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Abstract—Opportunistic mobile networks consist of personal
mobile devices which are intermittently connected with each
other. Data access can be provided to these devices via cooperative
caching without support from the cellular network infrastructure,
but only limited research has been done on maintaining the
freshness of cached data which may be refreshed periodically
and is subject to expiration. In this paper, we propose a scheme
to efficiently maintain cache freshness. Our basic idea is to let
each caching node be only responsible for refreshing a specific
set of caching nodes, so as to maintain cache freshness in a
distributed and hierarchical manner. Probabilistic replication
methods are also proposed to analytically ensure that the fresh-
ness requirements of cached data are satisfied. Extensive trace-
driven simulations show that our scheme significantly improves
cache freshness, and hence ensures the validity of data access
provided to mobile users.

I. INTRODUCTION

In recent years, personal hand-held mobile devices such
as smartphones are capable of storing, processing and dis-
playing various types of digital media contents including
news, music, pictures or video clips. It is hence important
to provide efficient data access to mobile users with such
devices. Opportunistic mobile networks, which are also known
as Delay Tolerant Networks (DTNs) [13] or Pocket Switched
Networks (PSNs) [20], are exploited for providing such data
access without support of cellular network infrastructure. In
these networks, it is generally difficult to maintain end-to-
end communication links among mobile users. Mobile users
are only intermittently connected when they opportunistically
contact, i.e., moving into the communication range of the
short-range radio (e.g., Bluetooth, WiFi) of their smartphones.
Data access can be provided to mobile users via cooperative

caching. More specifically, data is cached at mobile devices
based on the query history, so that queries for the data in
the future can be satisfied with less delay. Currently, research
efforts have been focusing on determining the appropriate
caching locations [27], [19], [17] or the optimal caching
policies for minimizing the data access delay [28], [22].
However, there is only limited research on maintaining the

freshness of cached data in the network, despite the fact that
media contents may be refreshed periodically. In practice, the
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refreshing frequency varies according to the specific content
characteristics. For example, the local weather report is usually
refreshed daily, but the media news at websites of CNN or
New York Times may be refreshed hourly. In such cases, the
versions of cached data in the network may be out-of-date, or
even be completely useless due to expiration.
The maintenance of cache freshness in opportunistic mo-

bile networks is challenging due to the intermittent network
connectivity and subsequent lack of information about cached
data. First, there may be multiple data copies being cached in
the network, so as to ensure timely response to user queries.
Without persistent network connectivity, it is generally difficult
for the data source to obtain information about the caching
locations or current versions of the cached data. It is therefore
challenging for the data source to determine “where to” and
“how to” refresh the cached data. Second, the opportunistic
network connectivity increases the uncertainty of data trans-
mission and complicates the estimation of data transmission
delay. It is therefore difficult to determine whether the cached
data can be refreshed on time.
In this paper, we propose a scheme to address these chal-

lenges and to efficiently maintain freshness of the cached data.
Our basic idea is to organize the caching nodes1 as a tree
structure during data access, and let each caching node be
responsible for refreshing the data cached at its children in
a distributed and hierarchical manner. The cache freshness
is also improved when the caching nodes opportunistically
contact each other. To the best of our knowledge, our work
is the first which specifically focuses on cache freshness in
opportunistic mobile networks.
Our detailed contributions are as follows:

∙ We investigate the refreshing patterns of realistic web
contents. We observe that the distributions of inter-
refreshing time of the RSS feeds from major news
websites exhibit hybrid characteristics of exponential and
power-law, which have been validated by both empirical
and analytical evidences.

∙ Based on the experimental investigation results, we ana-
lytically measure the utility of data updates for refreshing
the cached data via opportunistic node contacts. These

1In the rest of this paper, the terms “devices” and “nodes” are used
interchangeably.



utilities are calculated based on a probabilistic model to
measure cache freshness. They are then used to oppor-
tunistically replicate data updates and analytically ensure
that the freshness requirements of cached data can be
satisfied.

The rest of this paper is organized as follows. In Section
II we briefly review the existing work. Section III provides
an overview about the models and caching scenario we use,
and also highlights our basic idea. Section IV presents our
experimental investigation results on the refreshing patterns
of real web sites. Sections V and VI describe the details of
our proposed cache refreshing schemes. The results of trace-
driven performance evaluations are shown in Section VII, and
Section VIII concludes the paper.

II. RELATED WORK

Due to the intermittent network connectivity in opportunistic
mobile networks, data is forwarded in a “carry-and-forward”
manner. Node mobility is exploited to let nodes physically
carry data as relays, and forward data opportunistically when
contacting others. The key problem is hence how to select the
most appropriate nodes as relays, based on the prediction of
node contacts in the future. Some forwarding schemes do such
prediction based on node mobility patterns [9], [33], [14]. In
some other schemes [4], [1], stochastic node contact process is
exploited for better prediction accuracy. Social contact patterns
of mobile users, such as centrality and community structures,
have also been exploited for relay selection [10], [21], [18].
Based on this opportunistic communication paradigm, data

access can be provided to mobile users in various ways. In
some schemes [23], [16], data is actively disseminated to
specific users based on their interest profiles. Publish/subscribe
systems [32], [24] are also used for data dissemination by ex-
ploiting social community structures to determine the brokers.
Caching is another way to provide data access. Determining

appropriate caching policies in opportunistic mobile networks
is complicated by the lack of global network information.
Some research efforts focus on improving data accessibility
from infrastructure networks such as WiFi [19] or Internet
[27], and some others study peer-to-peer data sharing among
mobile nodes. In [17], data is cached at specific nodes which
can be easily accessed by others. In [28], [22], caching policies
are dynamically determined based on data importance, so that
the aggregate utility of mobile nodes can be maximized.
When the versions of cached data in the network are het-

erogeneous and different from that of the source data, research
efforts have been focusing on maintaining the consistency of
these cache versions [7], [11], [5], [6]. Being different from
existing work, in this paper we focus on ensuring the freshness
of cached data, i.e., the version of any cached data should be
as close to that of the source data as possible. [22] discussed
the practical scenario in which data is periodically refreshed,
but did not provided specific solutions for maintaining cache
freshness. We propose methods to maintain cache freshness in
a distributed and hierarchical manner, and analytically ensure
that the freshness requirement of cached data can be satisfied.

Fig. 1. Data Access Tree (DAT). Each node in the DAT accesses data when
it contacts its parent node in the DAT.

III. OVERVIEW

A. Models

1) Network Model: Opportunistic contacts among nodes
are described by a network contact graph 𝐺(𝑉,𝐸), where the
contact process between a node pair 𝑖, 𝑗 ∈ 𝑉 is modeled as
an edge 𝑒𝑖𝑗 ∈ 𝐸. The characteristics of an edge 𝑒𝑖𝑗 ∈ 𝐸
are determined by the properties of inter-contact time among
nodes. Similar to previous work [1], [34], we consider the
pairwise node inter-contact time as exponentially distributed.
Contacts between nodes 𝑖 and 𝑗 then form a Poisson process
with contact rate 𝜆𝑖𝑗 , which is calculated in real time from the
cumulative contacts between nodes 𝑖 and 𝑗.
2) Cache Freshness Model: We focus on ensuring the

freshness of cached data, i.e., the version of any cached data
should be as close to that of the source data as possible. Letting
𝑣𝑡𝑆 denote the version number of source data at time 𝑡 and 𝑣

𝑡
𝑗

denote that of data cached at node 𝑗, our requirement on cache
freshness is probabilistically described as

ℙ(𝑣𝑡𝑗 ≥ 𝑣𝑡−Δ
𝑆 ) ≥ 𝑝, (1)

for any time 𝑡 and any node 𝑗. The version number is
initialized as 0 when data is first generated and monotonically
increased by 1 every time the data is refreshed.
Higher network storage and transmission overhead is gen-

erally required for decreasing Δ or increasing 𝑝. Hence, our
proposed model provides the flexibility to tradeoff between
cache freshness and network maintenance overhead according
to the specific data characteristics and applications. For exam-
ple, news from CNN or the New York Times may be refreshed
frequently, and smaller Δ (e.g., 1 hour) should be applied
accordingly. In contrast, the local weather report may be
updated daily, and the requirement on Δ can hence be relaxed
to avoid unnecessary network cost. The value of 𝑝 may be
flexible based on user interests in the data. However, there are
cases where an application might have specific requirements
on Δ and 𝑝 to achieve sufficient levels of data freshness.
3) Data Update Model: Whenever data is refreshed, the

data source computes the difference between the current and
previous versions and generates a data update. Cached data is
refreshed by such update instead of complete data for better
storage and transmission efficiency. This technique is called
Delta encoding, which has been applied in web caching for
reducing Internet traffic [26].



(a) Intentional and opportunistic refreshing
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(b) Temporal sequence of data access and refreshing operations
Fig. 2. Distributed and hierarchical maintenance of cache freshness

Letting 𝑢𝑖𝑗 denote the update of data from version 𝑖 to
version 𝑗, we assume that any caching node is able to refresh
the cached data as 𝑑𝑖⊗𝑢𝑖𝑗 → 𝑑𝑗 , where 𝑑𝑖 and 𝑑𝑗 denote the
data with version 𝑖 and 𝑗, respectively. We also assume that
any node is able to compute 𝑢𝑖𝑗 from 𝑑𝑖 and 𝑑𝑗 .
When data has been refreshed multiple times, various up-

dates for the same data may co-exist in the network. We
assume that any node is able to merge consecutive data
updates, i.e., 𝑢𝑖𝑗⊕𝑢𝑗𝑘 → 𝑢𝑖𝑘. However, 𝑑𝑗 cannot be refreshed
to 𝑑𝑘 by 𝑢𝑖𝑘 even if 𝑗 > 𝑖. For example, 𝑢14 which is produced
by merging 𝑢13 and 𝑢34 cannot be used to refresh 𝑑3 to 𝑑4.

B. Caching Scenario

Mobile nodes share data generated by themselves or ob-
tained from the Internet. In this paper, we consider a generic
caching scenario which is also used in [22]. The query
generated by a node is satisfied as soon as this node contacts
some other node caching the data. During the mean time,
the query is stored at the requesting node. After the query
is satisfied, the requesting node caches the data locally for
answering possible queries in the future. Each cached data
item is associated with a finite lifetime and is automatically
removed from cache when it expires. The data lifetime may
change each time the cached data is refreshed.
In practice, when multiple data items with varied popularity

compete for the limited buffer of caching nodes, more popular
data is prioritized to ensure that the cumulative data access
delay is minimized. Such prioritization is generally formulated
as a knapsack problem [17] and can be solved in pseudo-
polynomial time using a dynamic programming approach
[25]. Hence, the rest of this paper will focus on ensuring
the freshness of cached copies of a specific data item. The
consideration of multiple data items and limited node buffer
is orthogonal to the major focus of this paper.
In the above scenario, data is essentially disseminated

among nodes interested in the data when they contact each
other, and these nodes form a “Data Access Tree (DAT)” as
shown in Figure 1. Queries of nodes 𝐴 and 𝐵 are satisfied
when they contact the data source 𝑆. Data cached at 𝐴 and 𝐵
are then used for satisfying queries from nodes 𝐶, 𝐷 and 𝐸.

Due to intermittent network connectivity, each node in the
DAT only has knowledge about data cached at its children. For
example, after having its query satisfied by 𝑆, 𝐴 may lose its
connection with 𝑆 due to mobility, and hence 𝐴 is unaware of
the data cached at nodes 𝐵, 𝐷 and 𝐸. Similarly, 𝑆 may only
be aware of data cached at nodes 𝐴 and 𝐵. Such limitation
makes it challenging to maintain cache freshness, because it
is difficult for the data source to determine “where to” and
“how to” refresh the cached data.

C. Basic Idea

Our basic idea for maintaining cache freshness is to refresh
the cached data in a distributed and hierarchical manner. As
illustrated in Figure 2, this refreshing process is split into
two parts, i.e., the intentional refreshing and the opportunistic
refreshing, according to whether the refreshing node has the
knowledge about the cached data to be refreshed.
In intentional refreshing, each node is only responsible for

refreshing data cached at its children in the DAT. For example,
in Figure 2(a) node 𝑆 is only responsible for refreshing data
cached at 𝐴 and 𝐵. Since 𝐴 and 𝐵 obtain their cached
data from 𝑆, 𝑆 has knowledge about the versions of their
cached data and is able to prepare the appropriate data updates
accordingly. In the example shown in Figure 2(b), 𝑆 refreshes
data cached at 𝐴 and 𝐵 using updates 𝑢23 and 𝑢13, when 𝑆
contacts 𝐴 and 𝐵 at time 𝑡3 and 𝑡4 respectively. In Section
V, these updates are also opportunistically replicated to ensure
that they can be delivered to 𝐴 and 𝐵 on time. Particularly,
the topology of DAT may change due to the expiration of
cached data. When 𝐴 is removed from the DAT due to cache
expiration, its child 𝐶 only re-connects to the DAT and gets
updated when 𝐶 contacts another node in the DAT.
In opportunistic refreshing, a node refreshes any cached

data with older versions whenever possible upon opportunistic
contact. For example in Figure 2(a), when node 𝐴 contacts
node 𝐷 at time 𝑡6, 𝐴 updates the data cached at 𝐷 from
𝑑1 to 𝑑3. Since 𝐴 does not know the version of the data
cached at 𝐷, it cannot prepare 𝑢13 for 𝐷 in advance2.
Instead, 𝐴 has to transmit the complete data 𝑑3 to 𝐷 with

2The update 𝑢13 can only be calculated using 𝑑1 and 𝑑3.



(a) CNN Top Stories (b) BBC Politics (c) NYTimes Sports (d) Business Week Daily
Fig. 3. CCDF of inter-refreshing time of individual RSS feeds

Avg. inter-
No. RSS feed Number of refreshing time

updates (hours)

1 CNN Top Stories 2051 0.2159
2 NYTimes US 4545 0.0954
3 CNN Politics 623 0.7166
4 BBC Politics 827 0.5429
5 ESPN Sports 2379 0.1856
6 NYTimes Sports 3344 0.1355
7 Business Week Daily 4783 0.0948
8 Google News Business 7266 0.061
9 Weather.com NYC 555 0.8247
10 Google News ShowBiz 5483 0.0808
11 BBC ShowBiz 531 0.8506

TABLE I
NEWS UPDATES RETRIEVED FROM WEB RSS FEEDS

higher transmission overhead. In Section VI, we propose to
probabilistically determine whether to transmit the complete
data according to the chance of satisfying the requirement of
cache freshness, so as to optimize the tradeoff between cache
freshness and network transmission overhead.

IV. REFRESHING PATTERNS OF WEB CONTENTS

In this section, we investigate the refreshing patterns of real-
istic web contents, as well as their temporal variations during
different time periods in a day. These patterns highlight the
homogeneity of data refreshing behaviors among different data
sources and categories, and suggest appropriate calculation of
utilities of data updates for refreshing cached data.

A. Datasets

We investigate the refreshing patterns of categorized web
news. We dynamically retrieved news updates from news
websites including CNN, New York Times, BBC, Google
News, etc, by subscribing to their public RSS feeds. During the
3-week experiment period between 10/3/2011 and 10/21/2011,
we have retrieved a total number of 32787 RSS updates from
11 RSS feeds in 7 news categories. The information about
these RSS feeds and retrieved news updates is summarized in
Table I, which shows that the RSS feeds differ in their numbers
of updates and the update frequencies.

B. Distribution of Inter-Refreshing Time

We provide both empirical and analytical evidence of a
dichotomy in the Complementary Cumulative Distribution
Function (CCDF) of the inter-refreshing time, which is defined

Fig. 4. Aggregate CCDF of the inter-refreshing time in log-log scale

as the time interval between two consecutive news updates
from the same RSS feed. Our results show that up to a
boundary on the order of several minutes, the decay of the
CCDF is well approximated as exponential. In contrast, the
decay exhibits power-law characteristics beyond this boundary.
1) Aggregate distribution: Figure 4 shows the aggregate

CCDF of inter-refreshing time for all the RSS feeds, in log-
log scale. The CCDF values exhibit slow decay over the range
spanning from a few seconds to 0.3047 hour. It suggests that
around 90% of inter-refreshing time falls into this range and
follows an exponential distribution. Figure 4 also shows that
the CCDF values of inter-refreshing time within this range is
accurately approximated by the random samples drawn from
an exponential distribution with the average inter-refreshing
time (0.1517 hours) as parameter.
For the remaining 10% of inter-refreshing time with values

larger than the boundary, the CCDF values exhibit linear decay
which suggests a power-law tail. To better examine such tail
characteristics, we also plot the CCDF of a generalized Pareto
distribution with the shape parameter 𝜉 = 0.5, location param-
eter 𝜇 = 0.1517 and scale parameter 𝜎 = 𝜇 ⋅ 𝜉 = 0.0759. As
shown in Figure 4, the Pareto CCDF closely approximates that
of the inter-refreshing time beyond the boundary. Especially
when inter-refreshing time is longer than 1 hour, the two
curves almost overlap with each other.
2) Distributions of individual RSS feeds: Surprisingly,

we found that the distributions of inter-refreshing time of
individual RSS feeds exhibit similar characteristics with that
of the aggregate distribution. For example, for the two RSS



(a) NYTimes US (b) CNN Politics (c) ESPN Sports (d) Google News Business
Fig. 5. Temporal distribution of news updates during different hours in a day

No. Boundary Exponential generalized Pareto
RSS (hours) percent. of 𝛼 (%) percent. of 𝛼 (%)
feed updates (%) updates (%)

1 0.2178 91.07 4.33 9.93 5.37
2 0.3245 84.24 6.71 15.76 3.28
3 1.9483 88.12 7.24 11.88 3.65
4 1.6237 86.75 5.69 13.25 4.45
5 0.2382 93.37 6.54 6.63 4.87
6 0.2754 92.28 6.73 7.72 2.12
7 0.3112 87.63 5.26 12.37 3.13
8 0.2466 89.37 8.45 10.63 2.64
9 1.7928 90.22 11.62 9.78 8.25
10 0.1928 88.57 6.75 11.43 3.58
11 2.0983 83.32 7.44 16.68 3.23

TABLE II
NUMERICAL RESULTS FOR DISTRIBUTIONS OF INTER-REFRESHING TIME

OF INDIVIDUAL RSS FEEDS

feeds in Figure 3 with different news categories, the CCDF
decay of each RSS feed is analogous to that of the aggregate
CCDF in Figure 4. Figure 3 shows that the boundaries for
different RSS feeds are heterogeneous and mainly determined
by the average inter-refreshing time. These boundaries are
summarized in Table II.
To quantitatively justify the characteristics of exponential

and power-law decay in the CCDF of individual RSS feeds, we
perform a Kolmogorov-Smirnov goodness-of-fit test [30] on
each of the 11 RSS feeds listed in Table I. For each RSS feed,
we collect the inter-contact times smaller than its boundary
and test whether the null hypothesis “these inter-contact times
are exponentially distributed” can be accepted. A similar test
is performed on the inter-contact times with larger values for
the generalized Pareto distribution.
The significance levels (𝛼) for these null hypotheses being

accepted are listed in Table II. The lower the significance
level is, the more confident we are that the corresponding
hypothesis is statistically true. As shown in Table II, for all
the RSS feeds, the probability for erroneously accepting the
null hypotheses is lower than 10%, which is the significance
level usually being used for statistical hypothesis testing [8].
Particularly, the significance levels for accepting a generalized
Pareto distribution are generally better than those for accepting
an exponential distribution.

C. Temporal Variations

We are also interested in the temporal variations of the
RSS feeds’ updating patterns. Figure 5 shows the temporal
distribution of news updates from RSS feeds over different

Fig. 6. Standard deviation of the numbers of news updates during different
hours in a day

hours in a day. We observe that the characteristics of such
temporal variation are heterogeneous with different RSS feeds.
For example, the majority of news updates from NYTimes and
ESPN are generated during the time period from the afternoon
to the evening. Comparatively, the news updates from Google
News are evenly distributed among different hours in a day.
To better quantify the skewness of such temporal variation,

we calculate the standard deviation of the numbers of news
updates during different hours in a day for each of the 11 RSS
feeds listed in Table I, and the calculation results are shown in
Figure 6. By comparing Figure 6 with Figure 5, we conclude
that the temporal distributions of news updates from most RSS
feeds are highly skewed. The transient distribution of inter-
refreshing time of a RSS feed during specific time periods
hence may differ a lot from its cumulative distribution. Such
temporal variation may affect the performance of maintaining
cache freshness, and will be evaluated in detail via trace-driven
simulations in Section VII.

V. INTENTIONAL REFRESHING

In this section, we explain how to ensure that data updates
are delivered to the caching nodes on time, so that the
freshness requirements of cached data are satisfied. Based on
investigation results on the distribution of inter-refreshing time
in Section IV, we calculate the utility of each update which
estimates the chance for the requirement being satisfied by this
update. Such utility is then used for opportunistic replication
of data updates.



Notation Explanation

𝑡𝐶 Current time when 𝐵 generates data update for 𝐷
𝑡𝐿 The last time when 𝐵 contacted 𝐷
𝑇𝑢 Random variable indicating the inter-refreshing

time of source data
𝑡0 The last time when the source data was refreshed
𝜆𝐶 Pairwise contact rate between nodes 𝐵 and 𝐷

TABLE III
NOTATION SUMMARY

A. Utility of Data Updates

In practice, the requirement of cache freshness may not be
satisfied due to the limited nodes’ contact capability. When
a node 𝐵 in the DAT maintains the data update for its child
𝐷, it calculates the utility of this update which is equal to the
probability that this update carried by 𝐵 satisfies the freshness
requirement for data cached at𝐷. With respect to the notations
in Table III which are used throughout the rest of this paper,
such utility can generally be calculated as follows:

𝑈 =

∫ ∞

𝑡𝐶

ℙ(𝐵 contacts 𝐷 at time 𝑡) ⋅ ℙ(𝑇𝑢 ≥ 𝑡− 𝑡0 −Δ)𝑑𝑡.

(2)
As illustrated in Figure 7, for the utility of update 𝑢13 at

node 𝐵, Eq. (2) measures the probability that the source data
has not been refreshed to 𝑑4 at time 𝑡 − Δ, given that 𝐵
contacts 𝐷 at time 𝑡 and refreshes the data cached at 𝐷 from
𝑑1 to 𝑑3 using 𝑢13. According to our network modeling in
Section III-A, Eq. (2) can be rewritten as

𝑈 =

∫ ∞

𝑡𝐶

𝜆𝐶𝑒
−𝜆𝐶(𝑡−𝑡𝐿) ⋅ (1 − 𝐹𝑢(𝑡− 𝑡0 −Δ))𝑑𝑡, (3)

where 𝐹𝑢(𝑡) is the CDF of the inter-refreshing time 𝑇𝑢 of
source data.
In general, a node in the DAT may be responsible for

refreshing data cached at its 𝑘 children in the DAT. In this
case, the cumulative utility of data update is calculated as

𝑈 = 1−
𝑘∏

𝑖=1

(1− 𝑈𝑖),

where 𝑈𝑖 is the utility of data update for the 𝑖-th child node.
The utility of data update depends on the characteristics

of 𝐹𝑢(𝑡). In practice, each node in the DAT individually
maintains the information about 𝐹𝑢(𝑡) based on the past
history about the source data being refreshed. According to
the experimental results in Section IV, we calculate the utility
of data update with different distributions of 𝑇𝑢.
1) Exponential Distribution: For exponential distribution,

we have 𝐹𝑢(𝑡) = 1− 𝑒−𝜆𝑢𝑡 where 𝜆𝑢 is the frequency of the
source data being refreshed. Using Eq. (3), we have

𝑈 =

∫ ∞

𝑡𝑐

𝜆𝐶𝑒
−𝜆𝐶(𝑡−𝑡𝐿) ⋅ 𝑒−𝜆𝑢(𝑡−𝑡2)𝑑𝑡

=
𝜆𝐶

𝜆𝐶 + 𝜆𝑢
⋅ 𝑒−𝜆𝐶(𝑡𝐶−𝑡𝐿) ⋅ 𝑒−𝜆𝑢(𝑡𝐶−𝑡2),

(4)

where 𝑡2 = 𝑡0 +Δ.
2) Pareto Distribution: Pareto distribution exhibits power-

law characteristics, and we have

𝐹𝑢(𝑡) =

{
0, if 𝑡 < 𝑇min

1− (𝑇min

𝑡 )𝛼, if 𝑡 ≥ 𝑇min

.

0 Ct¡¢t¡¢

t¡ t0 ¡¢t¡ t0 ¡¢
u

Fig. 7. Calculating the utility of data updates

We consider that 𝛼 > 1 so that the distribution has a finite
mean value. As a result, if 𝑡𝐶 ≥ 𝑇min + 𝑡2,

𝑈 =

∫ ∞

𝑡𝐶

𝜆𝐶𝑒
−𝜆𝐶(𝑡−𝑡𝐿) ⋅ ( 𝑇min

𝑡− 𝑡2
)𝛼𝑑𝑡

= (𝜆𝐶𝑇min)
𝛼 ⋅ 𝑒−𝜆𝐶(𝑡2−𝑡𝐿) ⋅ Γ(1− 𝛼, 𝜆𝐶(𝑡𝐶 − 𝑡2)),

(5)

where Γ(𝑠, 𝑥) =
∫∞
𝑥 𝑡𝑠−1𝑒−𝑡𝑑𝑡 is the incomplete Gamma

function. Otherwise if 𝑡𝐶 < 𝑇min + 𝑡2,

𝑈 =

∫ ∞

𝑇min+𝑡2

𝜆𝐶𝑒
−𝜆𝐶(𝑡−𝑡𝐿) ⋅ ( 𝑇min

𝑡− 𝑡2
)𝛼𝑑𝑡

+

∫ 𝑇min+𝑡2

𝑡𝑐

𝜆𝐶𝑒
−𝜆𝐶(𝑡−𝑡𝐿)𝑑𝑡

=(𝜆𝐶𝑇min)
𝛼 ⋅ 𝑒−𝜆𝐶(𝑡2−𝑡𝐿) ⋅ Γ(1− 𝛼, 𝜆𝐶𝑇min)

+ 𝑒−𝜆𝐶(𝑡𝐶−𝑡𝐿) − 𝑒−𝜆𝐶(𝑇min+𝑡2−𝑡𝐿)

(6)

From Section IV we know that the distribution of 𝑇𝑢

exhibits hybrid characteristics of exponential and power-law
distributions. Hence, the method for utility calculation should
be adaptively determined. According to Eq. (3), the utility
should be calculated following Eq. (4) when the value of
𝑡−𝑡0−Δ is small. Otherwise, it should be calculated following
Eqs. (5) and (6).

B. Opportunistic Replication of Data Updates

If a node in the DAT finds out that the utility of the data
update it carries is lower than the required probability 𝑝 for
maintaining cache freshness, it opportunistically replicates the
data update to other nodes outside of the DAT. These nodes
then act as relays to carry the data update and help deliver the
update to the caching node to be refreshed.
Such a replication process is illustrated in Figure 8. When-

ever node 𝑆 contacts another node 𝑅𝑘 outside of the DAT, it
determines whether to replicate the data update for refreshing
𝐵 to 𝑅𝑘. In order for 𝑆 to make such a decision, 𝑅𝑖 also
calculates its utility 𝑈𝑅𝑘

of the data update. 𝑆 only replicates
the data update to 𝑅𝑘 if 𝑈𝑅𝑘

≥ 𝑈𝑅𝑗 for ∀𝑗 ∈ [0, 𝑘), and 𝑆
itself is considered as 𝑅0. The replication when the utilities
of data update at the 𝑘 selected relays satisfy

1−
𝑘∏

𝑖=0

(1− 𝑈𝑅𝑖) ≥ 𝑝, (7)

i.e., the probability that the requirement of cache freshness at
𝐵 is satisfied by at least one relay is equal to or larger than
𝑝. Note that the selected relays are only able to refresh the
specific data cached in the DAT, but are unable to provide
data access to other nodes outside of the DAT.
Such a replication strategy is similar to Delegation [12]

which focuses on forwarding data to a specific destination.
Since each selected relay has a higher utility of data update



Fig. 8. Opportunistic replication of data updates

than that of all the previous relays, such a strategy efficiently
ensures that the requirement of cache freshness can be satisfied
without unnecessarily consuming network resources. Partic-
ularly, when the node contact frequency in the network is
extremely low, 𝑆 may be unable to replicate the data update
to a sufficient number of relays before the source data is
refreshed. In this case, the cache freshness is maintained with
best-effort but the required probability 𝑝 for cache freshness
may not be satisfied.

VI. OPPORTUNISTIC REFRESHING

In addition to intentionally refreshing data cached at its
children in the DAT, a node also refreshes other cached
data with older versions whenever possible upon opportunistic
contacts. In this section, we propose a probabilistic approach
to efficiently make cache refreshing decisions and optimize
the tradeoff between cache freshness and network transmission
overhead.

A. Probabilistic Decision

Opportunistic refreshing is generally more expensive be-
cause the complete data usually needs to be transmitted, and
its size is much larger than that of data update. As a result, it
is important to make appropriate decisions on opportunistic
refreshing, so as to optimize the tradeoff between cache
freshness and network transmission overhead, and to avoid
inefficient consumption of network resources.
We propose a probabilistic approach to efficiently refresh

the cache data, and the data is only refreshed if its required
freshness cannot be satisfied by intentional refreshing. In our
approach, when a node 𝐴 contacts node 𝐷 which caches
an older version of the data at time 𝑡𝐶 , 𝐴 probabilistically
determines whether to transmit the complete data to 𝐷 for
refreshing the data cached at 𝐷. This probability 𝑝𝑇 estimates
the chance that the required freshness of 𝐷’s cached data
cannot be satisfied by 𝐷’s parent 𝐵 in the DAT via inten-
tional refreshing, but can be satisfied if the complete data is
transmitted by 𝐴. More specifically,

𝑝𝑇 = (1− 𝐹𝑢(𝑡𝐶 −Δ− 𝑡0)) ⋅ (1− 𝑈𝐵𝐷(𝑡𝐶)), (8)

where 𝑈𝐵𝐷(𝑡𝐶) is the utility of data update carried by 𝐵
for intentionally refreshing the data cached at 𝐷. According
to Section V-A, the utility of data update is only determined
by the pairwise node contact rate and the CDF 𝐹𝑢(𝑡) of the
inter-refreshing time of the source data. Hence, 𝑈𝐵𝐷(𝑡𝐶) can

Fig. 9. Side-effect of opportunistic refreshing

be calculated by 𝐷 and is available to 𝐴 when 𝐴 contacts 𝐷.
Since additional relays may be used for delivering data updates
in intentional refreshing as described in Section V-B, the utility
𝑈𝐵𝐷(𝑡𝐶) calculated by 𝐷 essentially provides a lower bound
on the actual effectiveness of intentional refreshing.

B. Side-Effect of Opportunistic Refreshing

Due to possible version inconsistency among different data
copies cached in the DAT, opportunistic refreshing may have
some side-effects on cache freshness. Such side-effect is
illustrated in Figure 9. When 𝐴 opportunistically contacts node
𝐷 and refreshes 𝐷’s cached data from 𝑑1 to 𝑑3, it is unaware
of the data cached at 𝐵 with a newer version 𝑑4. Meanwhile,
𝐵 only knows that 𝐷 caches data 𝑑1 and prepares update 𝑢14
for 𝐷. As a result, when 𝐵 contacts 𝐷 later, it cannot update
𝐷’s cached data from 𝑑3 to 𝑑4 using 𝑢14.
Complete elimination of such side-effect is challenging due

to the difficulty of timely coordination among disconnected
caching nodes. Instead, we propose to let node 𝐷 probabilisti-
cally estimate the chance for such side-effect to happen before
its cached data is refreshed by node 𝐴 at time 𝑡𝐶 . For such
estimation, each node 𝐴 in the DAT maintains its opportunistic
path to the data source 𝑆, which is defined as follows:
Definition 1: Opportunistic path
A 𝑟-hop opportunistic path 𝑃𝐴𝑆 = (𝑉𝑃 , 𝐸𝑃 ) between

nodes 𝐴 and 𝑆 consists of a node set 𝑉𝑃 = {𝐴,𝑁1,
𝑁2, ..., 𝑁𝑟−1, 𝑆} ⊂ 𝑉 and an edge sequence 𝐸𝑃 =
{𝑒1, 𝑒2, ..., 𝑒𝑟} ⊂ 𝐸 with edge weights {𝜆1, 𝜆2, .., 𝜆𝑟}. Path
weight 𝑝𝐴𝑆(𝑇 ) is the probability that data is opportunistically
transmitted from 𝐴 to 𝑆 along 𝑃𝐴𝑆 within time 𝑇 .
An opportunistic path is illustrated in Figure 10, and such

paths can be maintained among nodes in the DAT along
with the data dissemination process. Inter-contact time 𝑋𝑘

between nodes 𝑁𝑘 and 𝑁𝑘+1 on 𝑃𝐴𝑆 , as a random variable,
follows an exponential distribution with probability density
function (PDF) 𝑝𝑋𝑘

(𝑥) = 𝜆𝑘𝑒
−𝜆𝑘𝑥. Hence, the time needed

to transmit data from 𝐴 to 𝑆 is 𝑌 =
∑𝑟

𝑘=1𝑋𝑘 following a
hypoexponential distribution [29], such that

𝑝𝑌 (𝑥) =

𝑟∑
𝑘=1

𝐶
(𝑟)
𝑘 𝑝𝑋𝑘

(𝑥), (9)

where the coefficients 𝐶(𝑟)
𝑘 =

𝑟∏
𝑠=1,𝑠∕=𝑘

𝜆𝑠

𝜆𝑠−𝜆𝑘
.
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Fig. 10. Opportunistic path

From Eq. (9), the path weight is written as

𝑤𝐴𝑆(𝑇 ) =

∫ 𝑇

0

𝑝𝑌 (𝑥)𝑑𝑥 =

𝑟∑
𝑘=1

𝐶
(𝑟)
𝑘 ⋅ (1− 𝑒−𝜆𝑘𝑇 ), (10)

which measures the data transmission delay between two
nodes 𝐴 and 𝑆 along this path.
Essentially, such side-effect happens if the data cached at

node 𝐵 has been refreshed to a version newer than that of 𝐴
by time 𝑡𝐶 . This probability can be estimated as

𝑝𝑠 =

∫ 𝑡𝐶

𝑡0

𝑝𝑢(𝑡− 𝑡0) ⋅ 𝑤𝐵𝑆(𝑡𝐶 − 𝑡)𝑑𝑡, (11)

where 𝑝𝑢(𝑡) = 𝑑𝐹𝑢(𝑡)
𝑑𝑡 is the Probability Density Function

(PDF) of the refreshing interval of source data, and 𝑤𝐵𝑆(𝑡𝐶−
𝑡) is the weight of opportunistic path between 𝐵 and 𝑆 which
is defined in Eq. (10), which measures the probability that data
update generated by 𝑆 at time 𝑡 is transmitted to 𝐵 before
time 𝑡𝐶 . In practice, 𝑝𝑠 can be applied to 𝐴’s probabilistic
refreshing decision when 𝐴 contacts𝐷, such that 𝑝𝑇 = 𝑝𝑇 ⋅𝑝𝑠.

VII. PERFORMANCE EVALUATIONS

In this section, we compare the performance of our proposed
cache refreshing scheme with the following schemes:

∙ Passive Refreshing: a caching node only refreshes data
cached at another node upon contact. It is different from
our opportunistic refreshing scheme in Section VI in that
it does not consider the tradeoff between cache freshness
and network transmission overhead.

∙ Active Refreshing: every time when the source updates
data, it actively disseminates the date update to the whole
network. Since the data source does not maintain any
information regarding the caching nodes, such dissemi-
nation is generally realized via Epidemic routing [31].

∙ Publish/Subscribe: As described in [32], [24], cached
data is refreshed via the dedicated broker nodes, which
receive the up-to-date data from the data source. Each
broker maintains information about the caching nodes
which retrieve data from this broker, and is responsible
for refreshing these caching nodes upon opportunistic
contacts. It is different from our scheme in that it only
comprises a two-level cache refreshing hierarchy.

The following metrics are used for evaluations. Each sim-
ulation is repeated multiple times with random data sources
and user queries for statistical convergence.

∙ Refreshing Ratio, the percentage of data updates that are
delivered to caching nodes before the cached data expires.

∙ Refreshing Delay, the average delay for a data update
being delivered from the data source to the caching nodes.

∙ Refreshing overhead: the average number of times that
a data update is forwarded. Particularly, when a data item

Trace DieselNet Infocom

Duration (days) 20 4
No. of devices 40 78

No. of internal contacts 3,268 182,951
No. of internal 0.102 7.52
contacts/pair/day

TABLE IV
TRACE SUMMARY

having been refreshed 𝑘 times is forwarded during oppor-
tunistic refreshing, it is equivalent that a corresponding
data update has been forwarded 𝑘 times.

A. Simulation Setup

Our evaluations are conducted on two realistic opportunistic
mobile network traces, which record contacts among users
carrying Bluetooth-enabled mobile devices. These devices
periodically detect their peers nearby, and a contact is recorded
when two devices move close to each other. The traces
cover various types of mobile network environments including
suburban areas (DieselNet [2]) and conference site (Infocom
[21]). As summarized in Table IV, they differ in their network
scale, duration and node contact frequency.
The performance of our proposed schemes is evaluated

under the generic caching scenario described in Section III-B.
The datasets described in Section IV are exploited to simulate
the data being cached in the network, as well as the inter-
refreshing time of data. Since the pairwise node contact fre-
quency is generally lower than the data refreshing frequency,
we pick up the 4 RSS feeds listed in Table I with average inter-
refreshing time longer than 0.5 hours for our evaluations. For
each RSS feed, a random node is selected as the data source
for distributing data updates to the caching nodes.
Queries are randomly generated at all nodes, and each query

has a finite time constraint 𝑇 . We assume that the query
pattern follows a Zipf distribution which has been widely used
for modelling web data access [3]. Let 𝑃𝑗 ∈ [0, 1] be the
probability that data 𝑗 is requested, and𝑀 = 4 be the number
of data items in the network; we have 𝑃𝑗 = 1

𝑗𝑠 /(
∑𝑀

𝑖=1
1
𝑖𝑠 )

where 𝑠 is an exponent parameter. Every time 𝑇 , each node
determines whether to request data 𝑗 with probability 𝑃𝑗 .

B. Performance of Maintaining Cache Freshness

We first compare the performance of our proposed hier-
archical refreshing scheme with other schemes by varying
the lifetime (𝐿) of the cached data. For our scheme, we set
Δ = 1.5 hours and 𝑝 = 60%. The time constraint (𝑇 ) of user
queries is set as 5 hours.
The evaluation results are shown in Figure 11. When 𝐿

increases, there is a larger amount of data being cached, and
data updates have higher chances to be delivered to the caching
nodes before data expiration. As shown in Figure 11(a),
when 𝐿 increases from 1 hour to 10 hours, the refreshing
ratio has been improved by over 400%, and the average
refreshing delay and overhead increase accordingly. In all
cases, the performance of our scheme in refreshing ratio and
delay significantly improves upon that of Passive Refreshing
and Publish/Subscribe. In Figure 11(a), such advantage in



(a) Refreshing Ratio (b) Refreshing Delay (c) Refreshing Overhead
Fig. 11. Performance of maintaining cache freshness with varied lifetime of cached data

refreshing ratio can be up to 35% when 𝐿 is large, and our
scheme ensures that over 50% of data updates can be delivered
on time when 𝐿 = 10 hours. Similarly, a 20% reduction in
refreshing delay can be achieved as shown in Figure 11(b).
Active Refreshing outperforms our scheme by 10%-15%, but
Figure 11(c) shows that such performance is achieved at the
cost of much higher refreshing overhead.
We also evaluate the performance of our scheme with

different requirements of cache freshness specified by param-
eters Δ and 𝑝. The parameter values are set by default as
Δ = 1.5 hours and 𝑝 = 60%, and are varied during different
simulations. Data lifetime is set as 𝐿 = 5 hours. The evaluation
results are shown in Figures 12 and 13. From Figure 12 we
observe that, when the value of Δ is small, the cache freshness
is mainly constrained by the network contact capability, and
the actual refreshing delay is much higher than the required
Δ. Such inability to satisfy the cache freshness requirements
leads to more replications of data updates as described in
Section V-B, and makes caching nodes more prone to perform
opportunistic refreshing. As a result, it increases the refreshing
overhead as shown in Figure 12(b). When Δ is small, further
decreasing Δ does not help on reducing refreshing delay, but
unnecessarily wastes network resources on replicating data
updates. Based on Figure 12, we suggest to set Δ ≥ 2 hours
for the Infocom trace.
Figure 13 shows that increasing 𝑝 helps reduce the aver-

age refreshing delay by 25%. As described in Section V-B,
increasing 𝑝 stimulates the caching nodes to replicate data
updates, and hence increases the refreshing overhead as shown
in Figure 13(b). However, since different values of 𝑝 do
not affect the calculation of utilities of data updates, such
increase of refreshing overhead is relatively smaller than that
of decreasing Δ.

C. Temporal Variations

Section IV-C shows that the refreshing patterns of web
RSS data is temporally skewed, such that the majority of
data updates are generated during specific time periods of a
day. Similar skewness has also been found in the transient
distribution of node contacts [15]. It is therefore interesting
to evaluate the temporal variation of the performance of
maintaining cache freshness, which is determined by both node
contact and data refreshing patterns.

(a) Refreshing delay (b) Refreshing overhead
Fig. 12. Performance of maintaining cache freshness with different values
of parameter Δ and 𝑝 = 60%

(a) Refreshing delay (b) Refreshing overhead
Fig. 13. Performance of maintaining cache freshness with different values
of parameter 𝑝 and Δ = 1.5 hours

In this section, we evaluate such temporal variation on
the DieselNet trace. Since the pairwise contact frequency in
the DieselNet trace is generally low, we set Δ = 4 hours
and 𝑝 = 50%. The data lifetime 𝐿 is set as 10 hours.
The evaluation results are shown in Figure 14, in which the
performance of maintaining cache freshness during different
hours in a day is recorded separately. In general, the temporal
skewness can be found in all three evaluation metrics, and is
determined by the temporal distributions of both node contacts
and data updates available during different hours in a day. As
shown in Figure 14(a), the refreshing ratio during the time
period between 8AM and 4PM is generally higher than the
average refreshing ratio, because majority of node contacts
have been generated during this time period according to [15].
Correspondingly, the refreshing ratio is much lower than the
average level during the time period between 12AM and 8AM.
Similar trends are also found in Figures 14(b) and 14(c); the

abundance of node contacts help reduce the refreshing delay
but produces more data updates. In contrast, both the refresh-



(a) Refreshing Ratio (b) Refreshing Delay (c) Refreshing Overhead
Fig. 14. Temporal variations of the performance of maintaining cache freshness

ing ratio and overhead are much lower between 12AM and
8AM, when few node contacts and data updates are observed.
In summary, we conclude that the transient performance of
maintaining cache freshness differs a lot from the cumulative
maintenance performance, and cache freshness can be further
improved by appropriately exploiting the temporal variations
of data refreshing pattern and node contact process.

VIII. CONCLUSION

In this paper, we focus on maintaining the freshness of
cached data in opportunistic mobile networks. Our basic idea
is to let each caching node be only responsible for refreshing
a specific set of caching nodes, so as to maintain cache fresh-
ness in a distributed and hierarchical manner. Based on the
experimental investigation results on the refreshing patterns of
real websites, we probabilistically replicate data updates, and
analytically ensure that the freshness requirements of cached
data are satisfied. The performance of our proposed scheme
on maintaining cache freshness is evaluated by extensive trace-
driven simulations on realistic mobile traces.
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