p, e : G1×G1→ G2 is an efficiently com-

putable bilinear map, and u is an element randomly selected

from G1. Two one-way hash functions are H1(·) : {0, 1}
∗ →

Z∗p and H2(·) : {0, 1}
∗→ G1. In RSA algorithm, d is the data

owner’s private key, c is the data owner’s public key, and n is

the modulus.

TheKGC chooses an arbitrary generatorP ∈ G1, randomly

selects a master key s ∈ Z∗p , and computes Ppub = Ps ∈

G1 treated as a master public key. The system parameters are

params = {G1,G2, e, u,P,Ppub,H1,H2, (c, n)}.

2) KEY EXTRA

The data owner sends its identity ID ∈ {0, 1}∗ to the KGC

to generate partial private key. Firstly, the KGC computes

Q = H2 (ID), and applies the master key s to compute the

data owner’s partial private key D = Qs. The KGC sends the

partial private key D to the data owner.

Secondly, the data owner can verify the correctness of

partial private key from the KGC, as follows:

e (D,P)
?
= e

(

Q,Ppub
)

(1)

If the above equation (1) is correct, it indicates the partial

private key received by the data owner from the KGC is

correct. Otherwise, the data owner discards it and terminates

the operation.

Thirdly, if the partial private key is correct, the data owner

randomly selects a secrete value x ∈ Z∗p . Then, the data owner

computes sk = H1 (Dx) as its private key.

Finally, the data owner computes Z = Pxpub = Psx ,

X = Psk and Y = ((H2 (X ||Z )) · Q)x . The data owner sets

pk = 〈X ,Y ,Z 〉 as its public key.

All entities can use public parameters params and the data

owner’s identity ID to verify the public key of the data owner,

as follows:

e
(

Y ,Ppub
) ?
= e (H2 (X ||Z ) · Q,Z ) (2)

If the equation (2) holds, it is true that pk = 〈X ,Y ,Z 〉 is the

correct public key for the data owner.

3) TAG GENERATION

Firstly, the data owner collects training data, and gener-

ates corresponding signatures. The training data is F =

{F1,F2, · · · ,Fm}, and the corresponding signature for

data Fi is σi = (H2(Wi) · u
Fi )sk , where Wi =

name||i (i = 1, 2, · · · ,m), and the name is chosen by the

data owner uniformly at random from Zp. Meanwhile,

the data owner applies RSA signature algorithm to compute

SIGsk (name‖m) = (name||m)d mod n, where d is the data

owner’s private key in RSA signature algorithm, and n is the

modulus in RSA signature algorithm. The data owner com-

putes SigF = name‖m ‖SIGsk (name‖m) as the signature of

training data.

Secondly, the data owner uploads training data and signa-

tures {F, 9, SigF } to the data server and deletes them in local

storage, where 9 = {σi}i=1,2,···m.

Thirdly, after receiving training data from the data owner,

the data server generates proof based on the uploaded data and

signatures, and returns the proof to the data owner to prove

training data is received and stored integrally. The proof is as

follows:

σ =
∏

i∈[1,m]

σ
vi
i

µ =
∑

i∈[1,m]

viFi + r

where vi, i = 1, 2, · · · ,m is a random value in Zp. Simulta-

neously, the data server calculates R1 = ur , and sends R1 to

the data owner, where r ∈ Zp is a random number (blinding

factor). The data server will pass {σ, µ,R1,H2(Wi), vi}i∈[1,m]
back to the data owner. And the data owner computes R =

Rsk1 = ur ·sk .

Finally, the data owner verifies the proof returned by the

data server, as follows:

e(σ · R,P)
?
= e(

∏

i∈[1,m]

H2(Wi)
vi · uµ,X ) (3)

When the above Equation (3) is established, it means that the

data server receives and stores the training data completely.

4) CHALLENGE

Firstly, the TPA verifies the integrity of the training data

signature SigF by checking whether SIGsk (name‖m) is a

valid signature with the data owner’s public key pk . That is,

the TPA judges whether the equation SIGsk (name‖m)
c mod

n
?
= name||m is correct, where c is the data owner’s public

key in RSA signature algorithm, and n is the modulus in

RSA signature algorithm. The TPA aborts the message if the

verification fails. Otherwise, the TPA recovers name‖m, and

further generates the following auditing challenge message.

Secondly, the TPA randomly selects challenge subscript

set I of training data, where I ⊂ [1 , m]. The TPA also

chooses a set of random numbers vi, i ∈ I , where vi ∈ Zp.

Finally, the TPA generates the challenge Q = {I , vi,i∈I }

and sends the challenge to the data server.

5) PROOF GENERATION

In response to the TPA’s challenge, the data server generates

the proof based on the challenge Q to ensure the correctness

as follows:

σ =
∏

i∈I

σ
vi
i

µ =
∑

i∈I

viFi + r
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where I ⊂ [1,m] and vi, i ∈ I come from the challenge Q,

and r is a random value in Zp. Then the data server calculates

R1 = ur , and sends R1 to the data owner, where r ∈ Zp is a

random number (blinding factor). The data owner computes

R = Rsk1 = ur ·sk , and sends R to the data server. Finally,

the data server sends the proof {σ, µ,R,H2(Wi)i∈I } to the

TPA and ensures that it stores the training data integrally.

6) PROOF VERIFICATION

After receiving the proof generated by the data server,

the TPA verifies the proof to judge whether the training data

is intact as follows:

e(σ · R,P)
?
= e(

∏

i∈I

H2(Wi)
vi · uµ,X ) (4)

If the above Equation (4) is true, it means that the data server

completely stores the training data. Otherwise, it indicates

that training data stored in the data server is lost or damaged

for some reason.

F. CORRECTNESS

Theorem 1: The data owner can correctly verify the cor-

rectness of partial private key generated by the KGC.

Proof: In order to prove that the data owner can verify

the correctness of partial private key generated by the KGC,

it is equivalent to prove the correctness of Equation (1).

Based on the properties of bilinear map, the correctness of

Equation (1) can be proved as follows:

e (D,P) = e
(

Qs,P
)

= e(Q,Ps) = e(Q,Ppub)

�

Theorem 2: Any entity can verify the data owner’s public

key with public parameters params and the data owner’s

identity ID.

Proof: To prove the correctness of the data owner’s

public key, it is equivalent to prove the correctness of verifi-

cation Equation (2). Based on the properties of bilinear map,

the correctness of Equation (2) can be proved as follows:

e
(

Y ,Ppub
)

=e
(

(H2(X ||Z) · Q) ,Pxs
)

=e ((H2 (X ||Z ) · Q) ,Z ) ,

where pk = 〈X ,Y ,Z 〉 is the data owner’s public key, and

Ppub is the master public key. �

Theorem 3: In our DML-DIV scheme, the TPA can cor-

rectly verify the integrity of training data stored in the data

server.

Proof: In order to prove that the data server integrally

stores the training data, it is equivalent to prove the correct-

ness of Equation (4). Based on the properties of bilinear map,

the correctness of Equation (4) can be proved as follows:

e(σ · R,P)

= e(
∏

i∈I

σ
vi
i · R

sk
1 ,P)

= e(
∏

i∈I

((H2(Wi) · u
Fi ))sk·vi · Rsk1 ,P)

= e((
∏

i∈I

(H2(Wi) · u
Fi )sk·vi · usk·r ,P)

= e(
∏

i∈I

(H2(Wi) · u
Fi )vi · ur ,Psk )

= e(
∏

i∈I

H2(Wi)
vi · u

∑

i∈I

viFi
· ur ,X )

= e(
∏

i∈I

H2(Wi)
vi · u

∑

i∈I

viFi+r

,X )

= e(
∏

i∈I

H2(Wi)
vi · uµ,X )

�

Theorem 1, Theorem 2, and Theorem 3 prove the correct-

ness of our DML-DIV scheme. Theorem 1 proves the data

owner can verify the correctness of partial private key gener-

ated by the KGC. Theorem 2 proves any entity can verify the

correctness of the data owner’s public key. Theorem 3 proves

the TPA can correctly verify the integrity of training data

stored in the data server.

IV. SECURITY ANALYSIS

A. FORMAL PROOF

In this section, we formally prove that our DML-DIV scheme

can resist forgery attack and tampering attack, solve the key

escrow problem and prevent the TPA and Network Attackers

from disclosing the secret of training data.

Theorem 4: In our DML-DIV scheme, it is computationally

infeasible for the data server andNetworkAttackers to tamper

with training data and signatures.

Proof: If any of the challenged training data blocks Fi
or corresponding σi is corrupted or lost in the data server, the

data server cannot pass the TPA’s integrity verification.

When the data server wants to launch the tampering attack

and tries to pass the TPA’s integrity verification, the data

server may use other pair of training data block and signature

(Ft , σt ) to replace the chosen one (Fi, σi). Then, the signature

proof σ becomes:

σ ∗ =
∏

i∈I ,i 6=t

(σi)
vi · (σt )

vt .

The data proof µ becomes:

µ∗ =
∑

i∈I ,i 6=t

viFi + vtFt + r

Then, the verification equation (4) can be expressed as:

e(σ ∗ · R,P)
?
= e(

∏

i∈I

H2(Wi)
vi ·

(

(H2(Wt ))
vt

(H2(Wi))vi

)

· uµ∗ ,X )

Due to the collision resistance of hash function,
(

(H2(Wt ))
vt

(H2(Wi))
vi

)

cannot be equal to 1 in the oracle model. Thus, the integrity

verification equation (4) does not hold, so that the data server

cannot pass the integrity verification. Hence, our DML-DIV

scheme can resist the tampering attack launched by the data
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server. In the sameway, our DML-DIV scheme can also resist

the tampering attack launched by Network Attackers. �

Theorem 5; In our DML-DIV scheme, it is computationally

infeasible for the data server and Network Attackers to forge

a proof to pass the TPA’s auditing.

Proof: According to literature [31], we can get the fol-

lowing proof form. If the data server could pass our verifi-

cation by forging an auditing proof, this means that we can

solve a Co-CDH problem (Definition 4), which contradicts

the Co-CDH hypothesis.

Given the same challenge Q = {I , vi,i∈I } from the TPA,

the correct proof should be P = {σ, µ}. However, the data

server can forge an incorrect proof P′ = {σ ′, µ′}, where σ 6=

σ ′, µ 6= µ′. If proof forged by the data server can pass TPA’s

verification, according to Equation (4), we can get:

e(σ ′ · R,P) = e(
∏

i∈I

H2(Wi)
vi · uµ′ ,X )

As P = {σ, µ} is a correct proof, we can get:

e(σ · R,P) = e(
∏

i∈I

H2(Wi)
vi · uµ,X )

Based on the properties of bilinear map, we can learn that:

e(σ ′/σ,P) = e(uµ′−µ,X )

The above formula can also be rewritten as:

e(σ ′/σ,P) = e(u1µ,Psk )

where 1µ = µ′ − µ. Clearly, we can get:

σ ′/σ = u1µ·sk

At the same time, we can rewrite the above formula to get

following equation:

usk = (σ ′/σ )1/1µ

That is, for given u,P,Psx ,Psk , we can figure out usk .

Hence, we can find an algorithm to solve the Co-CDH prob-

lem (Definition 4), which contradicts the Co-CDH hypoth-

esis. Therefore, it is computationally infeasible for the data

sever to forge an auditing proof to pass the TPA’s verification.

In the same way, Network Attackers also cannot forge a proof

to pass the TPA’s data integrity verification in our DML-DIV

scheme. �

According to Theorem 4 and Theorem 5, we know that

the data server can’t pass the TPA’s integrity verification if

it doesn’t store the training data completely. That is, our

DML-DIV scheme can resist forgery attack and tampering

attack by the data server and Network Attackers.

Theorem 6: In our DML-DIV scheme, we can solve the

key escrow problem. That is, the KGC and Network Attack-

ers cannot forge the user’s private key. Suppose an (t, ε)-

algorithm can fake the identity ID. Then, we can find an
(

t ′, ε′
)

adversary A that can solve the CDHP problem with

t ′ < t + Pm(pH + ps + 1) and ε′ ≥ ε
(pH+ps)

, where Pm refers

to the time required for a scalar point multiplication in G1.

Proof: Let P be a generator of G1, giving a CDHP triple

(P,Pa,Pb), where a, b ∈ Z∗p , and noting (P,A,B) ∈ G1,

the challenger C is to figure out Pab, which is solving the

CDHP problem, and in contradiction with the Definition 3.

Let Ppub = Pa, the game between the challenger C and the

adversary A can be described as follows: First, the challenger

C sets up game, and input is 1k . Then, the adversary A gets

the system parameter params, and starts the game.

1) PUBLIC KEY QUERIES

The challenger C owns a table PT , which includes

(IDi, ci, xi, yi,QIDi ), and allows the adversary A to perform

public key queries based on an identity IDi. Firstly, the chal-

lenger C checks whether the questioned IDi is in the table PT .

If the IDi is not in the table PT , the challenger C randomly

selects two elements xi, yi ∈ G1. Secondly, the challenger C

flips a coin ci ∈ {0, 1}. We assume Pr(ci = 0) = δ, and

Pr(ci = 1) = 1 − δ. If ci = 0, the challenger C computes

Pyi = H1(IDi) = QIDi , otherwise, the challenger C computes

Byi = H1(IDi) = QIDi . Then, the challenger C responds

to A with H1(IDi) = QIDi . Finally, the challenger C adds

(IDi, ci, xi, yi,QIDi ) into table PT . If the IDi is in the table

PT , the challenger C finds the QIDi corresponding to the IDi
in the table PT and sends QIDi to A.

2) PRIVATE KEY QUERIES

The challenger C owns a table ST , which includes (xi, SIDi ),

and allows the adversary A to perform private key queries

based on an identity IDi. Firstly, the challenger C checks

whether the questioned IDi is in the table ST . If the IDi is

not in the table ST , the game returns to the public key queries

phase. Otherwise, the challenger C finds the ci corresponding

to the IDi in the tablePT . If ci = 0, the challenger C computes

Ayi = SIDi and adds (xi, SIDi ) into the table ST . If ci = 1,

the challenger C cannot generate the partial private key that

can satisfy the verification equation.

3) OUTPUT QUERIES

The adversary A queries the ID that is not queried

in the private key queries phase. The adversary A

fakes the identity ID successfully and can get a record

(ID, c, x, y,QID, SID). Since the adversary A successfully

fakes the identity ID, e
(

Y ,Ppub
)

= e (H2 (X ||Z ) · Q,Z )

is right. The challenger C views the ci corresponding

to the ID. If ci = 1, then C fails. Otherwise, ci =

0 and thus e
(

Y ,Ppub
)

= e
(

(H2 (X ||Z ) · Q)yb ,Pa
)

,

e (H2 (X ||Z ) · Q,Z ) = e(H2 (X ||Z ) · Q,Psy). Since

e
(

(H2 (X ||Z ) · Q)yb ,Pa
)

e
(

(H2 (X ||Z ) · Q) ,Paby
)

=

e ((H2 (X ||Z ) · Q) ,Psy), Psy = Paby is the solution to the

CDHP problem owned by the challenger C.

Let the number of public key queries be pH ≤ p and the

number of private key queries be ps ≤ p, The adversary A

cannot repeatedly query the same ID, can only query up to

pH + ps times. The challenger C gives the different query

responses according to different values of the coin result ci.
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TABLE 2. Security comparison.

Let Pr(ci = 0) = δ, we know that the number of ci = 0 is

(pH + ps)δ and the number of ci = 1 is (pH + ps)(1 − δ).

In private key queries, if ci = 1, the challenger C cannot

generate the partial private key that can satisfy the verification

equation. Thus, the probability of failure is (1 − δ) and the

probability of success is δ. Both the public key query and

the private key query are successful, so that the challenger

C can successfully solve the CDHP problem (refer to Defi-

nition 3). Thus, the probability of the challenger’s success is

ε′ > δ
(1−δ)(pH+ps)

ε. If and only if δ = 1
2
, the maximum of

δ
(1−δ)(pH+ps)

ε is ε
(pH+ps)

. Thus, the probability of the chal-

lenger’s success is ε′ ≥ ε
(pH+ps)

. It is assumed that after

pH + ps queries, the adversary A can fake identity ID, that

is, adversary A outputs a set of valid (ID, c, x, y,QID, SID)

and e
(

Y ,Ppub
)

= e (H2 (X ||Z ) · Q,Z ) is true. Therefore,

the challenger C can solve the CDHP problem on group G1,

which is in contradiction with the Definition 3. �

Theorem 6 proves that our DML-DIV scheme solves the

key escrow problem, that is the KGC and Network Attackers

cannot forge the user’s private key.

Theorem 7: In ourDML-DIV scheme, according to the data

server’s response {σ, µ,R}, the TPA and Network Attackers

cannot disclose the training data blocks. Suppose an (t, ε)-

algorithm can obtain the training data blocks in the auditing

process. Then, we can find an
(

t ′, ε′
)

adversary A that can

solve the DLP problem with t ′ ≈ 2t and ε′ ≥ ε2

p
.

Proof: First, the adversary A initiates challenge to the

data sever to obtain data proof µ.

Then, we assume that r ∈ Zp be the data server’s private

key and R1 = ur be the corresponding public key. In the

first step, the challenger C picks a random x ∈ Zp, computes

R′ = ux and sends R′ to adversary A. Upon receiving R′,

the adversary picks a random element c ∈ Zp and sends c to

C. Upon receiving c, the challenger C computes y = x + rc

and sends y to A. If uy = R′Rc1, the adversary A accepts

y, otherwise rejects it. Thus, the adversary A can obtain r .

Furthermore, according to µ =
∑

i∈I

viFi + r , the adversary A

can obtain:
∑

i∈I

viFi = µ− r .

If the adversary A performs the above operations |I | times,

it can obtain a linear system of equations. Then, the adver-

sary A will obtain training data blocks by solving the linear

equations.

Through the above proof process, the adversary A can

obtain the solution of DLP problem (Definition 2). Since the

conditions for success is (t, ε), the adversary A can solve

the DLP problem within t ′ ≈ 2t and with non-negligible

probability ε′ ≥ ε2

p
, which is in contradiction with the

Definition 2. �

Theorem 7 proves that our DML-DIV scheme can achieve

privacy protection, that is, during the public auditing process,

the TPA and Network Attackers cannot obtain the secret of

training data.

B. SECURITY COMPARISON

In this section, we compare the security of our DML-DIV

scheme with the schemes [15], [19], [27], and [31] in Table 2.

The comparison is under the key escrow problem, the data

server’s forgery attack and tampering attack and privacy

protection problem. According to Table 2, our DML-DIV

scheme can realize all of the security goals mentioned above,

but other schemes cannot.

V. PERFORMANCE ANALYSIS

In this section, we will analyze computation cost and commu-

nication overhead in the process of integrity verification for

training data, and evaluate the performance of our DML-IDV

scheme in an example. We compare computation cost and

communication overhead among Yan’s scheme [19], Zhu’s

scheme [27], Wang’s scheme [15], He’s scheme [31] and our

DML-DIV scheme.

A. COMPUTATION COST

We evaluate the whole verification process on a desktop with

Intel Core at 2.40GHz and 8G of RAM. The basic pair-

ing algorithm is conducted through GUN Multiple Precision

Arithmetic (GMP) library version 6.1.2. We choose type d

MNT curve from PBC library. We set that the length of G1 is

175. All experimental results represent the mean of 20 trials.

In our experiment, L denotes the length of each data

block, EG denotes a power operation on group G1 and G2,

EZ denotes a power operation on the number field Zp, MG

indicates a multiplication operation on group G1 and G2,MZ

indicates a multiplication operation on the number field Zp,

AZ indicates an addition operation on the number field Zp,

and H denotes an operation of calculating the hash value for

a number.

In the public sampling auditing scheme, the computation

cost mainly happens on data server, TPA, and data owner,

respectively.

1) COMPUTATION COSTS FOR DATA SERVER

In the whole verification process, the data server exe-

cutes computation to generate proof. We simulate the proof
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FIGURE 4. Comparison on time that data server generates proof.

generation time during data integrity verification on data

server. We assume the number of blocks for file is 10000,

that is m = 10000. The result is shown in Fig.4.

In Fig.4, the proof generation time is linearly increasing

with number of challenged blocks. The reason is that data

server only accumulates the challenged data blocks and mul-

tiplies corresponding signatures.

As shown in Fig.4, the data server’s computation cost in

our scheme is smaller than that in schemes [15], [19], [27],

and [31]. In the scheme [19], the data server needs to com-

pute random subscripts and random numbers with challenge

information from the TPA. In scheme [27], the data server

needs to compute more signature proof. In the scheme [15],

the system needs to compute a blind factor, with a bilinear

mapping operation, an operation of hash value, and a power

operation. In the scheme [31], the system needs to split the

data block twice and needs to aggregate data and signatures

twice to obtain proof. In our scheme, the system only needs

to compute a blind factor and aggregate training data and

signatures to obtain proof. Therefore, in the process of gener-

ating proof, our scheme is more efficient than schemes [15],

[19], [27], and [31].

2) COMPUTATION COSTS FOR TPA

In the whole verification process, the TPA executes compu-

tation to verify the proof. We simulate the proof verification

time during data integrity verification on the TPA.We assume

the number of data blocks for file is 10000, that ism = 10000.

The result is shown in Fig.5.

In Fig.5, the verification time is linearly increasing with

number of challenged blocks. The reason is that the calcula-

tion for Verification Equation (4) is only related to the number

of challenged blocks.

As shown in Fig.5, the TPA’s computation cost in our

scheme is smaller than that in schemes [15], [19], and [31].

And the TPA’s computation cost in our scheme is larger than

that in scheme [27]. In scheme [19], the TPA needs to calcu-

late the random subscripts and random numbers based on two

functions. In the scheme [15], the system needs to introduce

FIGURE 5. Comparison on TPA’s Verification time.

the new exponential operations and multiplication operations

to implement privacy protection. In the scheme [31], the algo-

rithm needs to aggregate proof from multiple servers into

verification equation. In scheme [27], there are only two

pairing operations, onemultiplication operation and one addi-

tion operation to verify the integrity of data. In our scheme,

the TPA only needs to aggregate data block information

H2 (Wi) and calculate two bilinear mapping pairs. Therefore,

in the process of integrity verification, our scheme is more

efficient than the schemes [15], [19], and [31], and is worse

than the scheme [27].

3) COMPUTATION COSTS FOR DATA OWNER

In the whole verification process, the data owner executes

computation to generate signatures. In Table 3, we analyze

and compare the data owner’s computation cost in comput-

ing the signatures among schemes [15], [19], [27], [31] and

our DML-IDV scheme. According to Table 3, we can see

that in terms of the computation cost for generating signa-

tures, our DML-DIV scheme is equal to the schemes [15],

[19], and [31], and is slightly larger than the scheme [27].

In our scheme, the computation cost of each signature is

2MG+EG+H , and the number of data blocks is size of (F)/L

(where L represents the number of bits of a data block). Thus,

for data file F, computation cost of generating signatures

is
size of (F)

L
(MG + 2EG + H ). As shown in Table 3, the

data owners’ computation in our scheme is equal to that in

schemes [15], [19], and [31]. The reason is the signatures of

data blocks in schemes [15], [19], [31] are same as in our

scheme. According toAZ+MZ < MG+EG, we can know that

the data owners’ computation in our scheme is slightly larger

than that in scheme [27]. The reason is that in scheme [27],

data’s signatures are in form of addition and multiplication.

B. COMMUNICATION OVERHEAD

In this section, we compare the communication overhead

among Yan’s scheme [19], Zhu’s scheme [27], Wang’s

scheme [15], He’s scheme [31] and our DML-DIV scheme

in Table 4. In Table 4, |Zp| represents the size of Zp, and
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TABLE 3. Data owner’s computation comparison.

TABLE 4. Comparison of communication.

|G| represents the size of group G1. In schemes [15], [19],

[27] and our DML-DIV scheme, I represents the number

of challenged data blocks. In the scheme [31], I represents

the number of challenged data servers and J represents the

number of data blocks.

1) COMMUNICATION OVERHEAD FOR CHALLENGE

We compare the communication overhead for challenge

among schemes [15], [19], [27], [31], and our DML-DIV

scheme. In our DML-DIV scheme, the challenge is Q =

{I , vi,i∈I }, which costs 2·I ·|Zp|. In scheme [19], the challenge

is Q = {c, k1, k2}, which costs 3 · |Zp|. In scheme [27],

the challenge is Q = {i, vi}i∈I , which costs 2 · I · |Zp|.

In scheme [15], the challenge is Q = {i, vi}i∈I , which costs

2 · I · |Zp|. In scheme [31], the challenge isQi = {j, vij}j∈J (i ∈

I ), which costs 2 · I · J · |Zp|.

The communication overhead for challenge in scheme [19]

is smaller than that in our DML-DIV scheme. The reason

is that in the scheme [19], the communication overhead for

challenge is 3 · |Zp|, and in our DML-DIV scheme, the com-

munication overhead for challenge is 2 · I · |Zp|(I > 2).

The communication overhead for challenge in scheme [27]

is equal to that in our DML-DIV scheme. The reason is that

the communication overhead for challenge in scheme [27]

and our DML-DIV scheme is same as 2 · I · |Zp|.

The communication overhead for challenge in our scheme

is smaller than that in the scheme [31]. The reason is that in

the scheme [31], the system needs to store same data blocks

in multiple servers, which may cause the challenge to be sent

to multiple servers. In our DML-DIV scheme, we separate the

training data into n blocks and store data blocks in the data

server, thus the challenge is only sent to one data server.

The PDP idea adopted by the scheme [15] is same as in

our DML-DIV scheme, so the communication overhead for

the challenge in scheme [15] is same as that in our DML-DIV

scheme.

2) COMMUNICATION OVERHEAD FOR PROOF

We compare the communication overhead for proof

among schemes [15], [19], [27], [31], and our scheme.

In our DML-DIV scheme, the proof sent by the data

server is {σ, µ,R,H2(Wi)i∈I }, which costs (I + 1) |G| +

2|Zp|. In scheme [19], the proof sent by cloud server

is {T ,F,H2(α||Fid ||vi)i∈I }, which costs (I + 1) |G| +

|Zp|. In scheme [27], the proof sent by cloud server is

{R, µ, η,H (mij)i∈I }, which costs (I + 3) |G|. In scheme [15],

the proof sent by cloud server is {σ, µ,R, h(Wi)i∈I }, which

costs (I + 1) |G| + 2|Zp|. In scheme [31], the proof sent by

cloud server is {σi, µi, h(Wij)j∈J }i∈I , which costs J · I · |G| +

2I · |Zp|.

As shown in table 4, the communication overhead for proof

in scheme [19] is slightly smaller than that in our DML-DIV

scheme. The reason is that, in the scheme [19], the commu-

nication overhead for proof is (I + 1) |G| + |Zp|, and in our

DML-DIV scheme, the communication overhead for proof is

(I + 1) |G| + 2|Zp|.

The communication overhead for proof in scheme [27] is

approximately equal to that in our DML-DIV scheme. Since

the order of group G1 is equal to the order of Zp, we can get

|Zp| ≈ |G|. Hence, (I + 3) |G| ≈ (I + 1) |G| + 2
∣

∣Zp
∣

∣, which

means the communication overhead for proof in scheme [27]

is approximately equal to that in our DML-DIV scheme.

The communication overhead for proof in our scheme is

smaller than that in scheme [31]. The reason is that, in the

scheme [31], multiple servers are required to generate proof

and send the proof to the TPA to prove that they are storing

the data together. In our DML-DIV scheme, we separate the

training data into n blocks and store data blocks in the data

server, thus, only one server needs to send proof to the TPA.

The PDP idea adopted by the scheme [15] is same as our

DML-DIV scheme, so the communication overhead for the

proof in scheme [15] is same as that in ourDML-DIV scheme.

C. EVALUATION OF OUR DML-DIV SCHEME

In this section, we apply the application of advertising rec-

ommendation given in part B of section 3 to evaluate the

efficiency of our DML-DIV scheme.

We collect an advertisement click prediction dataset

with 1.7 billion examples and 0.65 billion unique features.

This dataset is 1.41TB, which is stored in Amazon. We run
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FIGURE 6. Timer per worker node spent on computing and waiting.

the Parameter Server framework on 12 machines, each with

8 physical cores. Nine machines act as worker nodes, and

three machines act as parameter servers.

We apply a distributed machine learning algorithm [8]

to evaluate the efficiency of our DML-DIV scheme. The

comparison for computing and waiting time between general

Parameter Server without data integrity protection and our

DML-DIV schemes is showed in Fig.6.

According to Fig.6, in general Parameter Server frame-

work without data integrity protection, the computing time is

0.903 hours, and thewaiting time is 0.112 hours. In ourDML-

DIV scheme, the computing time is 0.924 hours, and the

waiting time is 0.126 hours. Hence, our DML-DIV scheme

is almost same as general Parameter Server framework in

waiting and computing time. Although in our DML-DIV

scheme, the system needs to verify the integrity of training

data, the added computing and waiting time for each work

node is almost negligible. Therefore, in waiting and comput-

ing time, our DML-DIV scheme is almost same as general

Parameter Server system.

VI. CONCLUSION

In this paper, we propose a distributed machine learning

oriented data integrity verification scheme (DML-DIV) for

the parameter server framework. Our DML-DIV scheme can

ensure the integrity of the training data stored in the data

server, and resist forgery attack and tampering attack. Addi-

tionally, our DML-DIV scheme provides privacy protection,

solves the key escrow problem, and reduces the cost of man-

aging the certificates. Finally, the simulation results show

our DML-DIV scheme performs more efficiently than other

schemes.
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