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ABSTRACT 

In the very large multiprocessor systems and, on a g a n d e r  scale, computer networks now emerging, processes 
are not tied to fixed processors but run on processors taken from a pool of processors. Processors are released 
when a process dies, migrates or when the process crashes. In distributed operating systems using the service 
concept, processes can be clients asking for a service, servers giving a service or both. Establishing 
communication between a process asking for a service and a process giving that service, without centralized 
control in a distributed environment with mobile processes, constitutes the problem of 1 distributed match- 
making. Logically, such a match-making phase precedes routing in store-and-forward d6mputer networks of 
this type. Algorithms for distributed match-making are developed and their complexity is investigated in 
terms of message passes and in terms of storage needed. The theoretical limitations of distributed match- 
making are established, and the techniques are applied to several network topologies. 

1. Introduction 

We investigate the problem of setting up communication- 
when-needed between processes in a multiprocessor network 
where processes have names but no permanent  addresses. A 
mechanism for this purpose is called a name-sewer, analogous 
to the telephone system's directory assistance server: given a 
name it returns an address. A single centralized name server in 
the network can be taken out through a single processor 
crash, thereby effectively killing all communication and 
crashing the entire network. A more robust solution is 
d&tributing the name server. A great variety of  options and 
problems of both theoretical and practical interest are 
attached to this issue. Our motivation was provided by the 
design objectives of the Amoeba distributed operating system 
project [ 11 ]. 

1.1. The Catering Service Problem 

Suppose you want to give a party in your Silicon Valley 
home, but do not care for the bother. You want  a catering 
service. Now it so happens, that you do not know the address 
or telephone number of such a service. Anyway, even if you 
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did, this would not do you much good. In Silicon Valley 
such small outfits come and go so fast that it is unlikely that 
this service, which you used two years ago, still exists at  the 
old address. You can phone them, but the number gets you 
somebody who has never heard of  your old catering service. 
There are several courses of action you can take. 

• One way to solve your problem is to send mail to 
everybody in town asking whether they supply catering 
service. In computer networks this is called broadcasting. 

• Another way is to wait until you get an advertisement 
leaflet of a catering service in your mailbox. Below we call 
this sweeping. 

Most likely, you do one of  the following: 

• You look in the Yellow Pages under the appropriate 
heading. If  everybody exclusively uses YP for all services 
then we may view the. YP outfit as a centralized name 
server. Services reveal their whereabouts by advertising 
there and clients look them up there. If  the YP company 
crashes then clients and services cannot be matched 
anymore, and society grinds to a halt. 

• You buy a suitable newspaper and look up "catering" in 
the advertisement section. Now the name server is 
distributed. Catering services advertise in many 
newspapers. I f  one newspaper flounders, this will not create 
problems for you. 

• You ask some of your friends whether the~ know where to 
find the desired service. Some of your friends crashing will 
not prevent you finding a caterer. The name server is 
distributed in this case as well, and, depending on how 
sociable you are, perhaps better. 
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Having  found the address or telephone number  of a catering 
service, you have  to find a way to route your  request to 
them. Thus,  ma tch-making  between clients and  services 
necessarily precedes routing in a mobile society. Note that  
the catering service, in order to execute the task you set 
them, m a y  call on other services such as a car  rental service. 
The  catering service then is a client with respect to the car 
rental service. Clearly, everybody can be server, client or 
both. 

1.2. Mult iprocessors & Computer Networks 

New generation computers  mus t  be fast, reliable, and flexible. 
One  way to achieve this is to build them from a small 
numbe r  of  basic processor-memory modules that  can  be 
assembled together to realize machines  of  various sizes. The  
use of multiple modules can make  the machines  not only fast, 
bu t  also achieve a substantial amoun t  of  fault tolerance. The  
pr imary  difference between machines  should be the number  
of modules, rather  than  the type of the modules. In  
principle, any  of these machines  can be gracefully increased 
in size to improve performance by adding new modules or 
decreased in size to allow removal  and  repair of  defective 
modules. The  software running  on the various machines  
should be in essence identical. It should be possible to 
connect  different machines  together to form even larger 
machines  and  to partition existing machines  into disjoint 
pieces when necessary, all in a way t ransparent  to the user 
level software. W hen  a user has a heavy computat ion to do, 

an  appropriate  number  of  processor-memory modules are 
temporarily assigned to him. W h e n  the computa t ion  is 
completed, they are returned to the idle pool for use by other 
users. Note that  in this view a computer network is essentially 
such machine  on a grand scale. 

Software design for these new machines  can 
advantageously be based o n  the object model. In  this model, 
the system deals with abstract  objects, each of which has  some 
set of  abstract operations that  can  be performed on it. At the 
user level, the basic system primitive is performing an  
operation on an object, rather than  such things as 
establishing connections, sending and  receiving messages, and  
closing connections. For example,  a typical object is the file, 
with operations to read and  write portions of it. The  object 
model is also known under  the name  of  "abstract  da ta  type" 
[6]. A major advantage  of the object or abstract  da ta  type 
model is that  the semantics are inherently location 
independent.  T h e  concept of  performing an operation on an  
object does not  require the user to be aware of where objects 
are located or how the communicat ion  is actually 
implemented.  This  property gives the system the possibility 
of  moving  objects a round to position them close to where 
they are frequently used. Furthermore,  the issue of how 
m a n y  processes are involved in carrying out  an  operation, 
and  where they are located is also hidden from the user. 

1.3. T h e  Service Model  

It is convenient  to implement the object model in terms of 
clients (users) who send messages to services [10]. A service 
is defined by a set of c o m m a n d s  and  responses. Each service 
is handled by one or more server processes that  accept 
messages from clients, carry out  the required work, and  send 
back replies. 

As an example, consider a file server. The design must deal with 
how and where information is stored, how and when it is moved, 
how it is backed up, how concurrent reads and writes are 
controlled, how local caches are maintained, how information is 
named, and how accounting and protection are accomplished, 
The internal structure of the service must be designed: how many 
server processes are there, where are they located, how and when 
do they communicate, what happens when one of them fails, how 
is a server process organized imemally for both reliability and 
high performance, and so on. A server can itself be client to 
another service. The possible hierarchy of services is the strength 
of the model: 

A crash of the database server, will be detected by the query 
server, which must then try to recover from it. The query server 
can retry the request, it might rephrase a query to get the answer 
from another database server, and as a last resort, it can report 
failure to its client, the command interpreter. In this way the 
human client at the top of the hierarchy gets to cope only with 
irrecoverable errors and crashes in the system. 

More precisely, Services are offered by a n u m b e r  o f  server 
processes, distributed over the network. Client processes send 
requests to services; the services carry out  these requests and  
return a reply. Essentially, every job  in the system is 
executed by a dynamic  network of servers executing each 

other 's requests. So a process can be a client, a server, or 
both, and  change its role dynamical ly.  New services can  be 
created by installing server processes for them. Services can 
be removed by destroying their server processes (or by 
making them stop behaving  like a server, i.e., by telling them 
to stop receiving requests). Server processes can  be migrated 

through the network, either by  actually moving  the process 
from one host to another,  or only in effect, by destroying the 
server process in one host and  creating another  one in a 
different host a t  the same time. A specific service m a y  be 
offered by one, or by more  than  one server process. In  the 
latter case, we assume tha t  all server processes that  belong to 
one service are equivalent:  a client sees the same result, 

regardless which server process carries out  its request. A 
process resides in a network node. Each  node has an  address 
and we assume that,  given an  address, the network is capable 
of  rout ing a message to the node at tha t  address. A service is 
identified by its port. A port uniquely names  a service. We 
shall therefore also refer to a service by its port. Ports give 
no clue about  the physical location of a server process. 

1.4. T h e  Problem of  Match-Maklng 

Before a client can  send a request to a server which provides 
the desired service, the client has  to locate tha t  server. Th e  
problem of effncient routing arises at a later stage; first the 
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address of the destination has to be found in a match-making 
phase. We  can  view ma tch -mak ing  as yet another  service in 
the system, be it the primus inter pares. Thus,  we need to 
implement  a name server to serve a connection between client 
process and  server process. 

A centralized name  server must  reside at a so-called well- 
known address which does not change and  is known to all 
processes. (Clearly, the name  server cannot  be used to locate 
itself.) W h e n  the host of  the name  server crashes, the entire 
network crashes. This  solution also causes an  overload of 
messages in the neighborhood of the host. 

W h e n  clients broadcast for services with "where are you" 
messages, we have  an  example of a distributed name  server. 

This  solution is more robust than  the centralized one. But in 
large store-and-forward networks, where messages are 
forwarded from node to node to their destination, 
broadcasting is considerably more costly than  sending a 
message directly to its destination. Broadcast messages are 
sent to every host, while point-to-point messages need only 
pass through the hosts on the pa th  between client and server. 
Conventional  broadcast  methods for locating services need a 
m i n i m u m  of f~(n) message passes to do the broadcast  (e.g., 
via a spanning  tree [2]). 

W e  investigate realizations of name  servers in the entire 
range between centralized and  distributed forms. The  
efficiency of solutions is measured in terms of message passes 
and  local storage. It appears  that,  in m a n y  n-node networks, 
very efficient distributed ma tch -mak ing  between processes 
can  be done in O(V~n) message passes, by using limited 
numbers  of  point-to-point messages. 

1.5. Locate Algor i thms 

In  all cases, the method used to locate a port is the following: 
A server process s located at address A s and  offering a 
service identified by a port or, selects a collection Ps of 
network nodes and  posts at these nodes that server s receives 
requests on port ~r at the address A s. Each  of the nodes in Ps 
stores this information in a cache for future reference. When  

a client process c located at address A c has a request to send 
to ~r, it selects a collection of network nodes Q¢ and  queries 
each node in QQ¢ for the address of  ~r. W hen  Ps fq Q¢ ~ 0 ,  
the node(s) in the intersection will return a message to c 

stating that  ~r is available at A s . If  P~ = {s } and  ~ = U then 
the technique is called broadcasting; i f  Ps = U  and QQ~ = { c }  
then  the  technique is called sweeping. 

1.6. Out l ine  of the paper .  

W e  develop a class of  distributed algorithms for match-  
making  between client processes and  server processes in 
computer  networks. We investigate the expected 
performance of such an  algori thm under  random choices. 
Subsequently,  we determine the optimal lower bound on the 
performance in number  of message passes or "hops"  for any  
such algorithm, in any  network, reader any strategy, 

distributed or not. This  yields a combinatorial l emma which 
m a y  be interesting in its own right, and  results in a lower 

bound on the trade-off product  between the number  of nodes 
a server advertises at and  the  number  of  nodes a client 
inquires at. We consider criteria for robustness. Second, we 
apply the method to part icular  networks, both designed 
networks and  spontaneously emerged networks. Finally, a 
probabilistic and  a hashing algori thm for ma tch-making  are 
investigated. 

1.7. Related work. 

Distributed ma tch -mak ing  between clients and servers will be 
used in the Amoeba distributed operating system [11]. 
Essentially the M a n h a t t a n  topology method below has been 
used before in the  toms-shaped Stony Brook Microcomputer  
Network [5]. Some current  multiprocessor systems avoid the 
communicat ion  overload due to mobile processes, which use 
broadcasting to do the match-making ,  by opting for the 
processes to r un  on fixed processors [8]. Other  system 
designers have chosen for mobile processes, but  use the 
crash-vulnerable solution of a centralized name  server [7]. 
The  present paper  introduces, and  Wstematically explores for 
the first time, the general concept of  distributed match-  
making. 

2. A T h e o r y  o f  D i s t r i b u t e d  M a t c h - M a k i n g  

Below we obtain lower bounds  on the message pass 
complexity of  a class of  Locate algorithms (called Shotgun 
Locate), for the entire range from centralized to distributed 
methods,  and for any  network topology. In  the next section 
we give methods which achieve these lower bounds,  or nearly 
achieve these lower bounds,  for m a n y  network topologies. 

2.1. Framework for Shotgun Locate 

The  networks we consider are point-to-point (store-and- 
forward) communicat ions  networks described by an 
undirected communicat ions  g raph  G = ( U , E ) ,  with a set of 
nodes U representing the processors of  the network, and  a set 
of  edges E representing bidirectional noninterfering 
communicat ion  c h a n n e l s  between them. No common  
memory  is shared by  the node-processors. Each node 

processes messages it receives from its neighbors, performs 

local computat ions on messages and  sends messages to 
neighbors. All these actions take finite time. A message pass or 
hop consists of the  sending of a message from one node to one 
of its direct neighbors. 

1. The  number  of  message passes needed for ma tch-making  
depends on the topology of a network. We  want  to obtain 
topology independent  lower bounds. Therefore, assume 
that  all messages can  be routed in one message pass to 
their destinations. Equivalently,  assume that  the network is 
a complete graph.  Lower bounds on the needed number  of 
message passes in complete networks a Jbrtiori hold for all 
networks. 
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2. For each network G = ( U , E )  and associated match-making 
algorithm, there are total functions P ,  Q such that: 

P ,  Q: u --02 U 

(Here 2 v is the set of all subsets of U.) Any server 
residing at node i starts its stay there by posting its (port, 
address) pair at each node in P(i). Any client residing at 
node j queries each node in Q( j )  for each service (port) it 
requires. 

3. We assume that all nodes j have a cache which is large 
enough to store all (port, address) pairs associated with 
addresses i such that j ~P( i ) .  That  is, the nodes at which 
the rendez-vous" are made can hold all posted material. 
The caches are large enough to hold so many (port, 
address) pairs that they never have to discard one for a 
server that is still active. Entries are made or updated 
whenever a message is received from a server process with 
its address (or when a reply from a locate operation is 
received). We can timestamp the messages to determine 

,which addresses are out of date in case of a conflict. 

We have dubbed this class of  algorithms Shotgun Locate 
algorithms. (Put so many pheasants in the bushes that  the 
hunter  can expect success for the amount of shot he is willing 
to spend.) Later we consider alternative locate methods: 
Hash Locate where the functions P ,  Q depend on the service 
ports as well, and Lighthouse Locate which is a probabilistic 
version of Shotgun Locate where too-small caches can 
discard (port, address) pairs. 

2.2. Probabilistic Analysis 

Let the number of elements in a given set U (universe) of 
nodes be n. Let a given server s reside at node i. Let p be 
the cardinality of P ( i )  C U, the set of nodes where s posts its 
whereabouts. Let a given client c reside at node j .  Let q be 
the number of elements in Q( j )  c u ,  the set of nodes queried 
by c. If  the elements of  P(i) and Q( / )  are randomly chosen 
then the probability for any one element of U to be an 
element o f P ( i )  {Q(/)] is p / n  [ q / n  ]. I f P ( i )  and Q( j )  are 
chosen independently then the probability for any one 
element of  U to be an element in both P(i) and Q( / )  is 
p q / n  2. Since there are n elements in U, the expected size of 
P(i ) fqQ( j )  is given by 

E(#(P( i ) f~Q( j ) ) )  = "p-q- 
?l 

Therefore, to expect one full node in P( i )NQ( j ) ,  we must 
have p + q >I 2 V~n. This is the situation for a l~artieular pair 
of nodes. For the performance of  the whole network we have 
to consider the combined performance of the n 2 pairs of 
nodes, The above analysis holds for each pair i , j  of 
elements of U,  since they are all interchangeable. 
Consequently, the minimal average value of p + q  over all 
pairs in U 2 must be 2 ~ n ,  in order to expect a successful 
match-making for each pair. 
By choice of the sets P(i)  and Q(j) ,  we may improve the 
situation in two ways: 

• The method deterministically yields success. 

• We get by w i t h p  + q  < 2 ~ n .  

2.3. Number of Messages for Match-Making 

To match a server at node i to a client at node j the 
following actions have to take place. The server at i tells a 
set P(i) of  nodes about its location. Client j queries a set 
Q( / )  of  nodes for the desired service. Call the set of  nodes 
rid =P( i ) f - IQ( j )  the set of rendez-vous nodes, that is, the 
nodes at which a rendez-vous between a client at j looking for 
a service and a server at i offering that service can be made. 

Defim~zbn. The  n Xn  matrix, R ,  with entries r iJ 
(l<~id'<n) is the rendez-vous matrix. Each entry rlj , in the 
i th  row and j t h  column of R,  represents the set of rendez-vous 
nodes where the client at node j can find the location i and 
port  of the server at node i. Note that: 

n n 

Urid c P(i)  & Urld c QO') (M1) 
j = l  i = 1  

To prevent waste in message passes, we can take care that 
the inclusions in (M1) are replaced by equalities. (But then 
the surviving subnetwork after a node crash may lack this 
property again.) An optimal shotgun method has exactly o n e  

element in each rid. Below, we represent such singleton sets 
by their single element. (If faults occur in the network then 
we may opt for more redundancy by using larger rid , cf § 
2.4.) 

2.3.1. Examples of  rendez-vous matrices associated with 
both well-known and lesser known strategies. 

1. Broadcasting. The server stays put  and client looks 
everywhere: 

1 
s 2 
e 3 
r 4 
v 5 
e 6 
r 7 
s 8 

9 

C l i e n t s  

1 2 3 4 5 6 7  8 9 

1 1 1 1 1 1 1 1 1  
2 2 2 2 2 2 2 2 2  
3 3 3 3 3 3 3 3 3  
4 4 4 4 4 4 4 4 4  
5 5 5 5 5 5 5 5 5  
6 6 6 6 6 6 6 6 6  
7 7 7 7 7 7 7 7 7  
8 8 8 8 8 8 8 8 8  
9 9 9 9 9 9 9 9 9  

2. Sweeping. The  client stays put  and the server looks for 
work: 
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C l i e n t s  

1 

S 2 

e 3 

r 4 

v 5 

e 6 

r 7 

s 8 

9 

1 2 3 4 5 6 7 8 9  

1 2 3 4 5 6 7 8 9  

1 2 3 4 5 6 7 8 9  

1 2 3 4 5 6 7 8 9  

1 2 3 4 5 6 7 8 9  

1 2 3 4 5 6 7 8 9  

1 2 3 4 5 6 7 8 9  

1 2 3 4 5 6 7 8 9  

1 2 3 4 5 6 7 8 9  

1 2 3 4 5 6 7 8 9  

3. Centralized name server. All services pos t  a t  n o d e  3 a n d  a l l  

c l ients  q u e r y  for  services a t  n o d e  3: 

C l i e n t s  

1 

S 2 

e 3 

r 4 

v 5 

e 6 

r 7 

s 8 

9 

1 2 3 4 5 6 7 8 9  

3 3 3 3 3 3 3 3 3  

3 3 3 3 3 3 3 3 3  

3 3 3 3 3 3 3 3 3  

3 3 3 3 3 3 3 3 3  

3 3 3 3 3 3 3 3 3  

3 3 3 3 3 3 3 3 3  

3 3 3 3 3 3 3 3 3  

3 3 3 3 3 3 3 3 3  

3 3 3 3 3 3 3 3 3  

4. Truly distributed name server. All n o d e s  a r e  used  e q u a l l y  of ten  

as rendez-vous n o d e :  

C l i e n t s  

1 

S 2 

e 3 

r 4 

v 5 

e 6 

r 7 

s 8 

9 

1 2 3 4 5 6 7 8 9  

1 1 1 2 2 2 3 3 3  

1 1 1 2 2 2 3 3 3  

1 1 1 2 2 2 3 3 3  

4 4 4 5 5 5 6 6 6  

4 4 4 5 5 5 6 6 6  

4 4 4 5 5 5 6 6 6  

7 7 7 8 8 8 9 9 9  

7 7 7 8 8 8 9 9 9  

7 7 7 8 8 8 9 9 9  

5. Hierarchical~ distributed name server. Links  for  nodes  lower  in  

the  h i e r a r c h y  a r e  se rved  b y  rendez-vous nodes  h i g h e r  in t he  

h i e r a r c h y .  T h e  n o d e s  a r e  h i e r a r c h i c a l l y  o r d e r e d  b y  1 , 2 , 3 < 7 ;  

4 , 5 , 6 < 8 ;  7 , 8 < 9 :  

C l i e n t s  

1 

S 2 

e 3 

r 4 

v 5 

e 6 

r 7 

s 8 

9 

1 2 3 4 5 6 7 8 9  

7 7 7 9 9 9 9 9 9  

7 7 7 9 9 9 9 9 9  

7 7 7 9 9 9 9 9 9  

9 9 9 8 8 8 9 9 9  

9 9 9 8 8 8 9 9 9  

9 9 9 8 8 8 9 9 9  

9 9 9 9 9 9 9 9 9  

9 9 9 9 9 9 9 9 9  

9 9 9 9 9 9 9 9 9  

6. Distributed name server for  t he  b i n a r y  3 - c u b e  topo logy .  T h e  

n o d e  addres ses  a r e  t he  3-b i t  addresses  o f  t he  c o m e r s  o f  the  

cube .  F o r  a l l  a,b ,c  ~ ( 0 , 1 } ,  P(abc)  = (axy [ x y  E ( 0 , 1 )  } 

a n d  Q(abc) = (xbc I x ~ ( 0 , 1 }  ) :  

C l i e n  t s  

000 

S 001 

e 010 

r 011 

v 100 

e 101 

r 110 

s 111 

000 (301 010 011 100 101 110 111 

000 001 010 011 000 04)1 010 011 

000 001 010 011 000 001 010 0It 

000 001 010 011 000 001 010 011 

000 001 010 0ll  000 001 010 011 

100 101 110 111 100 101 110 111 

100 101 110 111 100 101 110 111 

100 101 110 111 I00 101 110 111 

100 lOt 110 111 100 101 110 111 

2.3.2.  L o w e r  B o u n d  

T h e r e  a r e  n poss ib le  rendez-vous n o d e s  a n d  n 2 e l emen t s  in R .  

By  cho i ce  o f  P ,  Q the  a l g o r i t h m  d i s t r ibu tes  the  l oad  o f  be ing  

a rendez-vons n o d e  o v e r  the  nodes  in  the  ne twork .  I t  is 

some t imes  p r e f e r a b l e  to  d i s t r ibu te  t he  l o a d  uneven ly .  F o r  

ins t ance ,  in the  v e r y  l a r g e  n e t w o r k s  w i t h  mi l l ions  o f  

processors  w h i c h  a r e  n o w  env is ioned ,  ~ m e s s a g e  passes  is 

j u s t  too m u c h  b e c a u s e  n is so l a rge .  I n  h i e r a r c h i c a l  n e t w o r k s  

( E x a m p l e  5) the  n u m b e r  o f  m e s s a g e  passes  for  a m a t c h -  

m a k i n g  i n s t a n c e  c a n  b e  as  l o w  as l o g n .  T h i s  m e a n s  t h a t  

some  nodes  a r e  used  v e r y  of ten  as  rendez-vous node ,  a n d  o thers  

ve ry  s e l d o m  o r  no t  a t  all .  A c o m b i n a t i o n  o f  h i e r a r c h i c a l  a n d  

loca l  pos t i ng  m a y  a lso  b e  useful .  

Le t  t he  rendez-vous m a t r i x  R h a v e  n 2 n o d e  entr ies ,  cons t i tu t ed  

b y  k i >10 copies  o f  e a c h  n o d e  i ,  1 <~i ~ n .  C l e a r l y ,  

n k ~ , i n2 ( M 2 )  
i=1 

T o  m a t c h  a se rve r  a t  n o d e  i w i th  a c l ien t  a t  n o d e  j ,  the  

se rver  sends  messages  to a l l  nodes  in  P ( i )  a n d  the  c l ient  

sends  messages  to al l  n o d e s  in  Q ( j ) .  So,  a l l  in  all ,  t he  number 
of  message passes m (i d )  i n v o l v e d  in  th is  match.making instance is 
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given, in a complete network, by 

m ( i d )  = # P ( i )  + # Q O )  • (M3) 

In the examples above we have seen that, for different 
pairs i d  , the number of message passes re(i j )  for a match- 
making instance can, in a single match-making strategy, range 
all the way from a minimum of 2 to n, and beyond. We 
determine the quality and complexity of a match-making 
strategy by the minimum of m (i v; ), the maximum of m (i j )  and, 
above all, the average o f m ( i d ) ,  for l~id'<-~n. 

Definition. The average number of message passes m (n) of 
the given match-making strategy (which is determined by the 
rendez-vous matrix R ) is: 

n n 1 . • 
re(n) = -~2 5] E m O d )  " (M4) 

i = l j = l  

We now proceed to derive an exact lower bound on m(n ) 
expressed in terms of the number k i of times node i occurs in 
R,  i.e., is used as rendez-voas for a pair of nodes ( l ~ < i ~ n ) .  

Proposition 1. Consider the rendez-vous matrix R as defined. 

Then the average value - -~ '~=l~]=l#P( i ) -#Q(3" )  is bounded 

below by." 

i = l j = l  i = l  

Proof Let r i [ci] be the number of different nodes in row i 
[column i ] (1 <~i ~<n ). Then 

" 0 ri = :# ~.Jrid & 9 = # rid (1) 
j = l  i = 1  

Let R i be the number of different rows containing node i,  
and let C i be the number of different columns containing 
node i (l~<i~<n). Let p i d = l  if node i occurs in r o w j  and 
else Oid = 0 ,  and let 7id = 1 if node i occurs in column j and 
else Yid =0 ,  ( l~< i j~<n) .  Then, 

n n n n 

5]ri  = 5] Y. 0~j = Y.R~ (2) 
j = l  j = l i = l  i = 1  

j = l  j = l i  =1 i = 1  

Clearly, for all i (l~<i~<n) we have 

R i G  >l kl • (3) 

Furthermore, since 

+k,# = (rE:R,- V ;%7 
~ 0 ,  

for all i ~j (1 <~i d' <~n ), we obtain immediately: 

+ ~ > 2 ~  
Rj 

from which it follows that: 

i = 1  j = l  i = l j = l  

Hence, 

" # 

i = l j = l  i = l j = l  

-- / : r , ×  
i = 1  j = l  

n 

= ~ R i  × 2 C j  (by (2)) 
i = 1  j = l  

/> (byO > 
i = l  j = l  

(by (MI)  a (1)) 

which yields the Proposition. [] 
The constraints (M1)-(M5) imply a lower bound trade-off 

between the number of message passes (and nodes) for 
posting a server's (port, address) and the number of message 
passes due to a client querying nodes for the whereabouts of 
services. 

We can adjust the distributed match-making strategy to the 
relative frequency of these happenings, so as to minimize the 
weighted overall number of messages. For instance, if the average 
call for a service at i by a client at j occurs ai d times more often 
than the average posting of a service available at i, then we may 
want to minimize m (n) replacing (M3) by (M3'): 

re(i j )  = #P( i )  + ai,i#Q(O') . (M3') 

Proposition 1 immediately gives us a lower bound on the 
average number of messages involved with a rendez-vons: 

Proposition 2. For a complete n-node network and any Shotgun 
Locate strategy, with the k i's as defined above, the average number 
re(n) of message passes (c.q., distina nodes accessed) to make a 
match is 

m(n)  ~ --2 n ~ X/~7 • 
i = 1  

Proof Assume, by way of contradiction, that the 
Proposition is false, that is, 

i = l j = l  i = 1  

n 
< 2nX • 

i= l  

Then, 

i= l  i = 1  i= l  

which contradicts Proposition 1. [] 
It is not difficult to see that  Propositions 1 and 2 hold 

mutatis mutandis for nonsquare matrices R,  that is, for 
networks where some nodes can host only servers and other 
nodes perhaps only clients. 
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2.3.3. Truly Distributed Match-Making,  Centralized Link- 
Server 

Propositions 1 and 2 specialize to the Corollary below for 
k I = k 2  = ' • • =k ,  = n, the truly distributed case. Here, each 
node occurs equally often as rendez-vous node in matrix R,  
and hence carries an equal load of the work. 

Corollary. Consider the rendez-vous matrix R as defined, for 
k l - - k  2 . . . . .  k n = n .  Then: 

n n 

~ - X  E : # P ( ~ ) # Q ( / )  ~ n , 
i a l j = l  

re(n) a 2 ~nn . 

This lower bound we saw before in the probabilistic 
approach. Another choice of the k i's gives: 

Corollary. For k 2 = k 3 . . . . .  k~ = 0 and k I = n 2, that 
is, there is a centralized name server, we obtain: 

n n 
1 . . 

==~I "=EI#P(~)#Q(J) > 1 , 
z 3 

m(n) ~ 2 . 

2.3.4. Upper  Bound for Complete Networks 

For complete networks the above lower bounds on the 
number of message passes for match-making are about sharp. 
For instance: 

Proposition 3. For the truly distributed case arrangements can be 
constructed such that the lower bounds are (nearly) matched by upper 
bounds. Viz., for each complete network there exists functions P,  Q 
such that, for all l ~ i  d ' ~ n  , ~P(i )#QO" ) ~ n, 
# P ( i ) +  # Q ( j )  ~ 2V~n , and k i ~ n .  

Proof sketch. Arrange the rendez-voas matrix R as a checker 
board consisting of (as near as possible) V~n × V~n squares, 
or nearly squares, of about n entries each. Each square is 
filled with about n copies of one unique node out of the n 
nodes, a different one for each square; cf Example 4. [] 

Proposition 4. Let R be the rendez-vous matrix for an n-node 
network. Let k i ( l  ~ i  ~ n  ) be the multiplicity of node i in R ,  and 
let m (n) be the average match-making cost associated with R .  We 
can lift this strategy to a 4n-node network by constructing a 4n × 4n 
rendez-vous matrix R '  with ki'=4kimod n the multiplicity of  node i 
in R '  ( l ~ i ~ 4 n )  and m ' ( 4 n ) -  2m(n) the associated average 
match-making cost. 

Proof. Replace each entry r i j  of R by a 2 × 2  submatrix 
consisting of 4 copies of rid. The  resulting 2n × 2 n  matrix is 
M .  Let R i (i = 1,2,3,4) be four, pairwise element disjoint, 
isomorphic copies of M .  Consider the 4n × 4n matrix R ' :  

R '  = R3 R4 " 

The number of distinct nodes in R '  is 16 times that in R and 
ki'=4kimod . (l~<i~<4n). It is easy to see that the 
(2 imod2n) th  column [row] of R '  contains twice as many 
distinct nodes as the ( i m o d n ) t h  eolurrm [row] of R 
( l ~ i ~ 2 n ) .  Therefore, the average match-making cost 
associated with R '  is m '(4n ) = 2m (n). [] 

The most inefficient match-making strategy is 
P( i )  = Q ( j )  = U (1 ~ i  j ~ n  ), yielding m (n) = 2n, 

2.3.5. Uppe r  Bound for Non-Complete  Networks 

The topology of  a network G = ( U ~ E )  determines the 
overhead in message passes needed for routing a message to 
its destination. For the complete networks we have 
considered, the number of message passes m ( i d )  for a 
match-making between a service at node i and a client at 
node j equals ~ P ( i ) + # Q ( ] ) .  If  the subgraph induced by 
the sets P(i) ,  Q ( j )  ( l ~ i d ~ n )  is connected, and i E P ( i )  
and j E Q ( j ) ,  and we broadcast the messages over spanning 
trees in these subgraphs, then the number of message passes 
re(i j )  equals the number of addressed nodes # P ( i ) + # Q ( j ) .  
Otherwise, there is an overhead m ( i d ) - # P ( i ) - # Q ( j ) > 0  
of message passes for routing messages from i d to P (i), Q(j) .  
In designing distributed name servers for non-complete 
networks, the achievable message pass efficiency of match- 
making very much depends on how far we can reduce this 
overhead. For this reason, in a ring network, no match-making 
algorithms can do significantly better than broadcasting (i.e., 
m(n ) ~ ( n  )). 

2.4. Robustness, Fault-Tolerance, and Efficiency 

In  computer networks, and also in multiprocessor systems, 
the communication algorithms must be able to cope with 
faulty processors, crashed processors, broken communication 
links, reconfigured network topology and similar issues. A 
centralized name server (Example 3) is very efficient, but if its 
host crashes the whole network fails. It is one of the 
advantages of truly distributed algorithms that they may 
continue in the presence o f  faults. With respect to 
implementing the name server, we can distinguish two 
distinct criteria for robustness. 

• The name server should be distributed in the sense that no 
number of node crashes, which leaves a surviving network, 
can prevent surviving clients from locating surviving 
servers offering a desired service (for instance, by first 
moving to another address). This rules out a centralized 
name server, but  the distributed Examples 1, 2, 4, 5, 6 are 
fine. It is lack of robustness according to this criterion that 
makes the efficient Hash Locate (last section) so fragile. 

• The name server should be redundant in the sense that no 
number of node crashes can prevent a client at a surviving 
node from locating a service offered at a surviving node. 
For example, the Shotgun algorithm expounded above, 
may be locally incapacitated by a rendez-vous node 
crashing. We can remedy this situation by choosing P and 
Q such that, for all l ~ i d ~ n ,  

# ( P ( i )  A Q ( j )  ) ~ f + l  , 

where f is the maximal number of  faults at any time in 
the network. (There remains of  course the problem of how, 
or whether it is still possible, to route the match-making 
messages to their destinations in the surviving subnetwork.) 
The safest solution is obviously P(i)NQO" ) -= U 
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( l < i j < n ) .  This criterion holds equally for Shotgun 
Locate and Hash Locate. 

Robustness is in~ficient and has a price tag in number of 
message passes per match-making instance. That  question is 
not addressed in this paper. 

3 .  I m p l e m e n t a t i o n s  i n  P a r t i c u l a r  N e t w o r k s  

We assume that each node has a table containing the names 
of all other nodes together with the minimum cost to reach 
them and the neighbor at which the minimum cost path 
starts. In  [4] a construction is given to divide every connected 
graph in O(x/nn ) disjoint connected subgraphs of  ~V~-n nodes 
each. Number  the nodes in each subgraph 1 through X/n-n (if 
necessary, divide the excess numbers over the nodes). Each 
node i has a table containing the route to the next (adjacent) 
node i. In the worst case such a path consists of  2V~n 
message passes. (Each of the connected subgraphs contains 
at most V~n nodes. The shortest path, between the two 
nodes labelled i in two adjacent connected subgraphs, is 
therefore not longer than 2V~n .) 

Server's Algorithm. A server at the node labelled i in one of 
the subgraphs communicates its (port, address) to all nodes i 
in the remaining O(X/-~ subgraphs . It follows from above 
that  this takes O(n) message passes. Size O(V~n ) suffices for 
the cache of each node. 

Client's Algorithm. A client broadcasts for a service (along a 
spanning tree) in the subgraph where it resides. This takes at 
most Vtn-n message passes. 

Under  the practical assumption that clients need to locate 
services usually far more frequently than servers need to post 
(port, address), this scheme is fairly optimal. Additionally, 
the caches are kept to a moderate size. Moreover, in 
practice, many store-and-forward networks will require but 
O ( ~ n  ) message passes on the average to broadcast over the 
required subsets of ~ nodes of the server's algorithm. All 
this suggests that  in most networks using this method the 
average number of message passes per match-making 
instance can be substantially less than the order n figure. In 
the remainder of this section we look at match-making in 
some networks with specific topologies. 

3.1. Manhat tan  Networks 

The network is laid out as a p × q rectangular grid of  nodes. 
Post availability of a service along its row and request a 
service along the column the client is on. Caches are of size 
0 ( q )  and number of message passes for each match-making 
instance is O(p+q) .  For p = q  we have m(n)=2~nn and 
caches of size V'~-n. For the 9-node network below, 

1 - g - 3 

4 - 5 -- 6 

7 -- 8 -- 9 

the rendez-vous matrix looks as follows: 

C l i e n t s  

1 

s 2 
e 3 
r 4 
v 5 
e 6 

r 7 
s 8 

9 

1 2 3 4 5 6 7 8 9  

1 2 3 1 2 3 1 2 3  
1 2 3 1 2 3 1 2 3  
1 2 3 1 2 3 1 2 3  
4 5 6 4 5 6 4 5 6  
4 5 6 4 5 6 4 5 6  
4 5 6 4 5 6 4 5 6  
7 8 9 7 8 9 7 8 9  
7 8 9 7 8 9 7 8 9  
7 8 9 7 8 9 7 8 9  

Wrap-around versions of the method can also be used in 
cylindrical networks, or torus-shaped networks. It is, in fact, 
the method used in the torus-shaped Stony Brook 
Microcomputer Network [5]. In the obvious generalization 
to d-dimensional meshes the method takes m ( n ) =  2n (a-  1)/a 
message passes. 

3.2. Multidimensional Cubes 

The network G = ( U , E )  is a d-dimensional cube with U the 
set of nodes of the cube with addresses of  d bits and E the set 
of edges which connect nodes of which the addresses differ in 
a single bit. n = @ U = 2  a and # E  =d2 a - l .  Assume that  d is 
even. 

Server's Algorithm. A server at an address s = s l s 2 " " s  d 
broadcasts its (port, address) along a spanning tree to all 
nodes in the d / 2-dimensional cube spanned by the nodes in 

e ( s )  = (alaz...aasa ~_l...sa l a l , . . . , a i ~ (0 ,1}  } • 
2 2 2 

Client's Algorithm. A client at an address c = c t c 2 " . c  a 
broadcasts its query along a spanning tree to all nodes in the 
d / 2-dimensional cube spanned by the nodes in 

Q(c) = (ClC2...c4a ~+l...aa [aa~_+l ..... at/rE(0,1} } . 

For each pair s ,c E ( 1, . . . , n } the rendez-vous node is given 
by 

P(s ) ('] Q(c ) =k (ClC2...c ds a ~_f..sa} • 
~ -  2 2 

The number of  message passes is the same for each server- 
client pair, and therefore 

m(n) = @P(s)+#Q(c)  = even . 
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The  nodes need ~ - s i z e  caches. Variants  of  the algori thm 
are obtained by splitting the  corner address used in the 
algori thm not in the middle but  in pieces of ed and ( 1 - ¢ ) d  
bits. C f  Example  6. For instance, to adap t  the method to 
take advantage  of relative immobili ty of servers, to get lower 
average. Excessive clogging at intermediate nodes may  be 
prevented by sending messages to a r andom address first, to 

be forwarded to their true destination second [12]. 

3.3. Fast Permutation Networks 

For various reasons [1] fast permutat ion networks like the 
Cube-Connected Cycles network are important  interconneetion 

patterns. An algori thm similar to that  of  the d-dimensional  
cube yields, appropriately tuned,  for an  n-node (2(3(3 network 
caches of size ~ / log n and m (n) ~ O(X/n log n ). 

3.4. Projective Plane Topology. 

The  projective plane P G ( 2 , k )  has n = k 2 +  k + t points 

and  equally m a n y  lines. Each  line consists of k + 1 points 
and  k + 1 lines pass through each point. Each  pair of  lines 
has exactly one point in common.  A server s posts its (port, 
address) to all nodes on an arbitrary line incident on its host 
node. A client c queries all nodes on an  arbitrary line 
incident on its own host node. T he  common node of the two 

lines is the rendez-oous node. A " n size cache for each node 
suffices. Since the nodes are symmetric,  it is easy to see that 

re(n)  = # P ( s ) + # Q ( c )  = 2 ( k + l ) ~  2V~n . 

This  combination of  topology and  algorithm is resistant to 
failures of lines, provided no point has all lines passing 
through it removed. 

3.5. Hierarchical  Networks 

Local-area networks are often connected, by gateway nodes, to 
wide-area networks, which, in turn, may  also be 

interconnected. Locating services and objects in such 
network hierarchies is bound to become an acute problem. 

Service naming preferably should be resolved in a way which is 
machine-independent and network-address-independent. 
Consequently, ways will have to be fmmd to locate services in 
very large networks of hierarchical structure. There, the truly 
distributed ~ n  solutions to the locate problem are not 
acceptable any more. Fortunately, in network hierarchies, it can 
be expected that local traffic is most frequent: most message 
passing between communicating entities is intra-host 
communication; of the remaining inter-host communication, most 
will be confined to a local-area network, and so on, up the 
network hierarchy. For locate algorithms these statistics for the 
locality of communication can be used to advantage. When a 
client initiates a locate operation, the system first does a local 
locate at the lowest level of the network hierarchy (e.g., inside the 
cliem host). If this fails, a locate is carried out at the next level 
of the hierarchy, and this goes on until the top level is reached. 

Assume that  a level i network connects n i level i -  1. 
networks through n i gateways, for each l < i ~ k  (or basic 
nodes, at the lowest level 0 for i = 1). Assume also that  the 

n i gateway hosts compose a level i network with a topology 
which allows thrifty truly distributed match-making  with 

2 X/~ message passes per  match ,  for all i /> 1. 
Sewer's Algorithm. A server posts its (port, address) by 

selecting ~v/~ ? gateways, connecting level i -  1 level networks 
in a level i network, at  each level i of the hierarchy, on a 
pa th  from its host node to the  highest level network, m 

advertise their location. 
Client's Algorithm. Similarly, at  each level i on  a pa th  from 

its host node to the highest level network, a client's locate in 
a network of that  level can  be done in O ( v r ~  7) message 

passes. 
This  gives an  average message pass complexity 

m (n) ~ O ( ~  l ~Vf/) for a hierarchical network with a total 

of  n ~< II/k=l n i nodes. Assuming tha t  all ni's equal  a fixed 

a, the nurnher  of levels in the hierarchy is k,  and the total 
numbe r  of nodes in the network is n -~ a k then the message 
pass complexity of  the locate is m (n) ~ O(k X/a). Therefore, 

_k 
re(n)  E O ( k n 2 k )  . 

Having  the number  k of  levels in the hierarchy depend on n, 
the m i n i m u m  value 

re(n)  ~ O(logn)  

is reached for k = ½1ogn. This  message pass complexity is 
much  better t han  ~(V~n ), bu t  the cache size towards the top 
of the hierarchy increases rapidly. Essentially, the cache of a 
node m a y  need to hold as m a n y  (port, address)'s as there are 
nodes in the subtree it dominates. In  some cases this can be 
avoided. For in a network hierarchy, as we have sketched, 
services are often exclusively accessed by local clients. 

In the Amoeba distributed operating system, for instance, even the 
operating system itsself is accessed just like any other service [11]. 
"Operating System Service" is thus a local service, useful only to 
local clients. Clients on other hosts must use similar services, 
local to their host. The  Amoeba system provides a way for 
services to restrict the availability of the service they offer to 
some local group of processes, the processes within the host where 
the service resides, the processes within the local-area network of 
the service, within the campus network, etc. This last model 
seems the most likely model for the interaction between clients 
and services. Nearly every service will be a local service in some 
sense, with only few services being truly global. Under these 
assumptions, the burden of the processing of locate postings and 
requests can be distributed more or less evenly over the hosts at 
each level of the network hierarchy. This is essentially the 
generalization presented later in the section on Hash Locate. 

3.6. Exist ing Networks  

Many  wide-area computer  networks are not  completely 
designed at the outset bu t  grow and change dynamically.  Yet 
one can  identify common  characteristics. 
• The  network resembles an  undirected tree with a core in 
which we can  imagine the root, and  with some additional 
edges thrown in. It appears  tha t  U U C P n e t  (the anarchistic 
network connecting most  U N I X *  systems) has  this form in 
the sense that  the number  of  extra edges thrown in are not 
more than  the the number  of nodes in a spanning  tree. The  
extra edges would typically occur between geographically 
near nodes. 

* UNIX is a trademark of Bell Laboratories. 

269 

. :~ • .!.~. • :~ .;: • . : ;  . .~: . ~  ,~ ~ . . . .  ~2~'5~ ~ . . ~ . ~ .  ~'G-':'. • ~i~c ~:~ 



• The  degree o f  the nodes should not be to large. Ideally 
bounded by a constant. Yet nodes nearer  to the core of  the 
tree tend to be of higher degree. Compare  backbone sites, 
feeder sites and  terminal sites in UUCPne t .  The  hierarchy of 
the nodes towards the core is very pronounced as can be seen 

in the table. The  degree of super-backbone sites like ihnp4 is 
over 600, of backbone sites like decvax 40 and  mcvax 45, and  a 
feeder site like sdcsvax is 17. Termina l  sites like ace have 

degree 1. 
• The  network is p lanar  to a large extent. This  reflects the 

geographical  cost factor but  also the tree aspect mentioned 
above. Thus ,  the ARPAnet ,  to a large extent predesigned, is 
approximately p lanar  and  even the chaotic U U C P n e t  is not 
too unplanar .  

In the table below we have collected some statistics about the 
state of the known sites of UUCPnet at August 15, 1984. The 
total number of sites of UUCPnet is 1916 and of EUnet 
(European part) 153. The total number of edges in UUCPnet is 
3848 and in EUnet 211. The degree of the nodes varies between 
the unlikely number 0 (one such node is appropriately named 
loyalist) and 641 (which is/hnp4, in real life AT&T in Naperville). 
In the table below we list the number of nodes having a given 
degree. 

#sites 
25 

840 
384 
207 
115 
83 
71 
32 
29 
11 
17 
5 
7 

14 
10 
6 

degree #sites degree 
0 3 25 
1 1 27 
2 2 28 
3 2 30 
4 2 32 
5 1 33 
6 2 34 
7 1 35 
8 2 36 
9 1 37 

10 1 38 
11 1 39 
12 1 40 
13 1 42 
14 1 43 
15 1 44 
16 3 45 
17 1 46 
18 1 47 
19 1 52 
20 2 63 
21 1 70 
22 1 471 
23 1 641 
24 

Table 

Let  us consider trees as described above. T h e  number  of 
nodes in the balanced tree is n ,  the number  of  levels is l 
with the root at level l and  the  leaves at level 0, and  the 
degree of nodes at the i - th  level is d(i). T h e n  a 'factorial '  
relation holds: 

d ( t ) d ( l - - 1 )  . . ,  d ( l )  = . .  

Setting d(l) ~- d 1+¢, for constants c,¢ > 0, yields 
c t(l !)2 +E = n. By Stirling's approximation,  we get after some 

calculation: 

l ~ ' log n 
(1 +¢)  log logn 

If  the exponent  1 + ~  in the expression for d(m) is doubled 
then the depth  of the tree is halved for the same number  of 
nodes. 
Setting d (l) = c 2 cl , for constants c ,c > 0 yields: 

n = cl2 E[-Fi ~ -  cl2 2 

Therefore, 

l = "v/l°~2c + 2 c loan - logc 
£ 

(The  logarithms have  base 2.) I f  ~ is quadrup led  then the 
depth  of the tree is halved for the same number  of  nodes. 

The  strategy in such trees can  be simple: all services 
advertise at the pa th  leading to the root of  the  tree, and  
similarly the clients request services on the pa th  to the root of 

the tree. T h e n  the average number  of message passes used 
for each ma tch -mak ing  instance, is re(n) E O(l). The  cache 
at each node needs to be of the order of the number  of  
elements in the subtree of which it is the root. For smaller 
caches the older and  less used entries can  be discarded in 
favour of  new ones, leading to a Lighthouse Locate like 

algori thm (see below). It  m a y  seem that  such large caches 
are unrealistic and  that,  anyway,  in distributed networks all 

nodes should be symmetric.  However,  even in a genuinely 
distributed and  anarchistically growing network as U U C P n e t  
a hierarchy of nodes develops according to the node degree 
(number  of links with other nodes in the network). This 
points to the fact that  nodes higher  in the hierarchy mus t  
dedicate more comput ing  power and memory  to runn ing  the 
network. Hence  it is not  unrealistic to have the  cache size 
increase for nodes higher in the hierarchy. 

4.  L i g h t h o u s e  L o c a t e  

W e  imagine the processors as discrete coordinate points in 
the 2-dimensional Euclidean plane grid spanned  by (~,0) and 
(0, c). The  number  of servers satisfying a part icular  port in an  
n-element  region of the grid has expected value sn for some 
fixed constant  s > 0 .  

Server's Algorithm. Each server sends out  a r andom direction 
beam of length l every 8 time units. Each  trail left by such a 
beam disappears after d t ime units. T h a t  is, a node discards 
a (port, address) posting after d t ime units. Assume tha t  the 
t ime for a message to run  through a pa th  of length l is so 

small  in relation to d that  the trail appears  and  disappears 
instantaneously. 

Client's Algorithm. To locate a server, the client beams a 
request in a r andom direction at regular  intervals. Originally, 
the  length of the beam is 1 and  the intervals are  8. After e 
unsuccessful trials, the client increases its effort by doubling 
the length of the  inquiry beam and the intervals between 
them (l ~ 2l & ~$ ~-- 2~). And  so on. 

Another  possibility is to govern the length of the locate 
beam (and its durat ion) by the sequence 

12131214121312151213121412131216121312 • • " 
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Here  the length of the locate beam is il once in each interval 
of  2 i trials. (This sequence is sequence 51 in Sloane's 
catalogue [9].) The  schedule can  conveniently be mainta ined 
by a binary counter: the position i of the most significant bit 
changed by the current unit  increment indicates the current  
b e a m  length il. This  schedule has  the additional profit that 
the servers which drift nearer  to the client are located with 
less time-loss. Note that  in a sequence of 2 A trials there are 
2 k - i  length il trials (1 < . i ~ k ) .  

Before the locate method for the euclidean plane can be 
converted into a practical algorithm for locating services it is 
necessary to find ways of mapping point-to-point networks onto 
the euclidean plane in such a way that the euclidean plane 
aigorithln can be converted into an algorithm for a point-to-point 
network. Fortunately, such a mapping can often be found. Most 
point-to-point networks have routing tables that tell each node 
which outgoing arc to use to get a message to its destination. In 
[3] these tables are used back-to-front to broadcast messages over 
the network in near optimal fashion. We can use these tables 
back-to-front to simulate sending messages along "a straight line" 
of certain length. The technique is as follows. 

A client (or server) wishing to send a beam of length k (using 
message passes as the unit of length) chooses a random outgoing 
arc and sends the message along it to its neighbor. This 
neighbor, upon reception of such a message decreases the hop 
count (in the message) by 1, and sends the message on any one 
outgoing arc that is used to send messages from the node at the 
other end of the arc to the original client (or server) where the beam 
started from. And so on, until the hop count reaches 0. 

5. Hash Locate and Beyond 

Let in a given network G = ( U , E )  the set of ports (i.e., types 
of services available) be 1[I. W e  can define the functions P 

and  Q like in the Shotgun Locate but  using the port 
identities as well: 

P,Q: U × Yl --~ 2 U 

If we are dealing with a very large network, where it is 
advantageous  to have servers and  clients look for nearby 
matches,  we can hash  a service onto nodes in neighborhoods. 
A neighborhood can  be a local network, but  also the 
network connecting the local networks, and so on. Therefore, 
such functions can be used to implement  the idea of certain 
services being local and  others being more global (of the 
section on hierarchically structured networks) thus balancing 
the processing load more evenly over the hosts at each level 
of the  network hierarchy. Like Shotgun Locate, the Hash  
Locate below is a specialization of this more general method.  

In  Hash Locate we construct  hash  functions that m a p  service 
names  onto network addresses. T h a t  is, 

P , Q : I I - - - ~ 2  U & P = Q .  

This  technique is  very efficient. Each  server s posts its (port, 
address) at  the node(s) P(~r), if ~r is the port of s ,  and  each 
client in need for a service at port  ~r queries the node(s) in 
P(~r). Apart  from redundancy  for fault-tolerance, clients and  
servers need only use one network node each in every 
match-making.  (Clearly, the rendez-vous matrix mus t  be 
interpreted differently in this setting,) Provided the hash 

function is well-chosen, it distributes the burden of  the locate 
work over the network. It  suffers from the drawback that ,  if 
nodes are added to the network, the hash  function mus t  be 
changed to incorporate these nodes in the  set of  potential 
rendez-vous nodes. Moreover, if all rendez-vous nodes for a 
part icular service crash then this takes out completely that 
part icular service from the entire network. If the service is 
indispensable, the entire network crashes. In  this sense Hash 
Locate is far more vulnerable to node crashes than  the more 
distributed versions of  Shotgun Locate. Examples 1, 2 and 3 
may  also be viewed as borderline examples of  Hash  Locate. 
Examples 4, 5 and 6 are not Hash  Locate methods, since 
Hash  Locate cannot  be distributed in this genuine sense. 

Two obvious approaches can  make  Hash  Locate more 
robust for node crashes. First, the hash  function can m a p  a 
service name  onto m a n y  different network addresses for 
added reliability. Second, when the rendez-vous node for a 
part icular service is down, rehashing can  come up  with 
another network address to act as a backup  rendez-vous node. 
It then becomes necessary that  services regularly poll their 
rendez-vous nodes to see if they are still alive. 
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